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Abstract. The objective of this work is twofold. Firstly, we propose a review of
different results concerning convexity of images by quadratic mappings, putting
them in a chronological perspective. Next, we enlighten these results from a geo-
metrical point of view in order to provide new and comprehensive proofs and to
immerse them in a more general and abstract context.
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Introduction

The “quadratic” character and the “convexity” one seem to belong to completely different
worlds in mathematics; although they are old and well known, quadratic mappings and
convex sets still continue to be objects of active research. It happens there are unexpected
but very interesting results of convexity concerning quadratic mappings. One of the goals
in this paper is to review the main ones, putting them in a chronological perspective
(Sections 1 and 2).

Section 1 deals with the convexity of images by quadratic mappings; we display
there results by Dines (1941), Brickman (1961), and Barvinok (1995), amongst others.
The first results in this area seem due to Dines and Brickman: Dines showed that, for
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any real symmetric matricesA andB, the image set

{(〈Ax, x〉, 〈Bx, x〉) | x ∈ Rn} (1)

is a convex cone inR2, whatever the dimensionn. Brickman established a finer (and
trickier) result: for any real symmetric matricesA andB,

{(〈Ax, x〉, 〈Bx, x〉) | ‖x‖ = 1} (2)

is a convex compact set inR2, whenevern ≥ 3. We will see with the results of Barvinok
what the extensions of the two previous results are whenm (≥ 3) quadratic functions
are involved. These convexity results on images have immediate consequences in fields
where quadratic functions appear naturally and play an essential part, for example, in
optimization and control theory (more specifically in an infinite-dimensional context in
the latter case). For instance, the famous so-calledS-procedure, which deals with the
nonnegativity of a quadratic form on a set described by quadratic inequalities, provides
a powerful tool for proving stability of nonlinear control systems. In optimization, the
so-calledtrust region subproblem, which consists in minimizing a quadratic function
subject to a norm constraint, arises in solving general nonlinear programs. This problem
like some other nonconvex quadratic optimization problems enjoys ahidden convexity
property. All that is closely related and even due to the convexity of images by quadratic
mappings.

In Section 2 of the paper, we explore conditions under which there exists linear
(or convex) combinations of given matricesAi ’s which are positive (semi-)definite.
We present there results by Finsler (1936), Calabi (1964), Yuan (1978), and Barvinok
(1995), amongst others. As we will see, all these results are related to those displayed
in Section 1. As a general rule, in Section 1 as well as in Section 2, the results dealing
with twoquadratic mappings are extended to the case ofm (≥ 3) quadratic mappings by
substitutingmatricesof specific size to the usual (vector) variablesx ∈ Rn.

The convexity of the image sets in (1) and (2) is essentially a consequence of the
special facial structure of the convex cone of symmetric positive semidefinite matrices.
In Section 3 we generalize some of the results presented in Sections 1 and 2 by adopting
a geomerical viewpoint in an abstract context of euclidean spaces. Indeed, we exploit a
characterization of the faces of the intersection of two convex sets in order to prove the
convexity of the following set:

{(〈a1, x〉, . . . , 〈am, x〉) | x ∈ Fm(K )}, (3)

wherea1, . . . ,am are elements of the euclidean space(E, 〈·, ·〉), K is a closed convex
pointed cone inE, andFm(K ) is the union of all faces ofK whose dimension is at most
m. Then, using a separation argument, we derive a “facial alternative theorem” for linear
mappings. For the particular case whereK is the cone of positive semidefinite matrices,
we retrieve Dines’s and Yuan’s theorems as well as their extensions by Barvinok.

1. Convexity of Images by Quadratic Mappings

We begin by fixing some notations which are used throughout. We work in a finite-
dimensional (euclidean) setting, sayRn, equipped with the standard inner product de-
noted by〈·, ·〉 and the associated norm denoted by‖ ·‖. However, some remarks on what
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happens on quadratic mappings on a Hilbert space (for example, convexity of images is,
to a certain extent, easier to obtain than in a finite-dimensional setting), are given.
Sn(R) denotes the space of real symmetric(n,n)-matrices.
When A ∈ Sn(R), A Â 0 (resp.A º 0) is the notation used to express thatA is

positive definite (resp. positive semidefinite). Associated withA ∈ Sn(R) is thequadratic
form q onRn defined asq: Rn 3 x 7→ q(x) := 〈Ax, x〉. By a quadratic functionf on
Rn we meanf : Rn 3 x 7→ f (x) := 〈Ax, x〉 + 〈b, x〉 + c whereA ∈ Sn(R),b ∈ Rn,
andc ∈ R.

Finally, a quadratic mappingq = (q1, . . . ,qm)
T : Rn → Rm is a mapping whose

component functionsqi are all quadratic forms.
In the spaceMr,s(R) of real (r, s)-matrices, we adopt the usual inner product

〈〈U,V〉〉 := trace ofU T V .
It is worth noticing from now on that ifX ∈ Mn,p(R) and A ∈ Sn(R), then

〈〈AX, X〉〉 = 〈〈A,XXT 〉〉; in particular, for p = 1 (X is then the one column matrix
associated withx ∈ Rn), 〈〈A, xxT 〉〉 = 〈Ax, x〉.

All our results are exposed in the “real setting,” nothing is said concerning theorems
of the Toeplitz–Hausdorff type for quadratic forms with complex(n,n)-matrices.

1.1. The Theorem of Dines(1941)

The following series of results by Dines [10] seem to be the first ones concerning the
convexity of images of sets bytwoquadratic forms.

Let A and B be inSn(R). Then

{(〈Ax, x〉, 〈Bx, x〉) | x ∈ Rn}

is aconvexcone ofR2 (denoted as K). If, moreover,〈Ax, x〉 = 0

and

〈Bx, x〉 = 0

⇒ (x = 0), (4)

then K is aclosedcone, which is either the wholeR2 or a cone with “angle”θ < π .

1.2. The Theorem of Brickman(1961)

The next convexity type result, due to Brickman [6] is better spread than the previous
one.

Let A and B be inSn(R), and assume n≥ 3. Then

{(〈Ax, x〉, 〈Bx, x〉) | ‖x‖ = 1}

is aconvexcompact subset ofR2.
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Whenn = 2, the image of the unit sphere by two quadratic forms may fail to be
convex, we explain why later. Here is a counterexample [6, p. 63]:

A =
[

1 0

0 −1

]
and B =

[
0 1

1 0

]
∈ S2(R);

then

{(〈Ax, x〉, 〈Bx, x〉) | ‖x‖ = 1}

is the unit circle ofR2.

1.3. Extension of Dines’s Theorem by Barvinok(1995)

When more than two quadratic forms are involved, sayq1, . . . ,qm with m≥ 3, the image
of the whole space byq1, . . . ,qm may fail to be convex. Here is a simple counterexample.
Let

A =
[

1 −1

−1 0

]
, B =

[
0 −1

−1 1

]
, and C =

[
0 1

1 0

]
∈ S2(R).

Then

{(〈Ax, x〉, 〈Bx, x〉, 〈Cx, x〉) | x ∈ R2} := R

is not convex since the intersection ofR with the planex3 = 0 is

{(α,0,0) | α ≥ 0} ∪ {(0, β,0) | β ≥ 0}.

Under some special relationships between the dimensionn and the numberm of
quadratic forms involved, one can, however, get an upper bound on the numberr of
elements needed to yield, via convex combinations, the elements of the convex hull of
the imageR of the unit sphere by(q1, . . . ,qm) [4, Theorem 1.4]. That still shows the
limitation due to the fact that “usual” quadratic forms onRn are considered.

More general convexity results on images can be obtained if one accepts “relaxing”
or “enriching” the space on which quadratic forms are considered, say enlargingRn ≡
Mn,1(R) to someMn,p(R). The following result by Barvinok [2] can be viewed as an
extension of Dines’s one in Section 1.

Let A1, A2, . . . , Am ∈ Sn(R), and let p := b(√8m+ 1− 1)/2c (bxc stands for the
“integer part of x”). Then

{(〈〈A1X, X〉〉, 〈〈A2X, X〉〉, . . . , 〈〈AmX, X〉〉) | X ∈ Mn,p(R)}

is aconvexcone ofRm.
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The definition ofp may look mysterious at first glance, some explanation is provided
later in Section 3. Note, however, thatm= 2 yieldsp = 1 (Dines’s situation in Section 1),
butm= 3 yields p = 2.

1.4. Extension of Brickman’s Theorem by Poon(1997)

The next result by Poon [22] extends Brickman’s theorem in Section 1.2.

Let A1, A2, . . . , Am ∈ Sn(R), and let the integer p be defined as follows:

p :=



⌊√
8m+ 1− 1

2

⌋
if

n(n+ 1)

2
6= m+ 1, (∗)⌊√

8m+ 1− 1

2

⌋
+ 1 if

n(n+ 1)

2
= m+ 1. (∗∗)

Then

{(〈〈A1X, X〉〉, 〈〈A2X, X〉〉, . . . , 〈〈AmX, X〉〉) | X ∈ Mn,p(R), ‖X‖F = 1}
is a convexcompact subset ofRm (here‖ · ‖F denotes the Schur–Frobenius norm on
Mn,p(R), that is the one derived from〈〈·, ·〉〉).

Observe that whenm = 2 (two quadratic forms involved), the first case (∗) occurs
for n ≥ 3, and this gives rise top = 1 (that is Brickman’s case in Section 1.2). Still for
m= 2, the second case (∗∗) occurs forn = 2, which imposes us to takep = 2.

2. Existence of a Linear (or Convex) Combination ofA1, A2, . . . , Am

Which Is Positive (Semi-)Definite

The first results we present below in Sections 2.1 and 2.2, concerning the existence of a
linear (or convex) combination ofA andB which is positive definite (or semidefinite),
have been derived independently of any convexity result on images by quadratic forms.
They are, however, directly linked to such convexity results (in Sections 1.1 and 1.2) as
we will see. This is even clearer in the case where more than two quadratic forms are
involved.

2.1. The Theorem of Finsler(1936)and Calabi(1964)

The following result was proved by Finsler [11], and rediscovered by Calabi [7].

Let A and B be inSn(R), and assume n≥ 3. Then the following are equivalent:

(i)

〈Ax, x〉 = 0

and

〈Bx, x〉 = 0

⇒ (x = 0). (5)

(ii) There existsµ1, µ2 ∈ R such thatµ1A+ µ2B Â 0. (6)



174 J.-B. Hiriart-Urruty and M. Torki

The implication(5) ⇒ (6)does not necessarily hold true whenn = 2; a counterexample
is the one already considered in Section 1.2:

q1(x1, x2) := x2
1 − x2

2 associated with A =
[

1 0

0 −1

]
,

q2(x1, x2) := 2x1x2 associated with B =
[

0 1

1 0

]
;

then (5) holds true but there is no way to have

µ1A+ µ2B =
[
µ1 µ2

µ2 −µ1

]
positive definite.

There is another statement, a more classical one, which is known to be related
to (5)–(6); it is expressed in terms of simultaneous diagonalization ofA and B via
congruence. Recall that a collection{A1, A2, . . . , Am} of matrices inSn(R) is said to
besimultaneously diagonalizable via congruence, if there exists a nonsingular matrixP
such that each of thePT Ai P is diagonal. Simultaneous diagonalization via congruence
corresponds to transforming the quadratic formsqi associated with theAi ’s into linear
combinations of squares by a single linear change of variables; it is a more accessible
property than the (usual) diagonalization via similarity. It is known that (6)implies

A and B are simultaneously diagonalizable via congruence. (7)

See Section 7.6 of [15] for example. We note also that the implication(5)⇒ (7) is
given on pp. 272–280 of [12]; the proof, Milnor’s one, clearly shows that the hypothesis
n ≥ 3 on the dimension of the underlying space is essential. A very good account of
Finsler–Calabi type results, including the historical developments, remains the survey
paper [24].

We propose below a simple proof of the theorem of Finsler and Calabi by using the
convexity result of Brickman exposed in Section 1.2.

Let A and B be inSn(R) and assumen ≥ 3. We know from Brickman’s theorem
that

R := {(〈Ax, x〉, 〈Bx, x〉) | ‖x‖ = 1}
is a convex compact set inR2. What (5) expresses is that 0/∈ R. Thus, referring to a
classical argument in Convex analysis, we can “separate” 0 fromR: there is a line strictly
separating{0} fromR, i.e., there exists(µ1, µ2) ∈ R2 andr ∈ R such that

〈(µ1, µ2), (u, v)〉 > r > 0 for all (u, v) ∈ R. (8)

Now, (8) is nothing more than

µ1〈Ax, x〉 + µ2〈Bx, x〉 > 0 for all x ∈ Rn, ‖x‖ = 1, (9)

that is (6).
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Among various attempts to extend the above stated theorems, we mention two recent
contributions:

– A vectorialversion of the Finsler–Calabi theorem [13, Theorem 2].
– A result analogous to the equivalence (5)–(6) for three quadratic forms by Polyak

[21]; the main result [21, Theorem 2.1] can be formulated as follows:

Let A, B, and C be inSn(R), and assume n≥ 3. Then the two next assertions are
equivalent:

(i)


〈Ax, x〉 = 0

〈Bx, x〉 = 0

and

〈Cx, x〉 = 0

⇒ (x = 0), (10)

andK := {(〈Ax, x〉, 〈Bx, x〉, 〈Cx, x〉) | x ∈ Rn} is a pointed closed convex
cone(K pointed meansK ∩ (−K) = {0}).

(ii) There existµ1, µ2, µ3 ∈ R such thatµ1A+ µ2B+ µ3C Â 0. (11)

Moreover, this superb paper [21] contains various applications in optimization and
control theory of the ongoing convexity results on images by quadratic forms or functions.

We end this section by noting that the simultaneous diagonalization via congru-
ence ofA1, A2 . . . , Am ∈ Sn(R) makes it possible to generalize, to some extent, the
aforementioned results (due to the fact that the image setK in that case is a polyhedral
closed convex cone). This property of theAi ’s was already set as an assumption in [16].
However, the following problem remains posed:

Question 1. Find sensible and “palpable” conditions onA1, A2, . . . , Am ensuring they
are simultaneously diagonalizable via congruence.

2.2. The Theorem of Yuan(1990)

Condition (5) can be formulated in a variational fashion as follows:

max{|〈Ax, x〉|, |〈Bx, x〉|} > 0 for all x 6= 0 inRn. (12)

Yuan’s theorem [26] that we present below is just a “unilateral” version of the equivalence
(5)–(6).

Let A and B be inSn(R). Then the following are equivalent:

(i) max{〈Ax, x〉, 〈Bx, x〉} ≥ 0 for all x ∈ Rn

(resp.> 0 for all x 6= 0 in Rn). (13)

(ii) There existsµ1 ≥ 0, µ2 ≥ 0, µ1+ µ2 = 1 such thatµ1A+ µ2B º 0

(resp.Â 0). (14)
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Again here, starting from Dines’s convexity result displayed in Section 1, one can
derive Yuan’s theorem via a separation argument. What (13) says is that the (convex)
image setK := {(〈Ax, x〉, 〈Bx, x〉) | x ∈ Rn} does not meet the open convex cone
N := {(α, β) ∈ R2 | α < 0 andβ < 0}. There therefore exists a line passing through
the origin just separating them, i.e., there exists a nonnull(µ1, µ2) ∈ R2 such that

〈(µ1, µ2), (u, v)〉 ≥ 0 for all (u, v) ∈ K, (15)

〈(µ1, µ2), (α, β)〉 ≥ 0 for all (α, β) ∈ N . (16)

Then (15) yields thatµ1A+ µ2B is positive semidefinite, while (16) ensures that
µ1 ≥ 0 andµ2 ≥ 0.

Yuan’s result does not hold true if three matricesA, B, andC in Sn(R) are involved;
counterexamples are given in papers [9] and [8], where further analysis of results `a la
Yuan is developed.

We end this section by posing two open questions.

Question 2. Let A1, A2, . . . , Am ∈ Sn(R). How to express equivalently, in terms of
the Ai ’s, the following assertion:

〈A1x, x〉 = 0

〈A2x, x〉 = 0
...

〈Amx, x〉 = 0

⇒ (x = 0)? (17)

To have a linear combination of theAi ’s positive definite indeed secures (17), but it
is too strong a sufficient condition, by far.

The “unilateral” version of the question above is the next one.

Question 3. Let A1, A2, . . . , Am ∈ Sn(R). How to express equivalently, in terms of
the Ai ’s, the following situation:

max{〈A1x, x〉, 〈A2x, x〉, . . . , 〈Amx, x〉} ≥ 0 for all x ∈ Rn? (18)

It is interesting to note that (18) is related to the field of necessary/sufficient condi-
tions in nonsmooth optimization: the nonsmooth functionx 7→ f (x) := max{〈Ai x, x〉, i
= 1, . . . ,m} is globally minimized at̄x = 0. However, expressing some first or general-
ized second-order necessary condition for minimality forf at x̄ = 0 does not give any
interesting information about theAi ’s.

To have a convex combination of theAi ’s positive semidefinite is obviously a suf-
ficient condition for (18), but not a necessary one.

2.3. Extension of Section2.2,or Corollary to Barvinok’s Theorem in Section1.3

As one can easily imagine now, the convexity result in Section 1.3 yields, via separation
techniques from convex analysis, the next statement.
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Let A1, A2, . . . , Am ∈ Sn(R), and let p := b(√8m+ 1− 1)/2c (m = 2 gives p= 1,
m= 3 gives p= 2, etc.). Then the following are equivalent:

(i) max{〈〈A1X,X〉〉,〈〈A2X,X〉〉,. . . ,〈〈AmX,X〉〉} ≥ 0 for all X ∈ Mn,p(R)

(resp.> 0 for all X 6= 0 in Mn,p(R)). (19)

(ii) There existsµ1, . . . , µm ≥ 0, µ1+ · · · + µm = 1 such that
m∑

i=1

µi Ai º 0 (resp.Â 0). (20)

2.4. Extension of Section2.1,or Corollary to the Result in Section1.4,by
Bohnenblust[5]

Let A1, A2, . . . , Am ∈ Sn(R), and let

p :=



⌊√
8m+ 1− 1

2

⌋
if

n(n+ 1)

2
6= m+ 1,⌊√

8m+ 1− 1

2

⌋
+ 1 if

n(n+ 1)

2
= m+ 1

(thus p= 1 when m= 2 and n≥ 3, p = 2 when m= 2 and n= 2, etc.). Then the
following are equivalent:

(i)


〈〈A1X, X〉〉 = 0,

〈〈A2X, X〉〉 = 0,
... X ∈ Mn,p(R)

〈〈AmX, X〉〉 = 0,

⇒ (X = 0). (21)

(ii) There existsµ1, . . . , µm ∈ R such that
m∑

i=1

µi A1 Â 0. (22)

Remark 1. It is natural to try to extend results of Sections 1 or 2 to the case where
quadratic functions are defined on a (general) Hilbert space. The main motivation for
that comes from control theory where many questions can be formulated in abstract form
as the problem of minimizing a quadratic function on a closed convex subset of a Hilbert
space (usually described as quadratic inequality constraints). Among the various results
à la Dines–Brickman (see [25], [20], [18], [19], [1]), we single out the following typical
one by Matveev [18], [19]:

Let A1, A2, . . . , Am be self-adjoint continuous linear mappings on a(real) Hilbert space
(H, 〈·, ·〉), let q1, . . . ,qm denote the associated continuous quadratic forms on H(i.e.,
qi (x) := 〈Ai x, x〉 for all x ∈ H ). If, for any (λ1, . . . , λm) ∈ Rm, the maximal and the
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minimal points of the spectrum ofλ1A1 + · · · + λmAm are not isolated eigenvalues of
finite geometric multiplicity, then the rangeR of the unit sphere of H under the quadratic
mapping q:= (q1, . . . ,qm) is almost convex, i.e., there exists a convex set C ofRm such
that C⊂ R ⊂ C̄.

3. Some General Results in a Euclidean Space Context

In this section we generalize some of the results presented in Sections 1 and 2 by adopting
a geometrical viewpoint in an abstract context of euclidean spaces.

Our general setting here is:a euclidean space(E, 〈·, ·〉) and a closed convex cone
K in E. We keep in mind, however, the guiding example whereE = Sn(R) is endowed
with the inner product〈〈·, ·〉〉, andK = {A ∈ Sn(R) | A º 0}.

We begin with some definitions and technical results.

– B ⊂ K is called abasisfor K when the following holds true: for allx ∈ K\{0},
there exists a unique pair(λ > 0, y ∈ B) such thatx = λy.

– The (positive)polar coneof K is defined as follows:

K+ := {x ∈ E | 〈x,d〉 ≥ 0 for all d ∈ K }.

Proposition 1. The following statements are equivalent:

(i) K possesses a compact basis.
(ii) The interior of K+ is nonempty.

(iii) K is pointed(i.e., K ∩ (−K ) = {0}).

The next theorem, the so-called “faces of intersection theorem” by Dubins and Klee
(see p. 116 of [23] for example), serves as our main technical tool.

Theorem 2. Let C1 and C2 be two closed convex sets in E. Then F is a face of C1∩C2

if and only if there exists a face F1 of C1 and a face F2 of C2 such that F= F1 ∩ F2.
Moreover, F1 and F2 can be chosen such that

Aff F = Aff F1 ∩ Aff F2.

In that case

codimF ≤ codimF1+ codimF2.

(Aff F stands for the affine hull of F, andcodimF is the codimension of F.)

More specifically, Theorem 2 will be used whenF = {x̄}, x̄ is an extreme point of
C1 ∩ C2, andC2 is an affine subspace or halfspace ofE.

3.1. Convexity of Images of Faces of K by Linear Mappings

Our first result in this section is as follows.
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Theorem 3. Assume K is pointed and consider a1,a2, . . . ,am ∈ E. Then

{(〈a1, x〉, . . . , 〈am, x〉) | x ∈ K } = {(〈a1, x〉, . . . , 〈am, x〉) | x ∈ Fm(K )}, (23)

whereFm(K ) denotes the union of all faces of K whose dimension is≤ m. The same
result holds true if a convex compact subset C of E is substituted for K.

As an immediate consequence of Theorem 3, we get the convexity of the images
of the faces ofK (or C) whose dimension is≤ m by linear mappingsx ∈ E 7→
(〈a1, x〉, . . . , 〈am, x〉) ∈ Rm.

Corollary 1. Under the assumptions of Theorem3, the image set

{(〈a1, x〉, . . . , 〈am, x〉) | x ∈ Fm(K )},

is a convex cone ofRm. Similarly, if C is a convex compact subset of E, then

{(〈a1, x〉, . . . , 〈am, x〉) | x ∈ Fm(C)}

is a convex compact subset ofRm.

Proof. Let(α1, . . . , αm) ∈ {(〈a1, x〉, . . . , 〈am, x〉) | x ∈ K } and consider the following
affine subspace:

V := {x ∈ E | 〈ai , x〉 = αi for all i = 1, . . . ,m}. (24)

SinceK∩V is nonempty (by definition ofV from(α1, . . . , αm)), we considerx0 ∈ K∩V .
Let us prove thatK ∩ V possesses extreme points.

SinceK is assumed pointed, the interior ofK+ is nonempty (Proposition 1). When-
evera0 is chosen in the interior ofK+, it is easy to check that

B := K ∩ {x ∈ E | 〈a0, x〉 = 1}
is a compact basis forK .

Let σ := 〈a0, x0〉(σ > 0). The set

C := K ∩ V ∩ {x ∈ E | 〈a0, x〉 ≤ 2σ }
is clearly closed convex and nonempty (it containsx0). It is also bounded; indeed

C = V ∩ {λy: λ ≥ 0, y ∈ B, 〈a0, λy〉 ≤ 2σ }
= V ∩ {λy: 0≤ λ ≤ 2σ, y ∈ B} (〈a0, y〉 = 1 whenevery ∈ B),

whence the boundedness ofC follows from that ofB.
C does have extreme points, but we claim that there is at least one extreme pointx̄

in C satisfying〈a0, x̄〉 < 2σ . If not, all the extreme points inC (and therefore the whole
of C) would lie in

K ∩ V ∩ {x ∈ E | 〈a0, x〉 = 2σ },
which is not possible sincex0 ∈ C while 〈a0, x0〉 = σ < 2σ .
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We thus take such an extreme pointx̄ of C. Write C as C1 ∩ C2 whereC1 :=
K ∩ V,C2 := {x ∈ E | 〈a0, x〉 ≤ 2σ }, and consider the faceF := {x̄} built up from x̄.
According to the “faces of intersection theorem” (Theorem 2), there exists a faceF1 of
K ∩ V , a faceF2 of {x ∈ E | 〈a0, x〉 ≤ 2σ } such that

{x̄} = F1 ∩ F2

and

dim E = codimF ≤ codimF1+ codimF2. (25)

Now, since〈a0, x̄〉 < 2σ , the called up faceF2 is nothing more thanC2 = {x ∈ E |
〈a0, x〉 ≤ 2σ } itself; whence codimF2 = 0. As a consequence, it comes from the
inequality (25) that codimF1 = dim E, which means that̄x is an extreme point of
C1 = K ∩ V .

We now apply again the “faces of intersection theorem” toC1 = K ∩ V ; there
therefore exists a faceFK of K , a faceFV of V such that

{x̄} = FV ∩ FK

and

dim E = codim{x̄} ≤ codimFV + codimFK . (26)

SinceV is the affine subspace ofE defined in (24),FV = V and codimFV ≤ m. It then
follows from (26) that codimFK ≥ dim E −m, that is to say dimFK ≤ m. Thus

{x̄} = V ∩ FK is nonempty;

in other words,V intersects a face ofK whose dimension is≤ m. We finally have proved
that

(α1 . . . , αm) ∈ {(〈a1, x〉, . . . , 〈am, x〉) | x ∈ Fm(K )},
i.e.,

{(〈a1, x〉, . . . , 〈am, x〉) | x ∈ K } ⊂ {(〈a1, x〉, . . . , 〈am, x〉) | x ∈ Fm(K )}.

Since the converse inclusion is trivial, the announced equality is proved.

3.2. Facial Alternative Theorems

The standard alternative theorem based upon results in convex analysis expresses the
equivalence of the two following statements:

(i) max{(〈a1, x〉, . . . , 〈am, x〉)} ≥ 0 for all x ∈ K . (27)

(ii) There existsµ1, . . . , µm ≥ 0, µ1+ · · · + µm = 1, such that
m∑

i=1

µi ai ∈ K+. (28)
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Therefore, as a by-product of the convexity result in Theorem 3, we get a first“facial
alternative theorem”(linear case).

Theorem 4. Assume K is pointed and consider a1, . . . ,am ∈ E. Then the following
are equivalent:

(i) max{(〈a1, x〉, . . . , 〈am, x〉)} ≥ 0 for all x ∈ Fm(K )

(resp.> 0 for all x 6= 0 ∈ Fm(K )). (29)

(ii) There existsµ1, . . . , µm ≥ 0, µ1+ · · · + µm = 1 such that
m∑

i=1

µi ai ∈ K+ (resp. ∈ int(K+)). (30)

Remark 2. The above alternative theorem remains valid if one substitutesFm̄(K ) for
Fm(K ) (for the≥ inequality), wherem̄ denotes the rank of the family{a1, . . . ,am} (thus
m̄≤ m). This is not true for the strict inequality. In this case, one can substituteFm(K )
for Fm(K ) wherem := min{m̄+ 1,m}(≤ m).

Remark 3. The above result is sharper than the “boundary-type alternative theorem”
proposed by Crouzeix et al. [9].

As a corollary of Theorem 4 we have the following “facial alternative theorem” in
anaffineform.

Corollary 2. Assume K is pointed and consider a1, . . . ,am ∈ E and(c1, . . . , cm) ∈
Rm\{(0, . . . ,0)}. Then the following are equivalent:

(i) max{〈a1, x〉 + c1, . . . , 〈am, x〉 + cm)} ≥ 0 for all x ∈ Fm(K )

(resp.> 0 for all x 6= 0 ∈ Fm(K )). (31)

(ii) There existsµ1, . . . , µm ≥ 0, µ1+ · · · + µm = 1 such that
m∑

i=1

µi ai ∈ K+ and
m∑

i=1

µi ci ≥ 0 (resp.> 0). (32)

Another “facial alternative theorem,” theconvex form, follows by linearization from
Theorem 4.

Theorem 5. Assume K is pointed and consider convex functions f1, f2, . . . , fm: E→
R. We assume that, for all i = 1, . . . ,m, fi is differentiable at0 and satisfies fi (0) = 0.
Then the following are equivalent:

(i) max{ f1(x), . . . , fm(x)} ≥ 0 for all x ∈ Fm(K ). (33)
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(ii) There existsµ1, . . . , µm ≥ 0,µ1+ · · · + µm = 1 such that(
m∑

i=1

µi fi

)
(x) ≥ 0 for all x ∈ K . (34)

Proof. The first-order necessary and sufficient condition for optimality in convex op-
timization [14, Chapter VII, Section 1] allows us to reformulate (ii) in the following
equivalent form:

(ii) ′ There existsµ1, . . . , µm ≥ 0,µ1+ · · · + µm = 1 such that
m∑

i=1

µi∇ fi (0) ∈ K+.

According to Theorem 5, condition (ii)′ above is equivalent to:

(i)′ max{〈∇ f1(0), x〉, . . . , 〈∇ fm(0), x〉} ≥ 0 for all x ∈ Fm(K ).

Now, using elementary properties of nonsmooth convex functions like

max{ f1(x), . . . , fm(x)} ≥ max{〈∇ f1(0), x〉, . . . , 〈∇ fm(0), x〉}

(remember thatfi (0) = 0 for all i = 1, . . . ,m),

max{〈∇ f1(0), x〉, . . . , 〈∇ fm(0), x〉} = inf
t>0

max{ f1(tx), . . . , fm(tx)}
t

(see Chapter VI, Section 4.4, of [14]), and the conical structure ofFm(K ), the equivalence
between (i)′ and (i) is derived.

3.3. Facial Solutions to Simultaneous Linear Equations

Still under the assumptions of Theorem 4 we have the following variant of Theorem 3:

{(〈a1, x〉, . . . , 〈am, x〉) | 0 6= x ∈ Fm+1(K )}
= {(〈a1, x〉, . . . , 〈am, x〉) | 0 6= x ∈ K }. (35)

Proof. First, sinceK is pointed, it possesses a compact basisB (by Proposition 1).
Thus, we can write

K\{0} = {λy | λ > 0, y ∈ B}.

As a consequence,

{(〈a1, x〉, . . . , 〈am, x〉) | 0 6= x ∈ K } = R∗+{(〈a1, y〉, . . . , 〈am, y〉) | y ∈ B}.

Now, by Theorem 3 (B is a convex compact subset ofE)

{(〈a1, y〉, . . . , 〈am, y〉) | y ∈ B} = {(〈a1, y〉, . . . , 〈am, y〉) | y ∈ Fm(B)}.
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To conclude, it suffices to observe that

Fm+1(K )\{0} = {λy | λ > 0, y ∈ Fm(B)}.

It is important to note that this result is not true, as a general rule, if one substitutesm
for m+ 1; counterexamples can be found inE = R3.

As a consequence, we have the following statement characterizing the nonexistence
of nonnull facial solutions to a system of linear equations.

Theorem 6. Assume K is pointed and consider a1, . . . ,am ∈ E. Then the following
are equivalent:

(i) (〈a1, x〉, . . . , 〈am, x〉) 6= (0, . . . ,0) for all 0 6= x ∈ Fm+1(K ). (36)

(ii) There existsµ1, . . . , µm ∈ R such that
m∑

i=1

µi ai ∈ int(K+). (37)

Applications. We turn our attention back to our guiding framework:E = Sn(R),
endowed with the usual inner product〈〈·, ·〉〉; K = {A ∈ Sn(R) | A º 0}. K is a pointed
closed convex cone, it is its own (positive) polar cone(K = K+). The facial structure
of this cone is also well known: faces ofK are closed convex cones of dimension

0,1,3, . . . ,
p(p+ 1)

2
,
(p+ 1)(p+ 2)

2
, . . . ,

n(n+ 1)

2
.

The apex is the only extreme point (face of dimension 0), while the whole coneK is the
only face of full dimensionn(n+ 1)/2.

DeterminingFm(K ) is rather easy here (see, for instance, Corollary 6.1 of [17]):

Fm(K ) = {XXT | X ∈ Mn,p(R)}, (38)

wherep is the smallest integer satisfying(p+ 1)(p+ 2)/2> m.
As, for example,

F1(K ) = F2(K ) = {xxT | x ∈Mn,1 ≡ Rn}
(union of the apex 0 and all the extreme rays ofK ; there is no face of dimension 2 inK ),

F3(K ) = {XXT | X ∈Mn,2}.
The smallestpsatisfying(p+1)(p+2)/2> m turns out to be exactlyp = b(√8m+ 1−
1)/2c, such as introduced and used in Sections 1.3 and 2.3.

As we know that〈〈A,XXT 〉〉 with X ∈ Mn,p(R) is nothing more than〈〈AX, X〉〉,
we are able to “close the loop” with the results `a la Barvinok: Corollary 1 goes with the
result displayed in Section 1.3, Theorem 4 with the one displayed in Section 2.3, etc.
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