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ABSTRACT
We tackle the sparsity constrained optimization problem by resort-
ing to polyhedral k-norm as a valid tool to emulate the �0-pseudo-
norm. The main novelty of the approach is the use of the dual of
the k-norm, which allows to obtain a formulation amenable for a
relaxation that can be efficiently handled by block coordinate meth-
ods. The advantage of the approach is that it does not require the
solution of difference-of-convex programmes, unlike other k-norm
based methods available in the literature. In fact, our block coordi-
nate approach requires, at each iteration, the solution of two convex
programmes, oneofwhich canbe solved inO(n log n) time.Weapply
the method to feature selection within the framework of Support
Vector Machine classification, and we report the results obtained on
some benchmark test problems.
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1. Introduction

The sparsity constrained optimization problem consists in minimizing a function f :
R
n �→ R, under the constraint that the number of the non-zero components of the solution

must not exceed a prefixed integer bound k>0. Denoting by

‖x‖0 �
∣∣∣{i ∈ {1, . . . , n} : xi �= 0

}∣∣∣
the �0-pseudo-norm of a vector x ∈ R

n, namely, the number of its non-zero components,
and letting

Xk
0 �

{
x ∈ R

n : ‖x‖0 ≤ k
}
, (1)

the sparsity constrained programme can be formulated as

min
{
f (x) : x ∈ Xk

0
}
. (2)

Sparsity constrained optimization, together with the companion sparse optimization
problem

min
{
f (x) + ‖x‖0 : x ∈ R

n} (3)
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has received increasing attention in last years, mainly for its potential in effectively deal-
ing with applications in the areas of Machine Learning [13], Compressed Sensing [12],
Portfolio Selection [6] and Statistics [5]. For the theoretical study of the optimality con-
ditions of problems involving the �0-pseudo-norm we refer to [3,9,15]. Computational
complexity issues have been assessed in [1]. From the computational standpoint, sparsity
has been approached in different ways, mainly by adoptingmodels embedding appropriate
sets of binary variables [17,23,25] or by approximating the �0-pseudo-norm by means of
continuous concave functions [8,26,28,31].

A more recent research stream has focused on the use of polyhedral k-norms to force
the solution of an optimization problem to be sparse. The k-norm of any vector x ∈ R

n is
defined as the sum of its k largest absolute-value components, and it is indicated as ‖x‖[k].
It is related to the �1- and �∞-norm by the relations

‖x‖∞ = ‖x‖[1] ≤ ‖x‖[2] ≤ . . . ≤ ‖x‖[n] = ‖x‖1, (4)

and, as later explained at the beginning of § 2, see formula (9), it can be interpreted as

‖x‖[k] = max
{
x	y : ‖y‖1 ≤ k, ‖y‖∞ ≤ 1

}
. (5)

In the pioneering work [30] it has been used in tackling overdetermined systems of linear
equations. A thorough study of the properties of the k-norms is in [19,32].

Thanks to the following property, linking the �0-pseudo-norm to the �1- and the
k-norms,

x ∈ Xk
0 ⇐⇒ ‖x‖1 − ‖x‖[k] = 0, (6)

the k-normhas been successfully employed in [20] for dealingwith the sparsity constrained
optimization. In [16,18] sparse optimization has been approached along the same guide-
lines, focusing, in particular, on the application to SVM classification [11] in Machine
Learning.

The concept of k-norm is also evoked in some approaches to sparsity available in the
Statistics literature [4,7], mainly in comparison with the Lasso method that is based on
adopting the �1-norm instead of the �0-pseudo-norm in (3), and it ensures, in general, a
reasonable sparsity of the solution.

In this paper we tackle the sparsity constrained optimization problem by elaborating
on the approach introduced in [20] and applied in [16], where the use of the polyhedral
k-norm is explored as a tool to deal with sparsity. The novelty of our approach consists in
the introduction of a model based on the dual of the k-norm [19,21,30] which, unlike the
k-norm-based methods [16,20,22], allows us to avoid the need of solving a DC (Difference
of convex) optimization problem, while being suitable of treatment via an effective heuris-
tic approach. More specifically, we consider a relaxation of the dual k-norm model that
can be treated numerically via a block coordinate approach. It requires, at each iteration,
the solution of two convex programmes, with one of the two solvable in O(n log n) time.
The proposed heuristics is then tested in the Machine Learning framework, focusing in
particular on Feature Selection problems where the design of sparse classifiers is required.

The paper is organized as follows. In § 2 we state our model by introducing a dual
formulation of the sparsity constrained programme (2). In § 3 we discuss about possi-
ble approaches to numerically solving the dual formulation, particularly focusing on a
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penalty-based model for which, in § 4, we propose a block coordinate heuristics. In § 5
we apply our model, and the related algorithm, to a Feature Selection problem in the Sup-
port Vector Machines framework, and we report on computational results obtained on a
set of benchmark datasets.

2. Dual formulation of the sparsity-constrained optimization problem

The sparsity constrained optimization problem (2), on the basis of the property (6), has
been restated in [20] as

min
{
f (x) : ‖x‖1 − ‖x‖[k] = 0, x ∈ R

n}. (7)

We may obtain yet another reformulation of (2) by considering the dual of norm ‖ · ‖[k].
Recalling that, given any norm ‖ · ‖, the corresponding dual norm ‖ · ‖∗ is defined as

‖x‖∗ = max
{
x	y : ‖y‖ ≤ 1, y ∈ R

n}, (8)

it has been proved (see, e.g. [19,30]) that

‖ · ‖∗
[k] = max

{
1
k
‖ · ‖1, ‖ · ‖∞

}
.

By observing that ‖ · ‖ = (‖ · ‖∗)∗, from (8) we write the k-norm as:

‖x‖[k] = max
{
x	y : max

{
1
k
‖y‖1, ‖y‖∞

}
≤ 1, y ∈ R

n
}
. (9)

We introduce the auxiliary variables y ∈ R
n and define the set

�k
0 �

{
(x, y) ∈ R

n × R
n : x	y ≥ ‖x‖1, 1k‖y‖1 ≤ 1, ‖y‖∞ ≤ 1

}
. (10)

Taking into account (9), we state the following problem (in the variables x and y)

f ∗ = min
{
f (x) : (x, y) ∈ �k

0

}
(11)

whose constraint set �k
0 is nonconvex due to the presence of the inequality x	y ≥ ‖x‖1.

The equivalence of (11) to (2), and thus to (7), is proved in the next proposition.

Proposition 2.1: Let x ∈ R
n, then x ∈ Xk

0 if and only if there exists y ∈ R
n such that (x, y) ∈

�k
0.

Proof: We first consider a pair (x, y) ∈ �k
0 and observe that

|yi| ≤ 1 ∀ i ∈ {1, . . . , n} and
∣∣∣∣{i ∈ {1, . . . , n} : |yi| = 1

}∣∣∣∣ ≤ k,

since ‖y‖1 ≤ k and ‖y‖∞ ≤ 1. Furthermore, accounting also for x	y ≥ ‖x‖1, and recall-
ing (4) and (5), we have that

‖x‖1 ≤ x	y ≤ ‖x‖[k] ≤ ‖x‖1,
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from which it follows that ‖x‖1 = ‖x‖[k] and in turn, from (6), that x ∈ Xk
0. Next, consid-

ering any x ∈ Xk
0 and defining a vector y ∈ R

n such that

yi =

⎧⎪⎨
⎪⎩
1 if xi > 0
−1 if xi < 0
0 otherwise,

for every i ∈ {1, . . . , n}, it is easy to verify that (x, y) ∈ �k
0. �

In the following we refer to problem (11) as the dual formulation of the sparsity
constrained optimization problem.

3. Numerical treatment of the dual formulation

We discuss our approach to numerically tackle problem (11). A discussion about similar-
ities and differences between the k-norm and the dual k-norm approach to sparsity con-
strained optimization is reported in the Appendix. In the following we assume convexity
of the objective function f : Rn �→ R.

We relax in (11) the (convex) constraint ‖y‖∞ ≤ 1. Letting

�k
1 �

{
(x, y) ∈ R

n × R
n : x	y ≥ ‖x‖1, 1k‖y‖1 ≤ 1

}
⊃ �k

0, (12)

we consider the following programme

min
{
f (x) + ρ(‖y‖∞ − 1) : (x, y) ∈ �k

1
}
, (13)

where we have introduced the penalty parameter ρ > 0. Note that the objective function
of the above problem is convex, and the nonconvexity is confined in the constraint set �k

1
due to x	y ≥ ‖x‖1. In the following propositions we provide some characterizations of the
feasible solutions (x, y) in (13).

Proposition 3.1: Let

Xk
1 �

{
x ∈ R

n : ‖x‖∞ ≥ 1
k
‖x‖1

}
(14)

and take any x ∈ R
n. Then, x ∈ Xk

1 if and only if there exists y ∈ R
n such that (x, y) ∈ �k

1.

Proof: Consider first a pair (x, y) ∈ R
n × R

n and observe that from (x, y) ∈ �k
1 it follows

‖x‖1 ≤ x	y ≤ ‖x‖∞‖y‖1 ≤ k‖x‖∞,

namely, x ∈ Xk
1. On the other hand, take x ∈ Xk

1 and assume, without loss of generality, that
‖x‖∞ = |x1|. Now, let y ∈ R

n be defined, for every i ∈ {1, . . . , n}, as

ȳi =
{
k sgn(xi) if i = 1
0 otherwise,

(15)



OPTIMIZATION METHODS & SOFTWARE 5

and observe that

‖y‖1 = k and x	y = k|x1| = k‖x‖∞ ≥ ‖x‖1,

from which it follows that (x, y) ∈ �k
1. �

Proposition 3.2: For any (x, y) ∈ �k
1 it holds that if x �= 0 then ‖y‖∞ ≥ 1.

Proof: Consider a pair (x, y) ∈ �k
1 such that x �= 0, and assume that ‖y‖∞ < 1. Hence,

from (x, y) ∈ �k
1 it follows that

‖x‖1 ≤ x	y ≤ ‖x‖1‖y‖∞ < ‖x‖1,

where the last strict inequality, returning a contradiction, holds since ‖x‖1 > 0. �

Remark 3.1: We observe that for any (x, y) ∈ �k
1, from Proposition 3.1 it follows that

∑
i/∈I[k](x)

|xi| ≤
∑

i∈I[k](x)

(‖x‖∞ − |xi|
)
,

which links the sum of the non-maximal components (in modulus) of x to the variability
of the maximal ones. Indeed, we note that, for any 1< k<n, vectors of the type x	 =
(±δ,±δ, . . . ,±δ), for some δ ∈ R, do not belong to Xk

1.

Some properties of problem (13) are listed in the following proposition whose proof is
straightforward.

Proposition 3.3: Let ρ ≥ 0 and

h(ρ) � min
{
f (x) + ρ(‖y‖∞ − 1) : (x, y) ∈ �k

1
} = f (x(ρ)) + ρ(‖y(ρ)‖∞ − 1).

The following properties hold:

i) h(ρ) ≤ f ∗, ∀ ρ ≥ 0;
ii) h(ρ) is concave;
iii) g = (‖y(ρ)‖∞ − 1) is a supergradient of h, that is g ∈ ∂h(ρ);
iv) Letting (x̄, ȳ) ∈ �k

1 then ḡ = (‖ȳ‖∞ − 1) is an ε-supergradient of h, that is ḡ ∈ ∂εh(ρ)

for ε = f (x̄) + ρ(‖ȳ‖∞ − 1) − h(ρ).

In the next section we introduce our heuristic approach based on an alternate search (or
block coordinate) approach.

4. The alternate search approach

Aiming to tackle the penalized problem (13), more precisely the problem

min
{
f (x) + ρ‖y‖∞ : (x, y) ∈ �k

1
}
, (16)



6 M. GAUDIOSO ET AL.

where the constant term −ρ in the objective function has been neglected, we introduce a
heuristic block-coordinate method of the descent type, see [29]. It consists in alternating
the following minimization over x ∈ R

n, for a given y ∈ R
n,

min
{
f (x) : x	y ≥ ‖x‖1, x ∈ R

n}, (P(y))

with the following one over y ∈ R
n

min
{‖y‖∞ : x	y ≥ ‖x‖1, ‖y‖1 ≤ k, y ∈ R

n}, (P(x))

for a given x ∈ R
n.

Algorithm 1Heuristic Block-Coordinate Minimization Algorithm (HeurBC)
Input: an integer k > 1, a scalar ε > 0, and a vector y ∈ R

n satisfying (17)
Output: a pair (x∗, y∗) ∈ �k

1
1: set y(0) = y and s = 1 � Initialization
2: solve (P(y(s−1))) and obtain its minimizer x(s) � Minimization over x
3: solve (P(x(s))) and obtain its minimizer y(s) � Minimization over y
4: if ‖y(s)‖∞ > ‖y(s−1)‖∞ − ε then � Stopping test
5: set x∗ = x(s), y∗ = y(s), and exit � Return (x∗, y∗) ∈ �k

1
6: else � Sufficient decrease of ‖y(s)‖∞
7: set s = s + 1 and go to Step 2 � Iterate the procedure
8: end if

The block-coordinate heuristics (HeurBC) is presented inAlgorithm 1, where the input
data are the integer sparsity parameter k>1, the sufficient decrease parameter ε > 0, and
the starting vector y ∈ R

n satisfying

‖y‖1 ≤ k and ‖y‖∞ > 1. (17)

In the following propositions we summarize the relevant properties of the sequence
{(x(s), y(s))} generated by the block-coordinate minimization heuristics.

Proposition 4.1: Let {(x(s), y(s))} be the sequence generated by Algorithm 1, then

(i) both {(x(s), y(s−1))} and {(x(s), y(s))} are contained in �k
1;

(ii) ‖y(s−1)‖∞ < 1 =⇒ x(s) = 0;
(iii) x(s) �= 0 =⇒ ‖y(s)‖∞ ≥ 1 and x(s) = 0 =⇒ y(s) = 0;
(iv) ‖y(s−1)‖∞ > ‖y(s)‖∞;

Proof: (i) These are straightforward consequences of the formulations (P(y(s−1))) and
(P(x(s))) combined with the selection of y(0) such that ‖y(0)‖1 ≤ k;

(ii) Recalling the constraint ‖x‖1 ≤ x	y(s−1) in P(y(s−1)), the results easily follows by
observing that x	y(s−1) ≤ ‖x‖1‖y(s−1)‖∞;

(iii) The former is a consequence of the constraint ‖x(s)‖1 ≤ x(s)	y in (P(x(s))) com-
bined with x(s)	y ≤ ‖x(s)‖1‖y‖∞, while the latter follows from feasibility of y(s) = 0
in (P(x(s))) if x(s) = 0;
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(iv) This easily follows from feasibility of y(s−1) in (P(x(s)). �

Proposition 4.2: Let {(x(s), y(s))} be the sequence generated by Algorithm 1, then the
algorithm terminates after finitely many iterations at (x∗, y∗) ∈ �k

1 such that either
(x∗, y∗) = (0, 0) or x∗ �= 0 and ‖y∗‖∞ = α ≥ 1, the equality holding if and only if x∗ ∈ Xk

0 .

Proof: Termination of the algorithm after finitely many iterations is ensured by mono-
tonicity, consequence of Proposition 4.1(iv), and boundedness from below of the sequence
{‖y(s)‖∞}, while the properties of (x∗, y∗) are consequences of parts (i) and (iii) of Proposi-
tion 4.1. Furthermore, if α = 1 then from (10) it follows that (x∗, y∗) ∈ �k

0, hence x
∗ ∈ Xk

0
due to Proposition 2.1. �

Some further remarks about the relevant features of Algorithm 1 are in order. First, we
note that the initialization of y(0) such that ‖y(0)‖1 ≤ k and ‖y(0)‖∞ ≥ 1 ensure, respec-
tively, that the feasible region of (P(x(1))) is not empty, due to Proposition 3.1 since
x(1) ∈ Xk

1, and that the trivial termination implied by Proposition 4.1(ii) is prevented. Next,
focusing on the nontrivial outcome (x∗, y∗) such that ‖y∗‖∞ = α ≥ 1, we observe that

‖y∗‖1 ≤ k =⇒ x∗	y∗ ≤ ‖y∗‖∞‖x∗‖[k] = α‖x∗‖[k]
from which, recalling the constraints in (P(x∗)), we obtain

‖x∗‖1 ≤ x∗	y∗ ≤ α‖x∗‖[k].

As a consequence, at x∗ �= 0 it holds that

1 ≤ ‖x∗‖1
‖x∗‖[k]

≤ α

which provides a bound on the relative weight of the non-maximal components of x∗ and
confirms again thatα = 1 if and only if x∗ ∈ Xk

0 due to (6). Finally, to highlight the heuristic
nature of the proposed approach, we observe that, since the penalty parameter ρ does not
play any role, the algorithm cannot be cast into some iterative penalty-function approach
by increasing ρ to force feasibility of the relaxed constraint.

Note that property iv) of Proposition 3.3 provides an interpretation of (α − 1) in terms
of ε-superdifferential of function h(ρ).

Problem (P(x)) is obviously convex, as is problem (P(y)) due to the convexity assump-
tionmade on f (·). In the remainder of the section wewill focus on problem (P(x)) showing
that its solution can be obtained in O(n log n) time via an ad hoc sorting algorithm.

4.1. Solving the subproblem (P(x(s)))

Problem (P(x(s))) can be put in the form of a structured linear programme by observing
that there exists an optimal solution y where

x(s)	y =
n∑

i=1
|x(s)
i | |yi|.
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Thus, without loss of generality, in the following we address the properties of the problem:

min
{‖y‖∞ : w	y ≥ ‖w‖1, e	y ≤ k, y ≥ 0, y ∈ R

n}, (P(w))

where w is any nonnegative vector in R
n whose components are ordered in decreasing

order. Problem (P(w)) is in turn equivalent to the following linear programme (P0(w)),
where the additional scalar variable y0 has been introduced to represent ‖y‖∞:

min
{
y0 : w	y ≥ ‖w‖1, e	y ≤ k, y0e − y ≥ 0, y ≥ 0, y ∈ R

n}, (P0(w))

Focusing on the nontrivial case wherew �= 0, from Proposition 4.2 it follows that the min-
imum y0 of (P0(w)) is such that y0 ≥ 1, with the equality holding, due to Proposition 2.1,
if and only if ‖w‖0 ≤ k. Hence, in the remainder of the section we will work under the
assumptions that

‖w‖0 > k (⇐⇒ y∗
0 > 1) (18)

and

‖w‖∞ ≥ 1
k
‖w‖1 (19)

the latter being consequence of Proposition 4.1(i), taking into account the characterization
of x(s) given by Proposition 3.1.

In particular, we first consider the following dual problem of (P0(w))

max
{‖w‖1μ − kσ : wμ − eσ − λ ≤ 0, e	λ = 1, λ ≥ 0, μ ≥ 0, σ ≥ 0, λ ∈ R

n},
(D0(w))

then we state the complementary slackness conditions for the pair (P0(w))–(D0(w)):

μ(w	y − ‖w‖1) = 0 (20)

σ(k − e	y) = 0 (21)

λi(y0 − yi) = 0 ∀ i ∈ {1, . . . , n} (22)

yi(wiμ − σ − λi) = 0 ∀ i ∈ {1, . . . , n}. (23)

Denoting the optimal solutions of (P0(w)) and (D0(w)) by (y0, y) and (μ, σ ,λ), respec-
tively, we note that assumption (18) implies μ > 0, since otherwise the dual objective
function would be prevented to take strictly positive values. Furthermore, we can derive
from (20)–(23) the following relevant properties:

λi = 0 ∀ i ∈ {1, . . . , n} such that yi < y0 (24)

σ

μ
= wi ∀ i ∈ {1, . . . , n} such that 0 < yi < y0 (25)

σ

μ
≤ wi ∀ i ∈ {1, . . . , n} such that yi = y0, (26)

where (24) follows from (22), (25) follows from (23) combinedwithμ > 0, and (26) follows
from (23) combined with nonnegativity of λ.
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As a consequence of the above observations, we can get an insight into the structure of
(y0, y) and (μ, σ ,λ). In fact, we note that assumption (18), combinedwith e	y ≤ k, implies
that no more than k−1 components of y can take value y0. Thus, there exists some index
� ∈ {1, . . . , k − 1} such that yi = y0 for every i ∈ {1, . . . , �}. Moreover, by defining

I(y) �
{
i ∈ {1, . . . , n} : 0 < yi

}
and

I0(y) �
{
i ∈ I(y) : yi < y0

}
then (25) and (26) imply that

j ∈ I0(y) ⇐⇒ j = argmin{wi : i ∈ I(y)}.

Now we present an approach to find a primal-dual couple of feasible solutions satisfying
the complementary slackness conditions (24)–(26). Given an index set I = {1, 2, . . . , h}
for some h ∈ {2, . . . , k}, we define the vector (y0, y) such that yh+1 = · · · = yn = 0 and
y0 = y1 = · · · = yh−1. Then, in order to satisfy constraints w	y ≥ ‖w‖1 and e	y ≤ k it
suffices to find y0 and yh such that

‖w‖[h−1]y0 + whyh = ‖w‖1 (27)

and

(h − 1)y0 + yh = k. (28)

Thus, we obtain

yi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖w‖1 − kwh

‖w‖[h] − hwh
i = 0, . . . , h − 1

k − (h − 1)
‖w‖1 − kwh

‖w‖[h] − hwh
i = h

0 i = h + 1, . . . , n.

(29)

We observe that there exists at least one index h ∈ {2, . . . , k} such that ‖w‖[h] − hwh > 0,
since otherwise one would have w1 = w2 = · · · = wk and the assumptions (18) and (19)
would be violated. Moreover, feasibility of a solution (y0, y) obtained according to (29) is
ensured if yh ≥ 0 and yi ≥ yh, for every i ∈ {0, . . . , h − 1}. Such a solution, whose objective
function value is

y0 = ‖w‖1 − kwh

‖w‖[h] − hwh

is just the optimal solution (y0, y), as we show next. In fact, setting the dual variables as

μ = 1
‖w‖[h] − hwh

> 0, σ = wh

‖w‖[h] − hwh
> 0
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and

λi =
⎧⎨
⎩
wiμ − σ = wi − wh

‖w‖[h] − hwh
≥ 0, ∀ i ∈ {1, . . . , h}

0 ∀ i ∈ {h + 1, . . . , n}

we obtain a dual feasible solution, since e	λ = 1, with the corresponding objective
function value

‖w‖1μ − kσ = ‖w‖1 − kwh

‖w‖[h] − hwh
,

which coincides with the primal objective function value. Hence, primal-dual optimality
follows from satisfaction of the complementary slackness conditions (20)–(23).

Summing up, since from duality it follows that the only primal feasible solutions can-
didate to be optimal are those where y0 coincides with at most (k − 1) components of y,
ordered according to nonincreasing values of wi, the optimal solution can be found by a
simple sweeping algorithm that checks for feasibility such type of primal solutions, as we
show in Algorithm 2.

Algorithm 2 Sweeping algorithm
Input: a vector w ∈ R

n ordered according to decreasing values of wi, an integer k ≥ 2
Output: a solution (y0, y) ∈ �k

1
1: set h = k � Initialization
2: for i = 0 . . . (h − 1) do � Calculate a tentative solution
3: set yi = ‖w‖1−kwh

‖w‖[h]−hwh
4: end for
5: set yh = k − (h − 1)y0
6: for i = (h + 1) . . . n do
7: set yi = 0
8: end for
9: if (‖w‖[h] − hwh > 0) and (y0 ≥ yh) and (yh ≥ 0) then � Feasibility test
10: exit � Return (y0, y) ∈ �k

1
11: else
12: set h = h − 1 and go to Step 2 � Iterate the procedure
13: end if

It is easy to verify that, due to the the initial sorting of the components of w, and tak-
ing into account that the sweeping cost is linear in k, the total computational cost of the
algorithm is O(n log n).

5. Computational experience in the support vector machine framework

In the Support Vector Machine (SVM) framework for binary classification, two (labeled)
point-sets A = {a1, . . . , a�} and B = {b1, . . . , bm} in R

n are given, the objective being
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to find a hyperplane, associated with a couple (x, γ ) ∈ R
n × R, strictly separating them.

Thus, it is required that the following inequalities hold true:

a	
i x ≤ γ − 1, ∀ i ∈ {1, . . . , �}, (30)

b	
j x ≥ γ + 1, ∀ j ∈ {1, . . . ,m}. (31)

Since such a hyperplane may not exist, whenever convA ∩ convB �= ∅, the following
convex piecewise linear and nonnegative error function of (x, γ ) is defined

err(x, γ ) =
�∑

i=1
max

{
0, a	

i x − γ + 1
} +

m∑
j=1

max
{
0,−b	

j x + γ + 1
}
. (32)

We note that err(x, γ ) is equal to zero if and only if (x, γ ) defines a strictly separating
hyperplane satisfying (30)-(31). In the SVM approach the following convex problem

min
{
C · err(x, γ ) + ‖x‖ : x ∈ R

n, γ ∈ R

}
, (33)

is solved, where the norm of x is added to the error function aiming to obtain a maximum-
margin separation, and C is a positive trade-off parameter.

In this classification framework, sparse optimization comes into play in case feature
selection is pursued, with the �0-pseudo-norm looking as the most suitable tool, although
the �1-norm has been often considered as a good approximation. In the following, we will
focus on the sparsity constrained counterpart of (33)

min
{
err(x, γ ) : ‖x‖0 ≤ k, x ∈ R

n, γ ∈ R

}
, (34)

where the �0-pseudo-norm is adopted in order to keep the number of relevant features
of the SVM not larger than a positive integer k. We will tackle problem (34) by means
of the approach described in § 4, assuming that problem (P(y)) to be solved at Step 2 of
Algorithm 1 has the following structure

min
{
err(x, γ ) : x	y ≥ ‖x‖1, x ∈ R

n, γ ∈ R

}
. (35)

We have evaluated the computational behaviour of our SVM-based feature selectionmodel
by testing it on 4 well known datasets whose relevant details are listed in Table 1.

The experimental plan is based on the tenfold cross-validation protocol adopted to train
the classifier, by randomly partitioning every dataset into 10 groups of equal size. Then,

Table 1. Details of datasets.

# Name Reference � m n

1 Breast-Cancer [10] 444 239 10
2 Diabetes [10] 268 500 8
3 Heart [10] 150 120 13
4 Ionosphere [10] 126 225 34
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10 different blocks (the training sets) are built, each containing 9 out of 10 groups. Every
block is used to train the classifier, using the left out group as the testing-set that returns
the percentage of points that are correctly classified (test correctness).

We have implemented the block-coordinate algorithm in Python 3.6 and run the com-
putational experiments on a 2.80 GHz Intel(R) Core(TM) i7 computer. The LP solver of
IBM ILOGCPLEX 20.1 has been used to solve linear programmes at Step 2 of Algorithm 1.
We randomly sample a starting point satisfying (17), and we embed the whole algorithm
into multi-start procedure repeated 30 times per fold, adopting as the output (x∗, γ ∗) the
one returned by the run that has the lowest training error. The sufficient decrease parameter
ε has been tuned to 0.001.

Numerical results are reported in Tables 2–5, where we list the percentage correctness
averaged over the 10 folds of both the testing (AvgTest) and the training (AvgTrain)
phases, for several values of the parameter k. Moreover, we report the values ft0, ft-2,
ft-4 andft-9, representing the percentage average of features forwhich the correspond-
ing component of the minimizer x∗ is larger than 1, 10−2, 10−4, 10−9, respectively. Hence,
small values of ft-9 denote high sparsity of x∗. In fact (1 − ft-9) can be interpreted as

Table 2. Breast Cancer Dataset: HeurBC results.

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

10 95.75 97.15 65.00 65.00 65.00 65.00 8.036
8 96.63 96.93 60.00 60.00 60.00 60.00 8.925
6 94.14 94.41 45.00 45.00 45.00 45.00 8.622
4 87.66 86.83 26.00 26.00 26.00 26.00 8.864

Table 3. Diabetes Dataset: HeurBC results.

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

8 73.69 74.22 41.25 41.25 41.25 41.25 10.523
6 73.18 73.90 38.75 38.75 38.75 38.75 10.133
5 70.97 72.21 31.25 31.25 31.25 31.25 9.734
4 70.45 71.76 22.50 22.50 22.50 22.50 9.356

Table 4. Heart Dataset: HeurBC results.

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

13 84.44 84.53 73.85 73.85 73.85 73.85 4.297
11 81.48 84.03 60.00 60.00 60.00 60.00 4.287
9 81.11 84.07 56.92 56.92 56.92 56.92 4.722
4 80.00 80.21 31.54 31.54 31.54 31.54 6.372

Table 5. Ionosphere Dataset: HeurBC results.

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

34 88.87 93.13 84.71 84.71 84.71 84.71 7.767
25 88.04 92.31 71.47 71.47 71.47 71.47 8.686
17 87.45 91.04 61.47 61.47 61.47 61.47 8.480
6 86.06 88.92 47.94 47.94 47.94 47.94 13.892
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the percentage of the zero-valued components. We also report the cpu time (measured in
seconds) regarding the execution time of the block-coordinate minimization algorithm in
the training phase, averaged over the 10 training folds.

The numerical results demonstrate the ability of the proposed method, even adopting
relevant restriction of the cardinality parameter k, of providing good solutions, in terms of
the number of active features, without severe reduction of the classification correctness.

For comparison purpose we report in Table 6 our results and those presented in [17] and
in [16], where amixed integer programming formulation treated via Lagrangian relaxation

Table 6. Comparison of HeurBC against Algo[17] and Algo[16].

Dataset HeurBC Algo[17] Algo[16]
k AvgTest ft-9 AvgTest ft-9 AvgTest ft-9

Breast Cancer 6 94.14 45.00 96.41 71.00 93.17 34.00
Diabetes 8 73.69 41.25 76.01 87.50 75.57 43.75
Heart 9 81.11 56.92 83.95 82.31 82.32 50.00
Ionosphere 17 87.45 61.47 87.93 67.65 86.35 13.82

Table 7. Breast Cancer Dataset: �1-LibLinear results.

C AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

1.000 96.90 97.20 95.00 95.00 95.00 95.00 0.014
0.100 96.50 96.80 79.00 79.00 79.00 79.00 0.002
0.010 94.40 94.80 50.00 50.00 50.00 50.00 0.000
0.005 91.20 91.40 40.00 40.00 40.00 40.00 0.000

Table 8. Diabetes Dataset: �1-LibLinear results.

C AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

1.000 77.20 78.00 97.50 97.50 97.50 97.50 0.011
0.100 77.10 77.40 75.00 75.00 75.00 75.00 0.003
0.010 71.50 72.40 61.25 61.25 61.25 61.25 0.002
0.005 63.90 64.40 32.50 32.50 32.50 32.50 0.002

Table 9. Heart Dataset: �1-LibLinear results.

C AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

1.000 84.10 85.10 98.46 98.46 98.46 98.46 0.003
0.100 83.00 85.00 81.54 81.54 81.54 81.54 0.002
0.010 77.80 77.80 23.85 23.85 23.85 23.85 0.000
0.005 76.30 76.30 8.46 8.46 8.46 8.46 0.002

Table 10. Ionosphere Dataset: �1-LibLinear results.

C AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

1.000 90.30 93.70 85.59 85.59 85.59 85.59 0.117
0.100 88.00 90.20 53.53 53.53 53.53 53.53 0.014
0.010 72.10 72.70 8.82 8.82 8.82 8.82 0.006
0.005 74.90 74.90 6.18 6.18 6.18 6.18 0.000
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and a k-norm based approach to Feature Selection are adopted, respectively. We indicate
our algorithm as HeurBC and we report the results in terms of average testing correctness
(AvgTest) and average percentage of non-zero components (ft-9). For the algorithm
HeurBC we also report the particular value of k adopted.

The comparisons show that HeurBC, as well as the other tested algorithms, provide a
satisfactory trade-off between correctness and sparsity, without clear dominance of any of
the three.

A better insight on the behaviour of HeurBC can be gained by considering the results
provided by the benchmark package LibLinear1 [14] adopted to solve model (33)
equipped with an �1 norm, that is, an SVM with LASSO regularization. Such results,
reported in Tables 7–10 for different values of the regularization parameter C, show, as
expected, an acceptable performance in terms of sparsity enforcement when C decreases,
although this effect appears weaker than the one provided by HeurBC.

In the remaining experiments, we have adopted an ANOVA F-value feature selection
procedure, available in the Python scikit-learn library combining the SelectKBest
method with the f_classif function, as a pre-processing phase for both our HeurBC
and the �1-LibLinear algorithms, for values of k strictly lower than n. Such an approach
allows to reduce the size of the input space by getting rid of the n−k lowest scored fea-
tures. The results are reported in Tables 11–14 for HeurBC and in Tables 15–18 for
�1-LibLinear. As for the latter, we only report results obtained withC=1, as for smaller
values we observed no improvement on the solution sparsity. In both cases the prelimi-
nary feature selection provides some improvement,more sensible when �1-LibLinear is
adopted. Nonetheless, we observe that unlike �1-LibLinear, the use of HeurBC always
allows to further improve sparsity after the preliminary feature-selection phase. Finally, it

Table 11. Breast Cancer Dataset: ANOVA F-score and HeurBC results.

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

8 94.43 94.50 46.00 46.00 46.00 46.00 8.945
6 96.19 96.32 40.00 40.00 40.00 40.00 7.578
4 85.99 86.13 17.00 17.00 17.00 17.00 7.722

Table 12. Diabetes Dataset: ANOVA F-score and HeurBC results.

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

6 74.48 74.20 37.50 37.50 37.50 37.50 10.678
5 72.79 72.79 30.00 30.00 30.00 30.00 9.947
4 73.05 73.13 25.00 25.00 25.00 25.00 14.566

Table 13. Heart Dataset: ANOVA F-score and HeurBC results.

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

11 83.33 85.23 57.69 57.69 57.69 57.69 4.15
9 80.37 82.55 40.00 40.00 40.00 40.00 3.898
4 71.48 70.70 15.39 15.39 15.39 15.39 2.694
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Table 14. Ionosphere Dataset: ANOVA F-score and HeurBC results.

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

25 88.03 91.90 57.65 57.65 57.65 57.65 8.072
17 85.18 88.89 36.77 36.77 36.77 36.77 7.144
6 85.76 86.96 12.06 12.06 12.06 12.06 5.681

Table 15. Breast Cancer Dataset: ANOVA F-score and �1-LibLinear results (C = 1.0).

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

8 97.07 97.27 80.00 80.00 80.00 80.00 0.002
6 97.07 97.20 60.00 60.00 60.00 60.00 0.000
4 95.75 96.13 40.00 40.00 40.00 40.00 0.002

Table 16. Diabetes Dataset: ANOVA F-score and �1-LibLinear results (C = 1.0).

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

7 77.20 77.66 87.50 87.50 87.50 87.50 0.000
6 77.20 77.66 75.00 75.00 75.00 75.00 0.002
5 77.20 77.30 62.50 62.50 62.50 62.50 0.000

Table 17. Heart Dataset: ANOVA F-score and �1-LibLinear results (C = 1.0).

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

11 84.82 85.84 84.62 84.62 84.62 84.62 0.002
9 84.07 85.89 69.23 69.23 69.23 69.23 0.000
4 83.33 84.07 30.77 30.77 30.77 30.77 0.000

Table 18. Ionosphere Dataset: ANOVA F-score and �1-LibLinear results (C = 1.0).

k AvgTest AvgTrain ft0 ft-2 ft-4 ft-9 cpu
(%) (%) (%) (%) (%) (%) (s)

25 88.30 92.05 73.53 73.53 73.53 73.53 0.002
17 86.61 88.86 50.00 50.00 50.00 50.00 0.002
6 85.77 86.42 17.65 17.65 17.65 17.65 0.002

is worth noting that for the Ionosphere dataset HeurBC produces a result not too worse
than the strong one reported in [24].

Note

1. We have adopted the method available in the Python scikit-learn library.

Disclosure statement
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Appendix

We recall first how problem (7) is treated in [20], then we discuss yet another penalization of our
dual formulation (11) and we show the equivalence of the two approaches.

In [20] aDC (Difference ofConvex) decomposition, upon appropriate penalization, is adopted. In
particular, by introducing the penalty parameterρ > 0, problem (7) is replaced by the unconstrained
optimization model

min
{
f (x) + ρ

(‖x‖1 − ‖x‖[k]
)
: x ∈ R

n
}

(A1)

whose objective function is in the form f1(·) − f2(·) with

f1(x) = f (x) + ρ‖x‖1 and f2(x) = ρ‖x‖[k]
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which are both convex. By applying any method based on successive linearizations of function f2(·),
see [2,27], one comes out with a sequence of convex programs, each one obtained by taking an affine
approximation of function f2 rooted at the current estimate x(j) of a local minimizer. In DCA [2], for
example, the iterate point x(j+1) would be calculated as

x(j+1) = argmin
{
f (x) + ρ‖x‖1 − ρ

(
‖x(j)‖[k] + g(j)	(x − x(j))

)
: x ∈ R

n
}
,

where g(j) ∈ ∂‖x(j)‖[k]. We recall that denoting by

I[k](x(j)) � {i(j)1 , . . . , i(j)k }
the index set of the k largest components (inmodulus) of x(j), a subgradient g(j) of the vector k-norm
at x(j) can be calculated by setting (see [16]), for every i ∈ {1, . . . , n}, the component g(j)

i according
to

g(j)
i =

⎧⎪⎨
⎪⎩

1 if i ∈ I[k](x(j)) and x(j)
i ≥ 0

−1 if i ∈ I[k](x(j)) and x(j)
i < 0

0 otherwise.

Coming to the dual formulation (11), we consider here an alternative penalty function approach
w.r.t. to the one adopted in Section 3. Here we penalize the nonsmooth and nonconvex constraint

x	y ≥ ‖x‖1.
Denoting again by ρ > 0 the penalty parameter, and letting

Yk
1 �

{
y ∈ R

n : ‖y‖1 ≤ k, ‖y‖∞ ≤ 1
}
, (A2)

we obtain the problem

min
{
f (x) + ρ

(
‖x‖1 − x	y

)
: x ∈ R

n, y ∈ Yk
1

}
(A3)

equivalent to (A1) as we show next. Taking any optimal solution x∗ to (A1), we denote by (x∗, y∗) a
feasible solution to (A3) obtained by setting, for every i ∈ {1, . . . , n},

y∗
i =

⎧⎨
⎩

1 if i ∈ I[k](x∗) and x∗
i ≥ 0

−1 if i ∈ I[k](x∗) and x∗
i < 0

0 otherwise.
(A4)

Hence, adopting the same penalty parameter ρ, the objective functions of the two problems take the
same value at x∗ and (x∗, y∗), respectively, since x∗	y∗ = ‖x∗‖[k], and that (x∗, y∗) is a minimizer
for (A3) due to (9). On the other hand, let (x∗, y∗) be any optimal solution to problem (A3) and note
that from optimality it follows

y∗ = argmax
{
x∗	y : y ∈ Yk

1

}
, (A5)

that is x∗	y∗ = ‖x∗‖[k], see (9). Hence, at x∗ and (x∗, y∗), respectively, the objective functions of the
two problems take the same value and x∗ must be optimal for (A1).

We remark that problem (A3) can be tackled bymeans of an alternate search approach, consisting
in alternating minimization over x keeping y fixed and vice versa. Observing that the minimization
with respect to y can be solved in closed form, see (A4), it is easy to verify that such an approach
coincides with DCA for problem (A1).
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