Subdifferential and Argmin sets of Functions, Asymptotic Functions and their Legendre-Fenchel Successive conjugates

Rafael Correa, Abderrahim Hantoute

CMM, Universidad de Chile

October 2010

Bere 60. urtebetetzea dela eta, Jean-Baptiste Hiriart-Urruty eskainia

In theory and practise, one disposes of the following scheme

• Primal (initial) setting

 $f:X\to\overline{\mathbb{R}}$

is a given function, not necessarily convex or lsc; Argmin f may be empty or not, and may have no specific structure; the Fenchel subdifferential ∂f may not have good properties ...

• Dual setting

 $f^*: X^* \to \overline{\mathbb{R}}$

is the Legendre-Fenchel conjugate which is convex and weakly lsc, and proper in the most of the interesting cases; the Fenchel subdifferential ∂f^* has many rich properties and, so, one can obtain informations on the function f^* ...

Position of the problem

• Relaxed setting

$$f^{**}: X \to \overline{\mathbb{R}}$$

is the biconjugate function which is also convex and weakly lsc, and satisfies $f^{**} = \overline{co}f$ in the most of the interesting cases, where $\overline{co}f$ is the lsc convex hull; inf $f = \inf f^{**}$,

$$\overline{\operatorname{co}}(\operatorname{Argmin} f) \subset \operatorname{Argmin} f^{**}; \operatorname{Argmin} f^{**} = \partial f^*(0).$$

This previous scheme is directly manageable provided that $f \in \Gamma_0(X)$. Indeed, in this case

Argmin
$$f$$
 = Argmin f^{**} , $\partial f^* = (\partial f)^{-1}$.

Our interest is to find tools which allow the validity of formulas relating ∂f^* and ∂f , Argmin f and Argmin f^{**} , for general functions which are not necessarily convex or lsc. Roughly speaking, we put two questions

- expressing ∂f^* and ∂f^{**} by means of ∂f
- expressing Argmin f^{**} or Argmin $\overline{co}f$ by means of Argmin f?

Outline

• First formulas of the Legendre-Fenchel subdifferential of f^*

- formulas by means of the ε -subdifferential $\partial_{\varepsilon} f$ (Hiriart-Urruty López Volle)
- Another enlargement of the Legendre-Fenchel subdifferential: weak subdifferential ∂^w
- formulas by means of the weak subdifferential ∂^w
- a couple of example
- Formulas of the Legendre-Fenchel subdifferential and Asymptotic analysis
 - a variant of asymptotic functions: weak asymptotic functions
 - formulas of the Legendre-Fenchel subdifferential of *f** invoking asymptotic terms
- Formulas of the Legendre-Fenchel subdifferential and Argmin set of the biconjugate/lsc convex hull

Notation

In what follows, $(X, X^*, \langle \cdot, \cdot \rangle)$ will be a topological pair of real locally convex spaces. Given a function $f: X \to \overline{\mathbb{R}}$,

• $f^*: X^* \to \overline{\mathbb{R}}$ is the (Legendre-Fenchel) conjugate function

$$f^*(x^*) := \sup\{\langle x, x^*
angle - f(x), x \in X\}$$

• $f^{**}: X \to \overline{\mathbb{R}}$ is the biconjugate function

$$f^{**}(x^*) := \sup\{\langle x, x^* \rangle - f^*(x^*), x^* \in X^*\}$$

• $\overline{\mathrm{co}}f$ is the lsc convex hull,

$$\operatorname{epi}(\overline{\operatorname{co}} f) = \overline{\operatorname{co}}(\operatorname{epi} f)$$

• $\partial_{\varepsilon}f: X \rightrightarrows X^*$, $\varepsilon \ge 0$, is the (Legendre-Fenchel) ε -subdifferential of f

$$\partial_{\varepsilon}f(x) := \{x^* \in X^* \mid f^*(x^*) + f(x) \le \langle x^*, x \rangle + \varepsilon\};$$

if $\varepsilon = 0$ we denote $\partial f(x) := \partial_0 f(x)$

Notation

• ε-Argmin f is the set of ε-minimum

$$\varepsilon$$
-Argmin $f := \{x \in X : f(x) \le \inf_X f + \varepsilon\};$

if $\varepsilon = 0$ we denote Argmin f := 0-Argmin f

• If $M: X \rightrightarrows X^*$ is a set-valued operator, $M^{-1}: X^* \rightrightarrows X$ denotes its inverse

$$M^{-1}(x^*) := \{ x \in X \mid x^* \in Mx \}$$

If $A \subset X$, we denote

- $A^- := \{x^* \in X^* : \langle x^*, x \rangle \leq 0 \ \forall x \in A\}$
- co A and $\overline{co}A$ are the convex and the closed convex hulls of A, respectively
- par A is the subspace parallel to the affine space aff A
- $N_A(x) := (A x)^-$ is the normal cone to A at $x \in A$

Formulas via the epsilon-subdifferential

Explicit formulas for ∂f^* have been recently established by M.A. López and M. Volle (see, also, Hiriart-Urruty, M.A. López and M. Volle). The most general one is (if dom $f^* \neq \emptyset$)

$$\partial f^*(x^*) = \bigcap_{\substack{\varepsilon > 0 \\ y^* \in \operatorname{dom} f^*}} \overline{\operatorname{co}} \left[(\partial_{\varepsilon} f)^{-1}(x^*) + \{y^* - x^*\}^{-} \right]$$

Equivalently, it was proved by these authors that

$$\partial f^*(x^*) = \bigcap_{\substack{\varepsilon > 0\\ L \in \widetilde{\mathcal{F}}(f, x^*)}} \overline{\operatorname{co}} \left[(\partial_{\varepsilon} f)^{-1}(x^*) + \operatorname{N}_{L \cap \operatorname{dom} f^*}(x^*) \right]$$

where

$$\widetilde{\mathcal{F}}(f, x^*) := \{ L \subset X^* \mid L \text{ convex}, x^* \in L, \text{ ri}(\operatorname{cone}(L \cap \operatorname{dom} f^*)) \neq \emptyset \}$$

As a consequence of the previous formulas, one gets

$$\operatorname{Argmin}_{\mathcal{L} \subset \mathcal{F}(f, x^*)} \overline{\operatorname{co}} \left[\varepsilon \operatorname{Argmin}_{f + \operatorname{N}_{\mathcal{L} \cap \operatorname{dom} f^*}(x^*)} \right]$$

Our objectives

- In the first part, we propose another enlargement ∂^w of the Fenchel subdifferential of f (instead of ∂_εf) in order to obtain new formulas modelled on the formulas above, by Hiriart-Urruty, M. A. López, and M. Volle
- In the second part, we propose an appropriate notion of asymptotic functions in order to rewrite the term $N_{L\cap \text{dom } f^*}(x^*)$ by means of primal objects
- Consequently, we give formulas for Argmin $\overline{co}f$ by means of Argmin f, Argmin f^{∞}
- This approach allows us to extend some of the results found by Benoist and Hiriart-Urruty, namely

 $\operatorname{Argmin} \overline{\operatorname{co}} f = \operatorname{co}(\operatorname{Argmin} f) + \operatorname{co}(\operatorname{Argmin} f^{\infty})$

$$\partial \overline{\operatorname{co}} f(x) = \bigcap_{0 \le i \le n} \partial f(x_i) \bigcap_{1 \le j \le n} \partial f^{\infty}(y_j)$$

for $X = \mathbb{R}^n$, $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$ (i.e. f is epi-pointed), and f is lsc.

If $f \in \Gamma_0(X)$, then ∂f^* is completely characterized by ∂f in view of the straightforward relationship

$$\partial f^* = (\partial f)^{-1}$$

But, in general ∂f is too small to build up the whole ∂f^* **Example:** let

$$f(x) := e^{-|x|}.$$

Then, direct computations yield

$$f^* = I_{\{0\}}, \ \partial f^*(0) = N_{\{0\}}(0) = \mathbb{R}$$

$$(\partial f)^{-1}(0) = (\partial f)^{-1}(0) + N_{\operatorname{dom} f^*}(0) = \emptyset.$$

Thus, we need to enlarge the concept of the Fenchel subdifferential by taking into account the geometry of dom f^* .

Definition:

Given a function $f: X \to \overline{\mathbb{R}}$, a vector $x^* \in X^*$ is said to be a weak (Fenchel-Legendre) subgradient of f at $x \in X$ if $f^*(x^*) \in \mathbb{R}$, and there exists a net $(x_{\gamma}) \subset X$ such that

• $\lim \langle x_{\gamma} - x, y^* \rangle = 0 \quad \forall y^* \in \overline{\operatorname{par}} (\operatorname{dom} f^*)$

•
$$\lim(f(x_{\gamma}) - \langle x_{\gamma}, x^* \rangle) = -f^*(x^*)$$

The set of such weak subgradients, denoted by $\partial^w f(x)$, is called the weak subdifferential of f at x

In particular, x is a critical point w.r.t. ∂^w if $0 \in \partial^w f(x)$; that is, $\exists (x_\gamma) \subset X$ such that

- $\lim f(x_{\gamma}) = \inf f \in \mathbb{R}$; that is (x_{γ}) is a minimizing net
- $\lim \langle x_{\gamma} x, y^* \rangle = 0 \quad \forall y^* \in \overline{\operatorname{par}} (\operatorname{dom} f^*)$

In other words, if $Y := \overline{par} (\text{dom} f^*)$, x is the weak limit (as a point of Y^*) of the minimizing net (x_{γ}) of f

First properties of the weak subdifferential

• If $f \in \Gamma_0(X)$, then

$$\partial^w f = \partial f$$

• if $int(dom f^*) \neq \emptyset$, then

$$\partial^w f = \partial(\mathrm{cl}^w f)$$

- If $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$ and f is weakly lsc, then ∂^w and ∂ coincide
- If $X = \mathbb{R}$, f is lsc, and $\partial f(x) = \{x^*\}$, then

$$\partial^w f(x) = \partial f(x)$$

even if $int(dom f^*) = \emptyset$

• ∂^w satisfies the following elementary chain rule

$$\partial^{w}(f + \langle x^{*}, \cdot \rangle) = \partial^{w}f + \{x^{*}\}, \ x^{*} \in X^{*}$$

Illustrative examples

Example: for $f(x) = e^{-|x|}$ we have

$$\operatorname{aff}(\operatorname{dom} f^*) = \{0\} \text{ and } f^*(0) = 0.$$

Then, $x \in (\partial^w f)^{-1}(0)$ if and only if $\exists (x_k)_k \subset \mathbb{R}$ such that

$$f(x_k) - 0x_k = f(x_k) \to -f^*(0) = 0.$$

Therefore, as $\lim_{k\to+\infty} e^{-k} = 0$,

$$\partial f^*(0) = (\partial^w f)^{-1}(0) = \mathbb{R};$$

in other words, $\partial^{w} f^{*}(0) = (\partial^{w} f)^{-1}(0)$. Example: let

$$f(a):=\sqrt{a} ext{ if } a\geq 0 ext{ and } f(a):=+\infty ext{ if } a<0.$$

Then, dom $f^* = (-\infty, 0]$ and so

$$\partial^w f(0) = \mathbb{R}_-; \ \partial^w f(a) = \emptyset \text{ if } a \neq 0.$$

Formulas for the subdifferential of the conjugate

Theorem: for every $x^* \in X^*$ we have the formula

$$\partial f^*(x^*) = \bigcap_{L \in \mathcal{F}(f, x^*)} \overline{\operatorname{co}} \left\{ (\partial^w (f \Box \sigma_L))^{-1}(x^*) + \mathcal{N}_{L \cap \operatorname{dom} f^*}(x^*) \right\}$$

where

$$\mathcal{F}(f,x^*) = \{L \in \mathcal{F}(f) \mid x^* \in L\}$$
 and

$$\begin{aligned} \mathcal{F}(f) &= \{ L \subset X^* \text{ closed and convex } | \operatorname{ri}(L \cap \operatorname{dom} f^*) \neq \emptyset, \\ f^*_{|\operatorname{ri}(L \cap \operatorname{dom} f^*)} \text{ is finite and continuous} \\ \end{aligned}$$

The same formula holds if instead of $\mathcal{F}(f)$ we take the set

 $\{L \subset X^* \mid L \text{ is a finite-dimensional linear subspace containing } x^*\}$

or, equivalently,

$$\{L := x^* + \mathbb{R}(y^* - x^*), y^* \in \text{dom}\, f^*\}$$

Special cases

• If $X^* \in \mathcal{F}(f)$, then

$$\partial f^*(x^*) \subset \overline{\operatorname{co}}\left\{ (\partial^w f)^{-1}(x^*) + \operatorname{N}_{\operatorname{dom} f^*}(x^*) \right\}$$

As the inverse inclusion always holds, we obtain

$$\partial f^*(x^*) = \overline{\operatorname{co}}\left\{ (\partial^w f)^{-1}(x^*) + \operatorname{N}_{\operatorname{dom} f^*}(x^*) \right\}$$

- The last formula obviously holds if $X = \mathbb{R}^n$.
- If $X^* \in \mathcal{F}(f)$ and f is positively homogeneous, and f^* is proper, then

$$\partial f^*(x^*) = \overline{\operatorname{co}}\left\{ (\partial^w f)^{-1}(x^*) \right\}$$

• If f satisfies

$$f(x) \leq \liminf\{f(y), \langle y-x, y^* \rangle \to 0 \ \forall y^* \in \overline{\operatorname{par}} (\operatorname{dom} f^*)\}$$

then $\partial^w f$ and ∂f coincide and, so, the formulas above hold with ∂f instead of $\partial^w f$

Special cases

• If $int(dom f^*) \neq \emptyset$ and f^* is continuous in $int(dom f^*)$, then

$$\partial f^*(x^*) = \mathcal{N}_{\operatorname{dom} f^*}(x^*) + \overline{\operatorname{co}}\left\{ (\partial^w f)^{-1}(x^*) \right\}$$

thus if f is, in addition, weakly lsc, then

$$\partial f^*(x^*) = \mathcal{N}_{\operatorname{dom} f^*}(x^*) + \overline{\operatorname{co}}\left\{ (\partial f)^{-1}(x^*) \right\}$$

- The previous formulas hold if int(dom f^{*}) ≠ Ø and X^{*} is a barrelled space (in particular, a Banach space)
- If $X = \mathbb{R}^n$ and $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$, then

$$\partial f^*(x^*) = N_{\text{dom}\,f^*}(x^*) + \operatorname{co}\left\{(\partial^w f)^{-1}(x^*)\right\}$$

If f is, in addition, lsc, then

$$\partial f^*(x^*) = \mathcal{N}_{\operatorname{dom} f^*}(x^*) + \operatorname{co}\left\{(\partial f)^{-1}(x^*)\right\}$$

Example 1

Given a subset $C \subset H$, we define $f : H \to \mathbb{R} \cup \{+\infty\}$ as

$$f(x) := \frac{1}{2} \|x\|^2 + I_C(x)$$

so that $\operatorname{cl}^w f(x) = \frac{1}{2} \liminf_{y \to x} \|y\|^2 + \operatorname{I}_{\overline{\mathcal{C}}^w}(x)$. By Asplund's formula

$$(\mathrm{cl}^{\mathsf{w}} f)^{*}(x^{*}) = f^{*}(x^{*}) = \frac{1}{2}(||x^{*}||^{2} - d_{\mathcal{C}}^{2}(x^{*}))$$

Hence, dom $f^* = H$ and f^* is continuous on *H*. Therefore,

$$\partial f^*(x^*) = \overline{\operatorname{co}} \left\{ (\partial(\operatorname{cl}^w f))^{-1}(x^*) \right\}$$

= $\overline{\operatorname{co}} \{ x \in \overline{C}^w \mid \exists C \ni x_k \rightharpoonup x, \lim_k \|x_k - x^*\| = d_C(x^*) \}$

Consequences: $\partial f^*(x^*) = \overline{\operatorname{co}} \{ \pi_{\mathcal{C}}(x^*) \}$ in each one of the following cases:

- If C is weakly closed or approximately compact
- If C is approximately convex; that is, $\limsup_{y\to x} \frac{d(y,C)-d(x,C)}{\|x-y\|} = 1$

Example 2

Given a bounded set $C \subset H$, we consider the function $f : H \to \mathbb{R} \cup \{+\infty\}$ defined by

$$f(x) := -\frac{1}{2} \|x\|^2 + I_{-C}(x)$$

so that the conjugate given by

$$f^{*}(x^{*}) = \frac{1}{2}(\sup_{y \in C} ||y - x^{*}||^{2} - ||x^{*}||^{2})$$

is continuous on H. Consequently,

$$\partial f^*(x^*) = -\overline{\operatorname{co}}\{(\partial^w f)^{-1}(x^*)\} \\ = -\overline{\operatorname{co}}\{x \in C \mid \exists C \ni x_k \rightharpoonup x \text{ s.t. } \lim_k \|x_k - x^*\| = \sup_{y \in C} \|y - x^*\|\}$$

Consequences:

- if H is finite-dimensional, then ∂f*(x*) = -co{F_C(x*)} where F_C(x*) is the set of furthest points in C from x*
- If C is approximately compact, then $\partial f^*(x^*) = -\overline{co} \{F_{\overline{C}}(x^*)\}$

The previous formulas for ∂f^* includes the term $N_{\text{dom}\,f^*}(x^*)$ which requires explicit knowledge of dom f^* . Our objective in this part, is to provide formulas where $N_{\text{dom}\,f^*}(x^*)$ is replaced by a primal object, namely some appropriate asymptotic function

Definition:

Given a function $f: X \to \overline{\mathbb{R}}$ such that dom $f^* \neq \emptyset$, we call weak asymptotic function of f the function $f^{\infty}: X \to \overline{\mathbb{R}}$ defined by

$$f^{\infty}(x) := \liminf \{ sf\left(s^{-1}y\right) - \langle z^*, y - x \rangle : s \to 0^+, \\ \langle y - x, y^* \rangle \to 0 \quad \forall y^* \in \overline{\operatorname{par}}(\operatorname{dom} f^*) \},$$

where z^* is any vector in $cl(dom f^*)$.

The positively homogeneous function f^{∞} is well defined since the right-hand side does not depend on the choice of z^* in $cl(dom f^*)$

Some properties of the asymptotic functions

 If f ∈ Γ₀(X), then f[∞] coincides with the recession function in the sense of convex analysis; that is,

$$f^{\infty}(x) = \sup_{t>0} \frac{f(y+tx) - f(y)}{t}, \quad y \in \operatorname{dom} f.$$

• f^{∞} coincides with the asymptotic function in the sense of Debreu-Dedieu when the topology in X is $\sigma(X, X^*)$

$$f^{\infty}(x) = \liminf_{s \to 0^+, y \to x} sf(s^{-1}y),$$

if one of the following hold

- $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$
- dom $f^* = \{z^*\}$
- $X = \mathbb{R}$ and $\operatorname{dom} f^* \neq \emptyset$
- If $X^* \in \mathcal{F}(f)$, then $(f^\infty)^\infty = f^\infty$ and $\partial^w f^\infty = \partial f^\infty$

Relationship between asymptotic and recession functions

It is known (Debreu, Benoist - Hiriart-Urruty) that if $X = \mathbb{R}^n$, $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$, and f is lsc, then the lsc convex hull of f^{∞} is the recession function of the (proper lsc convex) function $\overline{\operatorname{co}}f$; that is,

$$\overline{\operatorname{co}} f^{\infty} = \left(\overline{\operatorname{co}} f\right)^{\infty}$$

We show that this property also holds for the functions $(f \Box \sigma_L)^{\infty}$:

Theorem: Let $f : X \to \overline{\mathbb{R}}$ be a given function. Then, for every $L \in \mathcal{F}(f)$,

$$\left(\overline{\operatorname{co}}(f\Box\sigma_L)\right)^{\infty} = \overline{\operatorname{co}}\left((f\Box\sigma_L)^{\infty}\right)$$

Consequently,

•
$$((f \Box \sigma_L)^{\infty})^* = \mathbf{I}_{\operatorname{cl}(L \cap \operatorname{dom} f^*))}$$

• dom
$$((f \Box \sigma_L)^{\infty})^* = \operatorname{cl}(L \cap \operatorname{dom} f^*)$$

• $X^* \in \mathcal{F}((f \Box \sigma_L)^{\infty})$

Subdifferential of the conjugate via weak subdifferentials

From the previous formulas,

$$\partial f^*(x^*) = \bigcap_{L \in \mathcal{F}(f, x^*)} \overline{\operatorname{co}} \left\{ (\partial^w (f \Box \sigma_L))^{-1} (x^*) + \mathcal{N}_{L \cap \operatorname{dom} f^*} (x^*) \right\}$$

But,

$$\begin{split} \mathrm{N}_{\mathrm{dom}(f\Box\sigma_L)^*}(x^*) &= \partial \mathrm{I}_{\overline{\mathrm{dom}(\overline{\mathrm{co}}(f\Box\sigma_L))^*}}(x^*) = \partial \left[\left(\overline{\mathrm{co}}(f\Box\sigma_L) \right)^{\infty} \right]^*(x^*) \\ \text{and} \ \left(\overline{\mathrm{co}}(f\Box\sigma_L) \right)^{\infty} &= \overline{\mathrm{co}} \left((f\Box\sigma_L)^{\infty} \right). \text{ Then,} \\ \mathrm{N}_{L\cap\mathrm{dom}\,f^*}(x^*) &= \partial \left[\overline{\mathrm{co}} \left((f\Box\sigma_L)^{\infty} \right) \right]^*(x^*) = \partial ((f\Box\sigma_L)^{\infty})^*(x^*). \\ \text{Since} \ (f\Box\sigma_L)^{\infty} \text{ is positively homogeneous, and } X^* \in \mathcal{F}((f\Box\sigma_L)^{\infty}), \text{ we obtain} \\ \partial ((f\Box\sigma_L)^{\infty})^*(x^*) &= \overline{\mathrm{co}} \left\{ (\partial (f\Box\sigma_L)^{\infty})^{-1}(x^*) \right\} \end{split}$$

Theorem: we have that

$$\partial f^*(x^*) = \bigcap_{L \in \mathcal{F}(f, x^*)} \overline{\operatorname{co}} \left\{ (\partial^w (f \Box \sigma_L))^{-1} (x^*) + (\partial (f \Box \sigma_L)^{\infty})^{-1} (x^*) \right\}$$

Some particular cases

• if $X^* \in \mathcal{F}(f)$, then

$$\partial f^*(x^*) = \overline{\operatorname{co}}\left\{ (\partial^w f)^{-1}(x^*) + (\partial f^\infty)^{-1}(x^*) \right\}$$

• if $X^* \in \mathcal{F}(f)$ and $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$, then

$$\begin{aligned} \partial f^*(x^*) &= \overline{\operatorname{co}}\left\{ (\partial^w f)^{-1}(x^*) \right\} + \overline{\operatorname{co}}\left\{ (\partial f^\infty)^{-1}(x^*) \right\} \\ &= \overline{\operatorname{co}}\left\{ (\partial f)^{-1}(x^*) \right\} + \overline{\operatorname{co}}\left\{ (\partial f^\infty)^{-1}(x^*) \right\} \ (f \text{ wlsc}) \end{aligned}$$

• if $X = \mathbb{R}^n$ and $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$, then

$$\begin{aligned} \partial f^*(x^*) &= & \cos\left\{ (\partial^w f)^{-1}(x^*) \right\} + \cos\left\{ (\partial f^\infty)^{-1}(x^*) \right\} \\ &= & \cos\left\{ (\partial f)^{-1}(x^*) \right\} + \cos\left\{ (\partial f^\infty)^{-1}(x^*) \right\} \ (f \ \mathsf{lsc}) \end{aligned}$$

Going back to the epsilon-subdifferential

Similarly, we obtain **Theorem:** Given a function $f: X \to \overline{\mathbb{R}}$, for every $x^* \in X^*$ we have that

$$\partial f^*(x^*) = \bigcap_{\substack{\varepsilon > 0\\ L \in \mathcal{F}(f, x^*)}} \overline{\operatorname{co}} \left\{ (\partial_{\varepsilon} f)^{-1}(x^*) + (\partial (f \Box \sigma_L)^{\infty})^{-1}(x^*) \right\}$$

Moreover,

• if $X^* \in \mathcal{F}(f)$, then

$$\partial f^*(x^*) = \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \left\{ (\partial_{\varepsilon} f)^{-1}(x^*) + (\partial f^{\infty})^{-1}(x^*) \right\}$$

• if $X^* \in \mathcal{F}(f)$ and $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$, then

$$\partial f^*(x^*) = \overline{\operatorname{co}}\left\{ (\partial f^{\infty})^{-1}(x^*) \right\} + \bigcap_{\varepsilon > 0} \overline{\operatorname{co}}\left\{ (\partial_{\varepsilon} f)^{-1}(x^*) \right\}$$
$$= \operatorname{co}\left\{ (\partial f^{\infty})^{-1}(x^*) \right\} + \bigcap_{\varepsilon > 0} \overline{\operatorname{co}}\left\{ (\partial_{\varepsilon} f)^{-1}(x^*) \right\} \ (X = \mathbb{R}^n)$$

The lsc convex hull via weak subdifferentials

In view of the relationship $\operatorname{Argmin} f^{**} = \partial f^*(\theta)$, we obtain **Theorem:** For every function $f: X \to \overline{\mathbb{R}}$ with proper conjugate, we have

$$\operatorname{Argmin} f^{**} = \bigcap_{L \in \mathcal{F}(f, x^*)} \overline{\operatorname{co}} \left\{ (\partial^{w} (f \Box \sigma_L))^{-1} (\theta) + \operatorname{Argmin} (f \Box \sigma_L)^{\infty} \right\}$$

Consequently,

• if
$$X^* \in \mathcal{F}(f)$$
, then

$$\operatorname{Argmin} f^{**} = \overline{\operatorname{co}} \left\{ (\partial^{w} f)^{-1}(\theta) + \operatorname{Argmin} f^{\infty} \right\}$$

• if $X^* \in \mathcal{F}(f)$ and $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$, then

$$\begin{aligned} \operatorname{Argmin} f^{**} &= \overline{\operatorname{co}} \left\{ (\partial^{w} f)^{-1}(\theta) \right\} + \overline{\operatorname{co}} \left\{ \operatorname{Argmin} f^{\infty} \right\} \\ &= \overline{\operatorname{co}} \left\{ \operatorname{Argmin} f \right\} + \overline{\operatorname{co}} \left\{ \operatorname{Argmin} f^{\infty} \right\} \ (f \text{ wlsc}) \\ &= \operatorname{co} \left\{ \operatorname{Argmin} f \right\} + \operatorname{co} \left\{ \operatorname{Argmin} f^{\infty} \right\} \ (X = \mathbb{R}^{n}, f \text{ lsc}) \end{aligned}$$

Remark: the last formula is due to Benoist and Hiriart-Urruty

(CMM, Universidad de Chile)

The lsc convex hull via epsilon-minima

Theorem: Given a function $f: X \to \overline{\mathbb{R}}$ having a proper conjugate, we have

$$\operatorname{Argmin} f^{**} = \bigcap_{\substack{\varepsilon > 0 \\ L \in \mathcal{F}(f, x^*)}} \overline{\operatorname{co}} \left\{ \varepsilon \operatorname{Argmin}(f \Box \sigma_L) + \operatorname{Argmin}(f \Box \sigma_L)^{\infty} \right\}$$

Consequently,

• if $X^* \in \mathcal{F}(f)$, then

$$\operatorname{Argmin} f^{**} = \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \left\{ \varepsilon \operatorname{Argmin} f + \operatorname{Argmin} f^{\infty} \right\}$$

• if $X^* \in \mathcal{F}(f)$ and $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$, then

$$\begin{aligned} \operatorname{Argmin} f^{**} &= \overline{\operatorname{co}} \left\{ \operatorname{Argmin} f^{\infty} \right\} + \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \left\{ \varepsilon \operatorname{Argmin} f \right\} \\ &= \operatorname{co} \left\{ \operatorname{Argmin} f^{\infty} \right\} + \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \left\{ \varepsilon \operatorname{Argmin} f \right\} \ (X = \mathbb{R}^{n}) \end{aligned}$$

Subdifferential of the lsc convex hull

For simplicity, we suppose that $X = \mathbb{R}^n$, $\operatorname{int}(\operatorname{dom} f^*) \neq \emptyset$, and f is lsc (this is the setting of Benoist - Hiriart-Urruty) so that

$$\partial f^*(x^*) = \operatorname{co}\left\{(\partial f)^{-1}(x^*)\right\} + \operatorname{co}\left\{(\partial f^{\infty})^{-1}(x^*)\right\}$$

If $x^* \in \partial f^{**}(x)$, then $x \in \partial f^*(x^*)$ and, so, there are $\lambda_0, \cdots, \lambda_n, \mu_1, \cdots, \mu_n \ge 0$, with $\lambda_0 + \cdots + \lambda_n = 1, x_0, \cdots, x_n \in (\partial f)^{-1}(x^*)$, and $y_1, \cdots, y_n \in (\partial f^{\infty})^{-1}(x^*)$ such that

$$x = \lambda_0 x_0 + \dots + \lambda_n x_n + \mu_1 y_1 + \dots + \mu_n y_n$$

Then,

$$x^* \in \bigcap_{0 \le i \le n} \partial f(x_i) \bigcap_{1 \le j \le n} \partial f^{\infty}(y_j)$$

Theorem (Benoist - Hiriart-Urruty): For every $x \in X$,

$$\partial f^{**}(x) = \bigcap_{0 \le i \le n} \partial f(x_i) \bigcap_{1 \le j \le n} \partial f^{\infty}(y_j)$$

where $x = \lambda_0 x_0 + \cdots + \lambda_n x_n + \mu_1 y_1 + \cdots + \mu_n y_n$

- Benoist, J. and Hiriart-Urruty, J.-B. (1996) What is the subdifferential of the closed convex hull of a function? SIAM J. Math. Anal. 27, no. 6, 1661–1679.
- Correa R. and Hantoute (2010), A. New formulas for the Fenchel subdifferential of the conjugate function, Journal of Set-valued and Variational Anlaysis.
- Debreu, G. Theory of values, John Wiley, Newyork, 1959.
- Dedieu, J.-P. *Cônes asymptotes d'ensembles non convexes*, Bull. Soc. Math. France Mém. No. 60 (1979), 31–44.
- Hiriart-Urruty, J.-B., López, M. A. and Volle (2010), A. The ε-strategy in Variational analysis: illustration with the closed convexification of a function, will appear in Rev. Mat. Iberoamericana.
- López, M. A. and Volle, M. (2010) A formula for the set of optimal solutions of a relaxed minimization problem. Applications to subdifferential calculus, Journal of Convex Analysis, 17, Pub. online (http://www.heldermann-verlag.de/jca/jca17/jca0851.pdf).
- Volle, M. (2008) *Complements on subdifferential calculus*, Pac. J. Optim. 4, no. 3, 621–628.

Thank you very much