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Abstract

In matricial analysis, the theorem of Eckart & Young provides a best approxima-
tion of an arbitrary matrix by a matrix of rank at most r. In variational analysis or
optimization, the Moreau envelopes are appropriate ways of approximating or regu-
larizing the rank function. We prove here that we can go forwards and backwards
between the two procedures, thereby showing that they carry essentially the same
information.
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1 From Eckart & Young Theorem to Moreau Envelopes

1.1 Eckart & Young Theorem.

Let Mm,n(R) be equipped with the usual inner product

〈〈U, V 〉〉 := trace of UTV (tr(UTV ) in short),

and the associated norm
‖.‖F =

√
〈〈., .〉〉,

sometimes called the Frobenius or Frobenius-Schur norm. If p := min(m,n), for k ∈
{0, 1, . . . , p}, we may define

Sk := {M ∈Mm,n(R)| rank M ≤ k} ,
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Σk := {M ∈Mm,n(R)| rank M = k} .

If max(m,n) ≥ 2, Σk is a smooth and connected manifold of dimension k(m + n − k)
([1, p.140]). Apart from the case k = 0 (where S0 = Σ0 = {0}) and the case k = p
(see below), Σk has no specific topological property. As for Sk, it enjoys some nicer
mathematical properties. Firstly, it is closed as the sublevel-set (at level k) of the rank
function, a lower-semicontinuous one; secondly, since it is characterized by the vanishing
of all (k+1, k+1)-minors of A, it is a solution set of polynomial equations, thus a so-called
semi-algebraic variety. The link between Sk and Σk is made clear in the following results:

(i) Sp =Mm,n(R) and Σp is an open dense subset of Sp;

(ii) If k < p, the interior of Σk is empty while its closure is Sk.

Given A ∈ Mm,n(R) of rank r and an integer k ≤ r, what could be said about the
matrices in Sk closest to A? Observe firstly that this best approximation problem makes
sense since we have defined a distance (via the Frobenius norm) on Mm,n(R). However,
even if the existence of best approximants does not offer any difficulty (remember that ‖.‖
is a continuous function and Sk is a closed subset), the question of uniqueness as well as
that of an explicit form of best approximants remain posed. It turns out that there is a
beautiful theorem answering these questions.

Before going further, we recall a technique of decomposition of matrices which is central
in numerical matricial analysis and in statistics: the so-called singular value decomposition
(SVD). Here it is: Given A ∈Mm,n(R), there is an (m,m) orthogonal matrix U , an (n, n)
orthogonal matrix V , a “pseudo-diagonal” matrix D1 of the same size as A, such that
A = UDV .

The matrix D is a sort of skeleton of A: all the “non-diagonal” entries of D are zero;
on the “diagonal” are the singular values σ1, σ2, . . . , σp of A, that are the square roots of
the eigenvalues of ATA (or AAT ). By definition, all the σi’s are nonnegative, and exactly
r of them (if r = rank A) are positive. By changing the ordering in columns or rows in U
and V , and without loss of generality, we can suppose that

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0. (1)

U and V are orthogonal matrices of appropriate sizes (so that the product UDV of matrices
can be performed). Of course, these U and V are not unique.

The best approximation problem that we consider now is as follows: Given A ∈
Mm,n(R) of rank r and k < r,

(Ak)
{

Minimize ‖A−M‖F
M ∈ Sk.

This problem is solved in the following theorem.
1D = [dij ] “pseudo-diagonal” means that dij = 0 for i 6= j. One also uses the notation

diagm,n(σ1, . . . , σp) for D.
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Theorem 1. (Eckart & Young, 1936) Let 0 6= A ∈Mm,n(R) of rank r and let 1 ≤ k < r.
Let A = UDV be a singular value decomposition of A. Then

Ak := UDkV,

(where Dk is obtained from D by keeping σ1, . . . , σk and putting 0 in the place of σk+1, . . . , σr)
is a solution of the best approximation problem (Ak). Such a solution is unique when
σk > σk+1.

The optimal value in (Ak) is

min
M∈Sk

‖A−M‖F =

√√√√ r∑
i=k+1

σ2
i .

This theorem is a classical result in numerical matricial analysis, usually bearing the
name of Eckart and Young. From the historical viewpoint, there is however some discussion
about the naming of Theorem 1; according to Stewart ([8]), the mathematician E.Schmidt
should be credited for having derived this approximation theorem, while studying integral
equations, in a publication which dates back to 1907. Moreover, Mirsky (1960) showed that
the Ak defined in Theorem 1 is a minimizer in problem (Ak) for any unitary invariant norm
(a norm ‖.‖ on Mm,n(R) is called unitary invariant if ‖UAV ‖ = ‖A‖ for any orthogonal
pair of matrices U and V ). See also [2] for references and additional comments on it.
So, to be complete, we should call Theorem 1 the Schmidt-Eckart-Young-Mirsky theorem.
For the sake of brevity, we nevertheless stand by the usual appellation (in papers as well
as in textbooks) which is “Eckart and Young theorem”.

Let us go back to the approximation or optimization result itself. Indeed, since ‖.‖F is
derived from an inner product, the objective function in (Ak) (taking its square actually,
‖A−M‖2F ) is convex and smooth. However, due to the non-convexity of the constraint set
Sk, the optimization problem (Ak) is non-convex. It is therefore surprising that one could
provide (via the Eckart & Young theorem) an explicit form of a solution of this problem.
In short, since the Sk’s are the sublevel-sets of the rank function, one always has at one’s
disposal a “projection” of (an arbitrary) matrix A on the sublevel-sets Sk.

Some comments are in order here to explain why (Ak) has a unique solution when
σk > σk+1. Let us denote by O(m,n)A the set of pairs (U, V ) of orthogonal matrices
appearing in a singular value decomposition Udiagm,n[σ1, . . . , σp]V of A. Then, as stated
in Theorem 1, one solution of the problem (Ak) is given by Ak = UDkV , with (U, V )
arbitrary chosen in O(m,n)A. But actually, all the optimal solutions of (Ak) are given by
matrices ŨDkṼ , where (Ũ , Ṽ ) ∈ O(m,n)A. In short, the solution set of problem (Ak) is{

ŨDkṼ | (Ũ , Ṽ ) ∈ O(m,n)A
}
.

When σk > σk+1, it can easily be proved that

Ũ1DkṼ1 = Ũ2DkṼ2

whenever (Ũ1, Ṽ1) and (Ũ2, Ṽ2) are taken in O(m,n)A. Hence, in that case, all the solutions
of (Ak) coalesce to just one.
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But, if σk = σk+1 for example, the problem (Ak) has infinitely many solutions. In
spite of a thorough search, we could not find the description of the whole solution set of
(Ak) in textbooks on numerical matricial analysis.

Note that all the solutions of the approximation problem (Ak) are of rank k exactly.
As a consequence, under the assumptions of Theorem 1, we also have solved the problem
of the projection of A on the manifold Σk. We will use a by-product of this result in the
following form: If 0 6= A ∈Mm,n(R) is of rank r and if 1 ≤ k < r,

dist(A,Σk) = dist(A,Sk) =

√√√√ r∑
i=k+1

σ2
i . (2)

1.2 Towards Moreau envelopes.

We begin with some historical comments. In 1962-1963, so exactly 50 years ago,
the French mechanician-mathematician J.-J.Moreau introduced a way of regularizing and
approximating a convex function, called prox-regularization ([5], [6]). This was an example
of the so-called inf-convolution or epigraphic addition of two functions. The process has
some resemblances with the (exterior) penalization of a function with a squared norm term
or with the Tikhonov regularization in matricial analysis; it is however different: starting
with an arbitrary convex function, the objective was to define, in a “variational way”, a
regularized version of it which is convex and smooth. The process has been very successful
since and one cannot count the number of works on the so called prox-methods in convex
minimization. Indeed, the date 1962-1963 marks the birth of modern convex analysis and
optimization.

In subsequent efforts by several mathematicians, the prox-regularization process has
been extended to nonconvex functions. We have to rely on this (nonconvex) setting, since
the function at stake here, the rank function, does not enjoy any convexity property, by
far.

Although the rank function is a “bumpy” one, it is lower-semicontinuous and bounded
from below; it therefore can be approximated-regularized in the so-called Moreau & Yosida
way. This technique, very much in vogue in the context of variational analysis or opti-
mization, gives rise to continuous approximations of the original function; they are called
its Moreau envelopes. Surprisingly enough, the rank function is amenable to such an
approximation-regularization process, and we get at the end explicit forms of the Moreau
envelopes in terms of singular matrices. For that purpose, Eckart & Young theorem (Sec-
tion 1.1) will be instrumental.

Let us firstly recall what is known, as a general rule, for the Moreau-Yosida
approximation-regularization technique in a non-convex context (see [7, Section 1.G] for
example).

Let (E, ‖.‖) be an Euclidean space, let f : E −→ R be a lower-semicontinuous function,
bounded from below on E. For a parameter value ε > 0, the Moreau envelope (or Moreau-
Yosida approximate) function fε and the (so-called) proximal set-valued mapping Proxεf
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are defined by:
fε(x) := inf

u∈E

{
f(u) + 1

ε
‖x− u‖2

}
,

Proxεf(x) :=
{
u ∈ E| f(u) + 1

ε
‖x− u‖2 = fε(x)

}
.

Then:

(i) fε is a finite-valued continuous function on E, minimizing f on E;

(ii) The sequence of functions (fε)ε>0 increases when ε decreases, and fε(x) −→ f(x)
for all x ∈ E;

(iii) The set Proxεf(x) is nonempty and compact for all x ∈ E;

(iv) The lower bounds of f and fε on E are equal:

inf
x∈E

f(x) = inf
x∈E

fε(x).

We now apply this process to the rank function. The context is therefore as following:
E =Mm,n(R), the norm is the Frobenius norm ‖.‖F and f :Mm,n(R) −→ R is the rank
function. By definition,

(rank)ε(A) = inf
M∈Mm,n(R)

{
rank M + 1

ε
‖A−M‖2F

}
, (3)

Proxε(rank)(A) =
{
M ∈Mm,n(R)| rank M + 1

ε
‖A−M‖2F = (rank)ε(A)

}
. (4)

Here is the main theorem in this subsection. It was announced in our concomitent
survey paper [3, Section 8.2].

Theorem 2. Let 0 6= A ∈Mm,n(R) of rank r and ε > 0. Then:

(i)

(rank)ε(A) = 1
ε
‖A‖2F −

1
ε

r∑
i=1

[σ2
i (A)− ε]+. (5)

(ii) One minimizer in (3), i.e. one element in Proxε(rank)(A), is provided by B :=
ŨΣBṼ , where

• (Ũ , Ṽ ) ∈ O(m,n)A , i.e. Ũ and Ṽ are orthogonal matrices such that A =
ŨΣAṼ , with ΣA = diagm,n[σ1(A), . . . , σr(A), 0, . . . , 0] (a singular value decom-
position of A with σ1(A) ≥ · · · ≥ σr(A) > σr+1(A) = · · · = σp(A) = 0);
•

ΣB =


0 if maxi σi(A) = σ1(A) ≤

√
ε,

ΣA if min{i|σi(A)>0} σi(A) = σr(A) ≥
√
ε,

diagm,n[σ1(A), . . . , σk(A), 0, . . . , 0] if there is an integer k
such that σk(A) ≥

√
ε > σk+1(A).
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If A = 0, which amounts to having r = 0, (rank)ε(A) = 0, so that the formula (5) is
still valid (with the usual rule that summing over the empty set gets at 0).

We may complete the result (ii) in the theorem above by determining
the whole set Proxε(rank)(A). Indeed, we have four cases to consider:

• If maxi σi(A) = σ1(A) <
√
ε, then Proxε(rank)(A) = {0}.

• If min{i|σi(A)>0} σi(A) = σr(A) >
√
ε, then Proxε(rank)(A) = {A}.

• If there is an integer k such that σk(A) >
√
ε > σk+1(A), then

Proxε(rank)(A) =
{
Udiagm,n[σ1(A), . . . , σk(A), 0, . . . , 0]V

}
.

In all the three cases above, Proxε(rank) is single-valued at A.

• Suppose there is an integer k such that σk(A) =
√
ε. We define

k0 := min{k| σk(A) =
√
ε},

k1 := max{k| σk(A) =
√
ε}.

Then, Proxε(rank)(A) is the set of matrices of the form Ũdiagm,n(τ1, . . . , τp)Ṽ , where
(Ũ , Ṽ ) ∈ O(m,n)A and

τi =
{
σi(A) if i ≤ k

0 otherwise ,

where k is an integer between k0 and k1.

Before going into the proof of Theorem 2, a couple of comments are in order.
Comment 1. There are other ways to express (rank)ε(A), different from (although
equivalent to) the one in (5). For example, taking into account the relation ‖A‖2F =∑r
i=1 σ

2
i (A), we get at

(rank)ε(A) =
r∑
i=1

min
[
1, σ

2
i (A)
ε

]
. (6)

Suppose now that one wishes to express (rank)ε(A) in terms of traces of matrices, without
any (explicit) reference to the singular values of A. Indeed, ATA − εIn is a symmetric
matrix whose eigenvalues are σ2

1(A) − ε, . . . , σ2
r (A) − ε,−ε, . . . ,−ε. Its projection on the

closed convex cone S+
n (R) of positive semidefinite symmetric matrices has eigenvalues

[σ2
1(A)− ε]+, . . . , [σ2

r (A)− ε]+, 0, . . . , 0 (see [2] or [4]).

Thus, an alternate expression for (rank)ε(A) is:

(rank)ε(A) = 1
ε

tr(ATA)− 1
ε

tr
[
PS+

n (R)(A
TA− εIn)

]
. (7)

Comment 2. If ε is small enough, say if ε ≤ σ2
r (A), then

(rank)ε(A) = rank A. (8)
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This easily comes from (5) since, in that case, σ2
i (A) − ε ≥ 0 for all i = 1, 2, . . . , r and∑r

i=1 σ
2
i (A) = ‖A‖2F . Therefore, the general convergence result that is known for the

Moreau envelopes fε of f (recalled at the beginning of Section 1.2) is made much stronger
here: fε(A) = f(A) for ε small enough!
It may be destabilizing to accept that, for ε small enough, the formulas (5) or (7) for
(rank)ε(A) produce an integer!
Let us end this comment with a trap in which one could fall: Yes, σr is a continuous
function of A; but one cannot secure that, for ε small enough, (rank)ε(B) = rank B for B
in a neighborhood of A; this is due to the fact that, in the required threshold, ε ≤ σ2

r (A),
the quantity r (= rank of A) depends also on A.

Proof. (of Theorem 2)
To find the lower bound over the whole space Mm,n(R) in (3), we divide Mm,n(R)

into the “strata” Σk, and calculate the individual lower bounds

inf
M∈Σk

{rank M + 1
ε
‖M −A‖2F }

over Σk, for k = 0, 1, . . . , p. We therefore have three different situations to consider: when
k = r(= rank A), when k > r, and when k < r. Here are the corresponding results:

• Let k = r(= rank A). Since A ∈ Σk, we get immediately

min
M∈Σk

{
rank M + 1

ε
‖M −A‖2F

}
= rank A = r. (9)

• Let k > r. Then

rank M + 1
ε
‖M −A‖2F ≥ k > r for all M ∈ Σk,

so that
min
M∈Σk

{
rank M + 1

ε
‖M −A‖2F

}
≥ k > r. (10)

• Let k < r. Then

min
M∈Σk

{
rank M + 1

ε
‖M −A‖2F

}
= k + 1

ε
[dist(A,Σk)]2.

But, in that case, we have observed that [dist(A,Σk)]2 =
∑r
i=k+1 σ

2
i (A) (cf. (2) and

the comment preceding it). In short,

min
M∈Σk

{
rank M + 1

ε
‖M −A‖2F

}
= k + 1

ε

r∑
i=k+1

σ2
i (A). (11)
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By collecting the results (9), (10) and (11), we get at

(rank)ε(A) = min
k=0,...,p

min
M∈Σk

{
rank M + 1

ε
‖M −A‖2F

}

= min
k=0,...,r

k +
r∑

i=k+1

σ2
i (A)
ε


= min

k=0,...,r

{
‖A‖2F
ε

+
k∑
i=1

1
ε

[
ε− σ2

i (A)
]}

(12)

(with the convention that
∑r
i=r+1

σ2
i (A)
ε = 0).

Three cases are now to be considered:

• Case 1: σ2
i (A) ≤ ε for all i = 1, . . . , r. Then k∗ = 0 is a solution in the minimization

problem (12) and the value in (12) is
r∑
i=1

σ2
i (A)
ε

= 1
ε
‖A‖2F .

Therefore, the matrixB = 0 is a minimizer in (3), i.e., one element in Proxε(rank)(A).

• Case 2: σ2
i (A) ≥ ε for all i = 1, . . . , r. Then k∗ = r is a solution in the minimization

problem (12) and the optimal value in (12) is r. Therefore, the matrix B = A is a
minimizer in (3), i.e. one element in Proxε(rank)(A).

• Case 3 (the standard one): There is an integer k0 ∈ {1, . . . , r − 1} such that
σ2
k0

(A) > ε > σ2
k0+1(A). Then k∗ = k0 is a solution in the minimization problem

(12) and the optimal value in (12) is

k0 +
r∑

i=k0+1

σ2
i (A)
ε

.

A matrix B is a minimizer in (3), i.e. is an element of Proxε(rank)(A), when

rank B + 1
ε
‖A−B‖2F = k0 + 1

ε

r∑
i=k0+1

σ2
i (A)
ε

.

The theorem of Eckart & Young tells us that such a B is provided by a “projection”
of A on Sk0 .
To summarize all the cases, the optimal value in (12) is

(rank)ε(A) =
r∑
i=1

min
[
1, σ

2
i (A)
ε

]
,

the alternate form (6) of the expression (5), while a solution B in (3) is as announced
in the statement (ii) of Theorem 2.
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The case of multiple solutions k∗ in the minimization problem (12) is handled similarly
to the Case 3 above. If there is a k such that σ2

k(A) = ε, then the solution set in the
minimization problem (12) is {k0 − 1, . . . , k1}, where

k0 = min{k| σ2
k(A) = ε},

k1 = max{k| σ2
k(A) = ε}.

Then, again by using the Eckart & Young theorem, all the minimizing matrices B in (3)
are those described in the comments following Theorem 2.

2 From Moreau envelopes to Eckart & Young theorem.

Here we start with the (unconstrained) minimization problem

(Pε)
{

Minimize
{

rank M + 1
ε‖A−M‖

2
F

}
M ∈Mm,n(R)

.

The rank function is lower-semicontinuous and bounded from below, the function ‖A −
M‖2F goes to infinity as ‖M‖F goes to infinity, thus (Pε) indeed has solutions. The
question is: How does this minimization process help to solve our best approximation
problem (Ak)? Said otherwise: If Mε is a minimizer in (Pε), what do we know about its
rank? Could we tune the parameter ε so that Mε be of a prescribed rank k? We answer
these questions by following the return path of the one followed in Section 1.

To begin with, we prove an easy technical lemma concerning Moreau envelopes (cf.
beginning of the subsection 1.2). The result we are going to present is known in the convex
case (i.e. when f is convex); it also holds true for non-convex f .

Lemma 1. Let fε be the Moreau envelope of f obtained with the parameter ε > 0. Let
x ∈ E and let u be an element of Proxεf(x). Then u is a “projection” of x on the sublevel-
set of f at level f(u). In other words,

‖x− u‖ ≤ ‖x− u‖ for all u satisfying f(u) ≤ f(u).

Proof. By definition of Proxεf(x), to have u ∈ Proxεf(x) means

f(u) + 1
ε
‖x− u‖2 ≤ f(u) + 1

ε
‖x− u‖2 for all u ∈ E. (13)

Choose u satisfying f(u) ≤ f(u). The above inequality then yields

‖x− u‖ ≤ ‖x− u‖.

Thus, the announced result is proved.

We now go back to our initial problem (Ak); we wish to prove Eckart & Young theorem
with the help of Moreau envelopes. Let therefore 0 6= A ∈ Mm,n(R) of rank r and let
1 ≤ k < r. With this integer k given, how to choose the tuning parameter ε? We
distinguish two cases.
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Theorem 3. Suppose that σk(A) > σk+1(A). Choose ε such that

σk(A) >
√
ε > σk+1(A).

Then, (Pε) has a unique solution Mε. This matrix Mε is of rank k, it is the “projection”
of A on Sk, that is the unique solution of (Ak). Moreover

‖A−Mε‖2F =
r∑

i=k+1
σ2
i (A).

Proof. We read the proof of Theorem 2 backwards. We have

(rank)ε(A) = rank Mε + 1
ε
‖Mε −A‖2F (14)

= min
l=0,...,r

{l + 1
ε

r∑
i=l+1

σ2
i (A)}. (15)

With the choice of ε that we have made, k is the unique solution in (15). So, in (14),

• rank Mε = k and ‖Mε −A‖2F =
∑r
i=k+1 σ

2
i (A);

• According to Lemma 1, Mε is a “projection” of A on the sublevel-set of the rank
function at level rank Mε = k (i.e., a solution of (Ak)).

The case where σk(A) = σk+1(A) is a little more subtle to treat; indeed, in that case,
there are several integers which solve (15) and the corresponding matrix solutions in (14)
all do not have the same rank.

Theorem 4. Suppose that σk(A) = σk+1(A) and choose
√
ε as its common value. Denote

k0 = min{i| σi(A) =
√
ε},

k1 = max{i| σi(A) =
√
ε}.

Then, any integer between k0 and k1 is a solution of (15), so that the solution matrices
Mε in (14) have a rank between k0 and k1.

For k ∈ {k0, . . . , k1}, the solution matrix Mε of rank k in (14) is a “projection” of A
on Sk, that is to say, a solution of (Ak).

Proof. The same, mutatis mutandis, as that of Theorem 3.
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3 By way of conclusion.

The Eckart & Young theorem allowed us to calculate explicity the Moreau envelopes
of the rank function, an objective which was not obvious at all, due to bumpy behavior of
this function; various expressions of these Moreau envelopes have been provided (formulas
(5), (6), (7), Theorem 2).

Conversely, if we want to get a best approximation of A of rank at most k, we could
get at it by solving the unconstrained minimization problem

MinimizeM
{

rank M + 1
ε
‖A−M‖2F

}
,

where the parameter ε > 0 is tuned in function of k (Theorem 3, Theorem 4).
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