

Convex and Non-Convex Embedded Optimization Algorithms and Applications

Moritz Diehl

Optimization in Engineering Center OPTEC & Electrical Engineering Department ESAT-SCD

K.U. Leuven

Belgium

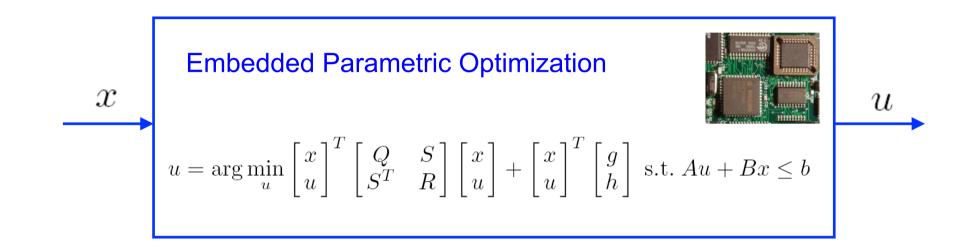
Colloque JBHU 2010, Oct 25-27, Bayonne, en l'honneur de Jean-Baptiste Hiriart-Urruty

• Idea of Embedded Optimization

• Perception-based Clipping of Audio Signals using Convex Optimization

• Control of Tethered Airplanes by Auto-Generated Real-Time Iterations

Embedded Optimization = CPU Intensive, Nonlinear Map



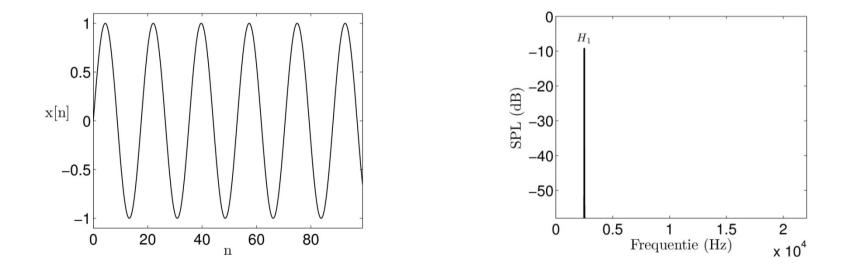
Very powerful concept!

We can prove [Baes, D., Necoara 2008]: "Every continuous map can be generated as solution map of a parametric convex program"

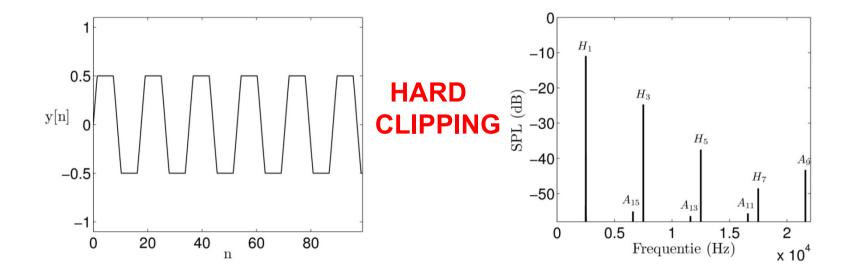
Real-time perception-based clipping of audio signals using convex optimization

Bruno Defraene, Toon van Waterschoot, Hans Joachim Ferreau, Marc Moonen & M.D.

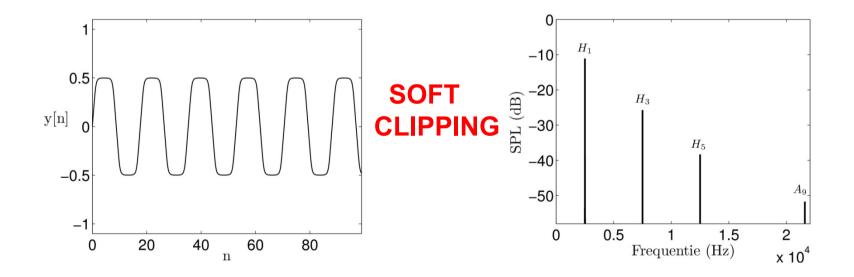
- Clipping = limit amplitude of digital audio signal to range [L,U]
- Real time audio applications (mobile phones, hearing aids...)
- Hard clipping has a large negative effect on perceptual sound quality (distortion)



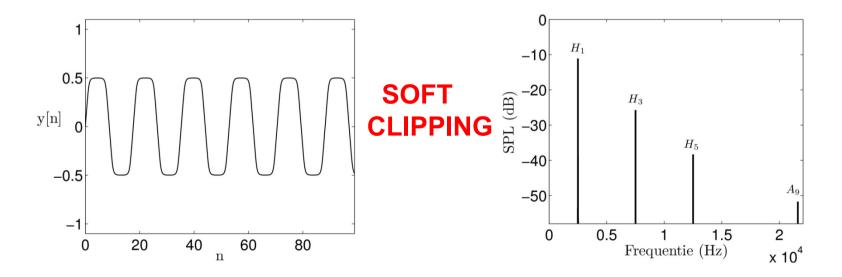
- Clipping = limit amplitude of digital audio signal to range [L,U]
- Real time audio applications (mobile phones, hearing aids...)
- Hard clipping has a large negative effect on perceptual sound quality (distortion)



- Clipping = limit amplitude of digital audio signal to range [L,U]
- Real time audio applications (mobile phones, hearing aids...)
- Hard clipping has a large negative effect on perceptual sound quality (distortion)
- Soft clipping does not help much



- Clipping = limit amplitude of digital audio signal to range [L,U]
- Real time audio applications (mobile phones, hearing aids...)
- Hard clipping has a large negative effect on perceptual sound quality (distortion)
- Soft clipping does not help much



What is the optimal way of clipping?

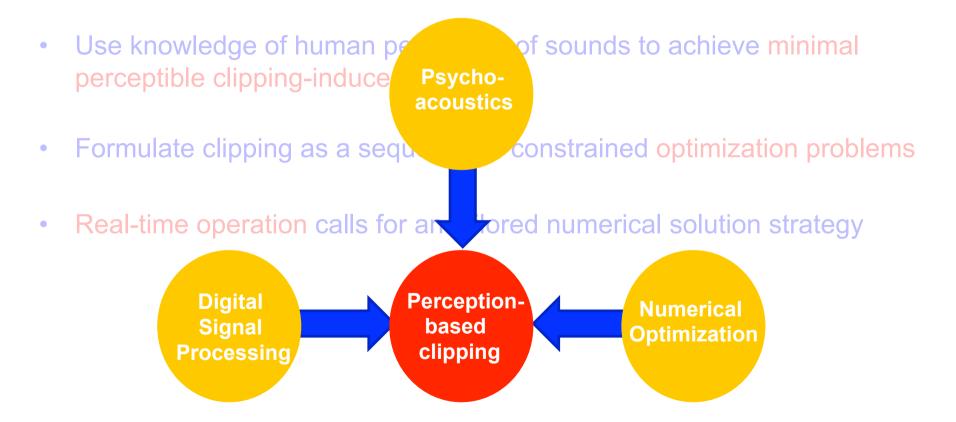
Perception-based clipping - a novel approach

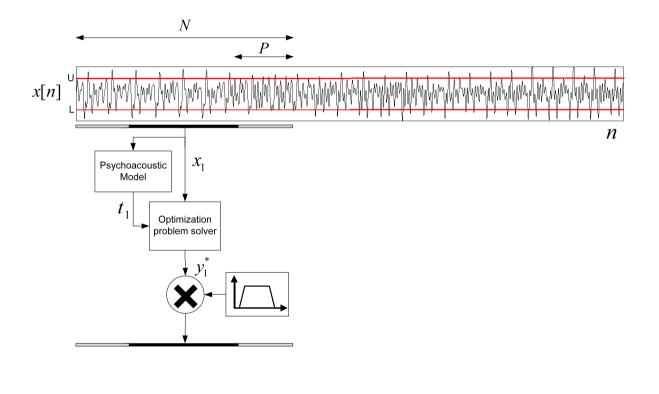
- Flexible: adapt to instantaneous properties of the input signal
- Use knowledge of human perception of sounds to achieve minimal perceptible clipping-induced distortion
- Formulate clipping as a sequence of constrained optimization problems
- Real-time operation calls for an tailored numerical solution strategy

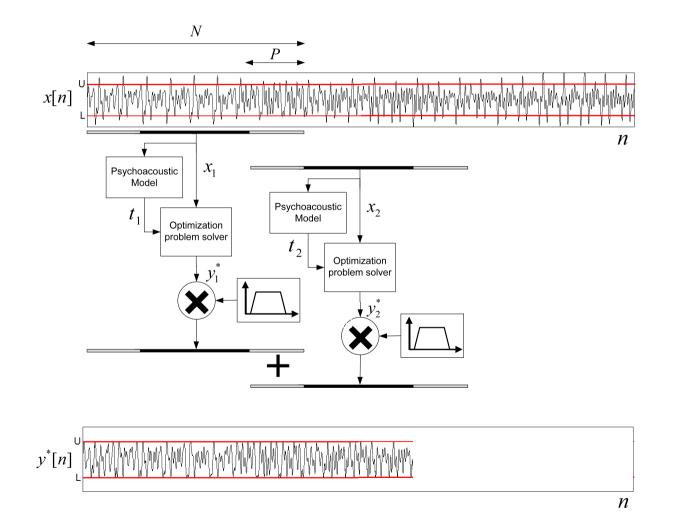
Perception-based clipping - a novel approach

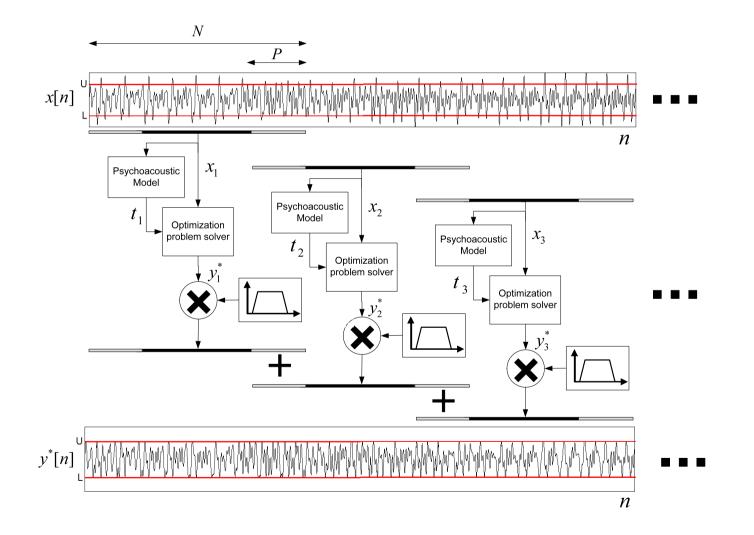
Multidisciplinary approach

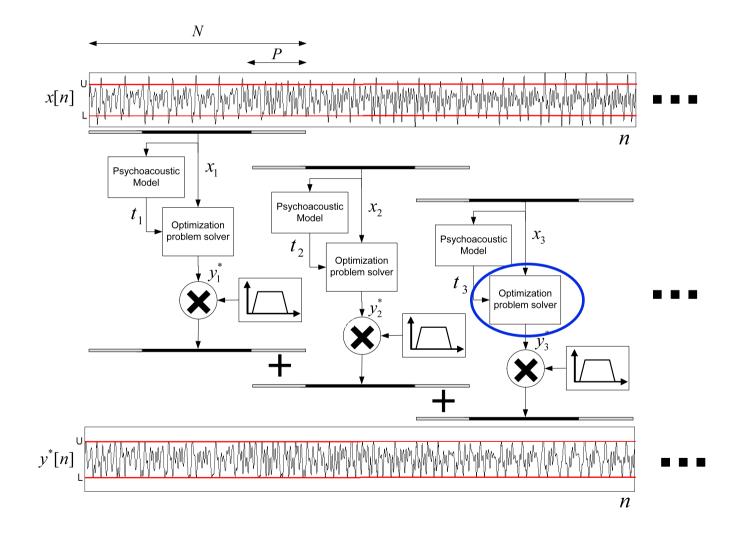
• Flexible: adapt to instantaneous properties of the input signal



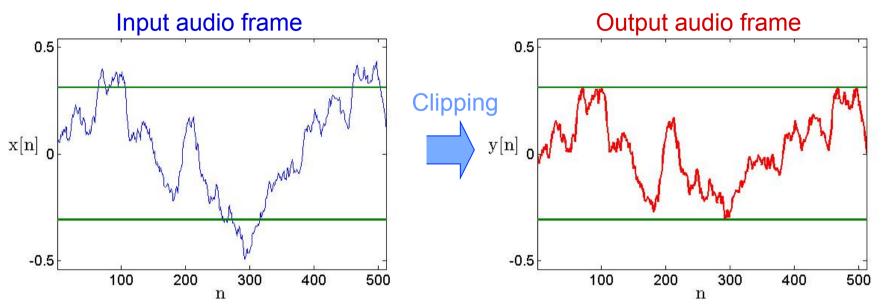








Embedded optimization problems = QPs



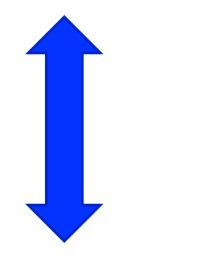
Minimize perceptual difference in frequency space subject to clipping constraint:

 w_i = inverse of *perceptual masking threshold* of current audio frame (not today's topic)

How to solve the QPs fast enough ?

$$\min_{y \in \mathbb{R}^N} \frac{1}{2} (y - x)^T D^H W D(y - x) \quad \text{s.t.} \quad L \le y \le U$$

• QP solution time using a general purpose QP solver : +/- 500 ms



[Intel CPU 2.8 GHz]

• Real-time objective for N = 512 sample frame in CD-Quality: 8.7 ms

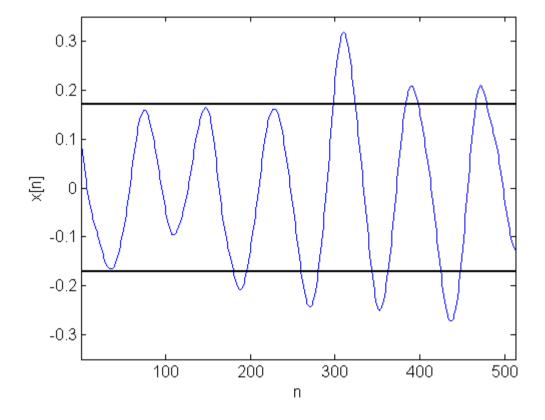
Three Tailored QP Solution Methods

- Method 1: External Active Set Strategy with Small Dual QPs
- Method 2: Projected Gradient
- Method 3: Nesterov's Optimal Gradient Scheme

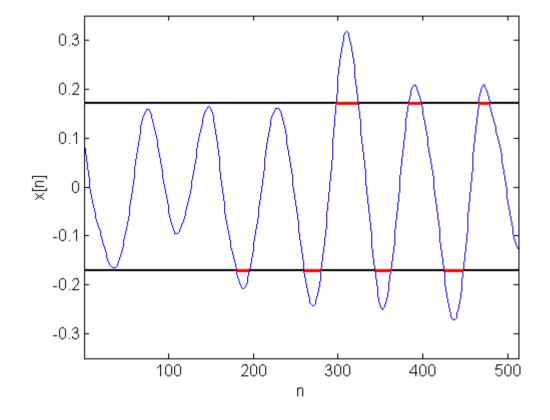
Three Tailored QP Solution Methods

- Method 1: External Active Set Strategy with Small Dual QPs
- Method 2: Projected Gradient
- Method 3: Nesterov's Optimal Gradient Scheme

External Active Set Strategy: Original Signal

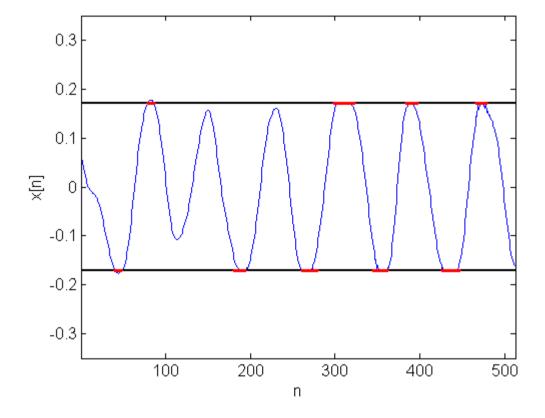


External Active Set Strategy: Original Signal

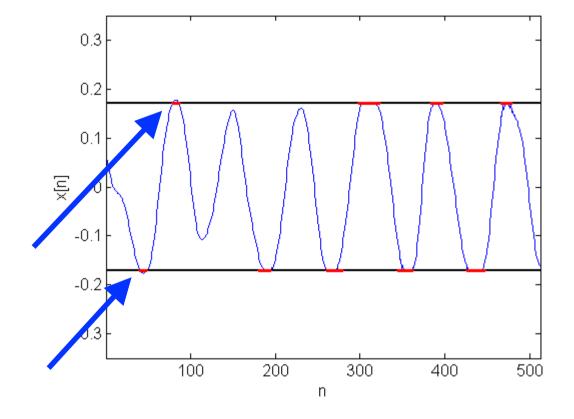


violated constraint indices = nonzero multipliers in small scale dual QP

External Active Set Strategy: 1st Iteration Result

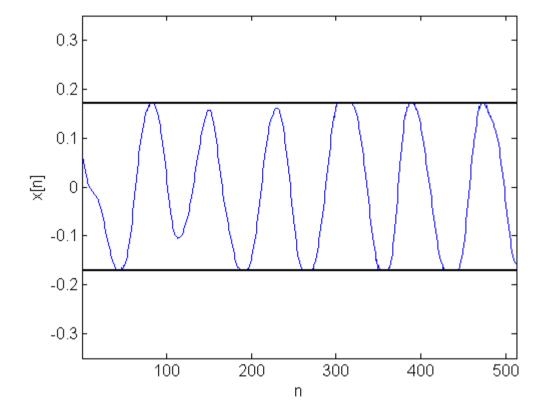


External Active Set Strategy: 1st Iteration Result

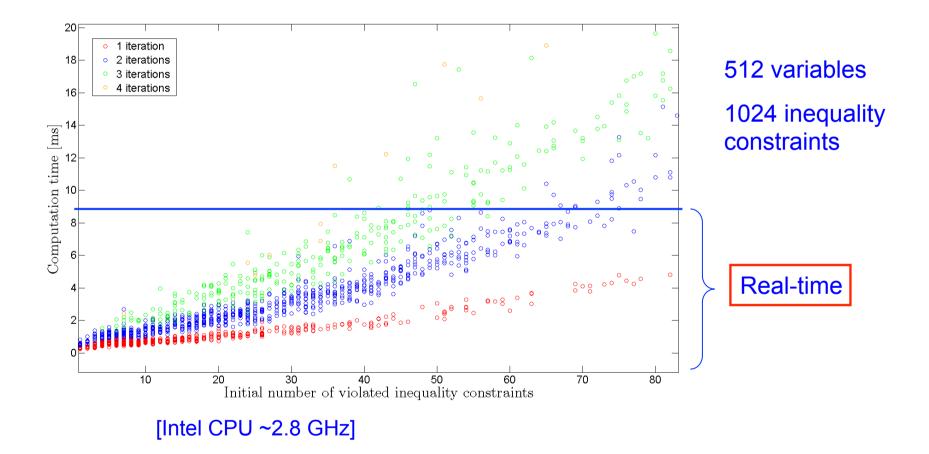


add the very few newly violated constraint indices to dual QP, solve again

External Active Set Strategy: 2nd Iteration = Solution



CPU Time Tests with External Active Set Strategy



• 40 x faster than standard QP solver, but not always real-time feasible

Three Tailored QP Solution Methods

- Method 1: External Active Set Strategy with Small Dual QPs
- Method 2: Projected Gradient
- Method 3: Nesterov's Optimal Gradient Scheme

Algorithm 1 Projected gradient descent

Input $x \in \mathbb{R}^{n}$, $y^{0} = rand$, Lipschitz constant L **Output** $y^{*} \in \mathbb{R}^{n}$ 1: k = 02: while stopping criterion is not met do 3: $\tilde{y}^{k+1} = y^{k} - \frac{1}{L}\nabla f(y^{k})$ Gradient step 4: $y^{k+1} = \prod_{Q}(\tilde{y}^{k+1})$ 5: k = k + 16: end while

Algorithm 1 Projected gradient descent

Input $x \in \mathbb{R}^n$, $y^0 = rand$, Lipschitz constant LOutput $y^* \in \mathbb{R}^n$ 1: k = 02: while stopping criterion is not met do 3: $\tilde{y}^{k+1} = y^k - \frac{1}{L}\nabla f(y^k)$ 4: $y^{k+1} = \prod_Q(\tilde{y}^{k+1})$ Projection on feasible set 5: k = k + 16: end while

Algorithm 1 Projected gradient descent

Input $x \in \mathbb{R}^n$, $y^0 = rand$, Lipschitz constant L

Output $y^* \in \mathbb{R}^n$

1: k = 0

2: while stopping criterion is not met do

3:
$$\tilde{y}^{k+1} = y^k - \frac{1}{L} \nabla f(y^k)$$

4:
$$y^{k+1} = \Pi_Q(\tilde{y}^{k+1})$$

5:
$$k = k + 1$$

- 6: end while
- Calculating the gradient is extremely cheap !

 $\nabla f(y) = D^H W D(y-x) \quad \text{ = FFT - weighting - IFFT}$

Algorithm 1 Projected gradient descent

Input $x \in \mathbb{R}^n$, $y^0 = rand$, Lipschitz constant L

Output $y^* \in \mathbb{R}^n$

1: k = 0

2: while stopping criterion is not met do

3:
$$\tilde{y}_{k+1}^{k+1} = y^k - \frac{1}{L} \nabla f(y^k)$$

4:
$$y^{k+1} = \Pi_Q(\tilde{y}^{k+1})$$

5:
$$k = k + 1$$

- 6: end while
- Calculating the gradient is extremely cheap !

$$\nabla f(y) = D^H W D(y-x) \quad \text{ = FFT - weighting - IFFT}$$

• Projecting onto feasible set is also extremely cheap !

$$\Pi_Q(y) := \arg\min_{y \in \mathbb{R}^N} \frac{1}{2} \|y - x\|_2^2 \quad \text{s.t.} \quad L \le y \le U \quad \text{= Hard clipping}$$

Three Tailored QP Solution Methods

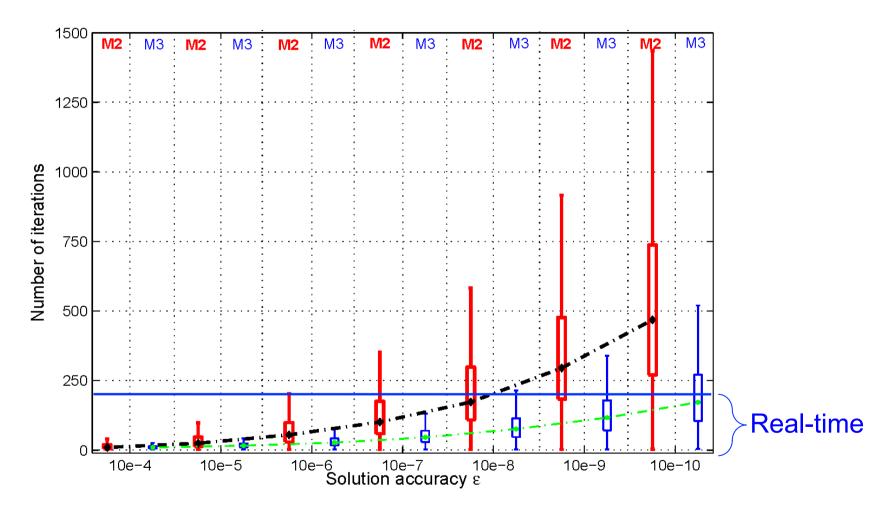
- Method 1: External Active Set Strategy with Small Dual QPs
- Method 2: Projected Gradient
- Method 3: Nesterov's Optimal Gradient Scheme

Method 3 - Nesterov's Optimal Scheme

Algorithm 1 Projected gradient descent using Nesterov's optimal method Input $x \in \mathbb{R}^n$, $y^{-1} = c^0 = rand$, $a^0 = 1$, Lipschitz constant LOutput $y^* \in \mathbb{R}^n$ 1: k = 02: while stopping criterion is not met do 3: $\tilde{y}^{k+1} = c^k - \frac{1}{L} \nabla f(c^k)$ 4: $y^{k+1} = \prod_Q(\tilde{y}^{k+1})$ 5: $a^{k+1} = \frac{(1+\sqrt{4(a^k)^2+1})}{2}$ 6: $c^{k+1} = y^k + \frac{a^k - 1}{a^{k+1}}(y^k - y^{k-1})$ 7: k = k + 18: end while

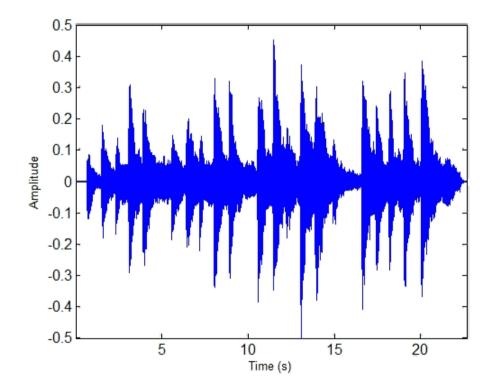
- Minor code modifications to standard projected gradient
- one extra vector addition: negligible extra cost per iteration
- faster convergence, provably with optimal rate $O(\frac{1}{\sqrt{\epsilon}})$ [Nesterov 1983]

Audio CPU Test: Gradient (M2) vs. Nesterov (M3)

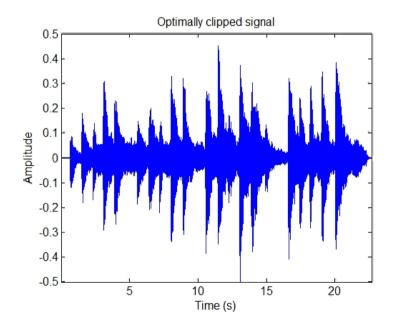


- Nesterov's scheme real-time feasible below accuracy 10⁻⁸
- Already 10⁻⁶ delivers no perceptual difference to exact solution

Hard Clipped Signal (pour Jean-Baptiste)



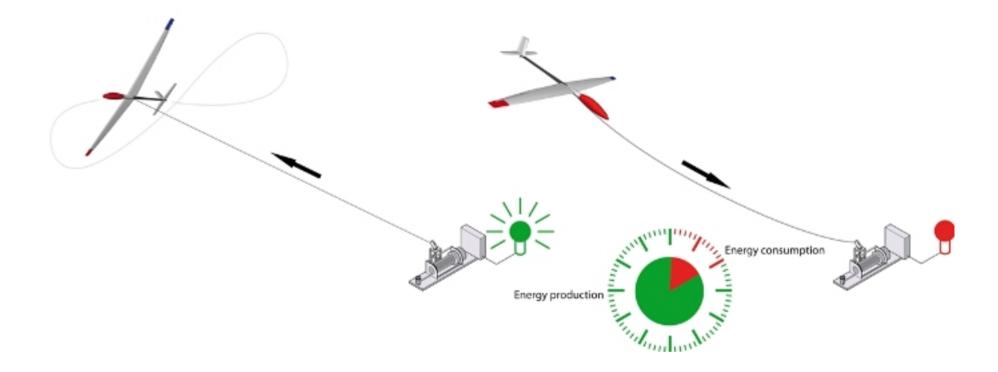
Optimally Clipped by Nesterov's Gradient Scheme



Control of Tethered Airplanes by Auto-Generated Real-Time Iterations

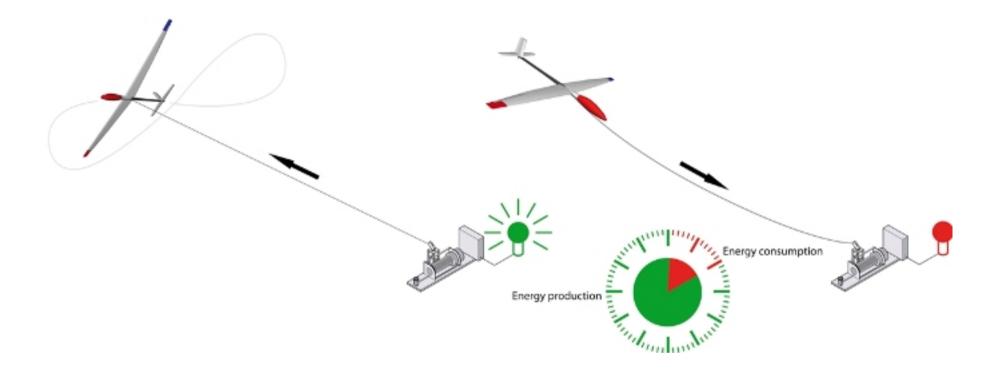
Boris Houska, Hans Joachim Ferreau, Kurt Geebelen, Reinhart Paelinck, Joris <u>Gillis, Jan</u> Swevers, Dirk Vandepitte, M.D.

Idea: Wind Power by Tethered Planes



Enormous potential (e.g. 5 MW for 500 m² wing).

Idea: Wind Power by Tethered Planes



Enormous potential (e.g. 5 MW for 500 m² wing).

Two major questions:

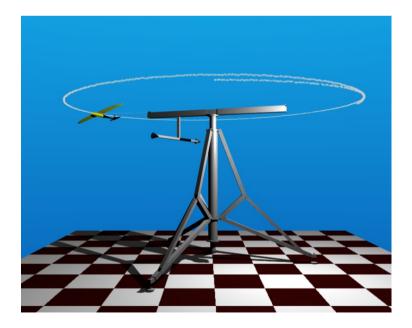
- How to start up and land ?
- How to control automatically ?

ERC Starting Grant "HIGHWIND" for 2011-2015

HIGHWIND

Modelling, Optimization, and Control of High Altitude Wind Power Generators

Aim: Guide the development of high altitude wind power, focus on *modeling, optimization, and control*, plus small scale experiments.



Nonlinear Model Predictive Control (NMPC)

On-Board CPU repeats:

- 1. Observe current state
- 2. Use nonlinear ODE model to simulate and optimize the future
- 3. Implement first control.

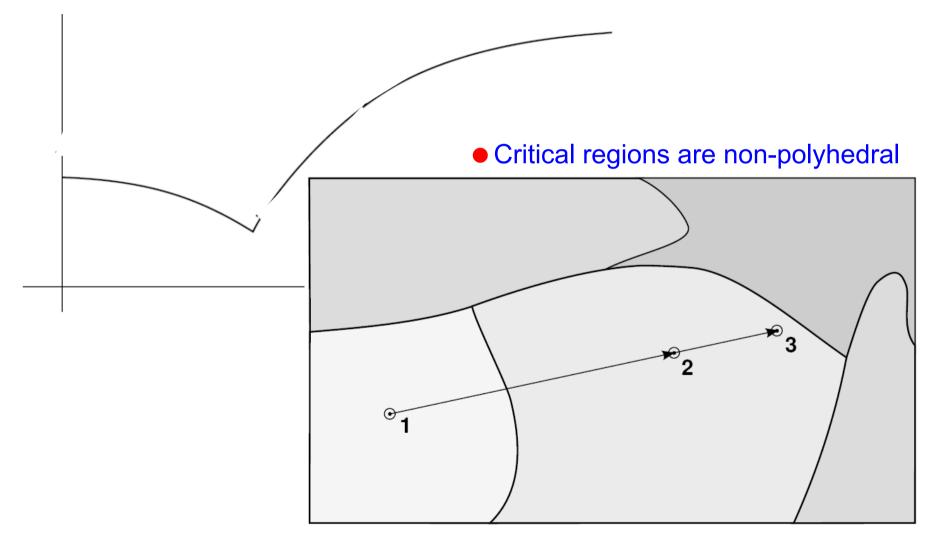
NMPC Embedded Optimal Control Problem

Structured "parametric Nonlinear Program (p-NLP)"

- Initial Value \bar{x}_0 is not known beforehand ("online data")
- Discrete time dynamics come from ODE simulation in "direct multiple shooting" [Bock & Plitt 1984]

NMPC = parametric NLP

• Solution manifold is piecewise differentiable (kinks at active set changes)

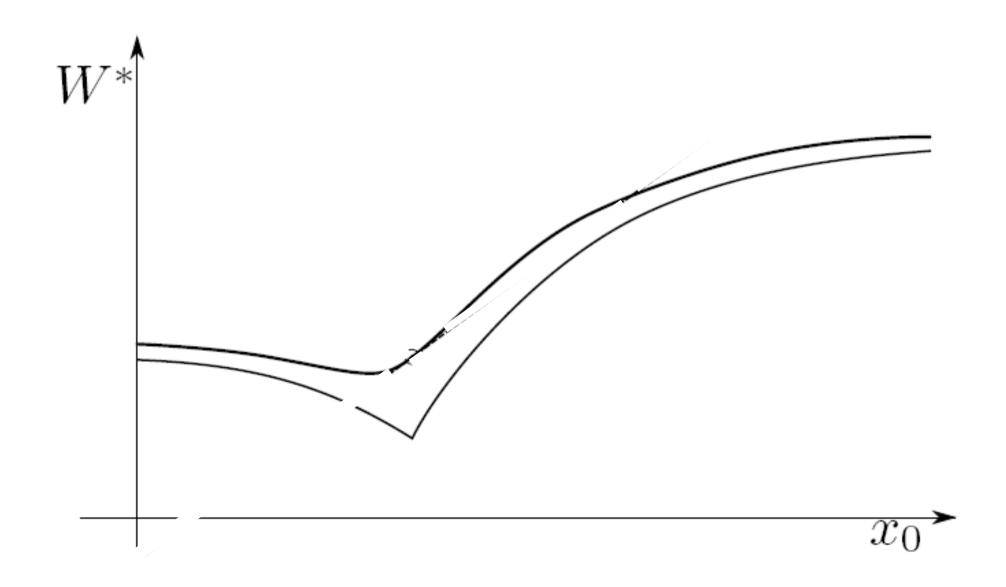


Two Approaches for p-NLP Pathfollowing

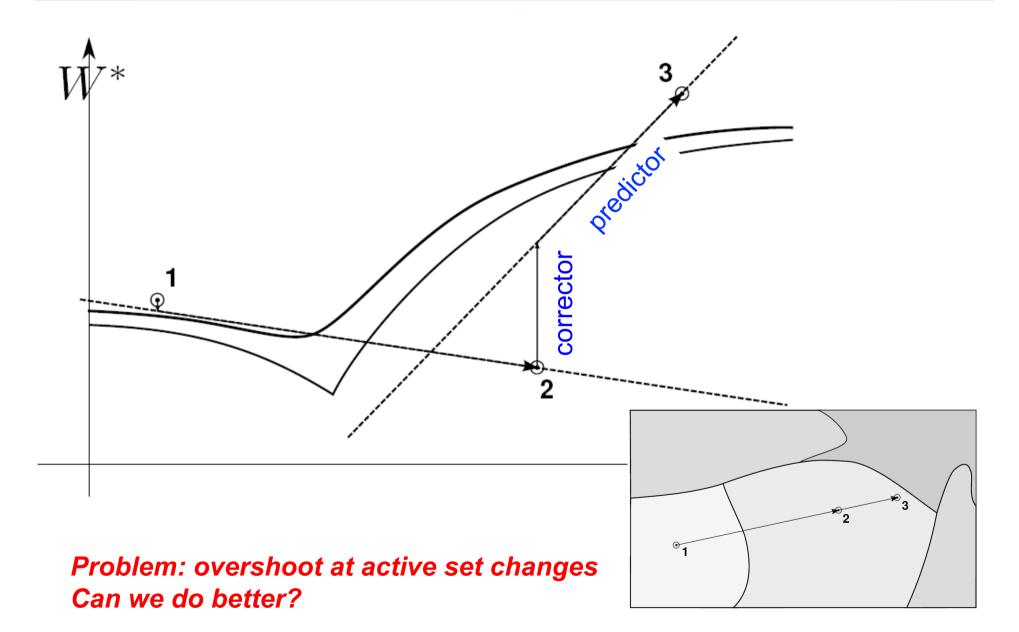
 Interior Point (IP): use self-concordant barrier to make p-NLP problem smooth, use predictor-corrector path-following scheme [Ohtsuka 2004, Boyd & Wang 2009]

2. Sequential Quadratic Programming (SQP): solve a sequence of parametrically changing QPs [Li & Biegler 1991, D. 2001]

Note: IP with fixed barrier makes p-NLP smooth



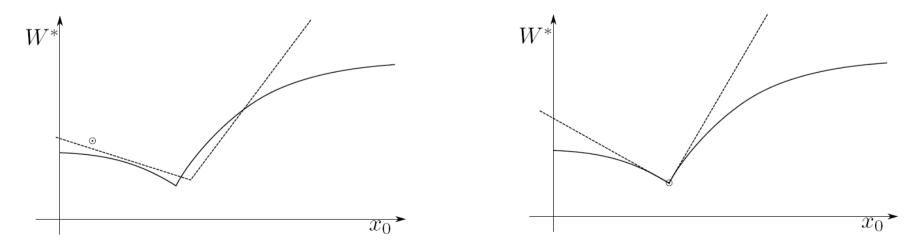
Approach 1: IP pathfollowing for p-NLP [Ohtsuka 2004]



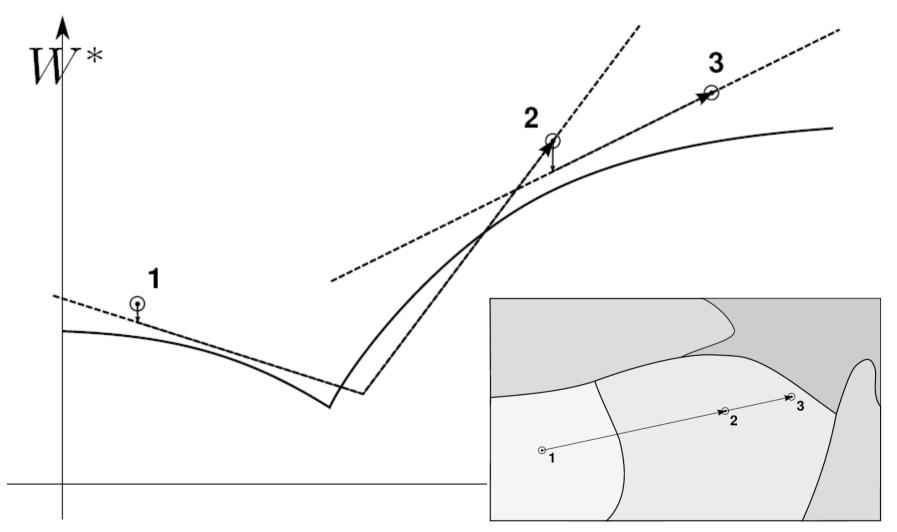
Approach 2: Sequential Quadratic Programming for p-NLP

• In each iteration, linearize and solve parametric QP with inequalities

 This "Initial Value Embedding" delivers first order prediction also at active set changes [D. 2001].



SQP Real-Time Iteration [D. 2001]



- long "preparation phase" for linearization
- fast "feedback phase" (QP solution once $ar{x}_0$ is known)

Initialization: Choose initial values for x and u at all multiple shooting nodes.

Repeat Online:

- 1) Evaluate objective function and dynamic system equations and their derivatives at current iterate.
- 2) Condense resulting large-scale QP into a smaller-scale dense QP.
- 3) Wait for the measurement x_0 .
- 4) Compute initial value embedding.
- 5) Solve dense QP.
- 6) Send first control immediately to the process.
- 7) Update current iterate and shift the time.

Automatic Code Generation with ACADO Toolkit

- A Toolkit for "Automatic Control and Dynamic Optimization"
- Open-source software (LGPL 3)
- Implements direct single and multiple shooting
- Developed at OPTEC by Boris Houska & Hans Joachim Ferreau
- Uses symbolic user syntax
 - to generate derivative code by automatic differentiation
 - to detect model sparsity
 - to auto-generate C-code for NMPC Real-Time Iterations...

Automatic Code Generation with ACADO Toolkit

- A Toolkit for "Automatic Control and Dynamic Optimization"
- Open-source software (LGPL 3)
- Implements direct single and multiple shooting
- Developed at OPTEC by Boris Houska & Hans Joachim Ferreau
- Uses symbolic user syntax
 - to generate derivative code by automatic differentiation
 - to detect model sparsity
 - to auto-generate C-code for NMPC Real-Time Iterations...

params.g[0] = acadoWorkspace.g[4] + acadoWorkspace.H[4]*acadoWorkspace.deltaY[0] + acadoWorkspace.H[18]*acadoWorkspace.deltaY[1] +

CPU time per real-time iteration

In each embedded optimization problem:

- ODE model with 4 states & 2 controls
- 30 Runge-Kutta steps of RK4
- 10 multiple shooting intervals
- 60 QP variables

•	-
-	-

	CPU time	Percentage
Integration & sensitivities	$711 \ \mu s$	84%
Condensing	$71~\mu s$	8%
QP solution (with $qpOASES$)	$34 \ \mu s$	4%
Remaining operations	$27~\mu { m s}$	< 4 %
A complete real-time iteration	$843~\mu{\rm s}$	100%

Auto-generated C-code 300 times faster than standard real-time iterations [Ilzhoefer et al. 2007]

1 kHz feedback possible!

First Indoors Test Flights (not yet controlled)

Summary

- Embedded Optimization promises to revolutionize all aspects of control engineering and signal processing
- It needs sophisticated numerical methods
- OPTEC develops open source software for embedded optimization
- Powerful tool in applications:
 - Optimal clipping for hearing aids (convex, large, 100 Hz)
 - Predictive control of tethered airplanes (non-convex, small, 1000 Hz)
- Open postdoc and PhD positions in Highwind ERC project, on "Mathematical modelling and optimal control of tethered airplanes"

OPTEC QP Workshop, November 25-26

OPTEC Workshop on Large Scale Convex Quadratic Programming - Algorithms, Software, and Applications Leuven, November 25 and 26, 2010

<u>Thursday:</u>

- Yurii Nesterov: Fast gradient methods for large-scale optimization problems
- <u>Philippe Toint</u>: Inexact range-space Krylov solvers for linear systems arising from inverse problems
- <u>Eric Kerrigan</u>: A Well-conditioned Interior Point Method for Quadratic Programming with an Application to Optimal Control
- <u>Nick Gould</u>: CQP: a fortran 90 module for large-scale convex quadratic programming
- Stephen Wright: Efficient methods for structured quadratic programs
- Joachim Dahl: Solving large-scale convex QPs with MOSEK

OPTEC QP Workshop, November 25-26

<u>Friday</u>

- Michael Saunders: A Regularized Active-set Method for Sparse Convex Quadratic Programming
- <u>Christian Kirches</u>: A Block Structured Active Set Method for Mixed--Integer Optimal Control Problems
- <u>Daniel Axehill</u>: A Dual Active Set-Like Quadratic Programming Algorithm Tailored for Model Predictive Control
- John Bagterp Jørgensen: Convex QP Algorithms for Linear MPC with Soft Output Constraints
- Oleg Burdakov: Monotonicity recovering QP-based methods for postprocessing finite element solutions

→ Register by Nov 1, google "optec qp", fee EUR 120

