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Example: the egg business I

Uncontrolled dynamics:

yt =

∫ t

−1

ct−sysds, t ≥ 0

where

• yt represents the number of eggs produced at time t

• cs fertility rate (zero if s > 1),

• yt, t < 0 given
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Example: the egg business II

Controlled dynamics: ut proportion of unconsumed eggs

yt =

∫ t

−1

ct−susysds, t ≥ 0

and given an utility function U , maximize∫ T

0

U((1− us)ys)ds+ φ(yT )

with control constraints ut ∈ [0, 1] (log penalty)
and state constraints yt ∈ [a, b].

A more serious application: control of cellular division by drugs
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This is a simplified version of population dynamics

yt,s population of age s at time t

Dtyt,s +Dsyt,s = −(ms + vt,s)yt,s

with

ms mortality
vt,s proportion of harvesting
and again the birth law

yt,0 =

∫ t

t−1

csvt,sds.
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Setting

Optimal control problems of the following type:
Min

∫ T

0

`(ut, yt)dt+ φ(y0, yT );

(i) yt = y0 +
∫ t

0
f(t, s, us, ys)ds; t ∈ (0, T );

(ii) g(yt) ≤ 0; t ∈ [0, T ],
(iii) Φ(y0, yT ) ∈ K,

(1)

` : Rm × Rn → R, φ : Rn × Rn → R, f : R2 × Rm × Rn → Rn,
g : Rn → Rng, ng ≥ 1, c : Rm × Rn → Rnc, Φ : Rn × Rn → RnΦ,
K closed and non empty convex subset of RnΦ.

5



Well-posedness of state equation

All data f , g, c, `, φ, Φ of class C∞, f Lipschitz.
Set, for q ∈ [1,∞]

Uq := Lq(0, T,Rm); Yq := W 1,q(0, T,Rn). (2)

Control and state space

U := U∞ Y := Y∞

For given y0 ∈ Rn and u ∈ U , the state equation (1)(i) has a unique
solution in Y := Y∞ denoted y[u, y0].
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Lagrangian of the problem (unqualified form)

State derivative: here Dτf partial derivative w.r.t. the second variable:

ẏt = f(t, t, ut, yt) +

∫ t

0

Dτf(t, s, us, ys)ds

Lagrangian function:

L = α

(∫ T

0

`(ut, yt)dt+ φ(y0, yT )

)
+

∫ T

0

pt

(
f(t, t, ut, yt) +

∫ t

0

Dτf(t, s, us, ys)ds− ẏt
)

dt

+

∫ T

0

g(yt)dµt + ΨΦ(y0, yT )
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End-point Lagrangian function:

Φ[α,Ψ](y0, yT ) := αφ(y0, yT ) + ΨΦ(y0, yT ).

Hamiltonian function (warning: the argument p is a function)

H[α, p](t, u, y) := α`(u, y) + ptf(t, t, u, y) +

∫ T

t

psDτf(s, t, u, y)ds.

Lagrangian function again:

L =

∫ T

0

(H[α, p](t, ut, yt)− ẏt) dt+

∫ T

0

g(yt)dµt + Φ[α,Ψ](y0, yT )
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Costate equation

From the above equations, it must be “as usual”

−dpt = DyH[α, p](t, ut, yt)dt+ dµtg
′(yt), t ∈ (0, T ),

plus usual end-point conditions, which means in fact

−dp̄t = ᾱDy`(ūt, ȳt)dt+ p̄tDyf(t, t, ūt, ȳt)dt+

ng∑
i=1

g′i(ȳt)dη̄i,t

+

∫ T

t

p̄sD
2
τ,yf(s, t, ūt, ȳt)ds,

(−p̄0−, p̄T+) = Φ′[ᾱ, Ψ̄](ȳ0, ȳT ).
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Pontryagin multipliers

Let (ū, ȳ) ∈ F (P ). We say that (ᾱ, η̄, Ψ̄, p̄) in R+×M×RnΦ∗×P, is a
Pontryagin multiplier associated with (ū, ȳ) ∈ F (P ) if the costate equation
is satisfied, as well as:

ᾱ+ ‖η̄‖+ |Ψ̄| > 0, nontriviality (3)

dη̄ ≥ 0;

ng∑
i=1

∫ T

0

gi(yt)dη̄i,t = 0, complementarity, (4)

Ψ̄ ∈ NK(Φ(ȳ0, ȳT )), transversality condition (5)

and Hamiltonian inequality

H[ᾱ, p̄](t, ūt, ȳt) ≤ H[ᾱ, p̄](t, u, ȳt), for all u ∈ Rm, a.a. t ∈ (0, T ). (6)
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Pontryagin principle

We say that (ū, ȳ) ∈ F (P ) is a Pontryagin extremal, or that it satisfies
Pontryagin’s principle, if the set of associated Pontryagin multipliers is not
empty.

We say that (ū, ȳ) ∈ F (P ), is a local solution of (P ) in the L1 norm if
the following holds:{ ∫ T

0
`(ūt, ȳt)dt+ φ(ȳ0, ȳT ) ≤

∫ T
0
`(ut, yt)dt+ φ(y0, yT ),

for all (u, y) ∈ F (P ) such that ‖u− ū‖1 + |y0 − ȳ0| is small enough.

Theorem 1. (PMP) Any local solution of problem (P ), in the L1 norm,
is a Pontryagin extremal.
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Proof of the PMP

Based on

• Needle variations and “Pontryagin linearization”

zt = y0− ȳ0+

∫ t

0

[Dyf(t, s, ūs, ȳs)zs + f(t, s, us, ȳs)− f(t, s, ūs, ȳs)] ds,

that satisfies

‖ȳ + z − y‖∞ ≤ C1

(
‖u− ū‖21 + |y0 − ȳ0|2

)
.

• Ekeland’s principle of a penalized problem.
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Total derivative of a function of the state

Remember that

ẏt = f(t, t, ut, yt) +

∫ t

0

Dτf(t, s, us, ys)ds.

Total derivative of G(t, yt), along the trajectory (y, u):

G(1)(t, ũ, ỹ, u, y) := DtG(t, ỹ) +DỹG(t, ỹ)f(t, t, ũ, ỹ)

+DỹG(t, ỹ)

∫ t

0

Dτf(t, s, us, ys)ds.
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First order state constraint

The total derivative of the ith state constraint is g
(1)
i (t, ut, yt, u, y),

where

g
(1)
i (t, ũ, ỹ, u, y) = g′i(ỹ)f(t, t, ũ, ỹ) + g′i(ỹ)

∫ t

0

Dτf(t, s, us, ys)ds.

We say that the ith state constraint is of first order if the dependence
w.r.t. ũ of the above expression is non trivial, i.e., if

g′i(ỹ)Duf(t, t, ũ, ỹ) 6= 0, for some (t, ũ, ỹ) ∈ R× Rm × Rn.
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High order state constraint

If the state constraint is not of first order we can compute the second
total derivative of the state constraint:

g
(2)
i (t, ut, yt, u, y) = Dtg

(1)
i (t, yt, u, y) +Dỹg

(1)
i (t, yt, u, y)ẏt.

and we have

Dũg
(2)
i (t, ut, yt, u, y) = Dỹg

(1)
i (t, yt, u, y)Duf(t, t, ut, yt).

and so on for higher orders ...
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Continuity of the control

Let (ū, ȳ) be a Pontryagin extremal. We say that ū has side limits
on [0, T ] if it has left limits on (0, T ] and right limits on [0, T ). When
t ∈ (0, T ) is such that ūt has left and right limits at time t, denoted by
ūt±, with jump [ūt] := ūt+ − ūt−, define

ūσt := ūt− + σ[ūt], σ ∈ [0, 1],

so that ū0
t = ūt− and ū1

t = ūt+; we use the same convention for other
functions. Set, for σ ∈ [0, 1]:

Hσ[ᾱ, p̄](t, u, y) := ᾱ`(u, y) + p̄σt f(t, t, u, y) +

∫ T

t

p̄sDτf(s, t, u, y)ds.
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Hamiltonian coercivity hypothesis{
For some αH > 0, αH|[ūt]|2 ≤ D2

uuH
σ[ᾱ, p̄](t, ūσt , ȳt)([ūt], [ūt]),

for all σ ∈ [0, 1], t ∈ [0, T ].
(7)

I1 (resp. I1(t)): the set of (resp. of active at time t) first order state
constraints,
Positive linear independence w.r.t. control of first-order active state
constraints∑
i∈I1(t)

βiDũg
(1)
i (t, ūt, ȳt, ū, ȳ) = 0 and β ≥ 0 implies β = 0, for all t ∈ [0, T ].

(8)

H[ᾱ, p](t±, u, y) := ᾱ`(u, y) + pt±f(t, t, u, y) +

∫ T

t

psDτf(s, t, u, y)ds.
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Theorem 2 (Continuity of the control). Let (ū, ȳ) be a Pontryagin extremal
for (P ) with associated Pontryagin multiplier (ᾱ, η̄, Ψ̄, p̄).
(i) Assume that, for some R > ‖ū‖∞, H[ᾱ, p̄](t±, ·, ȳt) has, for all
t ∈ (0, T ), a unique minimum w.r.t. the control over B(0, R), denoted
ût±. Then (a representative of) ū has side limits on [0, T ], equal to ût±.
(ii) Assume that ū has side limits on [0, T ] and that (7) holds. Then ū
is continuous.
(iii) Assume that the control is continuous and that (8) holds. Then the
multipliers ηi associated with components gi of the state constraint of
first order (qi = 1) are continuous on [0, T ].
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First-order alternative system

Similarly to Hager [79] define the alternative multiplier and costate:

η1
t := −η̄t; p1

t := p̄t − η1
t g
′(ȳt), t ∈ [0, T ].

Alternative Hamiltonian:

H1[α, p1, η1](t, ũ, ỹ, u, y) := H[α, p1](t, ũ, ỹ) + η1g(1)(t, ũ, ỹ, u, y)+∫ T

t

η1
sg
′(ȳs)Dτf(s, t, ũ, ỹ)ds.

Then
−ṗ1

t = DỹH
1[ᾱ, p1, η1](t, ūt, ȳt, ū, ȳ), t ∈ (0, T ).
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Dependence w.r.t. the control:

H1[α, p1, η1](t, ũ, ȳt, ū, ȳ) = H[α, p̄](t, ũ, ȳt)+η
1
t g
′(ȳt)

∫ t

0

Dτf(t, s, ūs, ȳs)ds.

It follows that stationarity or minimality of H w.r.t. u holds iff H1 has the
same property w.r.t. ũ.

“A trajectory is a Pontryagin extremal iff it is a Pontryagin extremal for
the alternative system“
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Lipschitz regularity results

• Feasibility of realization of the control taking into account technological
constraints

• Estimates of variation of solution for perturbed problems (Dontchev and
Hager 1993, 98)

• Numerical analysis and error estimates: open problem
First order state constraints: see Dontchev and Hager, 2001
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Literature on Lipschitz regularity

• Hager (1979)

• Shvartsman and Vinter: first order state constraints (2006)

• Do Rosario de Pinho and Shvartsman: first order state constraints (to
appear)

• Hermant: second order state constraints (2009)
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Hager’s lemma (1979): preparation

Let X be a Banach space, and x be a continuous function [0, T ]→ X.
Let I : [0, T ]→ {1, . . . , n} be upper continuous, i.e.,

If tn → t ∈ [0, T ], and i ∈ I(tn), then i ∈ I(t).

In our application I(t) is the set of active constraints.
We say that the pair (a, b) in [0, T ]2 is compatible if

a < b; I(a) = I(b); I(t) ⊂ I(a), for all t ∈ (a, b),

We say that L > 0 is a Lipschitz constant for x over E ⊂ [0, T ]2 if

‖x(a)− x(b)‖ ≤ L|b− a| whenever (a, b) ∈ E.
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Hager’s lemma (1979): statement

Lemma 1. Assume that x ∈ C([0, T ], X) and that I is upper continuous.
Let L > 0 be a Lipschitz constant for x over the set of compatible pairs.
Then L is a Lipschitz constant for x i.e., we have that

‖x(a)− x(b)‖ ≤ L|b− a|, for all (a, b) ∈ [0, T ]2.
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Lipschitz continuity of the control: hypotheses

Hypthesis of continuous control
All state constraints of first order: I(t) = I1(t).
Constraint qualification:∑
i∈I(t)

βiDũg
(1)
i (t, ūt, ȳt, ū, ȳ) = 0 implies β = 0, for all t ∈ [0, T ]. (9)

Strong Legendre-Clebsch condition, reduced to a subspace:

For some αH > 0 : αH|υ|2 ≤ D2
uuH[ᾱ, p̄](t, ūt, ȳt)(υ, υ),

whenever Dũg
(1)
i (t, ūt, ȳt, ū, ȳ)υ = 0, pour tout i ∈ I(t), t ∈ [0, T ].

(10)
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Lipschitz continuity of the control: hypotheses II
Definition 1. Let (ū, ȳ) ∈ F (P ). We say that (ᾱ, η̄, Ψ̄, p̄) in R+ ×M×
RnΦ∗ × P, is a first order multiplier if the PMP conditions holds except
for the Hamiltonian minimality replaced by the Hamiltonian stationarity
condition

DuH[ᾱ, p̄](t, ūt, ȳt) = 0, for a.a. t ∈ (0, T ). (11)

We say that (ū, ȳ) ∈ F (P ) is a first-order extremal if the set of associated
first order multipliers is not empty.

The theory of alternative optimality system has a straighforward
extension to first order extremals, replacing the Hamiltonian minimality
condition by

DuH
1[ᾱ, p1, η1](t, ūt, ȳt, ū, ȳ) = 0, for a.a. t ∈ (0, T ). (12)
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Lipschitz continuity of the control: main result
Theorem 3. Let (ū, ȳ, p̄, η̄) be a first-order extremal and associated
multipliers, with ū continuous. If hypotheses (9) and (10) hold, then
ū and η̄ are Lipschitz functions of time.

Proof. Define η̃ ∈M

η̃i,t = 0 if i ∈ I(t), and η̃i,t = η1
i,t otherwise. (13)

Consider the function, where η] ∈ Rng∗:

F [t, ū, ȳ, α, p1, η1, η]](u) := H[α, p1](t, u, ȳt) + η]g(1)(t, u, ȳt, ū, ȳ)

+

∫ T

t

η1
sg
′(ȳs)Dτf(s, t, u, ȳt)ds,

(14)
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whose expression is similar to the one of the alternative Hamiltonian, but
with η] instead of η1

t in the second term of the sum in the r.h.s. Consider,
fot t ∈ (0, T ), the nonlinear programming problem

Min
u∈Rm

F [t, ū, ȳ, α, p1, η1, η̃t](u) subject to g
(1)
i (t, u, ȳt, ū, ȳ) = 0, i ∈ I(t).

(15)
We claim that ūt is a local solution of this problem. Indeed, let i ∈ I(t),
for some t ∈ [0, T ]. Then gi(ȳt) reaches a local maximum, and hence its

total derivative g
(1)
i (t, u, ȳt, ū, ȳ) is equal to zero. Therefore, ūt is a feasible

point of problem (15).

In view of the qualification hypothesis (9), there exists at most one
Lagrange multiplier associated with ūt, and this multiplier is characterized
by the condition of stationarity of the Lagrangian of the problem w.r.t. the
control. We may consider the Lagrange multiplier denoted η[ as an element
of Rng∗ whose all components in Ī(t) are set to zero. With that convention,
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the first-order optimality conditions of problem (15) may be expressed as

DuF [t, ū, ȳ, α, p1, η1, η̃t + η[](u) = 0; g
(1)
i (t, u, ȳt, ū, ȳ) = 0, i ∈ I(t).

(16)
In view of the Hamiltonian stationarity condition (12), we see that the
multiplier is nothing but η̂t, defined by (compare to (13)):

η̂i,t = ηi,t if i ∈ I(t), and η̂i,t = 0 otherwise. (17)

In view of (??), we see that

F [t, ū, ȳ, α, p1, η1, η̃t+η̂t](u) = F [t, ū, ȳ, α, p1, η1, η1
t ](u) = H[ᾱ, p̄](t, ūt, ȳt).

(18)
Therefore hypothesis (10) can be interpreted as the condition of positive
curvature of the Lagrangian of problem (15) over the set of critical directions
(which are identical to the set of tangent directions since there are only
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equality constraints). This is a well-known sufficient condition for local
optimality for nonlinear programming problems, see e.g. “BGLS”. It follows
that ūt is a local solution of (15), as was claimed.

In addition, by the previous discussion, the Jacobian of optimality
conditions (16) w.r.t. unknowns (u, η̂) is(

D2
uuH[ᾱ, p̄](t, ūt, ȳt) Dũg

(1)
I(t)(t, ūt, ȳt, ū, ȳ)>

Dũg
(1)
I(t)(t, ūt, ȳt, ū, ȳ) 0

)
, (19)

and is, in view of hypotheses (9)-(10), invertible at the point (ūt, η̂t).

Let 0 < T1 < T2 < T , and (a, b) be a compatible pair, in the sense of
section ??, for the set I(t). For t ∈ [0, T ], denote the set of non active
first-order constraints by Ī(t) := {1, . . . , ng} \ I(t). Then Ī(a) = Ī(b).
The data of problem (15) satisfy a Lipschitz condition, with a constant not
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depending on the particular (a, b), since either they are indeed Lipschitz
functions of time, or, in the case of η̃, it has the same value at time a
and b. By the implicit function theorem, applied to (16), and standard
compactness arguments, there exists ε > 0 and c > 0 such that, if b < a+ε,
then

|ūb−ūa|+|η1
b−η1

a| ≤ c(b−a), for all compatible pairs (a, b) such that b < a+ ε.

By lemma 1, (ū, η1) is Lipschitz over (a, b) whenever b < a+ ε. It follows
that (ū, η1) is Lipschitz over [T1, T2]. But since the Lipschitz constant
(which is the one for compatible pairs) may be taken uniform over (0, T ),
and since ū is continuous, the conclusion follows.
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Extensions ?

• High order state constraints: Lipschitz regularity of the control

• Second order necessary and sufficient conditions

• Sensitivity analysis, directional derivatives of solutions

• Numerical analysis
In the ODE framework, for control constrained problems:
consequence of theory of partitioned Runge-Kutta methods.
See Hager (2000), Bonnans and Laurent-Varin (2006).
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FIN de l’exposé !
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