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Let K ⊆ Rn be closed

A basic question is:

Characterize the continuous functions f : Rn → R that are
nonnegative on K
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and if possible ....
a characterization amenable to practical computation!

Because then .....

Jean B. Lasserre semidefinite characterization



Positivstellensatze for basic semi-algebraic sets

Let K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}, for some
polynomials (gj) ⊂ R[x].

Here, knowledge on K is through its defining polynomials
(gj) ⊂ R[x].

Let C(K)d be the CONVEX cone of polynomials of degree at
most d , nonnegative on K, and Cd the CONVEX cone of
polynomials of degree at most d , nonnegative on Rn.

Define

x 7→ gJ(x) :=
∏
k∈J

gk (x), J ⊆ {1, . . . ,m}.
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The preordering associated with (gj) is the set

P(g) :=

 ∑
J⊆{1,...,m}

σJ gJ : σJ ∈ Σ[x]


The quadratic module associated with (gj) is the set

Q(g) :=


m∑

j=1

σj gj : σj ∈ Σ[x]


Of course every element of P(g) or Q(g) is nonnegative on K,
and the σJ (or the σj ) provide certificates of nonnegativity on K.
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Truncated versions

The k -truncated preordering associated with (gj) is the set

Pk (g) :=

 ∑
J⊆{1,...,m}

σJ gJ : σJ ∈ Σ[x], degσJ gJ ≤ 2k


The k -truncated quadratic module associated with (gj) is the
set

Qk (g) :=


m∑

j=1

σj gj : σj ∈ Σ[x],degσJ gJ ≤ 2k


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d-Truncated versions

One may also define the convex cones

Pd
k (g) := Pk (g) ∩ R[x]d

Qd
k (g) := Qk (g) ∩ R[x]d
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Observe that

Qd
k (g) ⊂ Pd

k (g) ⊂ C(K)d ,

and so, the convex cones Qd
k (g) and Pd

k (g) provide inner
approximations of C(K)d .

... and ... TESTING whether f ∈ Pd
k (g), or f ∈ Qd

k (g)

IS SOLVING an SDP!

Provides the basis of moment-sos relaxations for polynomial
programming!
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Stengle’s NichtNegativstellensatz

f ≥ 0 on K ⇔ h f = f 2s + p

for some integer s, and polynomials h, p ∈ P(g).

Moreover, bounds for s and degrees of h,p exist!

Hence, GIVEN f ∈ R[x]d , cheking whether f ≥ 0 on K

... reduces to solve a SINGLE SDP! ......BUT

• .. its size is out of reach ....!!! (hence try small degree
certificates)

• it does not provide a NICE characterization of C(K)d , and

• not very practical for optimization purpose
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Note in passing that

f ≥ 0 on Rn (i .e., f ∈ Cd) ⇔ h f = p

for some integer s, and polynomials h, p ∈ P(g).
But again, it does not provide a nice characterization of the
convex cone Cd
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Schmüdgen’s Positivstellensatz

[ K compact and f > 0 on K ] ⇒ f ∈ Pk (g)

for some integer k .

Putinar Positivstellensatz
Assume that for some M > 0, the quadratic polynomial
x 7→ M − ‖x‖2 is in Q(g). Then:

[ K compact and f > 0 on K ] ⇒ f ∈ Qk (g)

for some integer k .
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Observe that if f ≥ 0 on K then for every ε > 0, there exists k
such that f + ε ∈ Qd

k (g) (or f + ε ∈ Qd
k (g)) for some k ...

And so, the previous Positivstellensatze state that( ∞⋃
k=0

Pd
k (g)

)
= C(K)d

and if x 7→ M − ‖x‖2 is in Q(g)( ∞⋃
k=0

Qd
k (g)

)
= C(K)d
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Duality

Given a sequence y = (yα), α ∈ Nn, define the linear functional
Ly : R[x] → R by:

f (=
∑
α

fα xα) 7→ Ly(f ) :=
∑
α

fα yα, ∀ f ∈ R[x]

A sequence y has a representing Borel measure on K if there
exists a finite Borel measure µ supported on K, such that

yα =

∫
K

xα dµ(x), ∀α ∈ Nn.

Theorem (Dual version of Putinar’s theorem)

Let K be compact and assume that the polynomial M − ‖x‖2

belongs to Q(g). Then y has a representing mesure supported
on K if

Ly(h2) ≥ 0, Ly(h2 gj) ≥ 0, ∀h ∈ R[x]
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Moment matrix Mk (y)

with rows and columns indexed in Nn
k = {α ∈ Nn :

∑
i αi ≤ k}.

Mk (y)(α, β) := Ly(xα+β) = yα+β, α, β ∈ Nn
k

For instance in R2 : M1(y) =


y00 | y10 y01
− − −

y10 | y20 y11
y01 | y11 y02



Then
[

Ly(f 2) ≥ 0, ∀f , deg(f ) ≤ k
]

⇔ Mk (y) � 0
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Localizing matrix Mr (θy) with respect to θ ∈ R[x]

With x 7→ θ(x) =
∑

γ θγ xγ

Mr (θ y)(α, β) = Ly(θ xα+β) =
∑
γ∈Nn

θγ yα+β+γ , α, β ∈ Nn
k

For instance, in R2, and with X 7→ θ(x) := 1− x2
1 − x2

2 ,

M1(θ y) =

 y00 − y20 − y02, y10 − y30 − y12, y01 − y21 − y03
y10 − y30 − y12, y20 − y40 − y22, y11 − y21 − y12
y01 − y21 − y03, y11 − y21 − y12, y02 − y22 − y04

 .

Then
[

Ly(f 2 θ) ≥ 0, ∀f ,deg(f ) ≤ k
]

⇔ Mk (θ y) � 0
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Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem

f ∗ = min{f (x) : x ∈ K}

For every j , let vj := ddeg(gj)/2e.

Theorem

Let K be compact and assume that the polynomial M − ‖x‖2

belongs to Q(g). Consider the semidefinite programs:

ρ∗k := max {λ : f − λ ∈ Qk (g) }

ρk := miny Ly(f )
s.t. Ly(1) = 1

Mk (y), Mk−vj (gj y) � 0, j = 1, . . . ,m

Then ρ∗k ≤ ρk for all k, and ρ∗k , ρk ↑ f ∗ := min {f (x) : x ∈ K }
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Notice that the primal semidefinite program

ρk := miny Ly(f )
s.t. Ly(1) = 1

Mk (y), Mk−vj (gj y) � 0, j = 1, . . . ,m

is a relaxation of

f ∗ = min
µ∈M(K)

{∫
K

f dµ : µ(K) = 1
}

where M(K) is the space of finite Borel measures on K.

Let yk be an optimal solution of the primal SDP
If there is a unique global minimizer x∗ ∈ K then µ∗ = δx∗ and
for every i = 1, . . . ,n, Lyk (xi) → x∗i as k →∞.
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Another look at of nonnegativity
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Let K ⊆ Rn be an arbitrary closed set, and let f : Rn → R be a
continuous function.

Support of a measure
On a separable metric space X , the support suppµ of a Borel
measure µ is the (unique) smallest closed set such that
µ(X \ K) = 0.

Here the knowledge on K is through a measure µ with
suppµ = K, and is independent of the representation of K.

Lemma (Let µ be such that suppµ = K)
A continuous function f : X → R is nonnegative on K if and only
if the signed Borel measure ν(B) =

∫
K∩B f dµ, B ∈ B, is a

positive measure.
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proof

The only if part is straightforward. For the if part, if ν is a
positive measure then f (x) ≥ 0 for µ-almost all x ∈ K. That is,
there is a Borel set G ⊂ K such that µ(G) = 0 and f (x) ≥ 0 on
K \G.

Next, observe that K \G ⊂ K and µ(K \G) = µ(K). Therefore
K \G = K by minimality of K.

Hence, let x ∈ K be fixed, arbitrary. As K = K \G, there is a
sequence (xk ) ⊂ K \G, k ∈ N, with xk → x as k →∞. But
since f is continuous and f (xk ) ≥ 0 for every k ∈ N, we obtain
the desired result f (x) ≥ 0.
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Theorem
Let K ⊆ [−1,1]n be compact and let µ be an arbitrary, fixed,
finite Borel measure on K with suppµ = K. Let f be a
continuous function on Rn and let z = (zα), α ∈ Nn, with

zα =

∫
K

xαf (x)dµ(x), ∀α ∈ Nn.

(a) f ≥ 0 on K if and only if

Mk (z) � 0, k = 0,1, . . . ,

and if f ∈ R[x] then f ≥ 0 on K if and only if

Mk (f y) � 0, k = 0,1, . . .

(b) If in addition to be continuous, f is also concave on K, then
one may replace K with co (K).
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Sketch of proof

Consider the signed measure dν = f dµ. As K ⊆ [−1,1]n,

|zα| =

∣∣∣∣∫
K

xαf dµ
∣∣∣∣ ≤ ∫

K
|f |dµ = ‖f‖1, ∀α ∈ Nn.

and so z is the moment sequence of a finite (positive) Borel
measure ψ on [−1,1]n.

As K is compact this implies ν = ψ, and so, ν is a positive Borel
measure, and with support equal to K.

By the Lemma that we have seen, f ≥ 0 on K.
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Let identify f ∈ R[x]d with its vector of coefficient f ∈ Rs(d), with
s(d) =

(n+d
n

)
.

Observe that, for every k = 1, . . .

∆k := {f ∈ Rs(d) : Mk (f y) � 0} is a spectrahedron in Rs(d),

that is, ...
one obtains a nested hierarchy of spectrahedra

∆0 ⊃ ∆1 · · · ⊃ ∆k · · · ⊃ C(K)d ,

with no lifting, that provide tighter and tighter outer
approximations of C(K)d .
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So we get the sandwich Pd
k (g) ⊂ C(K)d ⊂ ∆k for all k , and

( ∞⋃
k=0

Pd
k (g)

)
= C(K)d =

( ∞⋂
k=0

∆k

)
↓ ↓

Inner approximations Outer approximations
representation dependent independent of representation
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Application to optimization

Theorem (A hierarchy of upper bounds)

Let f ∈ R[x]d be fixed and K ⊂ Rn be closed. Let µ be such that
suppµ = K and with moment sequence y = (yα), α ∈ Nn.
Consider the hierarchy of semidefinite programs:

uk = min
σ


∫

K
f σ dµ︸︷︷︸

dν

:

∫
K
σdµ︸︷︷︸

dν

= 1; σ ∈ Σ[x]d

 ,

u∗k = max
λ

{λ : Mk (f − λ,y) � 0 }

= max
λ

{λ : λMk (y) � Mk (f ,y) }

Then u∗k ,uk ↓ f ∗ = minx {f (x) : x ∈ K}.
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Interpetation of uk and u∗k

• Computing u∗k is a generalized eigenvalue problem!

• Next, recall that

f ∗ = min
ψ
{
∫

K
f dψ : ψ(K) = 1, ψ(Rn \ K) = 0}

whereas

uk = min
ν
{
∫

K
f σdµ︸︷︷︸

dν

: ν(K) = 1, ν(Rn \ K) = 0; σ ∈ Σ[x]k}

that is, one optimizes over the subspace of Borel probability
measures absolutely continuous with respect to µ, and with
density σ ∈ Σ[x]k .

Ideally, when k is large, σ(x) > 0 in a neighborhood of a global
minimizer x∗ ∈ K.
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• Also works for non-compact closed sets but then µ has to
satisfy Carleman-type sufficient condition which limits the
growth of the moments. For example, take

dµ = e−‖x‖2/2 dx

• The sequences of upper bounds (uk ,u∗k ) complement the
sequences of lower bounds (ρk , ρ

∗
k ) obtained from

SDP-relaxations.

• Of course, for practical computation, the previous semidefinite
relaxations require knowledge of the moment sequence
y = (yα), α ∈ Nn.
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This is possible for relatively simple sets K like a box, a simplex,
the discrete set, an ellipsoid, etc., where one can compute all
moments of a measure µ whose support is K. For instancetake
µ to be uniformly distributed, or K = Rn (or K = Rn

+) with

dµ = e−‖x‖2/2 dx, K = Rn

dµ = e−
P

i xi dx, K = Rn
+

dµ = dx,
{

K = [a1,b1]× · · · × [an,bn]
K = {x ∈ Rn

+ :
∑n

i=1 xi ≤ 1}

For K = {−1,1}n or K = {0,1}n take µ to be uniformly
distributed.
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Some experiments

• K = R2
+ with dµ = e−

P
i xi dx so that

yij = i! j!, ∀i , j = 0,1, . . .

x 7→ f (x) := x2
1 x2

2 (x2
1 + x2

2 − 1) with f ∗ = −1/27 ≈ −0.037

uk 15.6 4.3 1.5 0.6 0.27 0.13 0.0666
0.03 0.017 0.008 0.004 0.0013 −0.0002 −0.0010

• K = R2
+ and x 7→ f (x) = x1 + (1− x1x2)

2 with f ∗ = 0, not
attained.

uk 1.9 1.26 1.03 0.91 0.82 0.74 0.69
0.66 0.63 0.60 0.58 0.57 0.559 0.548
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Preliminary conclusions

• Rapid decrease in first steps, but poor convergence

• Numerical stability problems to be expected.

• Use bases different from the monomial basis.

• Rather see this technique as a complement to lower bounds
obtained from semidefinite relaxations
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THANK YOU!
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