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Overview 

  Idea of Embedded Optimization 

  Perception-based Clipping of Audio Signals using Convex Optimization 

 Control of Tethered Airplanes by Auto-Generated Real-Time Iterations 



Embedded Optimization = CPU Intensive, Nonlinear Map 

Embedded Parametric Optimization 

Very powerful concept!  

We can prove [Baes, D., Necoara 2008]:  
“Every continuous map can be generated as solution map 
of a parametric convex program” 



Real-time perception-based clipping of  
audio signals using convex optimization 
Real-time perception-based clipping of  
audio signals using convex optimization 

Bruno Defraene, Toon van Waterschoot, Hans Joachim Ferreau,  
                             Marc Moonen & M.D. 



Clipping Problem Statement 

•  Clipping = limit amplitude of digital audio signal to range [L,U] 
•  Real time audio applications (mobile phones, hearing aids…) 
•  Hard clipping has a large negative effect on perceptual sound quality 

(distortion) [Tan2003] 
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  What is the optimal way of clipping?  



•  Flexible: adapt to instantaneous properties of the input signal 

•  Use knowledge of human perception of sounds to achieve minimal 
perceptible clipping-induced distortion 

•  Formulate clipping as a sequence of constrained optimization problems 

•  Real-time operation calls for an tailored numerical solution strategy 

Perception-based clipping - a novel approach 
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Multidisciplinary approach 



Perception-based clipping algorithm  

[Defraene2010] 
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Embedded optimization problems = QPs 

Minimize perceptual difference in frequency space subject to clipping constraint:  

Input audio frame Output audio frame 

Clipping 

      = inverse of perceptual masking threshold of current audio frame (not today’s 
topic) 

dense Fourier Matrix       and diagonal weighting matrix  



How to solve the QPs fast enough ? 

•  QP solution time using a general purpose QP solver :  +/- 500 ms 

•  Real-time objective for N = 512 sample frame in CD-Quality: 8.7 ms 

Adopt application-tailored   
solution strategies ! 

[Intel CPU 2.8 GHz] 
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External Active Set Strategy: Original Signal 



External Active Set Strategy: Original Signal 

violated constraint indices = nonzero multipliers in small scale dual QP 



External Active Set Strategy: 1st Iteration Result 



External Active Set Strategy: 1st Iteration Result 

add the very few newly violated constraint indices to dual QP, solve again 



External Active Set Strategy: 2nd Iteration = Solution 



  40 x faster than standard QP solver, but not always real-time feasible 

CPU Time Tests with External Active Set Strategy 

[Intel CPU ~2.8 GHz] 

512 variables 

1024 inequality 
constraints 

Real-time 
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Gradient step 

Method 2: Projected Gradient 



Projection on feasible set 

Method 2: Projected Gradient 



•  Calculating the gradient is extremely cheap ! 

= FFT – weighting - IFFT 
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•  Calculating the gradient is extremely cheap ! 

•  Projecting onto feasible set is also extremely cheap ! 

= FFT – weighting - IFFT 

= Hard  clipping 

Method 2: Projected Gradient 



Three Tailored QP Solution Methods 
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 Method 3 - Nesterov’s Optimal Scheme 

[Nesterov1983] 
•  Minor code modifications to standard projected gradient 
•  one extra vector addition: negligible extra cost per iteration 
•  faster convergence, provably with optimal rate           [Nesterov 1983] 



Audio CPU Test: Gradient (M2) vs. Nesterov (M3) 

 Nesterov’s scheme real-time feasible below accuracy 10-8 

  Already 10-6 delivers no perceptual difference to exact solution 

Real-time 



Hard Clipped Signal (pour Jean-Baptiste) 



Optimally Clipped by Nesterov’s Gradient Scheme 



Real-time perception-based clipping of  
audio signals using convex optimization 
Control of Tethered Airplanes by Auto-
Generated Real-Time Iterations 

Boris Houska, Hans Joachim Ferreau, 
Kurt Geebelen, Reinhart Paelinck, Joris 
Gillis, Jan Swevers, Dirk Vandepitte, M.D. 



Idea: Wind Power by Tethered Planes 

Enormous potential (e.g. 5 MW for 500 m2 wing) .  



Idea: Wind Power by Tethered Planes 

Enormous potential (e.g. 5 MW for 500 m2 wing) .  
Two major questions: 
 How to start up and land ? 
 How to control automatically ? 



ERC Starting Grant “HIGHWIND” for 2011-2015 

                                                     HIGHWIND  

Modelling, Optimization, and Control of High Altitude Wind Power Generators 

Aim: Guide the development of high altitude wind power, focus on modeling, 
optimization, and control, plus small scale experiments.  



Nonlinear Model Predictive Control (NMPC) 

On-Board CPU repeats: 

1.  Observe current state 

2.  Use nonlinear ODE 
model to simulate and 
optimize the future 

3.  Implement first control.  



NMPC Embedded Optimal Control Problem 

Structured “parametric Nonlinear Program (p-NLP)” 
  Initial Value        is not known beforehand (“online data”) 
 Discrete time dynamics come from ODE simulation  

 in “direct multiple shooting” [Bock & Plitt 1984] 



NMPC = parametric NLP 

  Solution manifold is piecewise differentiable (kinks at active set changes) 

 Critical regions are non-polyhedral 



Two Approaches for p-NLP Pathfollowing 

1.  Interior Point (IP): use self-concordant barrier to make p-NLP 
problem smooth, use predictor-corrector path-following scheme 
[Ohtsuka 2004, Boyd & Wang 2009] 

2.  Sequential Quadratic Programming (SQP): solve a sequence of 
parametrically changing QPs [Li & Biegler 1991,  D. 2001] 



Note: IP with fixed  barrier makes p-NLP smooth 



Approach 1: IP pathfollowing for p-NLP [Ohtsuka 2004] 

 c
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Problem: overshoot at active set changes 
Can we do better? 



  In each iteration, linearize and solve parametric QP with inequalities 

  This “Initial Value Embedding” delivers first order prediction also at active 
set changes [D. 2001].  

Approach 2: Sequential Quadratic Programming for p-NLP 



SQP Real-Time Iteration [D. 2001] 

  long “preparation phase” for linearization 
  fast “feedback phase” (QP solution once        is known) 



Real-Time Iteration Algorithm 



Automatic Code Generation with ACADO Toolkit 

  A Toolkit for „Automatic Control and Dynamic Optimization“ 

 Open-source software (LGPL 3) 

  Implements direct single and multiple shooting 

 Developed at OPTEC by Boris Houska & Hans Joachim Ferreau 

 Uses symbolic user syntax  

•  to generate derivative code by automatic differentiation 

•  to detect model sparsity 

•  to auto-generate C-code for NMPC Real-Time Iterations... 
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CPU time per real-time iteration 

In each embedded optimization problem: 
  ODE model with 4 states & 2 controls 
  30 Runge-Kutta steps of RK4 
  10 multiple shooting intervals 
  60 QP variables 

Auto-generated C-code  
300 times faster than  
standard real-time  
iterations [Ilzhoefer et al. 2007] 

1 kHz feedback possible! 



First Indoors Test Flights (not yet controlled) 



Summary 

  Embedded Optimization promises to revolutionize all aspects of control 
engineering and signal processing 

  It needs sophisticated numerical methods 

 OPTEC develops open source software for embedded optimization 

  Powerful tool in applications: 

•  Optimal clipping for hearing aids (convex, large, 100 Hz) 

•  Predictive control of tethered airplanes (non-convex, small, 1000 Hz) 

 Open postdoc and PhD positions in Highwind ERC project, on 
„Mathematical modelling and optimal control of tethered airplanes“  



OPTEC QP Workshop, November 25-26 

OPTEC Workshop on Large Scale Convex Quadratic 
Programming - Algorithms, Software, and Applications 

Leuven, November 25 and 26, 2010 
Thursday: 
  Yurii Nesterov: Fast gradient methods for large-scale optimization 

problems 
  Philippe Toint: Inexact range-space Krylov solvers for linear systems 

arising from inverse problems   
  Eric Kerrigan: A Well-conditioned Interior Point Method for Quadratic 

Programming with an Application to Optimal Control 
 Nick Gould: CQP: a fortran 90 module for large-scale convex 

quadratic programming   
  Stephen Wright: Efficient methods for structured quadratic programs  
  Joachim Dahl: Solving large-scale convex QPs with MOSEK  



OPTEC QP Workshop, November 25-26 

Friday 
 Michael Saunders: A Regularized Active-set Method for Sparse 

Convex Quadratic Programming 
 Christian Kirches: A Block Structured Active Set Method for 

Mixed--Integer Optimal Control Problems   
 Daniel Axehill: A Dual Active Set-Like Quadratic Programming 

Algorithm Tailored for Model Predictive Control   
  John Bagterp Jørgensen: Convex QP Algorithms for Linear 

MPC with Soft Output Constraints   
 Oleg Burdakov: Monotonicity recovering QP-based methods for 

postprocessing finite element solutions 

  Register by Nov 1, google “optec qp”, fee EUR 120 



Merci ! 


