∽ Baccalauréat S Métropole 23 juin 2009 ∾

EXERCICE 1 Commun à tous les candidats

4 points

Les deux questions de cet exercice sont indépendantes.

1. On considère la suite (u_n) définie par :

$$u_0 = 1$$
 et, pour tout nombre entier naturel n , $u_{n+1} = \frac{1}{3}u_n + 4$

On pose, pour tout nombre entier naturel n, $v_n = u_n - 6$.

- **a.** Pour tout nombre entier naturel n, calculer ν_{n+1} en fonction de ν_n . Quelle est la nature de la suite (ν_n) ?
- **b.** Démontrer que pour tout nombre entier naturel $n, u_n = -5\left(\frac{1}{3}\right)^n + 6$.
- c. Étudier la convergence de la suite (u_n) .
- **2.** On considère la suite (w_n) dont les termes vérifient, pour tout nombre entier $n \ge 1$:

$$nw_n = (n+1)w_{n-1} + 1$$
 et $w_0 = 1$.

Le tableau suivant donne les dix premiers termes de cette suite.

w_0	w_1	w_2	w ₃	w ₄	w_5	w_6	w ₇	w ₈	w ₉
1	3	5	7	9	11	13	15	17	19

- a. Détailler le calcul permettant d'obtenir w_{10} .
- b. Dans cette question toute trace de recherche, même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.
 Donner la nature de la suite (w_n). Calculer w₂₀₀₉.

EXERCICE 2

6 points

Commun à tous les candidats

Soit f la fonction définie sur l'intervalle [0; $+\infty$ [par

$$f(x) = \ln\left(1 + xe^{-x}\right).$$

On note f' la fonction dérivée de la fonction f sur l'intervalle $[0; +\infty[$. On note $\mathscr C$ la courbe représentative de la fonction f dans un repère orthogonal. La courbe $\mathscr C$ est représentée en annexe 1 (à rendre avec la copie).

PARTIE I

- 1. Justifier que $\lim_{x \to +\infty} f(x) = 0$.
- 2. Justifier que pour tout nombre réel positif x, le signe de f'(x) est celui de 1-x.
- 3. Étudier les variations de la fonction f sur l'intervalle $[0; +\infty[$.

PARTIE II

Soit λ un nombre réel strictement positif. On pose $\mathcal{A}(\lambda) = \int_0^{\lambda} f(x) dx$. On se propose de maiorer $\mathcal{A}(\lambda)$ à l'aide de deux méthodes différentes.

1. Première méthode

- a. Représenter, sur l'annexe jointe (à rendre avec la copie), la partie du plan dont l'aire en unité d'aire, est égale à A(λ).
- **b.** Justifier que pour tout nombre réel λ strictement positif, $\mathcal{A}(\lambda) \leq \lambda \times f(1)$.

2. Deuxième méthode

- a. Calculer à l'aide d'une intégration par parties $\int_0^\lambda x e^{-x} dx$ en fonction de λ .
- **b.** On admet que pour tout nombre réel positif u, $\ln(1+u) \leqslant u$. Démontrer alors que, pour tout nombre réel λ strictement positif, $\mathscr{A}(\lambda) \leqslant -\lambda e^{-\lambda} e^{-\lambda} + 1$.

3. Application numérique

Avec chacune des deux méthodes, trouver un majorant de $\mathscr{A}(5)$, arrondi au centième. Quelle méthode donne le meilleur majorant dans le cas où $\lambda = 5$?

5 points

EXERCICE 3 Commun à tous les candidats

I. Cette question est une restitution organisée de connaissances. On rappelle que si n et p sont deux nombres entiers naturels tels que $p\leqslant n$ alors $\binom{n}{p}=\frac{n!}{p!(n-p)!}$.

Démontrer que pour tout nombre entier naturel n et pour tout nombre entier naturel p tels que $1 \le p \le n$ on a : $\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$.

- II. Un sac contient 10 jetons indiscernables au toucher:
- 7 jetons blancs numérotés de 1 à 7 et 3 jetons noirs numérotés de 1 à 3. On tire simultanément deux jetons de ce sac.
- a. On note A l'évènement « obtenir deux jetons blancs ».
 Démontrer que la probabilité de l'évènement A est égale à 7/15
 - b. On note B l'évènement « obtenir deux jetons portant des numéros impairs ».
 - Calculer la probabilité de B.
 - c. Les évènements A et B sont-ils indépendants?
- Soit X la variable aléatoire prenant pour valeur le nombre de' jetons blancs obtenus lors de ce tirage simultané.
 - a. Déterminer la loi de probabilité de X.
 - b. Calculer l'espérance mathématique de X.

EXERCICE 4 5 points Candidats n'ayant pas suivi l'enseignement de spécialité

Dans le plan complexe muni d'un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$, on associe à tout point M d'affixe z non nulle, le point M' milieu du segment $[MM_1]$ où M_1 est le point d'affixe $\frac{1}{z}$.

Le point M' est appelé l'image du point M.

- 1. a. Montrer que les distances OM et OM_1 vérifient la relation $OM \times OM_1 = 1$ et que les angles $(\overrightarrow{u}; \overrightarrow{OM_1})$ et $(\overrightarrow{u}; \overrightarrow{OM})$ vérifient l'égalité des mesures suivantes $(\overrightarrow{u}; \overrightarrow{OM_1}) = -(\overrightarrow{u}; \overrightarrow{OM})$ à 2π près.
 - b. Sur la figure donnée en annexe 2 (à rendre avec la copie) le point A appartient au cercle de centre O et de rayon 2.
 Construire le point A' image du point A. (On laissera apparents les traits de construction).
- 2. a. Justifier que pour tout nombre complexe z non nul, le point M' a pour affixe $z' = \frac{1}{2} \left(z + \frac{1}{z} \right)$.
 - b. Soient B et C les points d'affixes respectives 2i et -2i. Calculer les affixes des points B' et C' images respectives des points B et C.
 - c. Placer les points B, C, B' et C' sur la figure donnée en annexe 2 (à rendre avec la copie).
- 3. Déterminer l'ensemble des points M tels que M' = M.
- 4. Dans cette question, toute trace de recherche même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.
 Montrer que si le point M appartient au cercle de centre O et de rayon 1 alors son image M' appartient au segment [KL] où K et L sont les points d'affixes respectives –1 et 1.

EXERCICE 4 5 points Candidats ayant sulvi l'enseignement de spécialité

Les trois questions de cet exercice sont indépendantes.

- 1. a. Déterminer l'ensemble des couples (x,y) de nombres entiers relatifs, solution de l'équation (E): 8x-5y=3.
 - b. Soit m un nombre entier relatif tel qu'il existe un couple (p, q) de nombres entiers vérifiant m = 8p + 1 et m = 5q + 4.
 Montrer que le couple (p, q) est solution de l'équation (E) et en déduire que m ≡ 9 (modulo 40).
 - c. Déterminer le plus petit de ces nombres entiers m supérieurs à 2 000.
- 2. a. Démontrer que pour tout nombre entier naturel k on a : $2^{3k} = 1 \pmod{7}$.
 - b. Quel est le reste dans la division euclidienne de 2²⁰⁰⁹ par 7?
- Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Soient a et b deux nombres entiers naturels inférieurs ou égaux à 9 avec $a \neq 0$. On considère le nombre $N = a \times 10^8 + b$. On rappelle qu'en base 10 ce nombre s'écrit sous la forme $N = \overline{a00b}$.

On se propose de déterminer parmi ces nombres entiers naturels N ceux qui sont divisibles par 7.

- a. Vérifier que 103 = -1(modulo 7).
- b. En déduire tous les nombres entiers N cherchés.

Baccalauréat Mathématiques Elémentaires Bordeaux 1965

Exercice

On donne le triangle *ABC*, dont le centre de gravité est *G* ; soit *M* un point de ce plan.

1. Exprimer

$$f(M) = \overrightarrow{MB}.\overrightarrow{MC} + \overrightarrow{MC}.\overrightarrow{MA} + \overrightarrow{MA}.\overrightarrow{MB}$$

au moyen des longueurs MG, BC, CA, AB.

2. Quel est l'ensemble E des points M tels que f(M) = 0? Quels points de E appartiennent au cercle de diamètre BC?

Problème

Soit un repère orthonormé x'Ox, y'Oy; p et q étant deux nombres complexes, on désigne par M le point de coordonnées (p, q) et on considère l'équation en z

$$z^2 - 2pz + q = 0, (1)$$

dont les racines peuvent être réelles ou complexes.

Ainsi, à tout point M est associée l'équation (1), et réciproquement.

- 1. Déterminer et représenter sur une même figure les ensembles A, B, C des points M tels que (1) possède :
- a) des racines complexes;
- b) des racines réelles et distinctes :
- c) une racine double.

Calculer les racines dans chacun des trois cas.

- 2. Former l'équation de la tangente à *C* en son point d'abscisse *c*; montrer que si, M(p, q) appartient à *B*, l'équation (1) donne les abscisses des points de *C* àù la tangente passe en *M*.
- Dans les deux question suivantes, k désigne un nombre réel positif donné, pour répondre à ses questions, on pourra examiner successivement le cas où M appartient à A où à B.
- 3. Déterminer l'ensemble E_k des points M tels que le module de la différence entre les racines de l'équation (1) associée à M soit inférieur à 2k.
- Représenter sur une figure les ensembles A, B, C, E_k et hachurer ce dernier.
- Déterminer l'ensemble F_k des points M tels que les modules des racines de l'équation (1) associée à M soient, tous deux, inférieur à k.
- Représenter sur une figure les ensembles A, B, C, F_k et hachurer ce dernier.
- 5. On donne un nombre k positif; quel est le plus grand nombre, k', tel que l'ensemble $F_{k'}$ soit inclus dans l'ensemble E_k ?
- Est-il possible de répondre en tout ou en partie à cette question sans utiliser les résultats des deux questions précédentes?
- 6. On suppose que M appartient à B et l'on désigne par Γ_M le cercle qui a son centre sur la droite x'Ox et qui coupe cette droite aux points dont racines sont les abscisses de l'équation (1) associée à M.
- Écrire une équation du cercle Γ_M .

Montrer qu'un sous-ensemble de cercles Γ_M est un faisceau linéaire si, et seulement si, les points M correspondants appartiennent à une même droite, Δ non parallèle à Oy, qu'on déterminera par une équation de la forme y=mx+h. Montrer que la nature du faisceau est liée au nombre des points communs à Δ et à C; peut-on caractériser géométriquement, lorsqu'ils existent, les points de Poncelet du faisceau ?

Baccalauréat Mathématiques Elémentaires Paris 1967

Exercice 1:

La variable x décrivant l'intervalle $[0; \pi]$, étudier la variation de la fonction f définie par

$$f(x) = \cos x + \frac{1}{2}\cos 2x,$$

et construire son graphique dans un repère orthonormé (unité : 2 cm).

Déterminer, à l'aide d'une table, l'abscisse, en radians, du point où ce graphique coupe l'axe x'Ox.

Exercice 2:

Dans un plan rapporté à un repère orthonormé x'Ox, y'Oy, la position d'un point mobile M, à l'instant de date t, est défini par les relations

$$x = 1 - 3t^2$$
 et $y = 3t - t^3$.

On appelle P le point où la tangente en M à la trajectoire de M rencontre la droite (D) perpendiculaire à x'Ox au point M_0 de coordonnées (+1; 0).

Trouver, à l'instant de date t, les composantes du vecteur vitesse du point M et celles du vecteur vitesse du point P. Comparer les longueurs de ces deux vecteurs.

Problème:

Le plan est rapporté à un repère $(0; \vec{t}, \vec{j})$. La notation M(x; y) désigne le point M d'abscisse x et d'ordonnée y. On utilisera le point E(1; 0) et E'(-1; 0).

- 1. Étant donné un point M(x;y) du plan, on appelle M_1 son transformé dans la symétrie orthogonale par rapport à la droite des ordonnées. Former la relation entre x et y qui équivaut à la nullité du produit scalaire $M\tilde{E}.M_1\tilde{E}$. Démontrer que l'ensemble des points M qui satisfont à cette condition est l'hyperbole équilatère $\mathscr H$ de sommets E et E'.
- 2. Étant donné deux points M(x; y) et M'(x'; y') de \mathcal{H} , distincts ou non, on définit le point S(X; Y) par :

$$\begin{cases} X = xx' + yy' \\ Y = xy' + x'y. \end{cases}$$

On dit que S est le « produit » de M par M' et l'on note : $S = M \star M'$.

On établira alors les propriétés suivantes :

- a) S appartient à \mathcal{H} ;
- b) on a $M \star M' = M' \star M$;
- c) étant donné un troisième point quelconque M''(x''; y'') de \mathcal{H} , on a :

$$(M \star M') \star M'' = M \star (M' \star M'')$$

On calculera ensuite $M\star E$ et l'on montrera que pour tout point M(x;y) de $\mathscr H$, il existe un point $\overline M$ de $\mathscr H$, que l'on précisera, tel que $M\star \overline M$ =E. (En résumé, le « produit » noté \star muni $\mathscr H$ d'une structure de groupe commutatif.)

3. Étant donné deux points distincts de ℋ, ℳ et ℳ', on pose S = M ★ M'. Vérifier que S est le point de ℋ tel que les cordes ES et MM' sont parallèles.

Que devient ce résultat quand M tend vers M'?

Trouver la propriété de la corde [M, M'] qui équivaut à S = E'.

Donner une propriété équivalente faisant intervenir le produit scalaire $\overline{ME}.M'E$.

4. a) Soit [A, B] et [C, D] deux cordes orthogonales de \mathcal{H} . On pose $A \star B = P$ et $C \star D = Q$. Que peut-on dire des vecteurs \overrightarrow{PE} et \overrightarrow{QE} ?

En déduire que le « produit » $A \star B \star C \star D$ est égal à E'.

Déduire alors du 2 que les cordes [A, C] et [B, D] sont orthogonales, ainsi que les cordes [A, D] et [B, C].

b) Soit [A, B] et [A, C] deux cordes orthogonales de \mathcal{H} . Calculer le « produit » $A \star A \star B \star C$.

Que peut-on dire de la tangente en A à \mathcal{H} ?

Démontrer que le cercle de diamètre [B, C] recoupe \mathcal{H} au point A' symétrique de A par rapport à O.

c) On fixe A de \mathcal{H} . On considère les cordes [A, B] et [A, C], qui varient en restant orthogonales. Que dire de la droite (BC)?