On the stability of the optimal value and the optimal set in optimization problems Joint work with N. Dinh and M.A. Goberna

Marco A. López

Alicante University

Colloque JBHU 2010

• Consider the optimization problem

$$\begin{array}{ll} (\mathrm{P}) & \inf \ f(x) \\ & \text{s.t.} & f_t(x) \leq 0, \forall t \in T; \\ & x \in C, \end{array}$$

where:

- T is an arbitrary (possibly infinite, possibly empty) index set
- $\emptyset \neq C \subset X$ is an abstract constraint set, X is a Banach space
- $f, f_t: X \to \mathbb{R} \cup \{+\infty\}$ for all $t \in T$
- MAIN GOAL: To analyze the stability of the optimal value function and the optimal set mapping of (P), θ and say *F^{opt}*, under different possible types of perturbations of the data preserving the decision space X and the index set *T*.

• In [5] we studied the effect on the set of feasible solutions, i.e. the set of solutions of the *constraint system*

$$\sigma := \{f_t(x) \le 0, t \in T; x \in C\},\$$

also represented $\sigma = \{f_t, t \in T; C\}$, of perturbing any function f_t , $t \in T$, and possibly the set C, under the condition that these perturbations maintain certain properties of the constraints.

• In [5] we studied the effect on the set of feasible solutions, i.e. the set of solutions of the *constraint system*

$$\sigma := \{f_t(x) \leq 0, t \in T; x \in C\},\$$

also represented $\sigma = \{f_t, t \in T; C\}$, of perturbing any function f_t , $t \in T$, and possibly the set C, under the condition that these perturbations maintain certain properties of the constraints.

 Different parametric spaces were considered in [5]. Each one, denoted by Θ_◊ (for certain subindex) is a given family of systems in the same space X and index set T.

• In [5] we studied the effect on the set of feasible solutions, i.e. the set of solutions of the *constraint system*

$$\sigma := \{f_t(x) \leq 0, t \in T; x \in C\},\$$

also represented $\sigma = \{f_t, t \in T; C\}$, of perturbing any function f_t , $t \in T$, and possibly the set C, under the condition that these perturbations maintain certain properties of the constraints.

- Different parametric spaces were considered in [5]. Each one, denoted by Θ_◊ (for certain subindex) is a given family of systems in the same space X and index set T.
- The main goal of [5] was to study the stability of the *feasible set* mapping *F* : Θ_◊ ⇒ X such that

$$\mathcal{F}(\sigma) = \{ x \in X : f_t(x) \le 0, \forall t \in T; x \in C \}.$$

• In [5] we studied the effect on the set of feasible solutions, i.e. the set of solutions of the *constraint system*

$$\sigma := \{f_t(x) \leq 0, t \in T; x \in C\},\$$

also represented $\sigma = \{f_t, t \in T; C\}$, of perturbing any function f_t , $t \in T$, and possibly the set C, under the condition that these perturbations maintain certain properties of the constraints.

- Different parametric spaces were considered in [5]. Each one, denoted by Θ_◊ (for certain subindex) is a given family of systems in the same space X and index set T.
- The main goal of [5] was to study the stability of the *feasible set* mapping *F* : Θ_◊ ⇒ X such that

$$\mathcal{F}(\sigma) = \{ x \in X : f_t(x) \le 0, \forall t \in T; x \in C \}.$$

• If $T \neq \emptyset$, we shall use the *function*

$$g := \sup\{f_t, t \in T\}.$$

• We consider parametric spaces of the form

$$\Pi_{\Diamond} = \mathcal{V}_{\Diamond} imes \Theta_{\Diamond}$$
 ,

where \mathcal{V}_{\Diamond} is a particular family of functions $f : X \to \mathbb{R} \cup \{+\infty\}$ and Θ_{\Diamond} is a particular family of systems σ .

 The 1st object analyzed in the present paper is the optimal value function ϑ : Π_◊ → ℝ ∪ {±∞} defined as follows

$$\pi = (f, \sigma) \in \Pi_{\Diamond} \Rightarrow \vartheta(\pi) := \inf\{f(x) : x \in \mathcal{F}(\sigma)\} = \inf f(\mathcal{F}(\sigma)).$$

Conventions: $\vartheta(\pi) = +\infty$ if $\mathcal{F}(\sigma) = \emptyset$ (i.e. if $\sigma \notin \operatorname{dom} \mathcal{F}$).

• If $\vartheta(\pi) = -\infty$ we say that π is unbounded.

• The 2nd object of this work is the optimal set mapping $\mathcal{F}^{opt}: \Pi_{\Diamond} \rightrightarrows X$

$$\pi = (f, \sigma) \in \Pi_{\Diamond} \Rightarrow \mathcal{F}^{opt}(\pi) := \{ x \in \mathcal{F}(\sigma) : f(x) = \vartheta(\pi) \}.$$

- If $\pi \in \operatorname{dom} \mathcal{F}^{opt}$ (i.e. $\mathcal{F}^{opt}(\pi) \neq \emptyset$) we say that π is (optimally) solvable.
- It is obvious that the stability of ϑ and if \mathcal{F}^{opt} will be greatly influenced by the stability of \mathcal{F} , and this why many results in this presentation deal with stability properties of \mathcal{F} .

• In this presentation we consider only two parameter spaces, namely:

$$\Pi_{1} := \left\{ \pi \in \Pi : \begin{array}{l} f \text{ and } f_{t}, t \in \mathcal{T}, \text{ are lsc} \\ \mathcal{C} \text{ is closed} \end{array} \right\},$$
$$\Pi_{2} := \left\{ \pi \in \Pi_{1} : \begin{array}{l} f \text{ and } f_{t}, t \in \mathcal{T}, \text{ are convex} \\ \mathcal{C} \text{ is convex} \end{array} \right\},$$

where lsc stands for lower semicontinuous.

• In this presentation we consider only two parameter spaces, namely:

$$\Pi_{1} := \left\{ \pi \in \Pi : \begin{array}{l} f \text{ and } f_{t}, t \in \mathcal{T}, \text{ are lsc} \\ \mathcal{C} \text{ is closed} \end{array} \right\},$$
$$\Pi_{2} := \left\{ \pi \in \Pi_{1} : \begin{array}{l} f \text{ and } f_{t}, t \in \mathcal{T}, \text{ are convex} \\ \mathcal{C} \text{ is convex} \end{array} \right\},$$

where lsc stands for lower semicontinuous.

• Obviously, if $\pi = (f, \sigma) \in \Pi_1$ both sets (possibly empty) $\mathcal{F}(\pi)$ and $\mathcal{F}^{opt}(\pi)$ are closed sets in X.

• In this presentation we consider only two parameter spaces, namely:

$$\Pi_1 := \left\{ \pi \in \Pi : \begin{array}{l} f \text{ and } f_t, t \in \mathcal{T}, \text{ are lsc} \\ \mathcal{C} \text{ is closed} \end{array} \right\},$$
$$\Pi_2 := \left\{ \pi \in \Pi_1 : \begin{array}{l} f \text{ and } f_t, t \in \mathcal{T}, \text{ are convex} \\ \mathcal{C} \text{ is convex} \end{array} \right\},$$

where lsc stands for lower semicontinuous.

- Obviously, if $\pi = (f, \sigma) \in \Pi_1$ both sets (possibly empty) $\mathcal{F}(\pi)$ and $\mathcal{F}^{opt}(\pi)$ are closed sets in X.
- If $\pi = (f, \sigma) \in \Pi_2$ both sets are also convex.

Limit sets

• Let $A_1, A_2, ..., A_n, ...$ be a sequence of nonempty subsets of a first countable Hausdorff space Y. We consider the set of *limit points* of this sequence

$$y \in \underset{n \to \infty}{\text{Li}} A_n \Leftrightarrow \left\{ egin{array}{c} ext{there exist } y_n \in A_n, \ n = 1, 2, ..., \\ ext{ such that } (y_n)_{n \in \mathbb{N}} ext{ converges to } y \end{array}
ight\}$$

and the set of *cluster points*

 $y \in \underset{n \to \infty}{\text{Ls}} A_n \Leftrightarrow \left\{ \begin{array}{l} \text{there exist } n_1 < n_2 < ... < n_k..., \text{ and } y_{n_k} \in A_{n_k} \\ \text{such that } (y_{n_k})_{k \in \mathbb{N}} \text{ converges to } y \end{array} \right.$

Limit sets

• Let $A_1, A_2, ..., A_n, ...$ be a sequence of nonempty subsets of a first countable Hausdorff space Y. We consider the set of *limit points* of this sequence

$$y \in \underset{n \to \infty}{\text{Li}} A_n \Leftrightarrow \left\{ egin{array}{c} ext{there exist } y_n \in A_n, \ n = 1, 2, ..., \\ ext{ such that } (y_n)_{n \in \mathbb{N}} ext{ converges to } y \end{array}
ight\}$$

and the set of cluster points

$$y \in \underset{n \to \infty}{\text{Ls}} A_n \Leftrightarrow \left\{ \begin{array}{l} \text{there exist } n_1 < n_2 < ... < n_k..., \text{ and } y_{n_k} \in A_{n_k} \\ \text{such that } (y_{n_k})_{k \in \mathbb{N}} \text{ converges to } y \end{array} \right.$$

• Clearly $\operatorname{Li}_{n\to\infty} A_n \subset \operatorname{Ls}_{n\to\infty} A_n$ and both sets are closed.

Limit sets

• Let $A_1, A_2, ..., A_n, ...$ be a sequence of nonempty subsets of a first countable Hausdorff space Y. We consider the set of *limit points* of this sequence

$$y \in \underset{n \to \infty}{\operatorname{Li}} A_n \Leftrightarrow \left\{ egin{array}{c} ext{there exist } y_n \in A_n, \ n=1,2,..., \ ext{ such that } (y_n)_{n \in \mathbb{N}} ext{ converges to } y \end{array}
ight\}$$

and the set of *cluster points*

$$y \in \underset{n \to \infty}{\text{Ls}} A_n \Leftrightarrow \left\{ \begin{array}{l} \text{there exist } n_1 < n_2 < ... < n_k..., \text{ and } y_{n_k} \in A_{n_k} \\ \text{such that } (y_{n_k})_{k \in \mathbb{N}} \text{ converges to } y \end{array} \right.$$

- Clearly $\operatorname{Li}_{n\to\infty} A_n \subset \operatorname{Ls}_{n\to\infty} A_n$ and both sets are closed.
- We say that A₁, A₂, ..., A_n, .. is Kuratowski-Painlevé convergent to the closed set A if Li_{n→∞} A_n = Ls_{n→∞} A_n = A, and we write then A = K lim_{n→∞} A_n.

 Let Y and Z be two topological spaces, and consider a set-valued mapping S: Y ⇒ Z.

- Let Y and Z be two topological spaces, and consider a set-valued mapping S : Y ⇒ Z.
- S is lower semicontinuous (in the Berge sense) at y ∈ Y (lsc, in brief) if, for each open set W ⊂ Z such that W ∩ S(y) ≠ Ø, there exists an open set V ⊂ Y containing y, such that W ∩ S(y') ≠ Ø for each y' ∈ V.

- Let Y and Z be two topological spaces, and consider a set-valued mapping S : Y ⇒ Z.
- S is lower semicontinuous (in the Berge sense) at y ∈ Y (lsc, in brief) if, for each open set W ⊂ Z such that W ∩ S(y) ≠ Ø, there exists an open set V ⊂ Y containing y, such that W ∩ S(y') ≠ Ø for each y' ∈ V.
- S is upper semicontinuous (in the Berge sense) at y ∈ Y (usc, in brief) if, for each open set W ⊂ Z such that S(y) ⊂ W, there exists an open set V ⊂ Y containing y, such that S(y') ⊂ W for each y' ∈ V.

- Let Y and Z be two topological spaces, and consider a set-valued mapping S : Y ⇒ Z.
- S is lower semicontinuous (in the Berge sense) at y ∈ Y (lsc, in brief) if, for each open set W ⊂ Z such that W ∩ S(y) ≠ Ø, there exists an open set V ⊂ Y containing y, such that W ∩ S(y') ≠ Ø for each y' ∈ V.
- S is upper semicontinuous (in the Berge sense) at y ∈ Y (usc, in brief) if, for each open set W ⊂ Z such that S(y) ⊂ W, there exists an open set V ⊂ Y containing y, such that S(y') ⊂ W for each y' ∈ V.
- If both Y and Z are first countable Hausdorff spaces, S is *closed* at $y \in Y$ if for every pair of sequences $(y_n)_{n \in \mathbb{N}} \subset Y$ and $(z_n)_{n \in \mathbb{N}} \subset Z$ satisfying $z_n \in S(y_n)$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} y_n = y$ and $\lim_{n \to \infty} z_n = z$, one has $z \in S(y)$.

(日) (周) (三) (三)

- Let Y and Z be two topological spaces, and consider a set-valued mapping S : Y ⇒ Z.
- S is lower semicontinuous (in the Berge sense) at y ∈ Y (lsc, in brief) if, for each open set W ⊂ Z such that W ∩ S(y) ≠ Ø, there exists an open set V ⊂ Y containing y, such that W ∩ S(y') ≠ Ø for each y' ∈ V.
- S is upper semicontinuous (in the Berge sense) at y ∈ Y (usc, in brief) if, for each open set W ⊂ Z such that S(y) ⊂ W, there exists an open set V ⊂ Y containing y, such that S(y') ⊂ W for each y' ∈ V.
- If both Y and Z are first countable Hausdorff spaces, S is closed at $y \in Y$ if for every pair of sequences $(y_n)_{n \in \mathbb{N}} \subset Y$ and $(z_n)_{n \in \mathbb{N}} \subset Z$ satisfying $z_n \in S(y_n)$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} y_n = y$ and $\lim_{n \to \infty} z_n = z$, one has $z \in S(y)$.
- S is said to be *closed* if it is closed at every $y \in Y$. Obviously, S is closed if and only if gph $S := \{(y, z) \in Y \times Z : z \in S(y)\}$ is closed.

We say that π = (f, σ) (or, equivalently, σ) satisfies the strong Slater condition if there exists some x̄ ∈ int C and some ρ > 0 such that f_t(x̄) < -ρ for all t ∈ T (i.e., g(x̄) ≤ -ρ).

- We say that π = (f, σ) (or, equivalently, σ) satisfies the strong Slater condition if there exists some x̄ ∈ int C and some ρ > 0 such that f_t(x̄) < -ρ for all t ∈ T (i.e., g(x̄) ≤ -ρ).
- In such a case, \bar{x} is called *strong Slater* (SS) *point* of π (or σ) with associated constant ρ .

Metrics for functions and sets

In order to define a suitable topology on the parameter spaces Π_{\Diamond} we proceed in two steps. Let us start with the *1st step*.

- We equip the space V of all functions of the form f : X → ℝ ∪ {+∞} with the topology of uniform convergence on bounded sets of X.
- It is well known that a compatible metric for this topology is given by

$$d(f,h) := \sum_{k=1}^{+\infty} 2^{-k} \min\{1, \sup_{\|x\| \le k} |f(x) - h(x)|\}.$$

Here, by convention, we understand that

$$(+\infty) - (+\infty) = 0, \ |-\infty| = |+\infty| = +\infty.$$

- Let f, f_n ∈ V, n = 1, 2, Then d(f_n, f) → 0 if and only if the sequence f₁, f₂,..., f_n, ...converges uniformly to f on the bounded sets of X.
- The function spaces $\mathcal{V}_1 := \{f \in \mathcal{V} : f \text{ is lsc}\}$ and $\mathcal{V}_2 := \{f \in \mathcal{V}_1 : f \text{ is convex}\}$, with the metric d, are *complete* metric spaces.

Distances between sets

• In the space of closed sets in X we shall consider the *Attouch-Wets* topology, which is the inherited topology from the one considered in V_1 under the identification

$$C \longleftrightarrow d_C(\cdot),$$

with $d_C(x) = \inf_{c \in C} ||x - c||$.

- The sequence of nonempty closed sets (C_n)_{n∈ℕ} converges in the sense of Attouch-Wets to the nonempty closed set C if the sequence of functions (d_{C_n})_{n∈ℕ} converges to d_C uniformly on the bounded sets of X.
- This topology is compatible with the distance

$$\widetilde{d}(C, D) := \sum_{k=1}^{+\infty} 2^{-k} \min \left\{ 1, \sup_{\|x\| \le k} |d_C(x) - d_D(x)| \right\},$$

i.e. $\widetilde{d}(C, D) = d(d_C, d_D)$.

- The space of all closed sets in X equipped with this distance \tilde{d} becomes a complete metric space.
- Because X is Banach, we have that if the sequence (d_{C_n})_{n∈ℕ} converges uniformly on bounded sets of X to a continuous function f, there exists a nonempty closed set C such that f = d_C.
- The sequence of nonempty closed sets (C_n)_{n∈ℕ} converges in Attouch-Wets sense to the nonempty closed C if and only if

$$\forall k \in \mathbb{N} : \lim_{n \to \infty} \max \{ e(C_n \cap k\mathbb{B}, C), e(C \cap k\mathbb{B}, C_n) \} = 0,$$

where

$$e(A, B) := \sup_{a \in A} d_B(a) = \inf\{\alpha > 0: B + \alpha \mathbb{B} \supset A\},$$

and $\mathbb{B} := \{ x \in X : \|x\| \le 1 \}.$

• Given $\pi = (f, \{f_t, t \in T; C\}), \pi' = (f', \{f'_t, t \in T; C'\}) \in \Pi$, we define

$$\mathbf{d}(\pi,\pi') := \max\{d(f,f'), \sup_{t\in \mathcal{T}} d(f_t,f_t'), \widetilde{d}(\mathcal{C},\mathcal{C}')\}.$$
(1)

If
$$T = \emptyset$$
, we take $\sup_{t \in T} d(f_t, f'_t) = 0$.

Theorem

 $(\Pi_i, \mathbf{d}), i = 1, 2, are complete metric spaces.$

3

A B M A B M

- ∢ 🗇 እ

Lemma

Let C be a closed set in X, $x_0 \in \text{int } C$, and consider $\varepsilon > 0$ such that $x_0 + \varepsilon \mathbb{B} \subset C$. Then there is $\rho > 0$ such that

$$\widetilde{d}(C, C') < \rho \implies (x_0 + \varepsilon \mathbb{B}) \cap C' \neq \emptyset.$$

Lemma

Consider $\pi = (f; \{f_t, t \in T; C\}) \in \Pi_1$ and suppose that the marginal function $g = \sup_{t \in T} f_t$ is usc (and so, continuous). If \hat{x} is an SS-point of π , then there exists $\varepsilon > 0$ such that

$$x \in \hat{x} + \varepsilon \mathbb{B}$$
 and $d(\pi, \pi') < \varepsilon \Longrightarrow g'(x) < 0$,

with $\pi' = (f'; \{f'_t, t \in T; C'\}) \in \Pi_1$ and $g' := \sup_{t \in T} f'_t$.

A B M A B M

More preliminaries

 Consider a convex set C with 0 ∈ int C ≠ Ø, and the associated Minkovski gauge function defined as

$$p_{\mathcal{C}}(x) := \inf\{\lambda \ge 0 \mid x \in \lambda \mathcal{C}\},\$$

and for any positive real number μ , define a set

$$C_{\mu} := \{ x \in X \mid p_{\mathcal{C}}(x) \leq \mu \}.$$

Given $\varepsilon > 0$, there exists $\mu \in]0, 1[$ such that

 $\widetilde{d}(C, C_{\mu}) \leq \varepsilon.$

The system σ is said to be *Tuy regular* if there exists ε > 0 such that for any u ∈ ℝ^T and for any nonempty convex set C' ⊂ X satisfying max{sup_{t∈T} |u_t|, d̃(C, C')} < ε, the system σ' = {f_t(x) - u_t ≤ 0, t ∈ T; x ∈ C'} ∈ dom F.

The last definition is inspired in a similar one of H. Tuy ([3]).

Theorem

The feasible set mapping \mathcal{F} is closed on Θ_i , i = 1, 2.

Theorem

Let $\sigma = \{f_t, t \in T; C\} \in \Theta_1$ with $T \neq \emptyset$, and consider the following statements: (i) \mathcal{F} is lsc at σ ; (ii) $\sigma \in \operatorname{int} \operatorname{dom} \mathcal{F}$; (iii) σ is Tuy regular: (iv) σ satisfies the strong Slater condition; (v) $\mathcal{F}(\sigma)$ is the closure of the set of SS points of σ . Then, $(i) \Rightarrow (ii) \Rightarrow (iii)$ and $(v) \Rightarrow (iv)$. Moreover, if C is convex, and int $C \neq \emptyset$, then $(i) \Rightarrow (v)$ and $(iii) \Rightarrow (iv)$. If, in addition, $\sigma \in \Theta_2$ and $g = \sup_{t \in T} f_t$ is usc, then all the statements (i) - (v) are equivalent.

イロト イポト イヨト イヨト 二日

- This property has important consequences in the overall stability of a system σ , as well as in the sensitivity analysis of perturbed systems, affecting even the numerical complexity of the algorithms conceived for finding a solution of the system.
- Many authors ([Aubin84], [Ausl84], [Com90], [JuThi90], [KlaHenr98], [KIKu85], [Rob75,76], [ZoKur79], etc.) have investigated this property and explored the relationship of this property with standard constraint qualification as Mangasarian-Fromovitz CQ, Slater CQ, Robinson CQ, etc.
- For instance, in [KlaHenr98] the relationships among the metric regularity, the metric regularity with respect to RHS perturbations, and the extended Mangasarian-Fromowitz CQ are established in a non-convex differentiable setting.

3 K K 3 K

Let us remember the definition of metric regularity in our specific setting:

Definition

 \mathcal{F}^{-1} is said to be *metrically regular at* $(x, \sigma) \in \operatorname{gph} \mathcal{F}^{-1}$ if there exist real numbers $\varepsilon, \delta > 0$ and $\kappa \ge 0$ such that

$$\begin{aligned} & \mathbf{d}(\sigma, \sigma') < \delta \\ & \|x - x'\| < \varepsilon \end{aligned} \right\} \Rightarrow \mathbf{d}(x', \mathcal{F}(\sigma')) \le \kappa \mathbf{d}(\sigma', \mathcal{F}^{-1}(x')). \end{aligned}$$
(2)

This inequality is specially useful if the residual $\mathbf{d}(\sigma', \mathcal{F}^{-1}(\mathbf{x}'))$ can be easily computed.

The existence of an abstract constraint set makes the computation of $\mathbf{d}(\sigma', \mathcal{F}^{-1}(x'))$ very difficult. In fact, if $\sigma' = \{f'_t, t \in T, C'\}$ we have

$$\mathbf{d}(\sigma', \mathcal{F}^{-1}(x')) = \max\left\{\left[g'(x')\right]_{+}, \widetilde{d}(C', \mathcal{C}_{x'}(X))\right\},$$
(3)

where $\mathcal{C}_{x'}(X)$ is the family of all the closed convex sets $C \subset X$ such that $x' \in C$, and

$$\widetilde{d}(C', \mathcal{C}_{x'}(X)) = \inf \left\{ \widetilde{d}(C', C) : C \in \mathcal{C}_{x'}(X)) \right\}.$$

Nevertheless, when we assume that C is the whole space X, the property makes sense. In fact, if C is constantly equal to X and $\sigma' = \{f'_t, t \in T\}$, it is straightforward that

$$\mathbf{d}(\sigma', \mathcal{F}^{-1}(x')) = \left[\sup_{t \in \mathcal{T}} f'_t(x')\right]_+ \equiv \left[g'(x')\right]_+,$$

where $g' = \sup_{t \in T} f'_t$ and $[\alpha]_+ := \max{\alpha, 0}$.

Theorem

Let $\mathcal{F}: \Theta_{\Diamond} \rightrightarrows X$ and $(x, \sigma) \in \operatorname{gph} \mathcal{F}^{-1}$ with $\sigma = \{f_t, t \in T\}$, where Θ_{\Diamond} is the set of parameters whose constraint set is X and f_t is convex for all $t \in T$. Then the following statements are true: (i) If $g = \sup_{t \in T} f_t$ is usc at x, and \mathcal{F}^{-1} is metrically regular at (x, σ) , then \mathcal{F} is lsc at σ . (ii) If X is a Hilbert space, and \mathcal{F} is lsc at σ , then \mathcal{F}^{-1} is metrically regular at (x, σ) . We now study the upper semicontinuity of the optimal value function ϑ .

Theorem

Let $\pi = (f, \sigma) \in \Pi_1$. The following statements hold. (i) If \mathcal{F} is lsc at σ then ϑ is usc at π provided that f is usc. (ii) If ϑ is usc at π then \mathcal{F} is lsc at σ provided that the functions $f_t, t \in T$, are convex, C is convex (i.e., if $\sigma \in \Theta_2$), int $C \neq \emptyset$, and the corresponding marginal function $g = \sup_{t \in T} f_t$ is usc.

Lower semicontinuity of the optimal value function

Consider the sublevel sets mapping $\mathcal{L}: \Pi_{\Diamond} \times \mathbb{R} \rightrightarrows X$:

$$\mathcal{L}(\pi, \lambda) := \{ x \in \mathcal{F}(\sigma) : f(x) \le \lambda \}, \text{ with } \pi = (f, \sigma).$$

Theorem

The mapping \mathcal{L} is closed at any point $(\pi, \lambda) \in \Pi_1 \times \mathbb{R}$.

Definition

Let Y and Z be two top. spaces and $S: Y \rightrightarrows Z$. We say that S is uniformly compact-bounded at $y_0 \in Y$ if \exists a compact set $K \subset Z$ and a neighborhood V of y_0 such that $y \in V \Longrightarrow S(y) \subset K$.

Theorem

(a) If \mathcal{L} is uniformly compact-bounded at $(\pi, \vartheta(\pi))$ with $\pi \in \Pi_1$, then ϑ is lsc at π .

(b) Suppose that $X = \mathbb{R}^n$, and $\pi \in \Pi_2$. If $\mathcal{F}^{opt}(\pi)$ is a nonempty compact set, then \mathcal{L} is uniformly compact-bounded at $(\pi, \vartheta(\pi))$.

Marco A. López (Alicante University)

Stability in optimization

This section starts with a sufficient condition for the closedness of \mathcal{F}^{opt} .

Theorem

Consider $\pi = (f, \sigma) \in \Pi_1$ such that f is usc and \mathcal{F} is lsc at σ . Then \mathcal{F}^{opt} is closed at π .

Theorem

Consider $\pi = (f, \sigma) \in \Pi_1$ such that f is usc, \mathcal{F} is lsc at σ , and \mathcal{L} is uniformly compact-bounded at $(\pi, \vartheta(\pi))$. Then, ϑ is continuous at π and \mathcal{F}^{opt} is usc at π .

- Aubin, J.-P., Frankowska, H., *Set-Valued Analysis*, Birkhäuser, Boston, 1990.
- Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K., Non-Linear Parametric Optimization, Birkhäuser Verlag, Basel, 1983.
- Beer, G., *Topologies on Closed and Closed Convex Sets*, Kluewer Academic Verlag, Dordrecht, 1993.
- Cánovas, M.J., López, M.A., Parra, J., Upper semicontinuity of the fesible set mapping for linear inequalities systems, Set-Valued Anal. 10 (2002) 361-378.
- Dinh, N., Goberna, M.A., López, M.A., *On the stability of the feasible set in optimization problems*, SIAM J. Optim. 20 (2010) 2254-2280.

3 🕨 🖌 3

- Gayá, V.E., López, M.A., Vera de Serio, V.N., *Stability in convex semi-infinite programming and rates of convergence of optimal solutions of discretized finite subproblems*, Optimization 52 (2003) 693-713.
- López, M.A., Vera de Serio, V., Stability of the feasible set mapping in convex semi-infinite programming, in M.A. Goberna, M.A. López (eds) Semi-infinite programming: Recent Advances, Kluwer, Dordrecht, 2001, pp. 101-120.
- Tuy, H., *Stability property of a system of inequalities*, Math. Oper. Statist. Series Opt. 8 (1977) 27-39.