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Position of the problem

In theory and practise, one disposes of the following scheme

e Primal (initial) setting

f:X—=NR

is a given function, not necessarily convex or Isc; Argmin f may be empty or not,
and may have no specific structure; the Fenchel subdifferential df may not have
good properties ...

@ Dual setting
A X* =R

is the Legendre-Fenchel conjugate which is convex and weakly Isc, and proper in
the most of the interesting cases; the Fenchel subdifferential df* has many rich
properties and, so, one can obtain informations on the function f* ...
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Position of the problem

@ Relaxed setting
X —=R

is the biconjugate function which is also convex and weakly Isc, and satisfies
f** =Cof in the most of the interesting cases, where ¢of is the Isc convex hull;
inf f = inf £**,

co(Argmin f) C Argmin f**; Argmin f** = 9*(0).

This previous scheme is directly manageable provided that f € Tg(X). Indeed, in
this case

Argmin f = Argmin £**, 9f* = (af) L.
Our interest is to find tools which allow the validity of formulas relating of* and
of, Argmin f and Argmin f**, for general functions which are not necessarily
convex or Isc. Roughly speaking, we put two questions

@ expressing df* and df** by means of df
@ expressing Argmin f** or Argmincof by means of Argmin f?
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@ First formulas of the Legendre-Fenchel subdifferential of f*

o formulas by means of the e-subdifferential d¢f (Hiriart-Urruty - Lépez - Volle)

e Another enlargement of the Legendre-Fenchel subdifferential: weak
subdifferential 0"

e formulas by means of the weak subdifferential 0%

e a couple of example

@ Formulas of the Legendre-Fenchel subdifferential and Asymptotic analysis

e a variant of asymptotic functions: weak asymptotic functions
o formulas of the Legendre-Fenchel subdifferential of f* invoking asymptotic
terms

@ Formulas of the Legendre-Fenchel subdifferential and Argmin set of the
biconjugate/Isc convex hull
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In what follows, (X, X*, (-,-)) will be a topological pair of real locally convex
spaces. Given a function f : X — R,

e f*: X* — R is the (Legendre-Fenchel) conjugate function

f*(x*) :=sup{(x, x*) — f(x),x € X}

e f**: X — R is the biconjugate function

£ (x*) = sup{ (x, x*) — F*(x*), x* € X*}

@ cof is the Isc convex hull,

epi(cof) = co(epif)

@ 0.f : X = X*, € >0, is the (Legendre-Fenchel) e-subdifferential of f
0:f (x) :i={x* € X* | F*(x*) + f(x) < (x*,x) +¢};
if ¢ = 0 we denote df (x) := dpf(x)
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o e-Argminf is the set of e-minimum

e Argminf := {x € X : f(x) < i;\(ff—l—s};

if ¢ = 0 we denote Argmin f := 0-Argmin f
o If M: X = X" is a set-valued operator, M~1: X* = X denotes its inverse

/\/l_l(x*) ={x € X | x* € Mx}

If AC X, we denote
o A" = {x" € X*: (x* x) <0Vxe A}
@ co A and COA are the convex and the closed convex hulls of A, respectively
@ par A is the subspace parallel to the affine space aff A
@ Njy(x) := (A—x)~ is the normal cone to A at x € A
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Formulas via the epsilon-subdifferential

Explicit formulas for df* have been recently established by M.A. Lépez and M.
Volle (see, also, Hiriart-Urruty, M.A. Lépez and M. Volle ). The most general one
is (if dom f* # @)

0 ()= () @@ )+ Iy —x}]
y*ei:l>o(r)nf*

Equivalently, it was proved by these authors that
o ()= (1 @ [@cF) L) + Nipgoms ()]

e>0
LeF(f,x*)

where

F(f,x*):={LC X" | L convex,x* € L, ri(cone(LNdom ")) # @}
As a consequence of the previous formulas, one gets
ArgminTof = (| @ [e- Argmin f + Njrgom £+ (x*)]

e>0
LeF(f,x*)
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Our objectives

@ In the first part, we propose another enlargement 9" of the Fenchel
subdifferential of f (instead of d¢f) in order to obtain new formulas modelled
on the formulas above, by Hiriart-Urruty, M. A. Lépez, and M. Volle

@ In the second part, we propose an appropriate notion of asymptotic functions
in order to rewrite the term Njngom £+ (x*) by means of primal objects

o Consequently, we give formulas for Argmincof by means of Argmin f,
Argmin f*

@ This approach allows us to extend some of the results found by Benoist and
Hiriart-Urruty, namely

Argmincof = co(Argmin f) + co(Argmin f*)
acof (x) = () of(x) [) 9 (y)

0<i<n 1<j<n

for X =R", int(dom f*) # @ (i.e. f is epi-pointed), and f is Isc.
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Enlargement of the Legendre-Fenchel subdifferential

If f € To(X), then df* is completely characterized by df in view of the

straightforward relationship
of* = (of)*

But, in general of is too small to build up the whole of*

Example: let
F(x) = e IXI.

Then, direct computations yield

f* =1l 0f*(0) = Nygy (0) =R

(0f)71(0) = (9F) (0) + Naomr+(0) = @.

Thus, we need to enlarge the concept of the Fenchel subdifferential by taking into
account the geometry of dom f*.
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Enlargement of the Legendre-Fenchel subdifferential

Definition:

Given a function f : X — R, a vector x* € X* is said to be a weak
(Fenchel-Legendre) subgradient of f at x € X iff*(x*) € R, and there exists a
net (x,) C X such that

o lim(x, —x,y*) =0 Vy* € par (dom ™)

o lim(Flxy) — (xy,x%)) = —F*(x")
The set of such weak subgradients, denoted by 0" f(x), is called the
weak subdifferential of f at x
In particular, x is a critical point w.r.t. " if 0 € 9" f(x); that is, I(xy) C X
such that

o limf(xy) = inf f € R; that is (x,) is a minimizing net

o lim(x, —x,y*) =0 Vy* € par (dom ™)
In other words, if Y := par (domf*), x is the weak limit (as a point of Y*) of
the minimizing net (x,) of f
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First properties of the weak subdifferential

o If f € Tg(X), then
9" f =of

if int(dom f*) # @, then
9 f = a(cl" f)

If int(dom f*) # @ and f is weakly Isc, then 0¥ and 9 coincide
o If X =R, fis lsc, and 9f (x) = {x*}, then

9" f(x) = 9f (x)

even if int(dom *) = @
0% satisfies the following elementary chain rule

M(F 4 (x*, ) =" F+ {x*), x*e X
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[llustrative examples

Example: for f(x) = e~ ¥l we have
aff(dom ") = {0} and f*(0) = 0.
Then, x € (3" )1 (0) if and only if I(x¢)x C R such that
f(xg) —0xx = f(xx) — —f*(0) = 0.
Therefore, as limy_, | e k=0,
ar*(0) = (3% F) "1 (0) = R;

in other words, 9% f*(0) = (awf)il (0).
Example: let

f(a):=+/aifa>0 and f(a) ;= +oo if a <0.
Then, dom f* = (—o0,0] and so

YF(0) =R_; 3"f(a) =D if a £ 0.
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Formulas for the subdifferential of the conjugate

Theorem: for every x* € X* we have the formula

o (x) = ) @{@"(f000)) (") + Nipdomr (x) }
LeF(f x*)

where

F(f.x*)={Le F(f) | x* € L} and

F(f) = {LC X" closed and convex | ri(LNdom *) # @,

f|:i(Lﬁdom £) is finite and continuous}
The same formula holds if instead of F(f) we take the set
{L € X* | Lis a finite-dimensional linear subspace containing x*}

or, equivalently,
{L:=x"+R(y* —x"), y* € domf"}
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Special cases

o If X* € F(f), then
dF* (x*) € @ { (8" )7L (x") + Nuom s (x*) |
As the inverse inclusion always holds, we obtain

o (x*) =@ { (") (x*) + Naom - (x) }

@ The last formula obviously holds if X = R".
o If X* € F(f) and f is positively homogeneous, and f* is proper, then

I (x*) = a{(an)*l(x*)}

o If f satisfies
f(x) <liminf{f(y), (y —x,y*) — 0 Vy* € par (dom )}

then 0% f and 9of coincide and, so, the formulas above hold with of instead
of 0¥ f
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Special cases

o If int(dom f*) # @ and f* is continuous in int(dom *), then
OF*(x") = Naom s+ (x*) +0 { (") 71 (x") |
thus if f is, in addition, weakly Isc, then

OF*(x*) = Nuom - (x) + &0 { (3N) (") }

@ The previous formulas hold if int(dom f*) # @ and X* is a barrelled space
(in particular, a Banach space)

o If X =R" and int(dom f*) # @, then
OF*(x*) = Nom s+ (x") + co { (2 ) 1 (x") }
If fis, in addition, Isc, then

OF*(x*) = Naom s+ (x") + co { () 7 (x*) }

(CMM, Universidad de Chile) Subdifferential and Argmin sets of Functions



Example 1

Given a subset C C H, we define f : H - RU {400} as
1.2
) 1= 3 [ +1c ()
so that cl" f(x) = 3 liminf,_.x ||y||2+1?w (x). By Asplund's formula
w (K ® (K 1 *1((2 *
(e )7 (<) = £(x") = S (Ix"[I° = de (x")
Hence, dom f* = H and f* is continuous on H.Therefore,
I (x*) = @{(a(de))*l(x*)}
= i{xeC’ |3 Cox —x, Iilzn Ixk — x*|| = dc(x*)}

Consequences: of*(x*) = co{mc(x*)} in each one of the following cases:

o If C is weakly closed or approximately compact
dy,0)-d(x,C) _

e If C is approximately convex; that is, limsup, _, =yl =1
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Example 2

Given a bounded set C C H, we consider the function f : H — RU {400}
defined by

L2
Fx) == =5 [Ix[I" +1c(x)
so that the conjugate given by

[y

2
) = 5 sup ly =X = 1)
is continuous on H. Consequently,

o (x*) = —of(d"f) M (x")}
= —co{x € C|3IC3x— xst lim|xx—x*|| =sup ||y —x*||}
k yeC

Consequences:
o if H is finite-dimensional, then of*(x*) = — co{ F=(x*)} where F=(x*) is
the set of furthest points in C from x*
o If C is approximately compact, then of*(x*) = —co{ F=(x*)}
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Asymptotic functions

The previous formulas for of* includes the term Ngom £+ (x™) which requires
explicit knowledge of dom f*. Our objective in this part, is to provide formulas
where Ngom r+(x™) is replaced by a primal object, namely some appropriate
asymptotic function

Definition: -
Given a function f: X — IR such that dom f* # @, we call weak asymptotic
function of f the function f*° : X — R defined by

?(x) := liminf{sf (sfly) —(z",y—x):s— 0",
(y =x,y*) — 0 Vy" € par(dom )},

where z* is any vector in cl(dom f*).

The positively homogeneous function £ is well defined since the right-hand side
does not depend on the choice of z* in cl(dom 7*)
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Some properties of the asymptotic functions

o If f e TO(X), then f* coincides with the recession function in the sense of
convex analysis; that is,

foo(X) = sup f(Y+ tX) - f(}/)

" , y €domf.
t>0

@ % coincides with the asymptotic function in the sense of Debreu-Dedieu
when the topology in X is o(X, X*)

fo(x) = liminf sf(s7ly),
s—01, y—x
if one of the following hold

o int(domf*) # @
o domf* = {z*}
e X =R and domf* # @

o If X* € F(f), then (f°)® = f* and 9" *® = If*
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Relationship between asymptotic and recession functions

It is known (Debreu, Benoist - Hiriart-Urruty) that if X = R”, int(dom *) # @,
and f is Isc, then the Isc convex hull of £ is the recession function of the (proper
Isc convex) function cof; that is,

cof*® = (cof)*
We show that this property also holds for the functions (fClo )*:
Theorem: Let f : X — R be a given function. Then, for every L € F(f),
(co(fOe))™ = o ((f0oy)™)

Consequently,

o ((fUor)*®)" = La(Lndom +))
o dom (00 ))° = el(LN dom £
o X* e F((fOop)™)
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Subdifferential of the conjugate via weak subdifferentials

From the previous formulas,

o (x) = (1 @ {@(f00)) ™ (x") + Nicgome (x) }
LeF(f x*)

But,
Naom(foe,)+ (X") = g icrme )y (X)) = 9 [(eo(fOo))™]" (x*)
and (co(fOoy))™ =co ((FUo)®). Then,
Nindom £+ (x*) = 9 [0 ((f0o)™)]" (x*) = a((FLo)*)" (x7).

Since (fOo;)® is positively homogeneous, and X* € F((fOo;)*), we obtain

A((f00y)™) (x*) =@ { (3(F00,)®) 7 (x") |

Theorem: we have that

o (x) = [ @ {@" (o)) (x) + (0 ) (x") |
LeF(f x*)
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Some particular cases

o if X* € F(f), then

OF (x*) = { ()1 (x) + (r°) L (x) }

o if X* € F(f) and int(dom f*) # @, then

IF* (x*)

_ @{(an)*l(x*)}+@{(8f°°)*1(x*)}
= @{ON )+ {(0r*) x| (F wisc)

e if X =R" and int(dom f*) # @, then

I (x7)

= co{(an)—l(x*)}+co{(af°°)—1(x*)}
= 0 {@N )} o {(@r) X } (£ o)
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Going back to the epsilon-subdifferential

Similarly, we obtain -
Theorem: Given a function f : X — IR, for every x* € X* we have that

o ()= @)+ 0(f0r)®) (x|

LeF(f.x*)
Moreover,
o if X* € F(f), then
I (x*) = N co{ x*) 4 (afm)*l(x*)}
e>0

o if X* € F(f) and int(dom f*) # @, then

A (x*) = {(af°° }+ﬂco{ 1(x)}

e>0

= co{ (@)} + N@{@ENH )} (X =R

e>0
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The Isc convex hull via weak subdifferentials

In view of the relationship Argmin f** = 9f*(6), we obtain
Theorem: For every function f : X — R with proper conjugate, we have

Argminf* = E{(aw(fDaL))fl(G) +Argmin(fDUL)°°}
LeF(f,x*)

Consequently,
o if X* € F(f), then

Argmin f** :a{(aw )71(8) + Argmin }

o if X* € F(f) and int(dom f*) # @, then

Argmin f** = a{(an)*l(e)} +¢o {Argmin f*}
= ¢co{Argminf} +co {Argminf®} (f wisc)
= co{Argminf} + co{Argminf®} (X =R", f Isc)

Remark: the last formula is due to Benoist and Hiriart-Urruty
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The Isc convex hull via epsilon-minima

Theorem: Given a function f : X — R having a proper conjugate, we have

Argminf** = (| @ {e- Argmin(fOo; ) + Argmin(fOo; )}
LE]E:TP,X*)

Consequently,
o if X* € F(f), then

Argmin f** = () €0 {e- Argmin f 4+ Argmin f*}
e>0

e if X* € F(f) and int(dom *) # @, then

Argmin f** = Co {Argmin f®} + () o {e- Argmin f}
e>0
= co{Argminf>} + ﬂ co{e-Argminf} (X =R")
e>0
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Subdifferential of the Isc convex hull

For simplicity, we suppose that X = R”, int(dom *) # @, and f is Isc (this is
the setting of Benoist - Hiriart-Urruty) so that

of*(x*) = co {(af)fl(x*)} +co {(afoo)il(X*)}

If x* € af**(x), then x € af*(x*) and, so, there are Ag, -~ An, piy, -, p, >0,

with Ag+---+ A, =1, xo, - € (af) "1 (x*), and

Vi, yn € (3F®) 71 (x*) such that
X=Aox0+ -+ Anxn t Y1+ HpYn

Then,
x* e ﬂ af (x;) ﬂ o (yj)

0<i<n 1<j<n

Theorem (Benoist - Hiriart—Urruty): For every x € X,
o (x)= () af(x) [ aFf°(y)

0<i<n 1<j<n

where x = Agxg + -+ Apxp + iy + -+ UV
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Thank you very much
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