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Position of the problem

In theory and practise, one disposes of the following scheme

Primal (initial) setting
f : X → R

is a given function, not necessarily convex or lsc; Argmin f may be empty or not,
and may have no specific structure; the Fenchel subdifferential ∂f may not have
good properties ...

Dual setting
f ∗ : X ∗ → R

is the Legendre-Fenchel conjugate which is convex and weakly lsc, and proper in
the most of the interesting cases; the Fenchel subdifferential ∂f ∗ has many rich
properties and, so, one can obtain informations on the function f ∗ ...
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Position of the problem

Relaxed setting
f ∗∗ : X → R

is the biconjugate function which is also convex and weakly lsc, and satisfies
f ∗∗ = cof in the most of the interesting cases, where cof is the lsc convex hull;
inf f = inf f ∗∗,

co(Argmin f ) ⊂ Argmin f ∗∗;Argmin f ∗∗ = ∂f ∗(0).

This previous scheme is directly manageable provided that f ∈ Γ0(X ). Indeed, in
this case

Argmin f = Argmin f ∗∗, ∂f ∗ = (∂f )−1.

Our interest is to find tools which allow the validity of formulas relating ∂f ∗ and
∂f , Argmin f and Argmin f ∗∗, for general functions which are not necessarily
convex or lsc. Roughly speaking, we put two questions

expressing ∂f ∗ and ∂f ∗∗ by means of ∂f
expressing Argmin f ∗∗ or Argmin cof by means of Argmin f ?
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Outline

First formulas of the Legendre-Fenchel subdifferential of f ∗

formulas by means of the ε-subdifferential ∂εf (Hiriart-Urruty - López - Volle)
Another enlargement of the Legendre-Fenchel subdifferential: weak
subdifferential ∂w

formulas by means of the weak subdifferential ∂w

a couple of example

Formulas of the Legendre-Fenchel subdifferential and Asymptotic analysis

a variant of asymptotic functions: weak asymptotic functions
formulas of the Legendre-Fenchel subdifferential of f ∗ invoking asymptotic
terms

Formulas of the Legendre-Fenchel subdifferential and Argmin set of the
biconjugate/lsc convex hull
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Notation

In what follows, (X ,X ∗, 〈·, ·〉) will be a topological pair of real locally convex
spaces. Given a function f : X → R,

f ∗ : X ∗ → R is the (Legendre-Fenchel) conjugate function

f ∗(x∗) := sup{〈x , x∗〉 − f (x), x ∈ X}

f ∗∗ : X → R is the biconjugate function

f ∗∗(x∗) := sup{〈x , x∗〉 − f ∗(x∗), x∗ ∈ X ∗}

cof is the lsc convex hull,

epi(cof ) = co(epi f )

∂εf : X ⇒ X ∗, ε ≥ 0, is the (Legendre-Fenchel) ε-subdifferential of f

∂εf (x) := {x∗ ∈ X ∗ | f ∗(x∗) + f (x) ≤ 〈x∗, x〉+ ε};

if ε = 0 we denote ∂f (x) := ∂0f (x)
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Notation

ε-Argmin f is the set of ε-minimum

ε-Argmin f := {x ∈ X : f (x) ≤ inf
X
f + ε};

if ε = 0 we denote Argmin f := 0-Argmin f
If M : X ⇒ X ∗ is a set-valued operator, M−1 : X ∗ ⇒ X denotes its inverse

M−1(x∗) := {x ∈ X | x∗ ∈ Mx}

If A ⊂ X , we denote
A− := {x∗ ∈ X ∗ : 〈x∗, x〉 ≤ 0 ∀x ∈ A}
coA and coA are the convex and the closed convex hulls of A, respectively
parA is the subspace parallel to the affi ne space affA
NA(x) := (A− x)− is the normal cone to A at x ∈ A
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Formulas via the epsilon-subdifferential

Explicit formulas for ∂f ∗ have been recently established by M.A. López and M.
Volle (see, also, Hiriart-Urruty, M.A. López and M. Volle ).The most general one
is (if dom f ∗ 6= ∅)

∂f ∗(x∗) =
⋂
ε>0

y ∗∈dom f ∗

co
[
(∂εf )−1(x∗) + {y∗ − x∗}−

]
Equivalently, it was proved by these authors that

∂f ∗(x∗) =
⋂
ε>0

L∈F̃ (f ,x ∗)

co
[
(∂εf )−1(x∗) +NL∩dom f ∗(x

∗)
]

where

F̃ (f , x∗) := {L ⊂ X ∗ | L convex, x∗ ∈ L, ri(cone(L∩ dom f ∗)) 6= ∅}
As a consequence of the previous formulas, one gets

Argmin cof =
⋂
ε>0

L∈F̃ (f ,x ∗)

co [ε-Argmin f +NL∩dom f ∗(x
∗)]
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Our objectives

In the first part, we propose another enlargement ∂w of the Fenchel
subdifferential of f (instead of ∂εf ) in order to obtain new formulas modelled
on the formulas above, by Hiriart-Urruty, M. A. López, and M. Volle

In the second part, we propose an appropriate notion of asymptotic functions
in order to rewrite the term NL∩dom f ∗(x∗) by means of primal objects

Consequently, we give formulas for Argmin cof by means of Argmin f ,
Argmin f ∞

This approach allows us to extend some of the results found by Benoist and
Hiriart-Urruty, namely

Argmin cof = co(Argmin f ) + co(Argmin f ∞)

∂cof (x) =
⋂

0≤i≤n
∂f (xi )

⋂
1≤j≤n

∂f ∞(yj )

for X = Rn , int(dom f ∗) 6= ∅ (i.e. f is epi-pointed), and f is lsc.
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Enlargement of the Legendre-Fenchel subdifferential

If f ∈ Γ0(X ), then ∂f ∗ is completely characterized by ∂f in view of the
straightforward relationship

∂f ∗ = (∂f )−1

But, in general ∂f is too small to build up the whole ∂f ∗

Example: let
f (x) := e−|x |.

Then, direct computations yield

f ∗ = I{0}, ∂f ∗(0) = N{0}(0) = R

(∂f )−1(0) = (∂f )−1(0) +Ndom f ∗(0) = ∅.

Thus, we need to enlarge the concept of the Fenchel subdifferential by taking into
account the geometry of dom f ∗.
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Enlargement of the Legendre-Fenchel subdifferential

Definition:
Given a function f : X → R, a vector x∗ ∈ X ∗ is said to be a weak
(Fenchel-Legendre) subgradient of f at x ∈ X iff ∗(x∗) ∈ R, and there exists a
net (xγ) ⊂ X such that

lim〈xγ − x , y∗〉 = 0 ∀y∗ ∈ par (dom f ∗)

lim(f (xγ)− 〈xγ, x∗〉) = −f ∗(x∗)
The set of such weak subgradients, denoted by ∂w f (x), is called the
weak subdifferential of f at x
In particular, x is a critical point w.r.t. ∂w if 0 ∈ ∂w f (x); that is, ∃(xγ) ⊂ X
such that

lim f (xγ) = inf f ∈ R; that is (xγ) is a minimizing net

lim〈xγ − x , y∗〉 = 0 ∀y∗ ∈ par (dom f ∗)

In other words, if Y := par (dom f ∗) , x is the weak limit (as a point of Y ∗) of
the minimizing net (xγ) of f
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First properties of the weak subdifferential

If f ∈ Γ0(X ), then
∂w f = ∂f

if int(dom f ∗) 6= ∅, then
∂w f = ∂(clw f )

If int(dom f ∗) 6= ∅ and f is weakly lsc, then ∂w and ∂ coincide

If X = R, f is lsc, and ∂f (x) = {x∗}, then

∂w f (x) = ∂f (x)

even if int(dom f ∗) = ∅
∂w satisfies the following elementary chain rule

∂w (f + 〈x∗, ·〉) = ∂w f + {x∗}, x∗ ∈ X ∗
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Illustrative examples

Example: for f (x) = e−|x | we have

aff(dom f ∗) = {0} and f ∗(0) = 0.

Then, x ∈ (∂w f )−1 (0) if and only if ∃(xk )k ⊂ R such that

f (xk )− 0xk = f (xk )→ −f ∗(0) = 0.

Therefore, as limk→+∞ e−k = 0,

∂f ∗(0) = (∂w f )−1 (0) = R;

in other words, ∂w f ∗(0) = (∂w f )−1 (0).
Example: let

f (a) :=
√
a if a ≥ 0 and f (a) := +∞ if a < 0.

Then, dom f ∗ = (−∞, 0] and so

∂w f (0) = R−; ∂w f (a) = ∅ if a 6= 0.
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Formulas for the subdifferential of the conjugate

Theorem: for every x∗ ∈ X ∗ we have the formula

∂f ∗(x∗) =
⋂

L∈F (f ,x ∗)
co
{
(∂w (f�σL))

−1(x∗) +NL∩dom f ∗(x
∗)
}

where
F (f , x∗) = {L ∈ F (f ) | x∗ ∈ L} and

F (f ) = {L ⊂ X ∗ closed and convex | ri(L∩ dom f ∗) 6= ∅,
f ∗|ri(L∩dom f ∗) is finite and continuous}

The same formula holds if instead of F (f ) we take the set

{L ⊂ X ∗ | L is a finite-dimensional linear subspace containing x∗}

or, equivalently,
{L := x∗ +R(y∗ − x∗), y∗ ∈ dom f ∗}
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Special cases

If X ∗ ∈ F (f ), then

∂f ∗(x∗) ⊂ co
{
(∂w f )−1(x∗) +Ndom f ∗(x

∗)
}

As the inverse inclusion always holds, we obtain

∂f ∗(x∗) = co
{
(∂w f )−1(x∗) +Ndom f ∗(x

∗)
}

The last formula obviously holds if X = Rn .

If X ∗ ∈ F (f ) and f is positively homogeneous, and f ∗ is proper, then

∂f ∗(x∗) = co
{
(∂w f )−1(x∗)

}
If f satisfies

f (x) ≤ lim inf{f (y), 〈y − x , y∗〉 → 0 ∀y∗ ∈ par (dom f ∗)}

then ∂w f and ∂f coincide and, so, the formulas above hold with ∂f instead
of ∂w f
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Special cases

If int(dom f ∗) 6= ∅ and f ∗ is continuous in int(dom f ∗), then

∂f ∗(x∗) = Ndom f ∗(x
∗) + co

{
(∂w f )−1(x∗)

}
thus if f is, in addition, weakly lsc, then

∂f ∗(x∗) = Ndom f ∗(x
∗) + co

{
(∂f )−1(x∗)

}
The previous formulas hold if int(dom f ∗) 6= ∅ and X ∗ is a barrelled space
(in particular, a Banach space)
If X = Rn and int(dom f ∗) 6= ∅, then

∂f ∗(x∗) = Ndom f ∗(x
∗) + co

{
(∂w f )−1(x∗)

}
If f is, in addition, lsc, then

∂f ∗(x∗) = Ndom f ∗(x
∗) + co

{
(∂f )−1(x∗)

}
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Example 1

Given a subset C ⊂ H, we define f : H → R∪ {+∞} as

f (x) :=
1
2
‖x‖2 + IC (x)

so that clw f (x) = 1
2 lim infy⇀x ‖y‖

2+IC w (x). By Asplund’s formula

(clw f )∗(x∗) = f ∗(x∗) =
1
2
(‖x∗‖2 − d2C (x∗))

Hence, dom f ∗ = H and f ∗ is continuous on H.Therefore,

∂f ∗(x∗) = co
{
(∂(clw f ))−1(x∗)

}
= co{x ∈ Cw | ∃ C 3 xk ⇀ x , lim

k
‖xk − x∗‖ = dC (x∗)}

Consequences: ∂f ∗(x∗) = co{πC (x∗)} in each one of the following cases:
If C is weakly closed or approximately compact

If C is approximately convex; that is, lim supy→x
d (y ,C )−d (x ,C )

‖x−y ‖ = 1
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Example 2

Given a bounded set C ⊂ H, we consider the function f : H → R∪ {+∞}
defined by

f (x) := −1
2
‖x‖2 + I−C (x)

so that the conjugate given by

f ∗(x∗) =
1
2
( sup
y∈C
‖y − x∗‖2 − ‖x∗‖2)

is continuous on H. Consequently,

∂f ∗(x∗) = −co{(∂w f )−1(x∗)}
= −co{x ∈ C | ∃C 3 xk ⇀ x s.t. lim

k
‖xk − x∗‖ = sup

y∈C
‖y − x∗‖}

Consequences:
if H is finite-dimensional, then ∂f ∗(x∗) = − co{FC (x∗)} where FC (x∗) is
the set of furthest points in C from x∗

If C is approximately compact, then ∂f ∗(x∗) = −co{FC (x∗)}
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Asymptotic functions

The previous formulas for ∂f ∗ includes the term Ndom f ∗(x∗) which requires
explicit knowledge of dom f ∗. Our objective in this part, is to provide formulas
where Ndom f ∗(x∗) is replaced by a primal object, namely some appropriate
asymptotic function

Definition:
Given a function f : X → R such that dom f ∗ 6= ∅, we call weak asymptotic
function of f the function f ∞ : X → R defined by

f ∞(x) := lim inf{sf
(
s−1y

)
− 〈z∗, y − x〉 : s → 0+,

〈y − x , y∗〉 → 0 ∀y∗ ∈ par(dom f ∗)},

where z∗ is any vector in cl(dom f ∗).

The positively homogeneous function f ∞ is well defined since the right-hand side
does not depend on the choice of z∗ in cl(dom f ∗)
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Some properties of the asymptotic functions

If f ∈ Γ0(X ), then f ∞ coincides with the recession function in the sense of
convex analysis; that is,

f ∞(x) = sup
t>0

f (y + tx)− f (y)
t

, y ∈ dom f .

f ∞ coincides with the asymptotic function in the sense of Debreu-Dedieu
when the topology in X is σ(X ,X ∗)

f ∞(x) = lim inf
s→0+, y⇀x

sf (s−1y),

if one of the following hold

int(dom f ∗) 6= ∅
dom f ∗ = {z∗}
X = R and dom f ∗ 6= ∅

If X ∗ ∈ F (f ), then (f ∞)∞ = f ∞ and ∂w f ∞ = ∂f ∞
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Relationship between asymptotic and recession functions

It is known (Debreu, Benoist - Hiriart-Urruty) that if X = Rn , int(dom f ∗) 6= ∅,
and f is lsc, then the lsc convex hull of f ∞ is the recession function of the (proper
lsc convex) function cof ; that is,

cof ∞ = (cof )∞

We show that this property also holds for the functions (f�σL)
∞:

Theorem: Let f : X → R be a given function. Then, for every L ∈ F (f ),

(co(f�σL))
∞ = co ((f�σL)

∞)

Consequently,

((f�σL)
∞)∗ = Icl(L∩dom f ∗))

dom ((f�σL)
∞)∗ = cl(L∩ dom f ∗)

X ∗ ∈ F ((f�σL)
∞)
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Subdifferential of the conjugate via weak subdifferentials

From the previous formulas,

∂f ∗(x∗) =
⋂

L∈F (f ,x ∗)
co
{
(∂w (f�σL))

−1(x∗) +NL∩dom f ∗(x
∗)
}

But,

Ndom(f �σL)∗(x
∗) = ∂Idom(co(f �σL))

∗(x∗) = ∂
[
(co(f�σL))

∞]∗ (x∗)
and (co(f�σL))

∞ = co ((f�σL)
∞). Then,

NL∩dom f ∗(x
∗) = ∂ [co ((f�σL)

∞)]∗ (x∗) = ∂((f�σL)
∞)∗(x∗).

Since (f�σL)
∞ is positively homogeneous, and X ∗ ∈ F ((f�σL)

∞), we obtain

∂((f�σL)
∞)∗(x∗) = co

{
(∂(f�σL)

∞)−1(x∗)
}

Theorem: we have that

∂f ∗(x∗) =
⋂

L∈F (f ,x ∗)
co
{
(∂w (f�σL))

−1(x∗) + (∂(f�σL)
∞)−1(x∗)

}
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Some particular cases

if X ∗ ∈ F (f ), then

∂f ∗(x∗) = co
{
(∂w f )−1(x∗) + (∂f ∞)−1(x∗)

}

if X ∗ ∈ F (f ) and int(dom f ∗) 6= ∅, then

∂f ∗(x∗) = co
{
(∂w f )−1(x∗)

}
+ co

{
(∂f ∞)−1(x∗)

}
= co

{
(∂f )−1(x∗)

}
+ co

{
(∂f ∞)−1(x∗)

}
(f wlsc)

if X = Rn and int(dom f ∗) 6= ∅, then

∂f ∗(x∗) = co
{
(∂w f )−1(x∗)

}
+ co

{
(∂f ∞)−1(x∗)

}
= co

{
(∂f )−1(x∗)

}
+ co

{
(∂f ∞)−1(x∗)

}
(f lsc)
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Going back to the epsilon-subdifferential

Similarly, we obtain
Theorem: Given a function f : X → R, for every x∗ ∈ X ∗ we have that

∂f ∗(x∗) =
⋂
ε>0

L∈F (f ,x ∗)

co
{
(∂εf )−1(x∗) + (∂(f�σL)

∞)−1(x∗)
}

Moreover,

if X ∗ ∈ F (f ), then

∂f ∗(x∗) =
⋂
ε>0

co
{
(∂εf )−1(x∗) + (∂f ∞)−1(x∗)

}

if X ∗ ∈ F (f ) and int(dom f ∗) 6= ∅, then

∂f ∗(x∗) = co
{
(∂f ∞)−1(x∗)

}
+
⋂
ε>0

co
{
(∂εf )−1(x∗)

}
= co

{
(∂f ∞)−1(x∗)

}
+
⋂
ε>0

co
{
(∂εf )−1(x∗)

}
(X = Rn)
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The lsc convex hull via weak subdifferentials

In view of the relationship Argmin f ∗∗ = ∂f ∗(θ), we obtain
Theorem: For every function f : X → R with proper conjugate, we have

Argmin f ∗∗ =
⋂

L∈F (f ,x ∗)
co
{
(∂w (f�σL))

−1(θ) +Argmin(f�σL)
∞
}

Consequently,

if X ∗ ∈ F (f ), then

Argmin f ∗∗ = co
{
(∂w f )−1(θ) +Argmin f ∞

}
if X ∗ ∈ F (f ) and int(dom f ∗) 6= ∅, then

Argmin f ∗∗ = co
{
(∂w f )−1(θ)

}
+ co {Argmin f ∞}

= co {Argmin f }+ co {Argmin f ∞} (f wlsc)
= co {Argmin f }+ co {Argmin f ∞} (X = Rn , f lsc)

Remark: the last formula is due to Benoist and Hiriart-Urruty
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The lsc convex hull via epsilon-minima

Theorem: Given a function f : X → R having a proper conjugate, we have

Argmin f ∗∗ =
⋂
ε>0

L∈F (f ,x ∗)

co {ε-Argmin(f�σL) +Argmin(f�σL)
∞}

Consequently,

if X ∗ ∈ F (f ), then

Argmin f ∗∗ =
⋂
ε>0

co {ε-Argmin f +Argmin f ∞}

if X ∗ ∈ F (f ) and int(dom f ∗) 6= ∅, then

Argmin f ∗∗ = co {Argmin f ∞}+
⋂
ε>0

co {ε-Argmin f }

= co {Argmin f ∞}+
⋂
ε>0

co {ε-Argmin f } (X = Rn)
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Subdifferential of the lsc convex hull

For simplicity, we suppose that X = Rn , int(dom f ∗) 6= ∅, and f is lsc (this is
the setting of Benoist - Hiriart-Urruty) so that

∂f ∗(x∗) = co
{
(∂f )−1(x∗)

}
+ co

{
(∂f ∞)−1(x∗)

}
If x∗ ∈ ∂f ∗∗(x), then x ∈ ∂f ∗(x∗) and, so, there are λ0, · · · ,λn , µ1, · · · , µn ≥ 0,
with λ0 + · · ·+ λn = 1, x0, · · · , xn ∈ (∂f )−1(x∗), and
y1, · · · , yn ∈ (∂f ∞)−1(x∗) such that

x = λ0x0 + · · ·+ λnxn + µ1y1 + · · ·+ µnyn

Then,
x∗ ∈

⋂
0≤i≤n

∂f (xi )
⋂

1≤j≤n
∂f ∞(yj )

Theorem (Benoist - Hiriart-Urruty): For every x ∈ X ,

∂f ∗∗(x) =
⋂

0≤i≤n
∂f (xi )

⋂
1≤j≤n

∂f ∞(yj )

where x = λ0x0 + · · ·+ λnxn + µ1y1 + · · ·+ µnyn
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Thank you very much
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