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Abstract. The objective of this work is twofold. Firstly, we propose a review of
different results concerning convexity of images by quadratic mappings, putting
them in a chronological perspective. Next, we enlighten these results from a geo-
metrical point of view in order to provide new and comprehensive proofs and to
immerse them in a more general and abstract context.
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Introduction

The “quadratic” character and the “convexity” one seem to belong to completely different
worlds in mathematics; although they are old and well known, quadratic mappings and
convex sets still continue to be objects of active research. It happens there are unexpected
but very interesting results of convexity concerning quadratic mappings. One of the goals
in this paper is to review the main ones, putting them in a chronological perspective
(Sections 1 and 2).

Section 1 deals with the convexity of images by quadratic mappings; we display
there results by Dines (1941), Brickman (1961), and Barvinok (1995), amongst others.
The first results in this area seem due to Dines and Brickman: Dines showed that, for
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any real symmetric matrices and B, the image set
{((AX, x), (Bx X)) | x € R"} )

is a convex cone ifR?, whatever the dimension. Brickman established a finer (and
trickier) result: for any real symmetric matricédsand B,

{({AX x), (Bx x)) | Ix]l = 1} )

is a convex compact set R?, wheneven > 3. We will see with the results of Barvinok
what the extensions of the two previous results are whér 3) quadratic functions

are involved. These convexity results on images have immediate consequences in fields
where quadratic functions appear naturally and play an essential part, for example, in
optimization and control theory (more specifically in an infinite-dimensional context in
the latter case). For instance, the famous so-cdllgamocedure which deals with the
nonnegativity of a quadratic form on a set described by quadratic inequalities, provides
a powerful tool for proving stability of nonlinear control systems. In optimization, the
so-calledtrust region subproblemwhich consists in minimizing a quadratic function
subject to a norm constraint, arises in solving general nonlinear programs. This problem
like some other nonconvex quadratic optimization problems enjdydden convexity
property. All that is closely related and even due to the convexity of images by quadratic
mappings.

In Section 2 of the paper, we explore conditions under which there exists linear
(or convex) combinations of given matricés’s which are positive (semi-)definite.

We present there results by Finsler (1936), Calabi (1964), Yuan (1978), and Barvinok
(1995), amongst others. As we will see, all these results are related to those displayed
in Section 1. As a general rule, in Section 1 as well as in Section 2, the results dealing
with two quadratic mappings are extended to the case @f 3) quadratic mappings by
substitutingmatricesof specific size to the usual (vector) variables R".

The convexity of the image sets in (1) and (2) is essentially a consequence of the
special facial structure of the convex cone of symmetric positive semidefinite matrices.
In Section 3 we generalize some of the results presented in Sections 1 and 2 by adopting
a geomerical viewpoint in an abstract context of euclidean spaces. Indeed, we exploit a
characterization of the faces of the intersection of two convex sets in order to prove the
convexity of the following set:

{({a1, x), ..., (@m, X)) | X € Fm(K)}, (3)

whereay, ..., ay are elements of the euclidean sp&gg (-, -)), K is a closed convex
pointed cone irE, andFy(K) is the union of all faces dk whose dimension is at most
m. Then, using a separation argument, we deriviaeiél alternative theoreitfor linear
mappings. For the particular case whirés the cone of positive semidefinite matrices,
we retrieve Dines’s and Yuan’s theorems as well as their extensions by Barvinok.

1. Convexity of Images by Quadratic Mappings
We begin by fixing some notations which are used throughout. We work in a finite-

dimensional (euclidean) setting, sRY, equipped with the standard inner product de-
noted by(-, -) and the associated norm denoted|byj. However, some remarks on what
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happens on quadratic mappings on a Hilbert space (for example, convexity of images is,
to a certain extent, easier to obtain than in a finite-dimensional setting), are given.

Sh(R) denotes the space of real symmetricn)-matrices.

When A € Sp(R), A = 0 (resp.A = 0) is the notation used to express thats
positive definite (resp. positive semidefinite). Associated with S, (R) is thequadratic
form gonR" defined ag: R" 3 X > q(x) := (Ax X). By a quadratic functiorf on
R"we meanf: R" > x — f(X) := (Ax X) + (b, X) + c whereA € S,(R),b € R",
andc € R.

Finally, a quadratic mapping = (Q1,...,0m)": R" — R™ is a mapping whose
component functiong; are all quadratic forms.

In the spaceM; s(R) of real (r, s)-matrices, we adopt the usual inner product
((U, V)) := trace ofUTV.

It is worth noticing from now on that iX € M, ,(R) and A € Sy(R), then
((AX, X)) = ((A, XXT)); in particular, forp = 1 (X is then the one column matrix
associated witlx € R"), ((A, xx)) = (A, X).

All our results are exposed in the “real setting,” nothing is said concerning theorems
of the Toeplitz—Hausdorff type for quadratic forms with compliexn)-matrices.

1.1. The Theorem of Dingd941)

The following series of results by Dines [10] seem to be the first ones concerning the
convexity of images of sets biywo quadratic forms.

Let A and B be ir5,(R). Then
{({AX x), (Bx X)) | x € R"}

is aconvexcone ofR? (denoted as K If, moreover

(AX, x) =0
and = (X =0), (4)
(Bx,x) =0

then K is aclosedcone which is either the whol®&? or a cone with “angle”d < .

1.2. The Theorem of Brickmai1961)

The next convexity type result, due to Brickman [6] is better spread than the previous
one.

Let A and B be ir5,(R), and assume i 3. Then
{((AX, X}, (Bx, x)) | IX]| = 1}

is aconvexcompact subset @&?2.
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Whenn = 2, the image of the unit sphere by two quadratic forms may fail to be
convex, we explain why later. Here is a counterexample [6, p. 63]:

A—10 andB—OlsR-
“lo 41 =1 of €

{({AX x), (Bx x)) | x|l = 1}

is the unit circle ofR2.

1.3. Extension of Dines’s Theorem by Barvind®95)

When more than two quadratic forms are involved,gay. . , gm with m > 3, theimage
of the whole space by, . . ., gm may fail to be convex. Here is a simple counterexample.

Let
1 -1 0o -1 01
A= , = , and C= € S2(R).
-1 0 -1 1 10

Then
{((AX X), (Bx. X), (Cx X)) | X e R?} ;=R

is not convex since the intersection®fwith the planexs = 0 is
{(«,0,0) | = 0} U{(0,8,0) | B = 0}.

Under some special relationships between the dimensiand the numbem of
guadratic forms involved, one can, however, get an upper bound on the nurober
elements needed to yield, via convex combinations, the elements of the convex hull of
the imageR of the unit sphere byqs, ..., dm) [4, Theorem 1.4]. That still shows the
limitation due to the fact that “usual” quadratic formsRh are considered.

More general convexity results on images can be obtained if one accepts “relaxing”
or “enriching” the space on which quadratic forms are considered, say enl&giag
Mn,1(R) to someM;, ,(R). The following result by Barvinok [2] can be viewed as an
extension of Dines’s one in Section 1.

Let A, Ao, ..., An € Sh(R), and let p:= | (v/8m+ 1 — 1)/2] (|x] stands for the
“integer part of x”). Then

{({((ALX, X)), ((A2X, X)), ..., ((AmX, X)) | X € M p(R)}

is aconvexcone ofR™.
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The definition ofp may look mysterious at first glance, some explanation is provided
later in Section 3. Note, however, that= 2 yieldsp = 1 (Dines’s situation in Section 1),
butm = 3yieldsp = 2.

1.4. Extension of Brickman’s Theorem by Pqd®97)

The next result by Poon [22] extends Brickman’s theorem in Section 1.2.

Let A, Ao, ..., An € Sh(R), and let the integer p be defined as follows

L./szl—lJ . n(n2+1) I -
pi=
\‘7”8m+21_1J +1 if n(n;_ D =m+ 1. (x%)

Then
{(((ALX, X)), ({A2X, X))y ey ({AmX, X)) | X € My p(R), | Xl =1}

is a convexcompact subset @®&™ (here| - || denotes the Schur—Frobenius norm on
Mn,p(R), that is the one derived fror{-, -))).

Observe that whem = 2 (two quadratic forms involved), the first casg ¢ccurs
for n > 3, and this gives rise tp = 1 (that is Brickman'’s case in Section 1.2). Still for
m = 2, the second case=) occurs fom = 2, which imposes us to take = 2.

2. Existence of a Linear (or Convex) Combination ofA;, A, ..., An
Which Is Positive (Semi-)Definite

The first results we present below in Sections 2.1 and 2.2, concerning the existence of a
linear (or convex) combination o& and B which is positive definite (or semidefinite),

have been derived independently of any convexity result on images by quadratic forms.

They are, however, directly linked to such convexity results (in Sections 1.1 and 1.2) as

we will see. This is even clearer in the case where more than two quadratic forms are
involved.

2.1. The Theorem of Finsl€f1936)and Calabi(1964)

The following result was proved by Finsler [11], and rediscovered by Calabi [7].

Let A and B be ir5,(R), and assume p- 3. Then the following are equivalent

(Ax, x) =0
) and = (x=0). (5)
(Bx,x) =0

(i) There existgiy, u2 € R such thatu; A+ u2B > 0. (6)
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Theimplication(5) = (6) does not necessarily hold true whee= 2; a counterexample
is the one already considered in Section 1.2:

2 2 H : 1 0
O1(X1, X2) 1= X] — X5 associated with A = 0 1l

0 1
O2 (X1, X2) i= 2X1X2 associated with B = [1 O} ;

then (5) holds true but there is no way to have

n1 o M2
u1A+ u2B = |: :|
M2 —H1

positive definite.

There is another statement, a more classical one, which is known to be related
to (5)-(6); it is expressed in terms of simultaneous diagonalizatioA ahd B via
congruence. Recall that a collectipA;, Ao, ..., Ay} of matrices inS,(R) is said to
besimultaneously diagonalizable via congruenééhere exists a nonsingular matrix
such that each of thB™ A; P is diagonal. Simultaneous diagonalization via congruence
corresponds to transforming the quadratic foagnassociated with thé;'s into linear
combinations of squares by a single linear change of variables; it is a more accessible
property than the (usual) diagonalization via similarity. It is known thatr{)lies

A and B are simultaneously diagonalizable via congruence @)

See Section 7.6 of [15] for example. We note also that the implicabipas (7) is
given on pp. 272-280 of [12]; the proof, Milnor’s one, clearly shows that the hypothesis
n > 3 on the dimension of the underlying space is essential. A very good account of
Finsler—Calabi type results, including the historical developments, remains the survey
paper [24].

We propose below a simple proof of the theorem of Finsler and Calabi by using the
convexity result of Brickman exposed in Section 1.2.

Let A andB be inS,(R) and assume > 3. We know from Brickman’s theorem
that

R = {(AX x), (Bx. X)) | lIX]l = 1}

is a convex compact set iR?. What (5) expresses is that@ R. Thus, referring to a
classical argumentin Convex analysis, we can “separate” ORothere is a line strictly
separating0} from R, i.e., there exist$us, 1) € R? andr € R such that

(U1, n2), (U, V)) >r >0 forall (u,v) e R. (8)
Now, (8) is nothing more than

w1{AX X) + u2(Bx, x) > 0 forall xeR", |x|| =1, 9)
that is (6).
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Among various attempts to extend the above stated theorems, we mention two recent
contributions:

— A vectorialversion of the Finsler—Calabi theorem [13, Theorem 2].
— Aresult analogous to the equivalence (5)—(6) for three quadratic forms by Polyak
[21]; the main result [21, Theorem 2.1] can be formulated as follows:

Let A B, and C be inS,(R), and assume n> 3. Then the two next assertions are
equivalent

(Ax,x) =0

. (Bx,x) =0 _

0] and = (x=0), (10)
(Cx,x) =0

and K = {({Ax, x), (Bx, x), (Cx, x)) | x € R"} is a pointed closed convex
cone(KC pointed mean& N (—K) = {0}).

(i) There exisj1, 12, u3 € R such thatu; A+ u2B + u3C > 0. (1))

Moreover, this superb paper [21] contains various applications in optimization and
control theory of the ongoing convexity results onimages by quadratic forms or functions.

We end this section by noting that the simultaneous diagonalization via congru-
ence of Ay, Az..., An € Sn(R) makes it possible to generalize, to some extent, the
aforementioned results (due to the fact that the imagé& detthat case is a polyhedral
closed convex cone). This property of tAgs was already set as an assumption in [16].
However, the following problem remains posed:

Question 1. Find sensible and “palpable” conditions 8a, A,, ..., Anensuring they
are simultaneously diagonalizable via congruence.

2.2. The Theorem of Yuari990)

Condition (5) can be formulated in a variational fashion as follows:
max{|(Ax, X)|, [(Bx, x)|} > O forall x#0 inR" (12)
Yuan’'s theorem [26] that we present below is just a “unilateral” version of the equivalence
(5)—(6).
Let A and B be ir5,(R). Then the following are equivalent
(i) max(Ax x), (Bx,x)} >0 forall x e R"
(resp > Oforall x # 0in R"). (13)

(i) There existgiy > 0, o > 0, 1 + uo = 1such thatu; A+ B >0
(resp > 0). (14)
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Again here, starting from Dines’s convexity result displayed in Section 1, one can
derive Yuan's theorem via a separation argument. What (13) says is that the (convex)
image set = {({Ax x), (Bx, X)) | X € R"} does not meet the open convex cone
N = {(a,B) € R? | « < 0andp < 0}. There therefore exists a line passing through
the origin just separating them, i.e., there exists a noripyll ») € R? such that

((i1, n2), (U, v)) >0 forall (u,v) e K, (15)

((n1, n2), (@, B)) =0 forall (a,B) e N. (16)

Then (15) yields that; A + 2B is positive semidefinite, while (16) ensures that
p1 > 0andu, > 0.

Yuan's result does not hold true if three matrideB, andC in S, (R) are involved;
counterexamples are given in papers [9] and [8], where further analysis of radalts °
Yuan is developed.

We end this section by posing two open questions.

Question 2. Let Aq, Ay, ..., An € Snh(R). How to express equivalently, in terms of
the Aj’s, the following assertion:

(A1x,x) =0
(AoXx,X) =0

= (x =0)? (7)
(AmX, X) =0

To have a linear combination of thg’s positive definite indeed secures (17), but it
is too strong a sufficient condition, by far.
The “unilateral” version of the question above is the next one.

Question 3. Let Ag, Ay, ..., Am € Sh(R). How to express equivalently, in terms of
the Aj’s, the following situation:

max{{A1X, X}, (AzX, X}, ..., (AmX, X}} >0 forall x € R"? (18)

Itis interesting to note that (18) is related to the field of necegsafficient condi-
tions in nonsmooth optimization: the nonsmooth funciior f (x) := max{{Aix, x), i
=1, ..., m}is globally minimized ak = 0. However, expressing some first or general-
ized second-order necessary condition for minimality faxt X = 0 does not give any
interesting information about th&’s.

To have a convex combination of thf¢’s positive semidefinite is obviously a suf-
ficient condition for (18), but not a necessary one.

2.3. Extension of Sectio®.2,or Corollary to Barvinok’s Theorem in Sectidn3

As one can easily imagine now, the convexity result in Section 1.3 yields, via separation
techniques from convex analysis, the next statement.
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Let A, Ao, ..., Am € Sa(R),and let p:= | (v/8m+1— 1)/2] (m = 2 gives p= 1,
m = 3 gives p= 2, etc). Then the following are equivalent
(i) max((AX, X)), ({(AX, X)), ..., ({(AmX, X))} = 0 forall X € M, (R)
(resp > Ofor all X # 0in M p(R)). (29)

(i) There exist$s, ..., um =0, w1 + -+ - + um = 1 such that

i wiA =0 (resp > 0). (20)
i=1

2.4, Extension of Sectio®.1, or Corollary to the Result in Sectidh4, by
Bohnenblusf5]

Let A, A, ..., An € Sh(R), and let

\;/8m+ 1— 1J
2

\;/8m+ 1— 1J
2

TR U )
2

pi=

nn+1)

2

+1 if m+1
(thus p=1when m=2and n> 3, p = 2when m= 2 and n= 2, etc). Then the
following are equivalent

((AcX, X)) =0,
= 0’

((A2X, X))
Wl = (X =0). (21)
X € M p(R)

((AmX, X)) =0,

(i) There exist$ty, ..., um € R such that

m
S i A > 0. (22)
i=1

Remark 1. It is natural to try to extend results of Sections 1 or 2 to the case where
guadratic functions are defined on a (general) Hilbert space. The main motivation for
that comes from control theory where many questions can be formulated in abstract form
as the problem of minimizing a quadratic function on a closed convex subset of a Hilbert
space (usually described as quadratic inequality constraints). Among the various results
a la Dines—Brickman (see [25], [20], [18], [19], [1]), we single out the following typical
one by Matveev [18], [19]:

Let A, Ay, ..., An be self-adjoint continuous linear mappings ofreal) Hilbert space
(H, {-, ), letq, ..., gn denote the associated continuous quadratic forms ofp.é,
g (X) ;= (Aix, x) for all x € H). If, forany (A4, ..., Am) € R™, the maximal and the
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minimal points of the spectrum af A; + - - - + AmAn are not isolated eigenvalues of
finite geometric multiplicitythen the rang& of the unit sphere of H under the quadratic
mapping g:= (da, . . . , Gm) iS almost convex.e., there exists a convex set CRF such
that Cc R c C.

3. Some General Results in a Euclidean Space Context

In this section we generalize some of the results presented in Sections 1 and 2 by adopting
a geometrical viewpoint in an abstract context of euclidean spaces.
Our general setting here ia:euclidean spacé€k, (-, -)) and a closed convex cone
K in E. We keep in mind, however, the guiding example where: S,,(R) is endowed
with the inner product(-, -)), andK = {A € S,(R) | A = 0}.
We begin with some definitions and technical results.

— B c K is called abasisfor K when the following holds true: for ak € K\ {0},
there exists a unique paik > 0, y € B) such thatx = Ay.
— The (positivepolar coneof K is defined as follows:

Kt:={xeE|(x,d)>0foralld e K}.

Proposition 1. The following statements are equivalent

() K possesses a compact basis
(i) The interior of Kt is nonempty
(i) K is pointed(i.e,, K N (—K) = {0}).

The next theorem, the so-called “faces of intersection theorem” by Dubins and Klee
(see p. 116 of [23] for example), serves as our main technical tool.

Theorem 2. Let C; and G be two closed convex sets inhen F is aface of 0 C,
if and only if there exists a face;f C; and a face k of C, such that F= F; N F».
Moreovey F; and F, can be chosen such that

Aff F = Aff F{ N Aff Fo.
In that case

codimF < codimF; 4+ codimP,.

(Aff F stands for the affine hull of FandcodimF is the codimension of I

More specifically, Theorem 2 will be used when= {X}, X is an extreme point of
C1 N Cy, andC; is an affine subspace or halfspacebof

3.1. Convexity of Images of Faces of K by Linear Mappings

Our first result in this section is as follows.
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Theorem 3. Assume K is pointed and considgr ay, ..., an € E. Then

{({@1, x), ..., (@am, X)) | X € K} = {({@, X), ..., (@m, X)) [ X € Fm(K)},  (23)

where 7 (K) denotes the union of all faces of K whose dimension im. The same
result holds true if a convex compact subset C of E is substituted for K

As an immediate consequence of Theorem 3, we get the convexity of the images
of the faces ofK (or C) whose dimension i< m by linear mappingx € E —
((ag, X), ..., (am, x)) € R™.

Corollary 1.  Under the assumptions of Theor@ythe image set
{((a, X), ..., (@m, X)) | X € Fm(K)},

is a convex cone d@&™. Similarly, if C is a convex compact subset of then
{({a1, X), ..., (@m, X)) | X € Fm(C)}

is a convex compact subsetRT.

Proof. Let(a,...,am) € {({a, X), ..., {@n, X)) | X € K} and consider the following
affine subspace:

V.={XeE|(g,x)=qforalli =1,...,m}. (24)
SinceK NV is nonempty (by definition of from («y, .. ., om)), we considery € KNV.

Let us prove thakK NV possesses extreme points.
SinceK is assumed pointed, the interiorkft is nonempty (Proposition 1). When-
everag is chosen in the interior dk ™, it is easy to check that

B:=Kn{xeE|(a,x)=1}

is a compact basis fdf.
Leto := (ag, Xo)(c > 0). The set

C=KnNnVni{xekE]| (a,x) <20}
is clearly closed convex and nonempty (it contaigs It is also bounded; indeed
C=Vn{ay: A >0,y e B, (ay, Ay) < 20}
=VN{Ly: 0<A <20,y € B} ({(ag, ¥) = 1 whenevery € B),

whence the boundedness®@follows from that ofB.

C does have extreme points, but we claim that there is at least one extremg point
in C satisfying(ag, X) < 20. If not, all the extreme points i@ (and therefore the whole
of C) would lie in

KNVnNn{xeE]|(aXx) =20},

which is not possible since) € C while (ag, Xo) = 0 < 20.
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We thus take such an extreme poibf C. Write C asC; N C, whereC; =
KNV,C;:={x e E| (ag X) < 20}, and consider the fade := {X} built up fromx.
According to the “faces of intersection theorem” (Theorem 2), there exists dfaake
K NV, afaceF; of {x € E | (ag, X) < 20} such that

X}=F Nk
and

dim E = codimF < codimF; + codimF. (25)

Now, since(ag, X) < 20, the called up facé is nothing more thal€, = {x € E |
(a9, X) < 20} itself; whence codinF, = 0. As a consequence, it comes from the
inequality (25) that codinF; = dim E, which means thak is an extreme point of
Ci=KnV.

We now apply again the “faces of intersection theoremCto= K N V; there
therefore exists a fadéx of K, a faceFy of V such that

X} =Fv Nk
and

dim E = codim{X} < codimF, + codimF. (26)

SinceV is the affine subspace & defined in (24)Fy = V and codimF, < m. It then
follows from (26) that codinkx > dimE — m, that is to say dinfrx < m. Thus

{X} = V N Fg is nonempty

in other wordsy intersects a face &€ whose dimension is m. We finally have proved
that

(a1...,0am) € {({a1, X), ..., (@m, X)) | X € Fm(K)},
ie.,
{({as, X), ..., (@m, X)) | X € K} C {({a1, X), ..., {@m, X)) | X € Fn(K)}.

Since the converse inclusion is trivial, the announced equality is proved. O

3.2. Facial Alternative Theorems

The standard alternative theorem based upon results in convex analysis expresses the
equivalence of the two following statements:

(i) max((as, X), ..., (@m, X))} > 0forallx € K. 27)

(i) There existgty, ..., um >0, w1 + -+ -+ um = 1, such that

m
S ey K (28)
i=1
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Therefore, as a by-product of the convexity result in Theorem 3, we get &fficsl
alternative theorem'{linear case.

Theorem 4. Assume K is pointed and consider, a. ., an € E. Then the following
are equivalent
(i) max({ag, x), ..., (@am, x))} >0  forall x e Fn(K)
(resp > Ofor all X # 0 € Fn(K)). (29)

(i) There existgty, ..., um >0, w1 + - - - + um = 1 such that

> wa e Kt (resp e int(K™)). (30)
i1

Remark 2. The above alternative theorem remains valid if one substitGtg ) for
Fm(K) (for the> inequality), wheren denotes the rank of the fami{gy, . . ., an} (thus

m < m). This is not true for the strict inequality. In this case, one can substiyt&)

for Fm(K) wherem := min{m + 1, m}(< m). B

Remark 3. The above result is sharper than the “boundary-type alternative theorem”
proposed by Crouzeix et al. [9].

As a corollary of Theorem 4 we have the following “facial alternative theorem” in
anaffineform.

Corollary 2.  Assume K is pointed and consider, a.., an € E and(cy, ..., cy) €
R™\{(0, ..., 0)}. Then the following are equivalent

(i) max{(ay, X) +C1,...,{@8m, X) +Cn)} >0 forall x e Fn(K)
(resp > Ofor all X # 0 € Fn(K)). (31)

(i) There existgtq, ..., um =0, w1 + --- + um = 1 such that

m m

> waeK' and Y uic =0  (resp>0). (32)
i=1 i=1

Another “facial alternative theorem,” tlenvex formfollows by linearization from
Theorem 4.

Theorem 5. Assume K is pointed and consider convex functigndof ..., fn: E —
R.We assume thaoralli =1, ..., m, fj is differentiable aD and satisfies;f0) = 0.
Then the following are equivalent

i) max{fi(x), ..., fn(X)} > Oforall x € Fin(K). (33)
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(i) There existgtq, ..., um > 0, u1 + - -+ + um = 1 such that

(Z“i fi) (x)>0 forall xeK. (34)
i=1

Proof. The first-order necessary and sufficient condition for optimality in convex op-
timization [14, Chapter VII, Section 1] allows us to reformulate (ii) in the following
equivalent form:

(i)’ There existgiy, ..., um > 0, w1 + -+ - + um = 1 such that

m

Z,uini(O) e KT,

i=1
According to Theorem 5, condition (lizbove is equivalent to:
i) max{(V f1(0), x), ..., (VIn(0), x)} = 0 forallx € Fn(K).

Now, using elementary properties of nonsmooth convex functions like
max f1(X), ..., fm(¥)} = max{(V f1(0), x), ..., (V fm(0), x)}

(remember thaf; (0) = Oforalli =1,..., m),

Max((V f1(0). x). ... (V fm(0), X))} = inf max fl(tx)’t' -+ fm(®0)

(see Chapter VI, Section 4.4, of [14]), and the conical structufg,0K ), the equivalence
between ()and (i) is derived. O

3.3. Facial Solutions to Simultaneous Linear Equations

Still under the assumptions of Theorem 4 we have the following variant of Theorem 3:

{({@1, %), ..., (@m, X)) | 0 # X € Fmya(K)}
={((a, x), ..., (&m. X)) | 0 # x € K}. (35)

Proof. First, sinceK is pointed, it possesses a compact ba&siky Proposition 1).
Thus, we can write

K\{O} ={ry |2 >0,y e B}.
As a consequence,

{({a2, %), ..., (@m, X)) | 0# x € K} =R} {((az, ¥), ..., (am, y¥)) | y € B}.
Now, by Theorem 3B is a convex compact subset B

{((alv Y>» R (am» y)) | ye B} = {((als y)s e <ams y)) | ye fm(B)}
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To conclude, it suffices to observe that

Fms1(KO\{0} = {Ay | 2 > 0,y € Fn(B)}. O

It is important to note that this result is not true, as a general rule, if one substitutes
for m + 1; counterexamples can be founddn= RR3.

As a consequence, we have the following statement characterizing the nonexistence
of nonnull facial solutions to a system of linear equations.

Theorem 6. Assume K is pointed and consider, a. ., an € E. Then the following
are equivalent

(i) ((ar, X), ..., (@m, X)) # (0, ..., 0) forall 0 £ x € Fmy1(K). (36)
(i) There existgty, ..., um € R such that

> wia € int(K®). (37)
i=1

Applications We turn our attention back to our guiding framewokk: = S,(R),
endowed with the usual inner prody¢t, -)); K = {A € Sp(R) | A = 0}. K is a pointed
closed convex cone, it is its own (positive) polar cafe= K*). The facial structure
of this cone is also well known: faces Kf are closed convex cones of dimension
p(p+1) (p+D(p+2 nin+1

5 > s >
The apex is the only extreme point (face of dimension 0), while the whole Kasehe
only face of full dimensiom(n + 1)/2.

Determining/F,(K) is rather easy here (see, for instance, Corollary 6.1 of [17]):

Fm(K) = {XXT | X € Mq p(R)}, (38)

0,13,...,

wherep is the smallest integer satisfyirg + 1)(p + 2)/2 > m.
As, for example,

Fi(K) = Fo(K) = {xX" | X € M1 =R"
(union of the apex 0 and all the extreme ray¥othere is no face of dimension 2 i),
Fa(K) = (XX | X € My}

The smallesp satisfying(p+1)(p+2)/2 > mturnsoutto be exactlp = | (+/8m + 1—
1)/2], such as introduced and used in Sections 1.3 and 2.3.

As we know that((A, XXT)) with X € M, p(R) is nothing more tha(AX, X)),
we are able to “close the loop” with the resudtta’Barvinok: Corollary 1 goes with the
result displayed in Section 1.3, Theorem 4 with the one displayed in Section 2.3, etc.
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