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Abstract

We call a function J : X → R ∪ {+∞} “adequate” whenever its tilted version
by a continuous linear form x 7→ J(x)− 〈x∗, x〉 has a unique (global) minimizer
on X, for appropriate x∗ ∈ X∗. In this note we show that this induces the
essentially strict convexity of J . The proof passes through the differentiability
property of the Legendre-Fenchel conjugate J∗ of J , and the relationship be-
tween the essentially strict convexity of J and the Gâteaux-differentiability of
J∗. It also involves a recent result from the area of the (closed convex) relaxation
of variational problems. As a by-product of the main result derived, we express
the subdifferential of the (generalized) Asplund function associated with a cou-
ple of functions (f, h) with f ∈ Γ(X) cofinite and h : X → R ∪ {+∞} weakly
lower-semicontinuous. We do this in terms of (generalized) proximal set-valued
mappings defined via (g, h). The theory is applied to Bregman-Tchebychev sets
and functions for which some new results are established.

Keywords: Reflexive Banach space, weakly lower-semicontinuous function,
essentially smooth function, essentially strictly convex function, closed convex
relaxation, Asplund function, proximal set-valued mapping.

1. Introduction to the context of the work

Let us consider an extended real-valued (not necessarily convex) function
J : X → R ∪ {+∞}, not identically equal to +∞ (such a function is called
proper), defined on a reflexive Banach space (X, ‖.‖). We denote by (X∗, ‖.‖∗)
the topological dual space of X endowed with the dual norm ‖.‖∗ of ‖.‖, and by
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Γ(X) (resp. Γ(X∗)) the set of convex lower-semicontinuous proper functions on
X (resp. X∗). All the notations we are going to use are usual in the context of
Functional convex analysis, Set-valued and variational analysis. For example, by
∂J : X ⇒ X∗ we mean the subdifferential (set-valued) mapping of J . Actually,
that is the inverse set-valued mapping of ∂J which will be of interest to us,
namely

MJ := (∂J)−1 : X∗ ⇒ X

x∗ 7→MJ(x∗) = {x ∈ X|x∗ ∈ ∂J(x)}.
(1)

To be a bit more explicit, given a continuous linear form x∗ on X, MJ(x∗)
is the set of (global) minimizers of the function x ∈ X 7→ J(x) − 〈x∗, x〉, the
tilted version of J . As a general rule, we have

MJ(x∗) ⊂ ∂J∗(x∗), hence coMJ(x∗) ⊂ ∂J∗(x∗) (2)

for all x∗ ∈ X∗, where J∗ stands for the Legendre-Fenchel conjugate of J . Since
the underlying space X has been assumed to be reflexive, we know (see [As,
Theorem 2] for example) that J∗ is Gâteaux-differentiable on a dense Gδ-subset
of int(dom J∗). Furthermore, the inclusion (2) is made meaningful when J is
weakly lower-semicontinuous on X, as shown in the next statement.

Proposition 1. Suppose J is weakly lower-semicontinuous on a reflexive Ba-
nach space X. Then MJ(x∗) is nonempty for all x∗ ∈ int(dom J∗). In other
words,

∅ 6= coMJ(x∗) ⊂ ∂J∗(x∗) for all x∗ ∈ int(dom J∗). (3)

Proof. The only point we have to prove is that MJ(x∗) is nonempty whenever
x∗ is taken in int(dom J∗).

Due to the fact that x∗ has been chosen in the interior of dom J∗, the
function J∗ is finite and continuous at x∗. Therefore, there is a neighborhood
of x∗ on which J∗ is bounded from above. Said otherwise, there is α > 0 and
r ∈ R such that

J∗ ≤ iB∗(x∗,α) + r. (4)

Here, iB∗(x∗,α) denotes the indicator function of the closed ball (for the norm
‖.‖∗) centered at x∗ and of radius α > 0.

By taking the Legendre-Fenchel conjugates in both sides of (4), we get at
the following inequality:

J ≥ J∗∗ ≥ 〈x∗, .〉+ α‖.‖ − r.

It then follows that the tilted function J − 〈x∗, .〉 is 0-coercive on X (i.e., it
goes to +∞ when ‖x‖ → +∞). As a result, J − 〈x∗, .〉 is bounded from below
and achieves its lower bound. We just have proved that MJ(x∗) is nonempty.�

¿From what was said about the Gâteaux-differentiability of J∗ and the
Proposition just above, we immediately derive:

Proposition 2. Let J (and X) be as in Proposition 1. Then the set-valued
mapping MJ is single-valued (MJ(x∗) = {mJ(x∗)}) on a Gδ-dense subset of
int(dom J∗).
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2. “Adequate” vs essentially strictly convex functions

In order to reinforce the property of MJ laid out in Proposition 2, we intro-
duce hereafter a definition.

Definition. A proper extended real-valued function J : X → R ∪ {+∞} is
said to be “adequate” if{

dom MJ = dom (∂J∗) is a nonempty open set ;

MJ is single-valued on its domain.

Remembering the explanation of MJ(x∗) in Section 1, the definition above
expresses that the tilted version of J , namely J − 〈x∗, .〉, has a unique (global)
minimizer on X. Such a definition of “adequate” functions is related, although
we do not assume a priori any convexity property of J , with the following
concepts, introduced in [BBC], that extend to the infinite dimensional setting
those similar given in [Ro, Section 26]. Let us recall these specific definitions:

• A function Φ ∈ Γ(X∗) is said to be essentially smooth if the subdifferential
set-valued mapping ∂Φ is both single-valued and locally bounded on its
domain.

• A function J ∈ Γ(X) is said to be essentially strictly convex if J is strictly
convex on every convex subset of dom(∂J) and MJ = (∂J)−1 is locally
bounded on its domain.

In the definitions above, a locally bounded set-valued mapping x 7→ Γ(x)
means that some neighborhood V of x has a bounded image Γ(V ).

¿From [BBC, Theorem 5.4], we know that J ∈ Γ(X) is essentially strictly
convex if and only if J∗ is essentially smooth. A function J ∈ Γ(X) which is both
essentially strictly convex and essentially smooth is called a Legendre function.
Let us now provide a standard example of what an “adequate” function is.

Proposition 3. A weakly lower-semicontinuous function J : X → R ∪ {+∞}
for which J∗ is essentially smooth is necessarily “adequate”.

Proof. By Proposition 1 we have int(domJ∗) ⊂ domMJ . Since J∗ is essen-
tially smooth, one has int(domJ∗) = dom∂J∗, so dom∂J∗ ⊂ domMJ . Con-
versely, it comes from (2) that domMJ ⊂ dom∂J∗, and finally domMJ =
dom∂J∗ = int(domJ∗). Since ∂J∗ is single-valued on its domain, Proposition 1
says that MJ is single-valued on int(domJ∗) and J is therefore “adequate”.�

In particular, any weakly lower-semicontinuous function J : X → R ∪ {+∞}
whose conjugate J∗ is Gâteaux-differentiable on X∗ is “adequate”.

In the sequel we will need Theorem A below that completes an earlier result
by Soloviov [So, Theorem 1.2.1] (see also [Za, Theorem 9.3.2]). Its proof easily
follows from [BBC, Theorems 5.4 and 5.6] and the above considerations.
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Theorem A. A weakly lower-semicontinuous function J : X → R ∪ {+∞} on
a reflexive Banach space X is essentially strictly convex if and only if J∗ is
essentially smooth.

Our main result (the forthcoming Theorem 1) also relies on the next theorem
whose main applications are in the relaxation of variational problems. It just
says that the inclusion (3) in Proposition 1 is in fact an equality.

Theorem B. Let J : X → R ∪ {+∞} be a weakly lower-semicontinuous func-
tion on a reflexive Banach space. Then:

∂J∗(x∗) = coMJ(x∗) for all x∗ ∈ int(dom J∗). (5)

Proof. Since x∗ ∈ int(dom J∗) we have from [LV, Theorem 1] or [HULV,
Theorem 6] that

∂J∗(x∗) = argmin(J − 〈x∗, .〉)∗∗ =
⋂
ε>0

co(ε− argmin(J − 〈x∗, .〉)). (5’)

Assume now that x 6∈ coMJ(x∗). By the Hahn-Banach Theorem, there exist
y∗ ∈ X∗, r ∈ R, such that

i∗MJ(x∗)(y
∗) < r < 〈y∗, x〉,

and MJ(x∗) is included in the (weakly) open half-space [〈y∗, .〉 < r]. Since
x∗ ∈ int domJ∗ and J is weakly lower-semicontinuous, all the sublevel sets
{u ∈ X : J(u) − 〈x∗, u〉 ≤ s}, s ∈ R, are weakly compact. So, the set-valued
mapping ε ≥ 0 7→ ε− argmin(J − 〈x∗, .〉) is weakly upper-semicontinuous [Mo2,
Proposition 11.c], and there exists ε > 0 such that ε − argmin(J − 〈x∗, .〉) ⊂
[〈y∗, .〉 < r]. We thus have i∗ε−argmin(J−〈x∗,.〉)(y

∗) ≤ r < 〈y∗, x〉, and, by the

Hahn-Banach Theorem again, x 6∈ co(ε − argmin(J − 〈x∗, .〉)). It then follows
from (5’) that x 6∈ ∂J∗(x∗), and the proof is achieved.�

We now are in a position to state the main result of our note.

Theorem 1. A weakly lower-semicontinuous function J : X → R ∪ {+∞}
defined on a reflexive Banach space X turns out to be “adequate” if and only if
it is essentially strictly convex.

Proof. (Sufficiency) Since J is essentially strictly convex, J∗ is essentially
smooth and, by Proposition 3, J is “adequate”.

(Necessity) Let us assume that the weakly lower-semicontinuous function
J : X → R ∪ {+∞} is “adequate” ; by Theorem A, we will succeed in our aims
if we prove that J∗ is essentially smooth. By definition of what an “adequate” J
is, MJ is single-valued on its domain domMJ = dom(∂J∗), which is nonempty
and open. We thus have domMJ = int(dom J∗). As an application of Theorem
B, we then get that ∂J∗ is single-valued on dom(∂J∗) = int(dom J∗) 6= ∅. It
then follows from [BBC, Theorem 5.6] that J∗ is essentially smooth.�
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3. Generalized proximal set-valued mappings in reflexive Banach spaces

In this section we consider the case when

J = f + h

where f ∈ Γ(X) is cofinite (this means that f∗ is real-valued on X∗ : domf∗ =
X∗) and h : X → R∪ {+∞} admits a continuous affine minorant : domh∗ 6= ∅.
We also assume that J is proper : domf ∩ domh 6= ∅. Such a function J is
not necessarily convex but it is cofinite. Indeed, picking a∗ ∈ domh∗, there
exists r ∈ R such that J ≥ f + 〈a∗, .〉 − r, and so, for any x∗ ∈ X∗, one has
J∗(x∗) ≤ f∗(x∗−a∗)+r ∈ R. On the other hand, since J is proper, J∗ does not
take the value −∞. Consequently, J is cofinite. We now introduce the notation

MJ(x∗) = Proxfh(x∗), x∗ ∈ X∗, (6)

and justify this choice by considering the case when (X, ‖ ‖) is a Hilbert space

and f =
1

2
‖ ‖2. We thus have

MJ(x∗) = argmin
u∈X

(
1

2
‖x∗ − u‖2 + h(u)

)
, x∗ ∈ X∗ = X.

In other words, MJ is just the so-called Moreau proximal set-valued mapping
associated with the function h. It should be emphasized however that we do
not assume that h is convex. We also set

J∗ = (f + h)∗ = Φfh, (7)

a continuous convex function that can be viewed as an extension of the Asplund

function : indeed, taking f =
1

2
‖ ‖2, S ⊂ X,h = iS (the indicator function of S)

in a Hilbert space setting, and denoting by dS the distance function to S, we
get, for any x∗ ∈ X∗ = X,

Φfh(x∗) =
1

2

(
‖x∗‖2 − d2S(x∗)

)
= ΦS(x∗),

which is called the Asplund function associated with S ([HU]). In the same

setting (i.e. (X, ‖ ‖) Hilbert and f =
1

2
‖ ‖2) one has

Φfh =
1

2
‖ ‖ − (h�

1

2
‖ ‖2),

where � denotes the infimal convolution operation, and h�
1

2
‖ ‖2 is a Moreau

envelope of the (non-necessarily convex) function h (see for example [Wa] The-
orem 3.5 for the Euclidean case).
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Proposition 4. Let X be reflexive, f ∈ Γ(X), f cofinite, and h : X → R ∪
{+∞} a weakly lower-semicontinuous function such that domf ∩ domh 6= ∅,
domh∗ 6= ∅. Then the set-valued mapping Proxfh defined in (6) is single-valued
on a Gδ−dense subset of X∗ and the subdifferential of the continuous convex
function Φfh defined in (7) is given by

∂Φfh(x∗) = co
(

Proxfh(x∗)
)
, ∀x∗ ∈ X∗. (8)

Proof. We know that the weakly lower-semicontinuous function J = f + h is
cofinite. It then suffices to apply Proposition 2 and Theorem B.�

In the particular case where (X, ‖ ‖) is a Hilbert space, f =
1

2
‖ ‖2, and h = iS is

the indicator function of a weakly closed subset of X, what (8) says is that the

associated Asplund function ΦS =
1

2

(
‖ ‖2 − d2S

)
has a subdifferential expressed

as
∂ΦS(x∗) = co (PS(x∗)) , (9)

where PS(x∗) is the projection set-valued mapping on S (i.e., PS(x∗) is the
set of points in S at minimal distance of x∗). A formula like (9) is hopeless
for general S, especially as PS(x∗) can be empty (while the continuous convex
function ΦS has a nonempty subdifferential everywhere on X). That is the
reason why a different strategy had to be applied in order to express ∂ΦS(x∗);
this was done in [HULV, Section 3] by enlarging PS(x∗) to P εS(x∗) for ε > 0,
and then filtering on the resulting closed convex set coP εS(x∗). In a famous and
rather hold result (1961), V. Klee proved that every weakly closed Tchebychev
subset S of a Hilbert space X is necessary convex. In other words

(PS(x∗) single-valued for all x∗ ∈ X)⇒ (S convex).

To know whether this implication holds true for general closed sets S is still an
open question; see [HU] for an overview on this problem.

We now extend Klee’s theorem to the set-valued proximal process introduced
in this note :

Theorem 2. Let X be reflexive, f ∈ Γ(X), f cofinite, h : X → R ∪ {+∞}
weakly lower-semicontinuous and such that dom f ∩ domh = ∅. The following
assertions are then equivalent :

(i)


h is f − Tchebychev, meaning that

Proxfh is single-valued on X∗

(that is to say : Proxfh(x∗) = {proxfh(x∗)}, ∀x∗ ∈ X∗)
(ii) f + h is essentially strictly convex.

In such a case, Φfh is Gâteaux-differentiable on X∗ and one has

∇Φfh(x∗) = proxfh(x∗), ∀x∗ ∈ X∗. (10)
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Proof. According to the very definition of Proxfh (see (6)) and since J is cofi-
nite, one clearly has

J adequate ⇔ Proxfh single-valued on X∗.
Therefore, the equivalence between (i) and (ii) comes from Theorem 1. For-

mula (10) comes from (8).�

Theorem 2 says, among other things, that, even if the function h is not con-
vex, the generalized Asplund function Φfh is a primitive function of the mapping

proxfh on X∗, whenever h is a weakly lower-semicontinuous f−Tchebychev func-
tion.

Remark 1. Taking for (X, ‖ ‖) a Hilbert space and f =
1

2
‖ ‖2 in both Propo-

sition 4 and Theorem 2, we extend Theorem 3.5 in [Wa] from Euclidean spaces
to Hilbert spaces and answer Problem 8 posed in ([BMW] Section 8) by char-
acterizing the class of Tchebychev functions in infinite dimensional spaces.

4. Adequate functions and Bregman-Tchebychev sets

Let f ∈ Γ(X) be Gâteaux-differentiable on int(domf) 6= ∅. The so-called
Bregman “distance” associated with f (see e.g. [BBC]) is defined as

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉, (x, y) ∈ dom f × int(dom f).

Given S ⊂ X,S ∩ dom f 6= ∅, and y ∈ int(dom f), we set Df
S(y) = inf

u∈S
Df (u, y)

for the Df−distance from y to S and P fS (y) = {x ∈ S : Df (x, y) = Df
S(y)}

for the Df -projection of y on S. One says that S is Df -Tchebychev whenever
P fS is single-valued on int(dom f). Taking X and f as in Remark 1 the Df -
Tchebychev sets boil down to the usual ones. We now introduce the additional
assumption

∇f(int(dom f)) = X∗, (11)

that holds, for instance, if f is a cofinite Legendre function. It is thus easy to
check that

S is Df − Tchebychev ⇔ iS is f − Tchebychev ⇔ f + iS is adequate. (12)

Proposition 5. Let X be reflexive and f ∈ Γ(X) satisfying (11). For any
weakly closed S ⊂ X such that S ∩ dom f 6= ∅, the following assertions are
equivalent :

(i) S is Df -Tchebychev

(ii) f + iS is essentially strictly convex.

So, if S is Df -Tchebychev, then S ∩ dom f is convex. In particular, any weakly
closed Df−Tchebychev set included in dom f is convex.
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Proof. Due to (12), Theorem 1 gives the equivalence between (i) and (ii). The
other assertions are then trivial.�

Corollary 1. Assume f is a cofinite Legendre function and S is a weakly closed
set included in int(dom f). Then S is Df−Tchebychev if and only if S is convex.

Proof. Sufficiency comes from [BBC, Corollary 7.9]. Necessity is due to the
second part of Proposition 5.�

Remark 2. Since there are Legendre functions that are cofinite but not 1-
coercive ([BBC, Example 7.5]), Corollary 1 above improves a bit [LSY, Theorem
4.1].

5. The finite dimensional case

In this context, Theorem B reads as follows :
Theorem B’. Let J : Rn → R ∪ {+∞} be lower-semicontinuous. Then, for
any x∗ ∈ int(domh∗), one has :

∂J∗(x∗) = coMJ(x∗). (13)

Proof. Since x∗ ∈ int(dom J∗) and J is lower-semicontinuous, the set MJ(x∗)
is compact and coMJ(x∗) is compact too. Thus (13) is just (5).�

We now give another proof of Theorem B’ that does not use Theorem B. It is
based on a formula given in [BHU] which is limited to finite dimensional spaces.
Since x∗ ∈ int(domh∗) we know that there exist α > 0 and r ∈ R such that

J − 〈x∗, .〉 ≥ α‖.‖+ r.

Thus the asymptotic function (J − 〈x∗, .〉)′∞ of J − 〈x∗, .〉, that is J ′∞ − 〈x∗, .〉
where, for any x ∈ Rn, J ′∞(x) = lim inf

(t,u)→(0+,x)
tJ(u/t), is nonnegative and vanishes

at the origin of Rn only. We then have (see [HULV] Theorem 6 or [BHU] p 1672)
:

∂J∗(x∗) = argmin(J − 〈x∗, .〉)∗∗ = co argmin(J − 〈x∗, .〉) = coJM(x∗).

Remark 3. According to Theorem B’ one can replace co by co in the formulas
(8) and (9) when X is finite dimensional.
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