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as follows:          is the least time    such that 
some trajectory       satisfies                              .
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The murder of a beautiful theory 
by a gang of brutal facts

• Even if        is smooth, there 
is no continuous        in general: 
what do we mean by a solution 
of                         ?
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• Nonsmooth analysis

• Generalized solutions of pde’s

• Sample-and-hold analysis of discontinuous
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Let f be Lipschitz (locally): |f(y)-f(x)| ≤ K|y-x|
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f f(x) = |x|Example

∂Cf(0) = [−1, 1]

then
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has a very complete (but fuzzy!) calculus...
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Let                         be a continuous positive definite 
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h(x, ζ) + 1 = 0 ∀ζ ∈ ∂ φ(x), ∀x �= 0.
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φ : Rn → R+
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Theorem

Remark    Large literature on H-J-B equation:

• Clarke 1976 (Lipschitz, generalized gradients)

• Subbotin 1980 (invariance, Lipschitz, minimax)

• Crandall-Lions 1982 (comparison, continuous, viscosity)

• Clarke-Ledyaev 1994 (monotonicity, lsc, proximal)

• Fathi 1998 (KAM solutions)

• Dacorogna, DeVille... (almost everywhere)
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Lyapunov for the sufficiency 

Massera, Barbashin and 
Krasovskii, and Kurzweil for the 
necessity: 
converse Lyapunov theorems

Theorem  Let g be continuous. 
The differential equation is 
stable if and only if there is a 
Lyapunov function for g.



RECALL:

A Lyapunov function V for g is C1 and satisfies:

Positive definiteness:

V (0) = 0, V (x) > 0 ∀ x �= 0

Properness:

The level sets {x : V (x) ≤ c} are compact for
every c. Equivalently, V is radially unbounded:
V (x) → +∞ as |x| → +∞
Infinitesimal decrease:

�
∇V (x), g(x)

�
< 0 ∀ x �= 0.
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Suppose that the system (∗) admits a smooth CLF. Then for every δ > 0, the
following set is a neighborhood of 0:

�
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�
.

Definition:  Such a function is called a (smooth) CLF

So any system which fails to satisfy this covering 
condition cannot admit a smooth CLF
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It is easy to verify directly that the system is GAC.      

This is a nonlinear system (of real interest) that is 
close to being a classical linear system: it is linear in 
u, linear in x (separately), with an ample control set.
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The system (∗) is GAC if and only if there exists a Dini CLF.

THEOREM

The system (∗) is GAC if and only if there exists a proximal CLF:

max
ζ∈∂P V (x)

min
u∈U

�ζ, f(x, u)� < −W (x) ∀ x �= 0.

����
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The value function technique



Let (*) be GAC. Fix r>0, and, for a given rate function W,  
define

where the minimum is taken over all trajectories x such that 

The function    is an example of a value function, in which    
is the parameter. Such functions play a central role in pde's, 
optimization, and differential games.    

x(0) = α, x(T ) ∈ B(0, r), T free

φ(α) := min

� T
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dt,
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Let (*) be GAC. Fix r>0, and, for a given rate function W,  
define

where the minimum is taken over all trajectories x such that 

The function    is an example of a value function, in which    
is the parameter. Such functions play a central role in pde's, 
optimization, and differential games.    
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   is rather close to being a CLF for the system. But in 
which sense? Certainly not the smooth sense, for value 
functions are notoriously nonsmooth.

φ

The value function technique
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The “field of trajectories” approach

Exhibit a “reasonable, consistent” scheme for 
attaining a target S. Let V(   ) be the time to the 
target, starting at    , and according to the scheme.

Then V is a Dini (and hence proximal) CLF (relative to 
the target S).
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Then:          is GAC                     is stabilizable 
      (by a linear feedback                    ) 

(∗) (∗)�

k(x) = Kx
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A famous diagnostic tool for the feedback issue:

Note: The problem cannot be “approximated away”
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Given B(0,R) and B(0,r), then with sufficiently fine 
partitions, k drives all points in B(0,R) to B(0,r)

Theorem (Clarke, Ledyaev, Sontag, Subbotin 1997)
 

Any GAC system is stabilizable, with possibly 
discontinuous feedback, implemented in the 
sample-and-hold sense.    (The converse is evident)

Filippov solutions don’t work.

The  s&h stabilization is “meaningful”...

There is robustness with respect to implementation, 
as well as small error; such analysis becomes possible

Remarks:
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This is an example of the thin set fallacy: 
       a feedback whose effect depends on its values 
       on a set of measure zero

This issue does not arise with continuous feedbacks.
So discontinuous feedbacks must be designed with 
extra care. But they also have some advantages (such 
as blending, sliding).   

Lesson: In using discontinuous feedback, 
take account from the beginning of the  
implementation procedure. 
Sample-and-hold forces one to do so. 
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THEOREM A steepest descent feedback k stabilizes the system in the sample-
and-hold sense.

PROOF. For ease of exposition, we shall suppose that V (on Rn) and ∇V (on
Rn\{0}) are locally Lipschitz rather than merely continuous (otherwise, the
argument is carried out with moduli of continuity). We also restrict attention
to uniform partitions.
Let B(0, R) and B(0, r) be the initial values and target set under consider-
ation. The properties of V imply the existence of positive numbers e < E
such that

{x : V (x) ≤ e} ⊂ B(0, r), {x : V (x) ≤ E} ⊃ B(0, R).

Fix E� > E. There exist positive constants K, L,M such that, for all x, y in
the compact set {x : V (x) ≤ E�} and u ∈ U , we have

|V (x) − V (y)| ≤ L|x − y|, |f(x, u)| ≤ M,

|f(x, u) − f(y, u)| ≤ K|x − y|. (1)

Now pick e� and e�� so that 0 < e�� < e� < e, and set

X := {x : e�� ≤ V (x) ≤ E�}.

Then there exist constants N and ω > 0 such that

|∇V (x) − ∇V (y)| ≤ N |x − y|, W (x) ≥ ω ∀ x, y ∈ X. (2)
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Now pick e� and e�� so that 0 < e�� < e� < e, and set

X := {x : e�� ≤ V (x) ≤ E�}.

Then there exist constants N and ω > 0 such that

|∇V (x) − ∇V (y)| ≤ N |x − y|, W (x) ≥ ω ∀ x, y ∈ X. (2)

Let π be a uniform partition of diameter δ ∈ (0, 1) such that

δLM < min{e − e�, e� − e��, E� − E},

δ(LK + MN)M < ω/2. (3)

Now let x0 be any point in B(0, R), and proceed to implement the feedback

k via the partition π. On the first time interval [t0, t1] the trajectory x cor-

responding to k is generated by the differential equation

x�(t) = f
�
x(t), k(x0)

�
, x(t0) = x0, t0 ≤ t ≤ t1.

The solution to this differential equation exists on some interval of positive

length, and is unique because f is locally Lipschitz in the state variable. If

the solution fails to exist on the entire interval, it is because blow-up has

occurred. Then there exists a first τ ∈ (t0, t1] for which V (x(τ )) = E�
.

On the interval [t0, τ ), the Lipschitz constant L of (1) is valid, as well as the

bound M , whence

V (x(t)) ≤ V (x0) + L|x(t) − x0| ≤ E + δLM ∀ t ∈ [t0, τ ).

But then V (x(τ )) ≤ E + δLM < E�
by (3), a contradiction. It follows

that blow-up cannot occur, and that the solution of the differential equation

exists on the entire interval [t0, t1] and satisfies V (x(t)) < E�
there.

Case 1 V (x0) ≤ e�.

It follows then from δLM < e − e� (see (3)) that we have

V (x(t)) < e ∀ t ∈ [t0, t1].

Case 2 e� < V (x0).

Now we have x0 ∈ X and
�
∇V (x0), f

�
x0, k(x0)

��
< −ω

from the way k(x0) is defined, and since W (x0) > ω.

Let t ∈ (t0, t1]; then, at least while x(t) remains in the set X , we can argue
as follows:
V (x(t)) − V (x(t0)) = �∇V (x(t∗)), x�(t∗)� (t − t0)

(by the Mean Value Theorem, for some t∗ ∈ (0, t))

= �∇V (x(t∗)), f(x(t∗), k(t0))� (t − t0)

= �∇V (x(t0)), f(x(t0), k(t0))� (t − t0)

+ �∇V (x(t0)), f(x(t∗), k(t0)) − f(x(t0), k(t0))�(t − t0)

+ �∇V (x(t∗)) − ∇V (x(t0)), f(x(t∗), k(t0))� (t − t0)

≤ �∇V (x(t0)), f(x(t0), k(t0))� (t − t0)

+ LK|x(t∗) − x0|(t − t0) + NM |x(t∗) − x0|(t − t0) (by (1) and (2))
≤ −ω(t − t0) + LKMδ(t − t0) + M2Nδ(t − t0) (by definition of k)
= {−ω + δ (LK + MN) M} (t − t0)

≤ −(ω/2)(t − t0), by (3).

Thus the value of V has decreased. It follows from this, together with the in-
equality δLM < e�−e�� provided by (3), that x(t) remains in X throughout
[t0, t1], so that the estimates above apply.
To summarize, we have in Case 2 the following decrease property:

V
�
x(t)

�
− V

�
x(t0)

�
≤ −(ω/2)(t − t0) ∀ t ∈ [t0, t1].

It follows that, in either case, we have V (x(t)) ≤ E for t ∈ [t0, t1], and in
particular V (x1) ≤ E, where x1 := x(t1) is the next node in the imple-
mentation scheme.

We now repeat the procedure on the next interval [t1, t2], but using the con-
stant control value k(x1). Precisely the same arguments as above apply
to this and to all subsequent steps: either we are at a node xi for which
V (xi) ≤ e� (Case 1), or else V (x(t)) continues to decrease at a rate of at
least ω/2 (Case 2).
Since V is nonnegative, the case of continued decrease cannot persist indefi-

nitely. Let xJ (J ≥ 0) be the first node satisfying V (xJ) ≤ e�
. If J > 0,

then

e� < V (xJ−1) ≤ V (x0) − (ω/2)(tJ−1 − t0)

= V (x0) − (ω/2)(J − 1)δ,

whence

(ω/2)(J − 1)δ < V (x0) − e� ≤ E − e�,

and so

Jδ < 2(E − e�)/ω + δ ≤ 2(E − e�)/ω + 1 =: T,

which provides a uniform upper bound T independent of δ for the time Jδ
required to attain the condition V (xJ) ≤ e�

. Once this condition is satisfied,

the above analysis shows that for all t ≥ tJ , we have V (x(t) < e, which

implies x(t) ∈ B(0, r).

Since for all t ≥ 0 the trajectory x satisfies V (x(t)) ≤ E, and since {x :
V (x) ≤ E} ⊂ B(0, R), there exists C depending only on R such that

|x(t)| ≤ C ∀ t ≥ 0. This completes the proof that the required stabilization

takes place.
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equality δLM < e�−e�� provided by (3), that x(t) remains in X throughout
[t0, t1], so that the estimates above apply.
To summarize, we have in Case 2 the following decrease property:

V
�
x(t)

�
− V

�
x(t0)

�
≤ −(ω/2)(t − t0) ∀ t ∈ [t0, t1].

It follows that, in either case, we have V (x(t)) ≤ E for t ∈ [t0, t1], and in
particular V (x1) ≤ E, where x1 := x(t1) is the next node in the imple-
mentation scheme.

We now repeat the procedure on the next interval [t1, t2], but using the con-
stant control value k(x1). Precisely the same arguments as above apply
to this and to all subsequent steps: either we are at a node xi for which
V (xi) ≤ e� (Case 1), or else V (x(t)) continues to decrease at a rate of at
least ω/2 (Case 2).
Since V is nonnegative, the case of continued decrease cannot persist indefi-

nitely. Let xJ (J ≥ 0) be the first node satisfying V (xJ) ≤ e�
. If J > 0,

then

e� < V (xJ−1) ≤ V (x0) − (ω/2)(tJ−1 − t0)

= V (x0) − (ω/2)(J − 1)δ,

whence

(ω/2)(J − 1)δ < V (x0) − e� ≤ E − e�,

and so

Jδ < 2(E − e�)/ω + δ ≤ 2(E − e�)/ω + 1 =: T,

which provides a uniform upper bound T independent of δ for the time Jδ
required to attain the condition V (xJ) ≤ e�

. Once this condition is satisfied,

the above analysis shows that for all t ≥ tJ , we have V (x(t) < e, which

implies x(t) ∈ B(0, r).

Since for all t ≥ 0 the trajectory x satisfies V (x(t)) ≤ E, and since {x :
V (x) ≤ E} ⊂ B(0, R), there exists C depending only on R such that

|x(t)| ≤ C ∀ t ≥ 0. This completes the proof that the required stabilization

takes place.
QED
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But this can give a meaningless, 
non-stabilizing feedback 



x

y

0

2. Then go directly
   to the origin

1. Go directly 
   to the x-axis

From (x,y):

DITHER

V(x,y) = |x|+|y|

By construction, 
the feedback is 
of steepest 
descent type for 
the CLF it 
induces:
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inf
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can fail.

Theorem k stabilizes the system in the s & h sense

true for smooth 
and concave VV is locally Lipschitz and (locally)

V (y) − V (z) − �ζ, y − z� ≤ σ|y − z|1+η

∀ ζ ∈ ∂CV (z)



4. If φ is concave or C1,η near x, then φ satisfies SC at x.

5. The positive linear combination (and in particular, the sum) of a finite
number of functions each of which satisfies SC at x also satisfies SC at x.

6. If φ = g◦h, where h : Rn → Rm is C1,η near x, and where g : Rm → R
is concave, then φ satisfies SC at x.

7. If φ = g ◦ h, where h : Rn → R is concave, and where g : R → R is
C1,η near h(x), then φ satisfies SC at x.

8. If φ = gh, where h is convex, and where g : Rn → (−∞, 0 ] is C1,η near
x, then φ satisfies SC at x.

9. If φ = gh, where g is C1,η near x, with g(x) > 0, and where h is
concave, then φ satisfies SC at x.

10. If φ = minφi, where {φi} is a finite family of functions each of which
satisfies SC at x, then φ satisfies SC at x.

11. If φ satisfies SC at x, then the directional derivative φ�(x; v) exists for
each v, and one has

dφ(x; v) = φ�(x; v) = min
ζ∈∂Cφ(x)

�ζ, v� ∀ v ∈ Rn.
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The collection of facts about operations that 
preserve that property (positive linear combinations, 
certain products and compositions, lower envelopes) 
allows us to see easily that V  is semiconcave.1



The corresponding steepest-descent 
feedback induced by V  is given by

k(x) =






(x1, x2)/ρ if |x3| − ρ ≥ ρ|ρ sgn (x3) − 2x3|
−(x1, x2)/ρ if ρ − |x3| ≥ ρ|ρ sgn (x3) − 2x3|

(x2, −x1)/ρ if ρ
�
2x3 − ρ sgn (x3)

�
> |ρ − |x3||

−(x2, −x1)/ρ if ρ
�
ρ sgn (x3) − 2x3

�
> |ρ − |x3||

where ρ :=
�

x2
1 + x2

2.

1

When σ = 0 (then x3 �= 0), set k(x) = (1, 1)/
√

2.

When x3 = 0 (then σ �= 0), set k(x) = −(x1, x2)/σ

For x �= 0:

When σ �= 0 and x3 �= 0 , set

(Set k(0) equal to any point in U )
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Four types of regularity 
for Dini or proximal CLF’s:

Theorem [Rifford 2000] The system is GAC if 
and only if it admits a semiconcave CLF.

Continuous

⊂
Locally Lipschitz

⊂
Semiconcave
⊂

Smooth (C1)
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What if V is merely locally Lipschitz, 
not smooth or semiconcave?

So we get feedbacks for 
“practical semiglobal stabilization”

Fact: given r and R, then, for    sufficiently 
large, the steepest descent feedback 
generated by 

Vλ(x) := min
z∈Rn

{V (z) +
�
λ/2

���x − z
��2}.

stabilizes B(0,R) to B(0,r).

λ

inf-convolution



x

y

0

Steepest descent for 
V(x,y) = |x|+|y| 
(dither)



x

y

0

Steepest descent for 
V(x,y) = |x|+|y| 
(dither) not semiconcave!



x

y

0

Steepest descent for 
V(x,y) = |x|+|y| 
(dither)

x

y

Steepest descent 
for V (x,y) 
(s & h stabilization)

λ
not semiconcave!



x

y

0

Steepest descent for 
V(x,y) = |x|+|y| 
(dither)

x

y

Steepest descent 
for V (x,y) 
(s & h stabilization)

λ
not semiconcave!



x

y

0

Steepest descent for 
V(x,y) = |x|+|y| 
(dither)

x

y

Steepest descent 
for V (x,y) 
(s & h stabilization)

λ

?

not semiconcave!



Discontinuous feedbacks appear to be 
essential in nonlinear control settings

Conclusions

They must be handled with more care 
than continuous ones, and require more 
effort, but they offer certain advantages

There is a growing body of theory 
and techniques on the subject, 
based on sample-and-hold analysis
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THE
END


