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Abstract Engineering sciences and applications of mathematics show unambigu-
ously that positive semidefiniteness of matrices is the most important generalization
of non-negative real numbers. This notion of non-negativity for matrices has been
well-studied in the literature; it has been the subject of review papers and entire chap-
ters of books.

This paper reviews some of the nice, useful properties of positive (semi)definite
matrices, and insists in particular on (i) characterizations of positive (semi)definite-
ness and (ii) the geometrical properties of the set of positive semidefinite matrices.
Some properties that turn out to be less well-known have here a special treatment. The
use of these properties in optimization, as well as various references to applications,
is spread all the way through.

The “raison d’être” of this paper is essentially pedagogical; it adopts the viewpoint
of variational analysis, shedding new light on the topic. Important, fruitful, and subtle,
the positive semidefinite world is a good place to start with this domain of applied
mathematics.
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1 Positive (Semi)Definiteness: A Useful Notion

Positive (semi)definite matrices are fundamental objects in applied mathematics and
engineering. For example, they appear as covariance matrices in statistics, as Lya-
punov functions in control, as kernels in machine learning, as diffusion tensors in
medical imaging, as lifting matrices in combinatorics—just to name a few of the
various uses of the concept.

Even if a first generalization of positive real numbers in matrix spaces would be
the entry-wise positive matrices (see [1, Chap. 8]), the numerous applications men-
tioned above show that the most important generalization is the positive semidefinite
matrices. This notion of non-negativity for matrices has been well-studied in the lit-
erature; it has been the topic of review papers and entire chapters of books, for exam-
ple, [1, Chap. 7], [2, Chap. 6], [3, Chap. 8], [4, Chap. 1] and [5, Sect. 6.5]. Besides,
a fruitful branch of mathematical optimization is devoted to problems involving pos-
itive semidefinite matrices; it is called semidefinite programming and has proved to
be a powerful tool to model and solve many problems in engineering or science in
general [6, 7].

In this article, we gather some results about positive (semi)definite matrices: some
are well-known, some are more original. The special feature of this paper is that we
adopt the viewpoint of variational analysis, shedding new light on these topics. The
term “variational” is not to be understood in its old historical meaning (calculus of
variations), but in the broadest possible sense (optimization, convex analysis, nons-
mooth analysis, complementary problems, . . .). We insist in particular on the harmo-
nious interplay between matrix analysis and optimization.

The set of positive semidefinite matrices is a closed, convex cone in the space of
symmetric matrices, which enjoys a nice geometry, exploited in several applications.
We review some of these useful and sometimes subtle geometrical properties—again
with a variational eye. During this study, we will illustrate convex, semialgebraic and
Riemannian geometries. As a nice, concrete example of advanced mathematics, pos-
itive semidefiniteness also has some pedagogical interest—on top of all its practical
uses.

2 Positive (Semi)Definiteness: A Multi-facet Notion

We start with a bunch of simple ideas. The goal of this first section is, while sticking to
basic properties, to show how different notions and various domains come into play
when talking about positive semidefinite matrices. We also recall the background
properties, introduce notation, and give a flavour of what comes next.

Let S n(R) be the linear space of symmetric real matrices of size n × n. A matrix
A ∈ S n(R) is said to be positive semidefinite (denoted A � 0), if

x�Ax ≥ 0 for all x ∈ R
n, (1)

where the superscript ·� denotes the transposition of matrices. The matrix A is further
called positive definite (denoted by A � 0) if the above inequality is strict for all
nonzero x.
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2.1 (Bi)Linear Algebra at Work

Let us recall the key-result for symmetric matrices: the n eigenvalues λi of a matrix
A ∈ S n(R) lie in R, and there exists an orthogonal matrix U such that U�AU is the
diagonal matrix with the λi on the diagonal, denoted by diag(λ1, . . . , λn). This result
can also be written as follows: there exist n unit eigenvectors xi of A (the columns
of U ) such that we have the so-called spectral decomposition

A =
n∑

i=1

λixixi
�.

This result mixes nicely linear and bilinear algebra: U allows both the diagonal-
ization of A as U−1AU = diag(λ1, . . . , λn) (linear algebra world), and the reduc-
tion of the quadratic form associated with A as U�AU = diag(λ1, . . . , λn), such
that 〈A(Uy),Uy〉 = 〈diag(λ1, . . . , λn)y, y〉 (bilinear algebra world). There are sev-
eral proofs of this result; one is optimization-based (see, e.g. [8, p. 222]).

This decomposition is used to define the square root matrix: if A � 0, the square
root of A, denoted by A1/2, is the unique S � 0 such that S2 = A (given explicitly
by the decomposition U�SU = diag(

√
λ1, . . . ,

√
λn)). When A � 0, we also have

(A1/2)−1 = (A−1)1/2 so that the notation A−1/2 (that we will often use) is not am-
biguous.

We can also reduce two matrices at the same time: the so-called simultaneous
reduction (see, e.g. [1, 4.6.12]) says that for a symmetric matrix A and a positive
definite matrix B , there exists an invertible matrix P such that

P �AP = diag(λ1, . . . , λn) and P �BP = diag(μ1, . . . ,μn).

We are not aware of simple results of that kind for more than two matrices; the reason
might be deeper than one would think (see Problem 12 in [9]).

2.2 Inner Products

The space R
n is equipped with the canonical inner product

〈x, y〉 :=
n∑

i=1

xiyi = x�y.

We prefer to use the notation 〈·, ·〉, often more handy for calculation involving the
transpose. Up to a double sum, this inner product is the same for symmetric matrices:
we equip S n(R) with the canonical inner product

〈〈A,B〉〉 :=
n∑

i,j=1

AijBij = trace
(
A�B

)= trace(AB).

A connection between these two scalar products is

〈Ax,x〉 = 〈〈
A,xx�〉〉.
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This easy property has an important role in combinatorial optimization: the so-called
“lifting” is the first step of the semidefinite relaxation of binary quadratic problems
(see, e.g. [10]). Another interesting connection between the inner products is the Ky–
Fan inequality: A,B ∈ S n(R) satisfy the inequality

〈〈A,B〉〉 ≤ 〈
λ(A),λ(B)

〉
,

where λ(A) := (λ1(A), . . . , λn(A)) ∈ R
n is the vector of the eigenvalues of A ordered

nonincreasingly. Moreover equality holds in the above inequality if and only if A and
B admit a simultaneous eigendecomposition with ordered eigenvalues (see, e.g. [11]
and references therein). This inequality is a key tool for the study of spectral functions
and spectral sets [12]; we will come back to spectral sets from time to time in next
sections.

2.3 Quadratic Forms and Differential Calculus

Naturally associated with A ∈ S n(R) is the quadratic form

q : x ∈ R
n �−→ q(x) := 1

2
〈Ax,x〉.

The definition of semidefiniteness (1) reads q(x) ≥ 0 for all x ∈ R
n. From an opti-

mization point of view, we have

inf
x∈Rn

q(x) > −∞ ⇐⇒ A � 0

and the set of minimizers is then kerA. The quadratic form q is obviously of class
C∞ on R

n, and we have for all x ∈ R
n

∇q(x) = Ax and ∇2q(x) = A. (2)

This is easy to remember: we formally have the same formulae for q(x) = ax2/2
with x ∈ R. Note that the factor 1/2 in the definition of q aims at avoiding the factor
2 when differentiating q .

When A is positive definite, q defines a norm on R
n. This can be seen, for example,

by the simultaneous reduction: there exists P invertible such that P�AP = In, or in
other words, up to the change of variables y = P −1x, the quadratic form q is just the
simpler form ‖ · ‖2:

‖y‖2 = 〈y, y〉 = 〈
P�APy,y

〉= 〈APy,Py〉 = 〈Ax,x〉.

2.4 When Convex Analysis Enters into the Picture

Recall that a function f : R
n → R is convex if

∀x, y ∈ R
n,α ∈ [0,1], f

(
αx + (1 − α)y

)≤ αf (x) + (1 − α)f (y).

When f is smooth, convexity is characterized by the positive semidefiniteness of its
Hessian matrix ∇2f (x) for all x ∈ R

n (see, e.g. [13, B.4.3.1]). From (2), we get that
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q is convex if and only if A � 0. (Let us also mention that strict and strong convexities
of q coincide and are equivalent to A � 0.)

During our visit to the world of the positive semidefinite matrices, we will meet
several notions from convex analysis (polar cone, Moreau decomposition, tangent and
normal cones, . . .). The first notion is the Legendre–Fenchel transformation, which
is an important transformation in convex analysis (see [13, Chap. E]) introducing a
duality in convex optimization. The Legendre–Fenchel transformation defined by

q∗ : s ∈ R
n �−→ q∗(s) := sup

x∈Rn

{〈s, x〉 − q(x)
}
,

has a simple explicit expression for q(x) = 〈Ax,x〉/2 (with A � 0). In the case A �
0, we obtain

q∗(s) = 1

2

〈
A−1s, s

〉
.

Incidentally, this expression allows us to establish B−1 � A−1 if B � A, with a quick
variational proof (first, use the fact that q ≤ p implies q∗ ≥ p∗, and then the fact that
B −A � 0). This latter result is the matrix counterpart of the decreasing of the inverse
for positive numbers. Note, moreover, that the involution A �→ A−1 of linear algebra
corresponds to the involution q �→ q∗ of convex analysis.

If we just have A � 0, then (see, e.g. [13, E.1.1.4])

q∗(s) =
{

1
2 〈x0, s〉 where Ax0 = s if s ∈ ImA,

+∞ if s /∈ ImA.

Note, finally, that making the transformation twice, we come back home: (q∗)∗ = q ,
as expected.

2.5 Do not Forget Geometry

A geometrical view is often used to introduce linear algebra (as in [5]). The geomet-
rical object also associated with a matrix A � 0 is the ellipsoidal convex compact
set

EA := {
x ∈ R

n : 〈Ax,x〉 ≤ 1
}
.

The eigenvalues of A give the shape of EA (see [5, Chap. 6]); it is the unit ball of the
norm given by A. The linear function A−1/2 maps the canonical unit ball B to EA;
so the volume of EA is 1/

√
det(A) times the volume of B (see Problem 3 in [9] for a

question on the volume of convex bodies). We mention that the inversion A �→ A−1

coincides for EA with the polarity transformation of convex compact bodies having
0 in the interior (see [13, Chap. C]).

2.6 Convex Cone, Visualization

The set of positive semidefinite matrices

S n+(R) = {
A ∈ S n(R) : x�Ax ≥ 0 for all x ∈ R

n
}

(3)
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enjoys a nice geometry. We give here a first flavour of its geometry when n = 2 and
we will come back to this topic again in Sect. 4.

It is not difficult to show by means of definition (3) that S n+(R) is a (closed)
convex cone. Recall that this means

(
α ∈ [0,1], A,B ∈ S n+ (R)

) =⇒ αA + (1 − α)B ∈ S n+(R),
(
α ≥ 0, A ∈ S n+(R)

) =⇒ αA ∈ S n+(R).

Since S 2(R) is of dimension 3, we can visualize the cone S 2+(R) as a subset of R
3.

We identify S 2(R) and R
3 by an isomorphism

ϕ : A =
[
a b

b c

]
∈ S 2(R) �−→ ϕ(A) ∈ R

3.

We can choose the isometry ϕ(A) = (a,
√

2b, c), but the best looking isomorphism
is

ϕ(A) := 1√
2
(2b, c − a, c + a)

that allows us to identify the cone S 2(R)

{[
a b

b c

]
: a ≥ 0, c ≥ 0, and ac − b2 ≥ 0

}

with ϕ(S 2(R)), which is

{
(x, y, z) ∈ R

3, z ≥
√

x2 + y2
}
.

Figure 1 shows that ϕ(S 2(R)) is the “usual” cone K of R
3, also called Lorentz cone

or the second-order cone in R
3.

The boundary of K corresponds to the rank-one matrices, and the apex of K to
the zero matrix. To avoid giving an incorrect intuition, we emphasize that even if the
boundary of S 2+(R) deprived of 0 appears to be a smooth manifold, this is not true in
general when n > 2 (S n+(R) is, in fact, a union of smooth manifolds; see Sect 4.4).

Fig. 1 The usual cone in R
3,

identified with S 2+(R)
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3 Characterizations of Positive (Semi)Definiteness

3.1 Characterizations of Positive Definiteness

The characterizations of positive definiteness are numerous; each of them has its own
usefulness, depending on the context. For example, the Gram formulation appears
naturally in statistics, the characterization by invariants in mechanics, or the expo-
nential in dynamical systems. We discuss some of these characterizations here: we
start with a couple of characterizations that use decompositions; then, we put empha-
sis on the characterizations by the positivity of n real numbers; we finish with a more
original characterization.

3.1.1 Factorization-Like Characterizations

One of the most useful and most basic characterizations is the following factorization:
A is positive definite if and only if there exists an invertible B such that A = BB�
(indeed, in this case 〈Ax,x〉 = ‖Bx‖2 for all x ∈ R

n). There exist in fact different
factorizations of this form, among those: the Cholesky factorization with B upper-
triangular with positive diagonal elements; and the square root factorization, with B

symmetric positive definite (see, e.g. [2, Chap. 6]).
Other famous decomposition-like characterizations use exponential or Gram ma-

trices: the property A � 0 is characterized by each of the two properties:

• Exponential form (see, e.g. [14, Examples 5–28]): there exists B ∈ S n(R) such
that A = exp(B).

• Gram form (see, e.g. [1, 7.2.40]): there exist n independent vectors {v1, . . . , vn} of
R

n (hence forming a basis of R
n) such that Aij = 〈vi, vj 〉 for all i, j .

3.1.2 Positivity of n Real Numbers

Important characterizations of positive definiteness rely on the positivity of n real
numbers associated with symmetric matrices. For example, it is well-known that pos-
itive eigenvalues characterize positive definiteness; we gather in the next theorem
three similar properties.

Theorem 3.1 (Positive definiteness by positivity of n real numbers) Each of the fol-
lowing properties is equivalent to A � 0:

(i) The eigenvalues λ1(A), . . . , λn(A) of A are positive;
(ii) The leading principal minors Δ1(A), . . . ,Δn(A) of A are positive;

(iii) The principal invariants i1(A), . . . , in(A) are positive.

We recall that the leading principal minors are defined as Δk(A) := detAk for
k = 1, . . . , n, where Ak is the submatrix of A made of the first k rows and first k

columns of A. Recall also that the principal invariants of A are (up to a change of
sign) the coefficients of the monomials of the characteristic polynomial PA(x) of A;
more precisely

PA(x) = (−x)n + i1(A)(−x)n−1 + · · · + ik(A)(−x)n−k + · · · + in(A),
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whence

ik(A) :=
∑

1≤n1<···<nk≤n

λn1(A)λn2(A) · · ·λnk
(A) (4)

where the eigenvalues λi(A) are the roots of PA. For example,

i1(A) = trace(A) = λ1(A) + · · · + λn(A) and in(A) = det(A) = λ1(A) · · ·λn(A).

Another definition of ik(A) is

ik(A) := sum of the principal minors of order k of A.

A principal minor of order k is the determinant of the k × k matrix extracted from A

by considering the rows and columns n1, . . . , nk with 1 ≤ n1 < · · · < nk ≤ n.

Proof of Theorem 3.1 There are several ways to prove (ii): for instance, by purely
linear algebra techniques, by induction [1, p. 404], or by quadratic optimization tech-
niques [8, p. 220; 15, p. 409]. The result also follows from the factorization of a
matrix into a product of triangular matrices; we sketch this proof (see more in [14]).
Let A ∈ S n(R) be such that Δk(A) = det(Ak) �= 0 for all k = 1, . . . , n. Then there
exists a (unique) lower triangular matrix with ones on the diagonal, denoted by S,
such that

A = SDS� where D = diag
(
Δ1(A),Δ2(A)/Δ1(A), . . . ,Δn(A)/Δn−1(A)

)
.

We call d1 := Δ1(A), dk := Δk(A)/Δk−1(A) the so-called (principal) pivots of A.
So we have

A � 0 ⇐⇒ (dk > 0 for all k = 1, . . . , n)

⇐⇒ (
Δk(A) > 0 for all k = 1, . . . , n

)
.

Then it is easy to establish characterization (ii).
Let us prove here characterization (iii) which is less usual. One implication comes

easily: if A � 0, then all the eigenvalues of A are positive; each ik(A) is then positive
as well (recall (4)). To establish the reverse implication, we assume that ik(A) > 0 for
all k, so in particular det(A) > 0. Suppose now that there exists a negative eigenvalue
of A, call it λi0(A) < 0. Then observe that

0 < PA

(
λi0(A)

)= (−λi0(A)
)n + · · · + ik(A)

(−λi0(A)
)n−k + · · · + in(A)

which contradicts the fact that PA(λi0(A)) = 0. Thus we have λi(A) ≥ 0 for all i, and
since 0 < det(A) = λ1(A) · · ·λn(A), we get that λi(A) > 0 for all i, which guarantees
that A is positive definite. �

Example 3.1 (Invariants in dimension 2 and 3) Let us illustrate in small dimension the
third point of the previous theorem. In the case n = 2, we have the simple formulation

PA(x) = x2 − trace(A)x + detA.
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We note, by the way, that this is a particular case of the development

det(A + B) = detA + 〈〈cofA,B〉〉 + detB = detA + 〈〈A, cofB〉〉 + detB,

where cofM stands for the cofactors matrix of the matrix M (in general, this de-
velopment is obtained by differential calculus with the fact that the determinant is
multilinear, see [16]). Let us come back to our situation: the two principal invariants
of A are traceA and detA, so we have

[
a b

b c

]
� 0 ⇐⇒

{
a > 0,

ac − b2 > 0
⇐⇒

{
a + c > 0,

ac − b2 > 0.

For the case n = 3, we have

PA(x) = −x3 + trace(A)x2 − trace(cofA)x − detA

which is again a particular case of the nice formula

det(A + B) = detA + 〈〈cofA,B〉〉 + 〈〈A, cofB〉〉 + detB.

The three principal invariants are

i1(A) = traceA = λ1(A) + λ2(A) + λ3(A)

i2(A) = (
(traceA)2 − trace

(
A2))/2

= λ1(A)λ2(A) + λ2(A)λ3(A) + λ1(A)λ3(A) = trace
(
cof(A)

)

i3(A) = (
(traceA)3 − 3trace(A)trace

(
A2)+ 2trace

(
A3))/6

= λ1(A)λ2(A)λ3(A) = detA.

Thus we have
⎡

⎣
a b d

b c e

d e f

⎤

⎦� 0 ⇐⇒
⎧
⎨

⎩

a > 0,

ac − b2 > 0,

detA > 0

⇐⇒
⎧
⎨

⎩

a + c + f > 0,

(cf − e2) + (af − d2) + (ac − b2) > 0,

detA > 0

which gives a handy characterization in dimension 3. These principal invariants are
widely used for n = 3 in mechanics where they often have a physical interpretation
(for example, as stresses and strains); see the textbook [17].

3.1.3 Characterization by Polar Cones

Here is now a more original characterization using convex cones in R
n. We start by

recalling some convex analysis that is needed; those notions (polar cones and Moreau
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polar decomposition) are interesting on their own, and turn out to be less known than
they deserve (for more details, see [13]).

If K is a closed, convex cone in a Euclidean space (E , 〈·, ·〉), then the polar cone
K◦ of K is the closed, convex cone of E made of all the points whose projection onto
K is 0; in other terms,

K◦ := {
s ∈ E : 〈s, x〉 ≤ 0, for all x ∈ K

}
. (5)

Examples: for K =R
n+, we have K◦ =R

n−; for a linear subspace K = V , we have
K◦ = V ⊥. We see that polarity is to (closed) convex cones what orthogonality is to
linear subspaces. The fundamental result on this polarity is its reflexivity: doing the
polar transformation twice leads back home, i.e. (K◦)◦ = K . Another result that we
will need later (and that is easy to prove from the definition) is that for an invertible
matrix B , we have

[
B(K)

]◦ = B−�(K◦). (6)

The most important result on polar cones is without doubt the following Moreau
decomposition. Let x, x1 and x2 be three elements of E ; then the properties (i) and
(ii) are equivalent:

(i) x = x1 + x2 with x1 ∈ K , x2 ∈ K◦ and 〈x1, x2〉 = 0;
(ii) x1 = ProjK(x) and x2 = ProjK◦(x).

Here ProjC stands for the projection onto the closed, convex set C. The decomposi-
tion of R

n into K and K◦ generalizes the decomposition of R
n into the direct sum

of a linear space L and its orthogonal complement L⊥. Note that if we know how to
project onto K , we get as a bonus the projection onto K◦, which could be interesting
in practical cases when K◦ is more complicated than K (or the other way around).

Let us come back to matrices and prove the following original characterization of
positive definiteness.

Proposition 3.1 Let A ∈ S n(R) be invertible and K be a closed, convex cone of R
n;

then

A � 0 ⇐⇒
{〈Ax,x〉 > 0 for all x ∈ K�{0} and
〈A−1x, x〉 > 0 for all x ∈ K◦

�{0}.

Note the nice symmetry of the result since (A−1)−1 = A and (K◦)◦ = K . This
characterization, the proof of which is not straightforward, is due to [18]. We present
here a proof, suggested by X. Bonnefond, that uses the Moreau decomposition, as
expected.

Proof The fact that the condition is necessary follows directly from the definition
of positive definiteness; we focus on sufficiency. Let A be an invertible matrix
satisfying the condition, and consider an eigendecomposition A = UDU� (where
D = diag(λ1, . . . , λn) with nonzero λi ). Observe first that up to a change of cone
(K ← U�K), we can assume that A is diagonal: the condition can indeed be written,
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with the help of (6), as
{〈Dx,x〉 > 0 for all x ∈ U�K�{0},
〈D−1x, x〉 > 0 for all x ∈ U�K◦

�{0} (= (
U�K

)◦
�{0}).

So we consider that A = D is diagonal, and we just have to prove that the condition
{∑n

i=1 λix
2
i > 0 for all x ∈ K�{0},

∑n
i=1

1
λi

x2
i > 0 for all x ∈ K◦

�{0}
yields that all the λi are strictly positive.

For the sake of contradiction, assume that only the k (with k < n) first eigen-
values λ1, . . . , λk are positive, while the n − k last λk+1, . . . , λn are negative. We
do one more step of simplification of the expression by scaling the variables by
S = diag(

√|λ1|, . . . ,√|λn|): introducing K̃ := SK , we observe that
{∑k

i=1 y2
i >

∑n
i=k+1 y2

i for all y ∈ K̃�{0},
∑k

i=1 z2
i >

∑n
i=k+1 z2

i for all z ∈ S−1K◦
�{0} (= K̃◦

�{0}).
(7)

After multiplying these two inequalities together, the Cauchy–Schwarz inequality
yields

∀y ∈ K̃�{0}, z ∈ K̃◦
�{0},

k∑

i=1

y2
i

k∑

i=1

z2
i >

(
n∑

i=k+1

ziyi

)2

. (8)

We apply this inequality to a well-chosen couple of vectors y and z to get a contra-
diction. Consider the basis vector e = (0, . . . ,0,1) and note that e does not lie in K̃

nor in K̃◦. So its Moreau decomposition gives

e = y + z with y ∈ K̃�{0}, z ∈ K̃◦
�{0} and 〈y, z〉 = 0.

Observe that we have zi = −yi for all i = 1, . . . , k so that

k∑

i=1

z2
i =

k∑

i=1

y2
i .

Now the orthogonality of y and z gives

n∑

i=k+1

ziyi = −
k∑

i=1

ziyi

(
=

k∑

i=1

yi
2

)
.

This contradicts (8), so proves that k = n, which establishes the characterization. �

3.2 Characterizations of Positive Semidefiniteness

Most of the characterizations of positive definiteness have their positive semidefi-
niteness counterparts. In this section, we briefly highlight some similarities and dif-
ferences between the positive definite and semidefinitenesses.



562 J Optim Theory Appl (2012) 153:551–577

The property A � 0 is equivalent to each of the following statements:

• There exists a matrix B such that A = BB�. This can also be read as: the quadratic
form qA(x) = ‖B�x‖2 is zero on kerB = kerA.

• The eigenvalues λ1, . . . , λn of A are non-negative. The set S n+(R) can thus be
seen as the inverse image of R

n+

S n+ (R) = λ−1(
R

n+
)

by the eigenvalue function λ : S n(R) → R
n assigning to a symmetric A its eigen-

values in a nonincreasing order. The convex set S n+(R) is then a convex spectral
set in the sense of [12]. Note that, more generally, we can prove that a spectral set
λ−1(C) is convex if and only if C is convex.

• For k = 1, . . . , n, all the principal minors of order k of A are non-negative. This
means that the determinants of all the submatrices made of k rows and k columns
should be non-negative—and not only the n leading principal minors Δk(A) of
Theorem 3.1. Having only Δk(A) ≥ 0 does not guarantee semidefiniteness, as
shown by the following counter-example where A is not positive semidefinite (it is
actually negative semidefinite)

A =
[

0 0
0 −1

]
and detA1 = detA2 = 0.

In general, checking all the principal minors to draw a conclusion about the posi-
tive semidefiniteness would mean checking 2n − 1 polynomial relations—and not
only n as for the positive definiteness, which is a surprising gap! In the next char-
acterization though, only n polynomial relations come into play.

• The principal invariants i1(A), . . . , in(A) are non-negative. This is a sort of aggre-
gate form of the previous condition, since for all k, the invariant ik(A) is the sum
of

( n
k

)
principal minors. Checking the positivity of those n polynomial relations

does yield positive semidefiniteness. The proof is conducted in the same way as
for (iii) in Theorem 3.1 (see [1, p. 403]). Counting the number of principal minors
involved in this characterization by the ik(A), we naturally retrieve 2n − 1 since

(
n

1

)
+
(

n

2

)
+ · · · +

(
n

n

)
= 2n − 1.

4 Geometry of the Set of Positive (Semi)Definite Matrices

The set S n+(R) of positive semidefinite matrices is a closed, convex cone of S n(R)

that enjoys nice, subtle geometrical properties. Some aspects are exposed in this sec-
tion; we see the cone S n+(R) as a concrete example to illustrate various notions of
convex geometry and smooth geometry. We denote the set of positive definite matri-
ces by S n++(R).



J Optim Theory Appl (2012) 153:551–577 563

4.1 Closedness Under Matrix Operations

Closedness Under Addition As a convex cone, S n+ (R) is closed under addition and
multiplication by α ≥ 0. We can add moreover the following property (easy to see by
definitions)

(A � 0, B � 0) =⇒ A + B � 0.

The cone S n+(R) is also closed under another addition, the so-called parallel sum.
When A � 0 and B � 0, the parallel addition is defined by

A//B := (
A−1 + B−1)−1

.

Since both the inversion and the sum preserve S n++(R), the parallel addition pre-
serves it as well. This operation was introduced [19] by analogy with electrical net-
works: by the Kirchhoff law, two wires of resistances r1 and r2 connected in parallel
have a total resistance r such that 1/r = 1/r1 + 1/r2. When A,B � 0, we could de-
fine A//B using pseudo-inversion (see, e.g. [4]). It turns out that this sum has also a
natural variational-analysis definition (see, e.g. [20, Problem 25]) as

〈
(A//B)x, x

〉= inf
y+z=x

{〈Ay,y〉 + 〈Bz, z〉}.

We recognize this as the infimal convolution of the two quadratic forms qA and qB ;
this operation is basic and important in convex analysis (see [13, Chap. B]).

Closedness Under Multiplication The product of two positive semidefinite matrices
is not positive semidefinite, in general: the matrix product destroys symmetry. There
is no way to get out of this since we have the following (rather surprising) result:

Any n × n-matrix A can be described as a product of two symmetric matrices.

This result is presented by [21] and [22] that give credit to G. Frobenius (1910).
A quick way to prove it is to use the fact that a matrix A and its transpose are similar:
there exists an invertible S ∈ S n(R) (non-unique, though) such that A� = S−1AS

[23]. As a consequence, we can decompose A = S1S2 with S1 = SA� (which is
symmetric by choice of S) and S2 = S−1 which is symmetric.

Let us come back to (non)closedness under multiplication and give a positive re-
sult. Imposing a posteriori symmetry indeed solves the problem: if A,B � 0 then the
product AB is positive semidefinite whenever it is symmetric—that is exactly when
A and B commute. We add here two (not well-known) results of the same kind:

• Result of E. Wigner [24]. If A1,A2,A3 � 0 and the product A1A2A3 is symmetric,
then it is positive definite.

• Result of C. Ballantine [25]. Except when A = −λIn with λ > 0 and n even, any
square matrix with positive determinant can be written as the product of four pos-
itive definite matrices. (For the case left aside, five positive definite matrices are
needed.)
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We also mention that, for another nonstandard matrix product, S n+(R) is closed
without any further assumption. If A = (aij ) and B = (bij ), we define the matrix
product C = A ◦ B = (cij ) by cij = aij bij for all i, j . Result: if A and B are positive
definite (resp., semidefinite) then so is the product A ◦ B (see [1, 7.5.3]).

4.2 Convex Sets Attached with S n+(R)

4.2.1 Interior and Boundary

The (relative) interior of a convex set is always convex; here the interior of S n+ (R)

turns out to be exactly S n++(R). This is another appearance of the analogy with R+,
since the interior of (R+)n is (R++)n. The boundary of S n+ (R) is exactly made up of
the singular matrices A � 0. There we find the positive semidefinite matrices of rank
k, for 1 ≤ k ≤ n−1, forming smooth manifolds fitting together nicely (see Sect. 4.4).

4.2.2 The Facial Structure of S n+ (R)

A convex subset of F ⊂ C is a face of C if every segment [a, b] ⊂ C such that there
exists an element of F in ]a, b[ is entirely contained in F . All the faces of S n+(R)

are moreover exposed faces: a face F of S n+(R) is the intersection of S n+(R) with
a supporting hyperplane (that is, a hyperplane H such that S n+(R) is entirely con-
tained in one of the closed half-spaces delimited by H ). More precisely, the result is
the following (see [26] pointing to earlier references and discussing about the gener-
alization to spectral sets): F is a face of S n+ (R) if and only if F is the convex cone
spanned by {vv� : v ∈ V } where V is a subspace of R

n. The dimension of F is then
d(d + 1)/2 if d is the dimension of V . For example, with n = 2: there is a face of
dimension 0 (the apex of the cone S n+(R)), faces of dimension 1 (extremal rays of
S 2+(R) directed by vectors xx� with nonzero x ∈ R

n), and a face of dimension 3 (the
whole S 2++(R)).

There is another way to generate all the faces of S n+(R), as follows. Let L be a
linear subspace of R

n of dimension m, and set

FL := {
A ∈ S n+ (R) : L ⊂ kerA

};
then FL is a face of S n+(R) of dimension r(r + 1)/2 with r = n−m. When L ranges
all the subspaces of dimension m, FL visits all the faces of dimension r(r + 1)/2.

Let us mention that the knowledge of the faces of S n+(R) is useful for some
optimization problems with semidefinite constraints. Indeed, the so-called “facial
reduction technique” uses the explicit form of the faces to reformulate degenerate
semidefinite optimization problems into problems in smaller dimension; see the ini-
tial article [27], and the recent [28] for an application to sensor network problems.

4.2.3 Polar Cone and Projection

In the space S n(R) equipped with the inner product 〈〈·, ·〉〉, the polar cone (5) of
K = S n+ (R) is simply K◦ = −S n+ (R). It is also easy to determine the Moreau de-
composition of a matrix A ∈ S n(R) onto S n+(R) and its polar. Indeed, consider an



J Optim Theory Appl (2012) 153:551–577 565

orthogonal eigendecomposition U�AU = diag(λ1, . . . , λn); then the two matrices

A+ := Udiag
(
max{0, λ1}, . . . ,max{0, λn}

)
U�,

A− := Udiag
(
min{0, λ1}, . . . ,min{0, λn}

)
U�

are such that A = A+ +A− and 〈A+,A−〉 = 0. Thus A+ (resp., A−) is the projection
of A onto S n+ (R) (resp., onto its polar −S n+(R)). Said otherwise, to project A onto
S n+(R), we just have to compute an eigendecomposition of A and cut off negative
eigenvalues by 0. It is remarkable that we have an explicit expression of the projection
onto S n+(R), and that this projection is easy to compute (essentially by computing an
eigendecomposition). More sophisticated projections onto subsets of S n+(R) are also
computable using standard tools of numerical optimization [29]; those projections
have many applications in statistics and finance (see [30] for an early reference of the
projection onto S n+(R); see also [29, Sect. 5]).

Finally, note that we can interpret the projection of A onto S n+(R) = λ−1(Rn+)

with respect to the projection of its eigenvalues onto R
n+, namely

ProjS n+ (R)(A) = Udiag
(
ProjR

n+(λ1, . . . , λn)
)
U�.

This result has a nice generalization: we can compute a projection onto a spectral set
λ−1(C) as soon as we know how to project onto the underlying C (see [31]).

4.2.4 Tangent and Normal Cones

Normal cones in convex geometry play the role of normal spaces in smooth geometry:
they give “orthogonal” directions to a set at a point of the set. Their “duals”, the
tangent cones, then give a simple conic approximation of a convex set around a point.

The normal cone to S n+(R) at X ∈ S n+(R) can be defined as the set of directions
S ∈ S n(R) such that the projection of X+S onto S n+(R) is X itself. In mathematical
terms, this means

NA := {
S ∈ S n(R) : 〈〈S,B − A〉〉 ≤ 0 for all B ∈ S n+(R)

}
.

The tangent cone is then defined as the polar of NA and admits the characterization:

TA := N◦
A = R+

(
S n+(R) − A

)
.

To fix ideas, Fig. 2 gives an illustrative representation of the cone with its tangent and
normal space at a point (beware of the fact that this is not a real representation, since
for n = 2 the boundary of the cone is smooth).

For the special case A = 0, we simply have N0 = S n+(R)◦ = −S n+(R) and T0 =
S n+(R). For the general case A ∈ S n+(R), we have

TA = {
M ∈ S n(R) : 〈Mu,u〉 ≥ 0 for all u ∈ kerA

}
,

NA = {
M � 0 : 〈〈M,A〉〉 = 0

}

= {M � 0 : MA = 0} = {M � 0 : AM = 0}
= {M � 0 : ImM ⊂ kerA} = {M � 0 : ImA ⊂ kerM}.

(9)
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Fig. 2 (Nonrealistic)
illustration of the normal and
tangent cones to S n+ (R) at A

The first expression of NA comes from the general result for closed, convex cones
(see [13, A.5.2.6]). The second one follows from the (quite surprising) property:

for A,B ∈ S n+ (R), we have: 〈〈A,B〉〉 = 0 ⇐⇒ AB = 0,

which has a one-line proof using a classical trick, as follows

〈〈A,B〉〉 = trace
(
A1/2A1/2B1/2B1/2)= trace

(
B1/2A1/2A1/2B1/2)= ∥∥A1/2B1/2

∥∥2
.

The third expression comes easily from the second. We can also describe NA one step
further from the last expression. Take A ∈ S n+(R) of rank r (< n). The dimension of
kerA is n − r , let {ur+1, . . . , un} be a basis of it. Then

M ∈ NA ⇐⇒ M =
n∑

i=r+1

αiuiui
� with αi ≤ 0 (i = r + 1, . . . , n).

4.2.5 Spectahedron, the Spectral Simplex

A special subset of S n+(R) plays an important role in the variational analysis of the
eigenvalues (see [32, 33]) and in some applications of semidefinite programming (as,
for example, for sparse principal component analysis [34]). The so-called spectahe-
dron is defined by

Ω1 := {
A � 0 : trace(A) = 1

}
. (10)

This set is convex and compact (see an illustration on Fig. 3). Its extreme points
are exactly the matrices xx� with unit-vectors x ∈ R

n. The spectahedron equiva-
lently defined through the eigenvalues: Ω1 = λ−1(Π1) is the spectral set of Π1 :=
{(λ1, . . . , λn) : λi ≥ 0,

∑n
i=1 λi = 1} the unit-simplex of R

n.
This set and its properties generalize as follows. For an integer m ∈ {1, . . . , n}, set

Ωm := {
A � 0 : trace(A) = m and λmax(A) ≤ 1

}
.

For example, Ωn is obviously reduced to a single element, the identity matrix In. Note
that we did not add λmax(A) ≤ 1 in the definition of Ω1, since it was automatically
satisfied. The general result is the following: the set Ωm is convex and compact, and



J Optim Theory Appl (2012) 153:551–577 567

Fig. 3 (Nonrealistic)
representation of the
spectahedron

it is the convex hull of the matrices XX�, where X is an n × m-matrix such that
X�X = Im. In other words, the convex hull of the orthogonal projection matrices of
rank m is exactly the set of symmetric matrices whose eigenvalues are between 0
and 1, and whose trace is m. The proof of this result starts with showing that Ωm is a
spectral Ωm = λ−1(Πm) with the compact convex polyhedron Πm := {(λ1, . . . , λn) :
0 ≤ λi ≤ 1,

∑n
i=1 λi = m}. Then we can determine the extremal points of Πm: the

point (λ̄1, . . . , λ̄n) is extremal in Πm if and only if all the λ̄i are zeros, expected m of
them that are ones.

4.3 Representation as Inequality Constrained Set: Nonsmooth Viewpoint

A common, pleasant situation in optimization is when a constraint set C is repre-
sented with the help of inequalities

g1(x) ≤ 0, . . . , gp(x) ≤ 0,

and the interior of C with the help of strict inequalities with the same functions

g1(x) < 0, . . . , gp(x) < 0.

Does there exist such a representation for C = S n+(R) and its interior S n++(R) ? The
answer is yes. We highlight two types of representing functions: a nonsmooth one in
this section, and polynomial ones in the next section.

Consider the function g : S n(R) → R defined by

g(A) := λmax(−A) = −λmin(A). (11)

This function is convex and positively homogeneous, as a maximum of linear func-
tions. Indeed, we have the well-known Rayleigh quotient

λmax(A) = max
‖x‖=1

〈Ax,x〉 = max
‖x‖=1

〈〈
A,xx�〉〉 (= max

X∈Ω1
〈〈A,X〉〉),

where Ω1 is defined by (10). More precisely, the last expression says that λmax is the
support function of Ω1 (the notion of a support function is fundamental in convex
analysis; see [13, Chap. C]). Let us come back to the representation of S n+(R) as an
inequality constrained set: we have a first adequate representation as

S n+(R) = {
A ∈ S n(R) : g(A) ≤ 0

}
,

S n++(R) = {
A ∈ S n(R) : g(A) < 0

}
.
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We can thus represent S n+(R) as a constrained set with a single inequality, but we
have to use the nonsmooth function λmax. On the other hand, in Sect. 4.4, we will
represent it with several smooth functions.

We mention briefly that smooth approximations of the nonsmooth representing
function λmax give smooth approximations of S n+(R). We start from S n+(R) =
{A ∈ S n(R) : λmax(−A) ≤ 0} and, following [35], we define for all μ > 0

X ∈ S n(R) �−→ fμ(X) := μ log

(
n∑

i=1

exp
(
λi(X)/μ

)
)

where the λi(X) are the eigenvalues of X. This expression of fμ can be transformed
into

fμ(X) = λmax(X) + μ log
(
trace

(
E(X)

))
with E(X) = exp

(
X − λmax(X)In

μ

)
.

In [35], it is shown that fμ is globally Lipschitz, of class C1 with gradient

∇fμ(X) = E(X)

trace(E(X))
,

and that we have the uniform approximation

λmax(X) ≤ fμ(X) ≤ λmax(X) + μ logn.

Therefore, S n+ (R) could be uniformly approximated by {A ∈ S n(R) : fμ(−A) ≤ 0}
which is an inner (μ logn)-approximation.

4.4 Representation as Inequality Constrained Sets: Semialgebraic Viewpoint

The adequate representation of the previous section used a nonsmooth function. The
algebraic nature of S n+(R) gives a representation with polynomials, and it is tempting
to consider the positively homogenous polynomial functions Δk(A). However, we
cannot use them to have the desired decomposition since (recall Sect. 3.2)

S n+(R) �
{
A ∈ S n(R) : Δk(A) ≥ 0 for all k = 1, . . . , n

}
,

S n++(R) = {
A ∈ S n(R) : Δk(A) > 0 for all k = 1, . . . , n

}
.

We still have an adequate polynomial representation: setting gk = −ik , we have in-
deed

S n+(R) = {
A ∈ S n(R) : gk(A) ≤ 0 for all k = 1, . . . , n

}
,

S n++(R) = {
A ∈ S n(R) : gk(A) < 0 for all k = 1, . . . , n

}
.

(12)

The constraint functions gk are polynomial, positively homogeneous of degree k; ob-
viously they are of class C∞, whereas g in (11) is nonsmooth. Note that S n+ (R) rep-
resented by (12) is clearly a cone, but its convexity is less clear (and comes from sub-
tle reasons: hyperbolic polynomials and the convexity theorem of Gårding; see [12]).
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Also note that in the representation (12) we have the a priori knowledge of the
active constraints at a matrix A (those such that gk(A) = 0). Usually, we only know
this a posteriori; here we directly know from the rank r of A that:

gk(A) < 0 for k = 1, . . . , r and gk(A) = 0 for k = r + 1, . . . , n.

We now briefly discuss the fact that S n+(R), as it appears in (12), is a semialge-
braic set. A so-called semialgebraic set is a set defined by unions and intersections
of a finite number of polynomial inequalities. It turns out that these sets enjoy very
nice closedness properties (almost any “finite” operation preserves semialgebraicity;
see [36]). These properties are useful tools for the analysis of structured nonsmooth
optimization problems (see, e.g. [37, 38]). One of the main properties of semialge-
braic sets is that they can be decomposed into a union of connected smooth manifolds
(so-called strata) that fit together nicely. Denoting by Rr the smooth submanifold
made up from the positive semidefinite matrices of fixed rank r (for r = 0, . . . , n),
we observe that the semialgebraic cone S n+(R) is the union of the n + 1 manifolds
Rr , which are themselves the union of their connected components, the strata of
S n+(R). The two extreme cases are: r = 0 the apex of the cone and r = n the interior
of the cone. The decomposition as union of manifolds is explicit in the representation
of S 2+(R) in R

3: the point (r = 0), the boundary deprived of the origin (r = 1) and
the interior of the cone (r = 2).

The tangent space to Rr at A (denoted by TA) is connected to the tangent cone to
S n+(R) at A. In fact, TA is the largest subspace included in TA (recall (9)), namely

TA = TA ∩ −TA = {
M ∈ S n(R) : Mu = 0 for all u ∈ kerA

}
.

4.5 Natural Riemannian Metric on S n++(R)

In practice, the computations dealing with positive definite matrices are numerous
and involve various operations: averaging, approximation, filtering, estimation, etc.
It has been noticed that the Euclidean geometry is not always best suited for some
of these operations (as, for example, in image processing; see, e.g. [39] and refer-
ences therein). This section presents another geometry in S n++(R) having different
operations (for example, for averaging). Next section connects this geometry to opti-
mization. We refer to [4, Chap. 6] for more details and for the proofs of the results.
Note that similar developments hold for Rr , the fixed rank positive definite matrix
manifold (see [40]), but they require more involved techniques. Though we use the
language of Riemannian geometry, we stay here at a very basic level.

The cone S n++(R) is open, and has two natural geometries: the Euclidean geom-
etry associated with the inner product 〈〈·, ·〉〉, where the distance between A and B

is

d2(A,B) := ‖A − B‖2 =√〈〈A − B,A − B〉〉;
and a Riemannian metric defined from ds = ‖A−1/2(dA)A−1/2‖2 (the “infinitesimal
length” at A) by the following standard way.
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Let A,B ∈ S n++(R) and consider a piecewise C1 path γ : [a, b] → S n++(R) from
A = γ (a) to B = γ (b); then the length of γ is

L(γ ) :=
∫ b

a

∥∥γ −1/2(t)γ ′(t)γ −1/2(t)
∥∥

2 dt,

and the Riemannian distance is

dR(A,B) := inf
{
L(γ ) : γ paths from A to B

}
. (13)

It turns out that we have nice explicit expressions of dR and associated “geodesics”
(locally, the shortest paths between two points). The unique geodesic that connects A

and B is the following path

[0,1] �−→ γ̄ (t) := A1/2(A−1/2BA−1/2)
t
A1/2

that reaches the minimum in (13), so that

dR(A,B)2 = ∥∥log
(
A−1/2BA−1/2)∥∥2

=
n∑

i=1

(
logλi

(
A−1/2BA−1/2))2 =

n∑

i=1

(
logλi

(
A−1B

))2
.

The last inequality comes from the fact that A−1B and A1/2BA1/2 are similar matri-
ces, so they have the same eigenvalues. We can verify from this expression that we
have indeed the desirable property dR(A,B) = dR(B,A) (since (A−1B)−1 = B−1A,
the squared log of eigenvalues are the same). We give a flavour on why this distance
has a better behaviour for some applications.

Distance of Inverses We get easily that the inversion does not change the distance:
for any A and B in S n++(R), we have

dR(A,B) = dR

(
A−1,B−1). (14)

This property does not hold for the distance d2. Here it simply follows from the fact

that (A−1B)
� = BA−1 have the same eigenvalues.

Geometric Average (and a Little More) Let A1, . . . ,Am be m matrices of S n++(R).
Writing the optimality conditions, we can prove that there exists a unique matrix
M2(A1, . . . ,Am) in S n++(R) that minimizes X �→ ∑m

i=1(‖X − Ai‖2)
2, and we get

explicitly that M2 is the usual (arithmetic) average

M2(A1, . . . ,Am) := A1 + · · · + Am

m
.

For the Riemannian geometry, we have similarly that there exists a unique matrix X

in S n++(R) that minimizes

X �−→
m∑

i=1

dR(X,Ai)
2, (15)
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and this matrix, denoted by MR(A1, . . . ,Am), is called the Riemannian average. An
interesting property (not shared by M2) comes from (14): we have

MR

(
A−1

1 , . . . ,A−1
m

)
is the inverse of MR(A1, . . . ,Am). (16)

Finally, the optimality condition of (15) yields that
∑m

i=1 log(Ai
−1X) = 0 character-

izes the Riemannian average.
For m = 2, we see that MR(A1,A2) = A1(A1

−1A2)
1/2 = A2(A2

−1A1)
1/2 is the

solution of the equation (see [4, Chap. 4] for the details). If furthermore A1 and A2
commute, we have

MR(A1,A2) = A
1/2
1 A

1/2
2 .

This last property explains why the Riemmanian average is sometimes called the
geometric average.

For a general m, computing MR(A1, . . . ,Am) might be less direct. As far as the
symmetry property (16) is concerned, one could consider instead another matrix av-
erage, the so-called resolvent average Mres(A1, . . . ,Am) of [41]. It can be defined as
the minimum of a function looking like (15) (with a Bregman distance replacing dR ;
see [41, Proposition 2.8]), but it also has a simple, easy-to-compute expression that
can be written

(
Mres(A1, . . . ,Am) + In

)−1 = (
(A1 + In)

−1 + · · · + (A1 + In)
−1)/n.

The above equality interprets that the resolvent of the average is the arithmetic aver-
age of the resolvents of the Ai ’s, which give the name “resolvent average”. The fact
that the resolvent average satisfies (16) comes from techniques of variational analysis
(see [41, Theorem 4.8]).

4.6 Barrier Function of S n++(R)

As a function of the real variable x > 0, the logarithm x �→ logx has a matrix relative
which turns out to have a central role in optimization. The celebrated (negative) log-
function for matrices is

X � 0 �−→ F(X) := − log
(
det(X)

)= log
(
detX−1). (17)

Differential calculus for F in S n++(R) gives the “same” results as for the log in R+.
The composite function F is of class C∞ on S n++(R); its derivative DF(X) : H ∈
S n(R) �→ DF(X)[H ] is such that

DF(X)[H ] = −trace
(
X−1H

)= 〈〈−X−1,H
〉〉= −trace

(
X−1/2HX−1/2),

and gives the gradient ∇F(X) = −X−1. We have furthermore

D2F(X)[H,H ] = trace
((

X−1/2HX−1/2)2)= 〈〈
X−1HX−1,H

〉〉
,

D3F(X)[H,H,H ] = −2trace
((

X−1/2HX1/2)3)
.



572 J Optim Theory Appl (2012) 153:551–577

We can also prove that F is strictly convex on S n++(R). This fundamental property
is the topic of several exercises in [42].

As mentioned above, this function has a very special role in optimization,
more precisely in semidefinite programming [6]. The function F is indeed a self-
concordant barrier-function for S n++(R). The role of barrier is intuitive: F(X) →
+∞ when X � 0 approaches the boundary of S n++(R), which consists of the singular
matrices A � 0. Self-concordance is a technical property, namely

∣∣D3F(X)[H,H,H ]∣∣≤ α
(
D2F(X)[H,H ])3/2

for a constant α (here α = 2 is valid). In the 1990s, Y. Nesterov and A. Nemirovski
developed a theory [43] that has had tremendous consequences in convex optimiza-
tion. They showed that self-concordant barrier-functions allow us to design algo-
rithms (called interior-point methods) for linear optimization problems with conic
constraints, and that moreover the complexity of those algorithms is fully understood.
In particular, the interior-point algorithms for semidefinite programming made a little
revolution during the 1990s: they provided numerical methods to solve a wide range
of engineering problems, for example, in control [44], or in combinatorial optimiza-
tion [45].

The log-function F in (17) is at the heart of interior point methods for semidefinite
programming; it also has a remarkable connection with the Riemmanian metric of
Sect. 4.5. Observe indeed that the norm in S n+(R) associated to D2F(X) corresponds
nicely with the infinitesimal norm defined by the Riemannian structure:

‖H‖D2F(X) = (
D2F(X)[H,H ])1/2 = ∥∥X−1/2HX−1/2

∥∥.

It follows that the Riemannian distance naturally associated with the barrier is exactly
the natural Riemannian distance (13). This geometrical interpretation of the barrier
function then shows that interior-point methods have an intrinsic appeal, and may
explain their strong complexity results (see more in [46]).

4.7 Unit Partition in S n++(R)

In this last section, we discuss the so-called unit partition problem in S n++(R). Mo-
tivated by a problem originated in economics, I. Ekeland posed it as a challenge in a
conference in 1997 [47]. Given k + 1 nonzero vectors x1, . . . , xk, y in R

n, when is it
possible to find positive definite matrices M1, . . . ,Mk such that

Miy = xi for all i = 1, . . . , k (18)

and
k∑

i=1

Mi = In? (19)

The first equation is of the quasi-Newton type [48]; the second equation gives the
name of the problem.
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A condition that guarantees the existence of such matrices should obviously de-
pend on the vectors x1, . . . , xk, y. It is easy to get from (18), (19) that a necessary
condition is

〈
xi, y

〉
> 0 for all i = 1, . . . , k and

k∑

i=1

xi = y. (20)

Unfortunately, this condition is not sufficient, as shown by the following counter-
example. Consider in R

2 the three vectors

x1 =
[

1/2
1

]
, x2 =

[
1/2
−1

]
and y =

[
1
0

]
.

Then observe that for both i = 1,2, the property Mix
i = y with Mi � 0 yields

M1 =
[

1/2 1
1 α

]
and M2 =

[
1/2 −1
−1 β

]
,

with α,β > 2. Thus it is impossible to have M1 + M2 = I2. Note also that con-
dition (20) is even not sufficient to get a weaker version of the partition (19) with
Mi � 0.

We give here a constructive way to get the unit partition of S n+(R) (and later a
variant of the result). The result is due to A. Inchakov, as noted by [49].

Theorem 4.1 (Condition for unit partition of S n++(R)) Consider k + 1 nonzero vec-
tors x1, . . . , xk, y in R

n, satisfying (20). Then a necessary and sufficient condition for
the existence of Mi � 0 satisfying (18) and (19) is that

A0 := In −
k∑

i=1

xixi
�

〈xi, y〉 be positive definite on y⊥. (21)

Proof Let us prove first that the condition (21) is necessary. The Cauchy–Schwarz
inequality gives for all i and for all z ∈ R

n

〈Miy, z〉2 ≤ 〈Miy,y〉〈Miz, z〉 with equality if and only if z and y are collinear,

which yields

〈
xi, z

〉2 ≤ 〈
xi, y

〉〈Miz, z〉 with equality if and only if z and y collinear.

As a consequence, we have
⎧
⎨

⎩

∑k
i=1

( 〈xi ,z〉2

〈xi ,y〉 − 〈Miz, z〉
)=∑k

i=1
〈xi ,z〉2

〈xi ,y〉 − ‖z‖2 ≤ 0

with equality if and only if z and y are collinear,

which means

qA0(z) ≥ 0 with equality if and only if z and y are collinear.
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Thus A0 is positive semidefinite and of kernel reduced to Ry, and we get (21).
To prove the sufficiency of condition (21), we propose the matrices

Mi := A0

k
+ xixi�

〈xi, y〉 .

By construction, we have
∑k

i=1 Mi = In; and moreover, since A0y = 0, we also have
Miy = xi for all i = 1, . . . , k. It remains to prove the positive definiteness of the Mi ’s.

It is clear that Mi � 0, since it is a sum of two positive semidefinite matrices. Let
us take z ∈ R

n such that 〈Miz, z〉 = 0, and let us prove that z = 0. We have

〈A0z, z〉
k

+ 〈xi, z〉2

〈xi, y〉 = 0,

which yields
{

〈A0z, z〉 = 0 (hence z and y are collinear by (21))

〈xi, z〉 = 0.

The conclusion follows easily: there exists α ∈ R such that z = αy, and the condition
〈xi, y〉 > 0 implies α = 0 and then z = 0, so Mi is positive definite. �

It is interesting to note that (21) is of the type

(E0) 〈Ax,x〉 > 0 for all x �= 0 orthogonal to y, for A ∈ S n(R) and y �= 0 in R
n,

which is a frequently encountered property in matrix analysis and optimization.
Here are four formulations equivalent to (E0) (see, e.g. [50]).

(E1) Finsler–Debreu condition: there exists μ ≥ 0 such that A + μyy� � 0.
(E2) Condition on the augmented matrix: the matrix Ā ∈ S n+1(R) defined by blocks

as

Ā =
[

A y

y� 0

]

has exactly n positive eigenvalues.
(E3) Condition on determinants (that the economists are keen of). For I ⊂ {1, . . . , n},

we denote by AI the matrix extracted from A by taking only the columns and
rows with indices in I . Similarly yI is obtained from y by taking the entries yi

for i ∈ I . We set

ĀI =
[

AI yI

yI
� 0

]

and the condition is detAI < 0 for all I = {1,2}, {1,2,3}, . . . , {1, . . . , n}.
(E4) Condition on the inverse of the augmented matrix. The matrix Ā is invertible

and the n×n-matrix extracted from Ā−1 by taking the first n columns and rows
is positive semidefinite.

We finish with a variant of Theorem 4.1 showing that starting from a weaker as-
sumption, we get a weaker result.
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Theorem 4.2 (Condition for unit partition of S n+(R)) Let x1, . . . , xk and y �= 0 be
k + 1 vectors of R

n, satisfying

{
(〈xi, y〉 > 0 or xi = 0) for all i = 1, . . . , k,

∑k
i=1 xi = y.

(22)

Then a necessary and sufficient condition for the existence of Mi � 0 satisfying (18)
and (19) is that

A0 := In −
∑

{i:xi �=0}

xixi
�

〈xi, y〉 is positive semidefinite. (23)

Proof Note that under the assumption of the theorem, we have 〈xi, y〉 ≥ 0 for all
i = 1, . . . , k and xi �= 0 because

∑k
i=1 xi = y �= 0. The proof is similar to (and easier

than) the previous one. Let us start with the necessity of the condition (23). We have
A0y = 0 since

∑n
i=1 xi = ∑

{i:xi �=0} xi = y. Using the Cauchy–Schwarz inequality,
we write

〈
xi, z

〉2 ≤ 〈
xi, y

〉〈Miz, z〉,
and then

∑

{i:xi �=0}

〈xi, z〉2

〈xi, y〉 − ‖z‖2 ≤ 0.

Thus we get A0 � 0. As for sufficiency, we propose the semidefinite matrices

Mi :=
⎧
⎨

⎩

A0
k

if xi = 0,

A0
k

+ xixi�
〈xi ,y〉 if 〈xi, y〉 > 0.

We check that in both cases Miy = xi , and obviously we also have
∑k

i=1 Mi = In. �

5 Concluding Remarks

This article highlights nice variational properties of (the set of the) positive semidef-
inite matrices, and gives pointers to some of their applications. Even if the notion of
positive semidefiniteness is basic and taught everywhere, there are still many open
questions related to it, and more generally to the interplay between matrix analysis
and optimization; see the commented problems in [9] and [51]. The “variational”
viewpoint adopted here also opens the way to another notion of positivity, the so-
called “copositivity”, which also has rich and useful properties; for example, see the
recent review [52].

Acknowledgements The authors thank J.-B. Lasserre for having made us aware of the characterization
of the positive semidefiniteness by non-negativity of the principal invariants (see Sect. 3.2).
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