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Introduction

Consider the optimization problem

(P) inf f (x)
s.t. ft (x) � 0, 8t 2 T ;

x 2 C ,

where:

T is an arbitrary (possibly in�nite, possibly empty) index set
∅ 6= C � X is an abstract constraint set, X is a Banach space
f , ft : X ! R[ f+∞g for all t 2 T

MAIN GOAL: To analyze the stability of the optimal value function
and the optimal set mapping of (P), ϑ and say F opt , under di¤erent
possible types of perturbations of the data preserving the decision
space X and the index set T .
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Constraints

In [5] we studied the e¤ect on the set of feasible solutions, i.e. the set
of solutions of the constraint system

σ := fft (x) � 0, t 2 T ; x 2 Cg,
also represented σ = fft , t 2 T ; Cg , of perturbing any function ft ,
t 2 T , and possibly the set C , under the condition that these
perturbations maintain certain properties of the constraints.

Di¤erent parametric spaces were considered in [5]. Each one, denoted
by Θ� (for certain subindex) is a given family of systems in the same
space X and index set T .
The main goal of [5] was to study the stability of the feasible set
mapping F : Θ� � X such that

F (σ) = fx 2 X : ft (x) � 0, 8t 2 T ; x 2 Cg.
If T 6= ∅, we shall use the function

g := supfft , t 2 Tg.
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Parametric spaces

We consider parametric spaces of the form

Π� = V� �Θ�,

where V� is a particular family of functions f : X ! R[ f+∞g and
Θ� is a particular family of systems σ.

The 1st object analyzed in the present paper is the optimal value
function ϑ : Π� ! R[ f�∞g de�ned as follows

π = (f , σ) 2 Π� ) ϑ(π) := infff (x) : x 2 F (σ)g = inf f (F (σ)).

Conventions: ϑ(π) = +∞ if F (σ) = ∅ (i.e. if σ /2 domF).
If ϑ(π) = �∞ we say that π is unbounded.
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Optimal set mapping

The 2nd object of this work is the optimal set mapping
F opt : Π� � X

π = (f , σ) 2 Π� ) F opt (π) := fx 2 F (σ) : f (x) = ϑ(π)g.

If π 2 domF opt (i.e. F opt (π) 6= ∅) we say that π is (optimally)
solvable.

It is obvious that the stability of ϑ and if F opt will be greatly
in�uenced by the stability of F , and this why many results in this
presentation deal with stability properties of F .
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Parametric spaces

In this presentation we consider only two parameter spaces, namely:

Π1 :=
�

π 2 Π :
f and ft , t 2 T , are lsc
C is closed

�
,

Π2 :=
�

π 2 Π1 :
f and ft , t 2 T , are convex
C is convex

�
,

where lsc stands for lower semicontinuous.

Obviously, if π = (f , σ) 2 Π1 both sets (possibly empty) F (π) and
F opt (π) are closed sets in X .
If π = (f , σ) 2 Π2 both sets are also convex.
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Limit sets

Let A1,A2, ...,An, .. be a sequence of nonempty subsets of a �rst
countable Hausdor¤ space Y . We consider the set of limit points of
this sequence

y 2 Li
n!∞

An ,
�
there exist yn 2 An, n = 1, 2, ...,
such that (yn)n2N converges to y

;

and the set of cluster points

y 2 Ls
n!∞

An ,
�
there exist n1 < n2 < ... < nk ..., and ynk 2 Ank
such that (ynk )k2N converges to y

.

Clearly Lin!∞ An � Lsn!∞ An and both sets are closed.

We say that A1,A2, ...,An, .. is Kuratowski-Painlevé convergent to the
closed set A if Lin!∞ An = Lsn!∞ An = A, and we write then
A = K � limn!∞ An.
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Multivalued mappings

Let Y and Z be two topological spaces, and consider a set-valued
mapping S : Y � Z .

S is lower semicontinuous (in the Berge sense) at y 2 Y (lsc, in
brief) if, for each open set W � Z such that W \ S(y) 6= ∅, there
exists an open set V � Y containing y , such that
W \ S(y 0) 6= ∅ for each y 0 2 V .
S is upper semicontinuous (in the Berge sense) at y 2 Y (usc, in
brief) if, for each open set W � Z such that S(y) � W , there exists
an open set V � Y containing y , such that S(y 0) � W for each
y 0 2 V .
If both Y and Z are �rst countable Hausdor¤ spaces, S is closed at
y 2 Y if for every pair of sequences (yn)n2N � Y and (zn)n2N � Z
satisfying zn 2 S(yn) for all n 2N, limn!∞ yn = y and
limn!∞ zn = z , one has z 2 S(y).
S is said to be closed if it is closed at every y 2 Y . Obviously, S is
closed if and only if gphS := f(y , z) 2 Y � Z : z 2 S (y)g is closed.
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Strong Slater constraint quali�cation

We say that π = (f , σ) (or, equivalently, σ) satis�es the strong Slater
condition if there exists some x̄ 2 intC and some ρ > 0 such that
ft (x̄) < �ρ for all t 2 T (i.e., g (x̄) � �ρ).

In such a case, x̄ is called strong Slater (SS) point of π (or σ) with
associated constant ρ.
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Metrics for functions and sets

In order to de�ne a suitable topology on the parameter spaces Π� we
proceed in two steps. Let us start with the 1st step.

We equip the space V of all functions of the form f : X ! R[ f+∞g
with the topology of uniform convergence on bounded sets of X .
It is well known that a compatible metric for this topology is given by

d(f , h) :=
+∞

∑
k=1

2�k minf1, sup
kxk�k

jf (x)� h(x)jg.

Here, by convention, we understand that
(+∞)� (+∞) = 0, j�∞j = j+∞j = +∞.
Let f , fn 2 V , n = 1, 2, .... Then d(fn, f )! 0 if and only if the
sequence f1, f2,..., fn, ..converges uniformly to f on the bounded sets
of X .

The function spaces V1 := ff 2 V : f is lscg and
V2 := ff 2 V1 : f is convexg , with the metric d , are complete metric
spaces.
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Distances between sets

In the space of closed sets in X we shall consider the Attouch-Wets
topology, which is the inherited topology from the one considered in
V1 under the identi�cation

C  ! dC (�),

with dC (x) = infc2C kx � ck .
The sequence of nonempty closed sets (Cn)n2N converges in the
sense of Attouch-Wets to the nonempty closed set C if the sequence
of functions (dCn )n2N converges to dC uniformly on the bounded sets
of X .
This topology is compatible with the distance

ed(C ,D) :=
+∞

∑
k=1

2�k min

(
1, sup
kxk�k

jdC (x)� dD (x)j
)
,

i.e. ed(C ,D) = d(dC , dD ).
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More on convergence of sets

The space of all closed sets in X equipped with this distance ed
becomes a complete metric space.

Because X is Banach, we have that if the sequence (dCn )n2N

converges uniformly on bounded sets of X to a continuous function f ,
there exists a nonempty closed set C such that f = dC .

The sequence of nonempty closed sets (Cn)n2N converges in
Attouch-Wets sense to the nonempty closed C if and only if

8k 2N : lim
n!∞

max fe(Cn \ kB,C ), e(C \ kB,Cn)g = 0,

where

e(A,B) := sup
a2A

dB (a) = inffα > 0 : B + αB �Ag,

and B := fx 2 X : kxk � 1g.

Marco A. López (Alicante University) Stability in optimization Colloque JBHU 2010 12 / 24



Our metric

Given π = (f , fft , t 2 T ;Cg), π0 = (f 0, ff 0t , t 2 T ;C 0g) 2 Π, we
de�ne

d(π,π0) := maxfd(f , f 0), sup
t2T

d(ft , f 0t ), ed(C ,C 0)g. (1)

If T = ∅, we take supt2T d(ft , f 0t ) = 0.

Theorem
(Πi ,d), i = 1, 2, are complete metric spaces.
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Some preliminary results

Lemma
Let C be a closed set in X , x0 2 intC, and consider ε > 0 such that
x0 + εB � C. Then there is ρ > 0 such that

ed(C ,C 0) < ρ =) (x0 + εB) \ C 0 6= ∅.

Lemma
Consider π = (f ; fft , t 2 T ;Cg) 2 Π1 and suppose that the marginal
function g = supt2T ft is usc (and so, continuous). If x̂ is an SS-point of
π, then there exists ε > 0 such that

x 2 x̂ + εB and d(π,π0) < ε =) g 0(x) < 0,

with π0 = (f 0; ff 0t , t 2 T ;C 0g) 2 Π1 and g 0 := supt2T f 0t .
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More preliminaries

Consider a convex set C with 0 2 intC 6= ∅, and the associated
Minkovski gauge function de�ned as

pC (x) := inffλ � 0 j x 2 λCg,

and for any positive real number µ, de�ne a set

Cµ := fx 2 X j pC (x) � µg.

Given ε > 0, there exists µ 2]0, 1[ such thated(C ,Cµ) � ε.

The system σ is said to be Tuy regular if there exists ε > 0 such that
for any u 2 RT and for any nonempty convex set C 0 � X satisfying
maxfsupt2T jut j, ed(C ,C 0)g < ε, the system
σ0 = fft (x)� ut � 0, t 2 T ; x 2 C 0g 2 domF .

The last de�nition is inspired in a similar one of H. Tuy ([3]).
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Theorem
The feasible set mapping F is closed on Θi , i = 1, 2.

Theorem

Let σ = fft , t 2 T ;Cg 2 Θ1 with T 6= ∅, and consider the following
statements:
(i) F is lsc at σ;
(ii) σ 2 int domF ;
(iii) σ is Tuy regular;
(iv) σ satis�es the strong Slater condition;
(v) F (σ) is the closure of the set of SS points of σ.
Then, (i)) (ii)) (iii) and (v)) (iv). Moreover, if C is convex, and
intC 6= ∅, then (i)) (v) and (iii)) (iv).
If, in addition, σ 2 Θ2 and g = supt2T ft is usc, then all the statements
(i)� (v) are equivalent.
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Metric regularity of F�1

This property has important consequences in the overall stability of a
system σ, as well as in the sensitivity analysis of perturbed systems,
a¤ecting even the numerical complexity of the algorithms conceived
for �nding a solution of the system.

Many authors ([Aubin84], [Ausl84], [Com90], [JuThi90], [KlaHenr98],
[KlKu85], [Rob75,76], [ZoKur79], etc.) have investigated this
property and explored the relationship of this property with standard
constraint quali�cation as Mangasarian-Fromovitz CQ, Slater CQ,
Robinson CQ, etc.

For instance, in [KlaHenr98] the relationships among the metric
regularity, the metric regularity with respect to RHS perturbations,
and the extended Mangasarian-Fromowitz CQ are established in a
non-convex di¤erentiable setting.
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Let us remember the de�nition of metric regularity in our speci�c setting:

De�nition
F�1 is said to be metrically regular at (x , σ) 2 gphF�1 if there exist real
numbers ε, δ > 0 and κ � 0 such that

d(σ, σ0) < δ
kx � x 0k < ε

�
) d(x 0,F (σ0)) � κd(σ0,F�1(x 0)). (2)

This inequality is specially useful if the residual d(σ0,F�1(x 0)) can be
easily computed.
The existence of an abstract constraint set makes the computation of
d(σ0,F�1(x 0)) very di¢ cult. In fact, if σ0 = ff 0t , t 2 T ,C 0g we have

d(σ0,F�1(x 0)) = max
n�
g 0(x 0)

�
+
, ed(C 0, Cx 0(X ))o , (3)

where Cx 0(X ) is the family of all the closed convex sets C � X such that
x 0 2 C , and ed(C 0, Cx 0(X )) = inf ned(C 0,C ) : C 2 Cx 0(X ))

o
.
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Nevertheless, when we assume that C is the whole space X , the property
makes sense. In fact, if C is constantly equal to X and σ0 = ff 0t , t 2 Tg,
it is straightforward that

d(σ0,F�1(x 0)) =
�
sup
t2T

f 0t (x
0)

�
+

�
�
g 0(x 0)

�
+
,

where g 0 = supt2T f
0
t and [α]+ := maxfα, 0g.

Theorem
Let F : Θ� � X and (x , σ) 2 gphF�1 with σ = fft , t 2 Tg, where Θ�
is the set of parameters whose constraint set is X and ft is convex for all
t 2 T . Then the following statements are true:
(i) If g = supt2T ft is usc at x , and F�1 is metrically regular at (x , σ),
then F is lsc at σ.
(ii) If X is a Hilbert space, and F is lsc at σ, then F�1 is metrically
regular at (x , σ).
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Upper semicontinuity of the optimal value function

We now study the upper semicontinuity of the optimal value function ϑ.

Theorem

Let π = (f , σ) 2 Π1. The following statements hold.
(i) If F is lsc at σ then ϑ is usc at π provided that f is usc.
(ii) If ϑ is usc at π then F is lsc at σ provided that the functions
ft , t 2 T , are convex, C is convex (i.e., if σ 2 Θ2), intC 6= ∅, and the
corresponding marginal function g = supt2T ft is usc.
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Lower semicontinuity of the optimal value function

Consider the sublevel sets mapping L : Π� �R � X :

L(π,λ) := fx 2 F (σ) : f (x) � λg, with π = (f , σ).

Theorem
The mapping L is closed at any point (π,λ) 2 Π1 �R.

De�nition
Let Y and Z be two top. spaces and S : Y � Z . We say that S is
uniformly compact-bounded at y0 2 Y if 9 a compact set K � Z and a
neighborhood V of y0 such that y 2 V =) S(y) � K .

Theorem
(a) If L is uniformly compact-bounded at (π, ϑ(π)) with π 2 Π1, then ϑ
is lsc at π.
(b) Suppose that X = Rn, and π 2 Π2. If F opt (π) is a nonempty
compact set, then L is uniformly compact-bounded at (π, ϑ(π)).
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Optimal set mapping

This section starts with a su¢ cient condition for the closedness of F opt .
Theorem

Consider π = (f , σ) 2 Π1 such that f is usc and F is lsc at σ. Then
F opt is closed at π.

Theorem

Consider π = (f , σ) 2 Π1 such that f is usc, F is lsc at σ, and L is
uniformly compact-bounded at (π, ϑ(π)). Then, ϑ is continuous at π and
F opt is usc at π.
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