
POLYTOPAL BALLS ARISING IN OPTIMIZATION

Antoine Deza

McMaster University, Hamilton, Ontario, Canada

e-mail: deza@mcmaster.ca

Jean-Baptiste Hiriart-Urruty
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ABSTRACT

We study a family of polytopes and their duals, that appear in various

optimization problems as the unit balls for certain norms. These two fam-

ilies interpolate between the hypercube, the unit ball for the ∞-norm, and

its dual cross-polytope, the unit ball for the 1-norm. We give combinato-

rial and geometric properties of both families of polytopes such as their

f -vector, their volume, and the volume of their boundary.

1. Introduction

A family of norms on Rd resembling the usual Euclidean norm, yet polytopal in

the sense that the balls for these norms are polytopes, were introduced in [23]

as a tool to solve linear approximation problems. These norms, defined by

(1) ‖x‖(k) = inf{‖u‖1 + k‖v‖∞ : u+ v = x},

where x is a vector from Rd and k is a parameter that belongs to the interval

[1, d], were later considered in the context of robust optimization [3], a method

to deal with linear optimization under uncertain constraints. As shown in [3],

defining the uncertainty constraints using these norms, referred to as D-norms
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Figure 1. The polytope ρ3,k, when k is equal to 1, 3/2, 2, 5/2,

and 3 (from left to right).

in this case, allows for an efficient way to solve robust optimization problems.

It is further observed in [11, 19] that these norms are naturally connected with

the conditional value at risk, a popular metric used in quantitative finance: just

as the conditional value at risk, these norms, called the CVaR norms in this

other context, put the emphasis on the largest coordinates of a vector from

Rd. In particular, it is shown in [19] that these norms are a solution to an

optimization problem regarding the conditional value at risk. The same norms

also appear in optimization problems over sets of matrices [24], where they are

called vector k-norms, and in sparse optimization [9, 10]. In the latter case,

one is faced with the sparsity constraint on the solutions to a problem: the

desired solutions—vectors from Rd—are required to have a prescribed number

of non-zero coordinates. This happens for instance in data science, in machine

learning [20], in mathematical imaging, or in statistics among other fields. The

number of non-zero coordinates of a vector x of Rd is often denoted by ‖x‖0 in

the optimization literature. Formally,

‖x‖0 = |{i : xi 6= 0}| ,

where x1 to xd denote the coordinates of x. Despite what the notation suggests,

this quantity does not define a norm since it is not absolutely homogeneous. In

fact, the map x 7→ ‖x‖0 is not convex, or even continuous and as a result, it

is often replaced by x 7→ ‖x‖1 in order to make sparse optimization problems

computationally tractable [14]. Another approach is to replace ‖x‖0 by the

difference of two of the norms introduced above. Indeed, it is observed in [9, 10]

that the sparsity constraint ‖x‖0 ≤ k is equivalent to the equality

‖x‖(k) − ‖x‖(l) = 0

for any l such that k < l ≤ d. Hence, the norms defined by (1) allow for a

computationally effective way to estimate sparsity.
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Figure 2. The polytope ρ?3,k, when k is equal to 1, 3/2, 2, 5/2,

and 3 (from left to right).

As we mentioned above, the balls for these norms are polytopes. The purpose

of this article is to study the combinatorics of the unit balls for these norms,

by which we mean their f -vector, and some of their geometric properties such

as their volume and the volume of their boundary.

Throughout the article, we denote by γd the d-dimensional hypercube [−1, 1]d

and by βd the cross-polytope whose vertices are the center of the facets of γd,

following the notation used by Coxeter [4]. Note that the former is the unit ball

for the ∞-norm and the latter the unit ball for the 1-norm.

We consider the family of polytopes

(2) ρd,k = conv

(
βd ∪

1

k
γd

)
when k ranges from 1 to d. It is shown in [9] that ρd,k is the unit ball for

the norm defined by (1). Note that these polytopes interpolate between the

hypercube and its dual cross-polytope. In particular, ρd,1 coincides with the

hypercube γd because βd is a subset of that hypercube. Similarly, ρd,d is equal

to the cross-polytope βd as this cross-polytope admits the dilated hypercube

γd/d as a subset. More precisely, the vertices of γd/d are exactly the center

of the facets of βd, just as the vertices of βd are the centers of the facets of

γd. As we shall see, this observation can be generalized, allowing to determine

the whole face lattice of ρd,k. Recall that the norm defined by (1) can also be

viewed as the support function of the polytope ρ?d,k polar to ρd,k [12]. Since

γd is the polar of βd, the polytopes ρ?d,k provide another way to continuously

deform βd into γd, and give rise to alternate (dual) norms.

It follows from (2) that

(3) ρ?d,k = (kβd) ∩ γd.

By duality, the f -vector of ρ?d,k is obtained by reversing that of ρd,k. However,
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the volume of ρ?d,k requires a separate computation, which we will also provide

here. While we are mainly interested in the polytopes ρd,k and ρ?d,k when k is

an integer, most of our results hold for any k within the interval [1, d]. The

combinatorics of ρd,k and ρ?d,k is studied in Section 2. The volume of ρd,k and

that of its boundary are computed in Section 3. The same two volumes, but in

the case of ρ?d,k rather than ρd,k are computed in Section 4.

2. The combinatorics of ρd,k and ρ?d,k

As we mentioned earlier, the number of the (d− i− 1)-dimensional faces of ρ?d,k
is equal to the number of the i-dimensional faces of ρd,k. Therefore, we only

need to compute the number of the faces of one of them. In order to do that,

we will give a close look at the continuous deformation of γd into βd via the

polytopes given by (2). It will be convenient to consider the dilate kρd,k instead

of ρd,k itself. Recall, in particular that a polytope has the same combinatorics

as any of its dilates by a non-zero coefficient.

First observe that kρd,k is obtained by pulling the centers of each facet of

the hypercube γd away from the hypercube along the axes of coordinates, until

they are at a distance k− 1 from the hypercube, and by taking the convex hull

of these pulled points together with the vertices of γd. In particular, when k is

greater than 1 but close enough to 1, kρd,k is obtained from the hypercube γd

by glueing pyramids over each of its facets. It immediately follows that, except

for its facets, all the proper faces of γd, are still faces of kρd,k. Moreover, all the

facets of kρd,k are pyramids over a (d− 2)-face of γd. More precisely, if γd−2 is

a (d − 2)-dimensional face of γd, the two facets of kρd,k incident to it are the

two pyramids over γd−2 whose apices are the points pulled from the center of

the facets of γd incident to γd−2. This describes the boundary complex of kρd,k

whenever 1 < k < 2. when k = 2 the two facets of kρd,k incident to γd−2 merge

into a single facet, a bipyramid over γd−2 whose two apices are the points pulled

from the center of the facets of γd incident to γd−2. By our description, all the

facets of 2ρd,2 are built this way. In particular, they are pairwise isometric.

Now let us describe how the boundary complex of kρd,k get modified when

2 < k < 3. In this case, the two apices of the bipyramid over γd−2 are further

pulled away from the hypercube, which splits that bipyramid into the convex

hulls of the line segment that joins these two apices with each of the facets

of γd−2. Again, all the facets of kρd,k are isometric to such a convex hull.
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Now recall that the facets of γd−2 are (d − 3)-dimensional faces of γd. In

particular these faces are (d − 3)-dimensional hypercubes. Let γd−3 be one

of these hypercubes. Observe that γd−3 is contained in exactly three facets of

kρd,k because it is incident to exactly three (d−2)-dimensional faces of γd. Upon

reaching k = 3, these three facets merge into a single facet of 3ρd,3, obtained

as the convex hull of γd−3 and the equilateral triangle whose vertices are the

points pulled from the centers of the three facets of γd incident to γd−3. As

above, all the facets of 3ρd,3 are obtained this way.

That process repeats when k belongs to an interval between two consecutive

integers. In particular, when k is an integer, each of the (d − k)-dimensional

faces of the hypercube gives rise to a facet of kρd,k and all the facets of kρd,k

are obtained this way. More precisely, we obtain the following.

Theorem 2.1: If k is an integer, then the facets of kρd,k are exactly the convex

hulls of the union of a (d − k)-dimensional face γd−k of γd with the (k − 1)-

dimensional regular simplex whose vertices are the points pulled from the cen-

ters of the k facets of γd incident to γd−k.

It is noteworthy that the regular simplex mentioned in the statement of The-

orem 2.1 is a face of the cross-polytope kβd.

When k is not an integer, the facets of ρd,k are obtained, in combinatorial

terms, by splitting each of the facets of the polytope bkcρd,bkc into as many

facets as a (d− bkc)-dimensional hypercube has.

Theorem 2.2: If k is not an integer, then the facets of kρd,k are exactly the

convex hulls of a (d− bkc − 1)-dimensional face γd−bkc−1 of γd with one of the

(bkc − 1)-dimensional simplices whose vertices are any bkc of the points pulled

from the centers of the bkc+ 1 facets of γd incident to γd−bkc−1.

Based on Theorems 2.1 and 2.2, we now compute the f -vector of ρd,k. From

there on, we denote by fi(P ) the number of i-dimensional faces of a polytope P .

According to our description, ρd,k has 2d + 2d vertices when 1 < k < d. Recall

that ρd,1 is a d-dimensional hypercube and ρd,d a d-dimensional cross-polytope,

whose number of vertices are 2d and 2d, respectively. Moreover, when k is an

integer, it follows from Theorem 2.1 that the number of facets of ρd,k is the
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number of (d− k)-dimensional faces of a d-dimensional hypercube, that is

fd−1(ρd,k) = 2k
(
d

k

)
.

By Theorem 2.2, when k is not an integer the number of facets of ρd,k is the

product of the number of (d − bkc − 1)-dimensional faces of a d-dimensional

hypercube with the number of facets of a bkc-dimensional simplex, that is

fd−1(ρd,k) = 2bk+1c
(

d

bkc+ 1

)
(bkc+ 1).

In order to complete the f -vector of ρd,k when k is an integer, let us remark

that the faces of ρd,k are of three types: they can be faces of the hypercube

γd/k, faces of the cross-polytope βd, or neither. We first compute the number

of the i-dimensional faces of ρd,k of the latter type.

Lemma 2.3: If k is an integer, and i satisfies 1 ≤ i ≤ d− 2, then the number

of the i-dimensional faces of ρd,k that are neither a face of the hypercube γd/k,

nor a face of the cross-polytope βd is(
d

k

) u∑
j=l

2d−j

(
d−k
j

)(
k

i−j
)(

d−i
d−k−j

) ,

where l = max{0, i− k + 1} and u = min{i− 1, d− k − 1}.

Proof. Assume that k is an integer. According to Theorem 2.1 any facet of

ρd,k is the convex hull of the union of a (d − k)-dimensional face γd−k of the

hypercube γd/k and the (k−1)-dimensional regular simplex αk−1 whose vertices

are the points pulled from the centers of the k facets of γd incident to γd−k.

By construction the affine hulls of γd−k and αk−1 are orthogonal subspaces of

Rd. Therefore, the proper faces of conv(γd−k ∪ αk−1) that are not a face of

γd−k or a face of αk−1 are exactly the convex hulls of the union of a proper

face of γd−k and a proper face of αk−1. Moreover the dimension this convex

hull is greater by one than the sum of the dimension of the faces of γd−k and

αk−1 it is constructed from. Let us consider a face that arises this way from a

j-dimensional face γj of γd−k and a (i− j−1)-dimensional face αi−j−1 of αk−1.

Since γd−k is a (d− k)-dimensional cube,

fj(γd−k) = 2d−k−j
(
d− k
j

)
.
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Since αk−1 is a (k − 1)-dimensional simplex,

fi−j−1(αk−1) =

(
k

i− j

)
.

Therefore, conv(γd−k ∪ αk−1) admits exactly

2d−k−j
(
d− k
j

)(
k

i− j

)
faces of such as conv(γj ∪ αi−j−1). Now observe that if we would multiply this

quantity by the number of facets of ρd,k, conv(γj ∪ αi−j−1) would be counted

as many times as the number of facets of ρd,k it is incident to. Let us compute

this number. The facets of ρd,k incident incident to conv(γj ∪ αi−j−1) are

obtained by choosing one of the (d − k)-dimensional faces F of the hypercube

γd/k incident to γj and contained in all the facets of γd/k the vertices of αi−j−1

are pulled from, and by then taking the convex hull of its union with the (k−1)-

dimensional simplex whose vertices are the points pulled from the centers of the

k facets of γd incident to F . Hence, there are(
d− i

d− k − j

)
possible choices for F , and conv(γj∪αi−j−1) is incident to that number of facets

of ρd,k. According to these observations, there are(
d

k

)
2d−j

(
d−k
j

)(
k

i−j
)(

d−i
d−k−j

)
faces of ρd,k obtained as the convex hull of the union of a j-dimensional face of

γd/k with a (i− j − 1)-dimensional face of βd. Such faces of γd/k and βd exist

if and only if l ≤ j ≤ u with l = max{0, i−k+ 1} and u = min{i−1, d−k−1},
which completes the proof.

Now recall that, if k > 1, then by our description of ρd,k, the hypercube

γd/k shares all of its faces of dimension less than d− k with ρd,k and no other.

Similarly, if k < d, then the cross polytope βd shares all of its faces of dimension

less than k − 1 with ρd,k, and no other face.

As a consequence of these observations, we obtain the following.

Lemma 2.4: If k > 1, then ρd,k and γd/k share

2d−i
(
d

i

)
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faces of dimension i when 0 ≤ i < d − k and they do not share any face of

dimension i when d− k ≤ i < d. If k < d, then ρd,k and βd share

2i+1

(
d

i+ 1

)
faces of dimension i when 0 ≤ i < k − 1 and these polytopes do not have any

common face of dimension i when k − 1 ≤ i < d.

The following is an immediate consequence of Lemmas 2.3 and 2.4.

Theorem 2.5: If 1 ≤ i < d− 1 and k is an integer satisfying 1 < k < d then

(i) fi(ρd,k) = f? when i ≥ max{d− k, k − 1},

(ii) fi(ρd,k) = 2i+1

(
d

i+ 1

)
+ f? when d− k ≤ i < k − 1,

(iii) fi(ρd,k) = 2d−i
(
d

i

)
+ f? when k − 1 ≤ i < d− k,

(iv) fi(ρd,k) = 2i+1

(
d

i+ 1

)
+ 2d−i

(
d

i

)
+ f? when i < min{d− k, k − 1},

where, in the right-hand side of these equalities,

f? =

(
d

k

) u∑
j=l

2d−j

(
d−k
j

)(
k

i−j
)(

d−i
d−k−j

) ,

with l = max{0, i− k + 1} and u = min{i− 1, d− k − 1}.

Remark 2.6: A conjecture by Kalai [15] states that a d-dimensional centrally-

symmetric polytope always has at least 3d non-empty faces. The polytopes

ρd,k satisfy this conjecture. Indeed, recall that, when k is an integer such that

1 < k < d, ρd,k has 2d + 2d vertices and 2k
(
d
k

)
facets. Ignoring the f? terms

in the expression of fi(ρd,k) provided by Theorem 2.5, one obtains that the

number of non-empty faces of ρd,k is at least

1 + 2d+ 2d + 2k
(
d

k

)
+

k−1∑
i=2

2i
(
d

i

)
+

d−k−1∑
i=1

2d−i
(
d

i

)
,

a sum that can be rearranged into the binomial expansion of (1 + 2)d.
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3. The geometry of ρd,k

Let us recall that ρd,k is introduced in [9] as an intersection of half-spaces of

Rd. We recover this description as a consequence of Theorem 2.1.

Corollary 3.1: If k is an integer, then ρd,k is the set of the points x in Rd

such that the absolute value of any k coordinates of x sum to at most 1.

In the remainder of the section, we compute the volume of ρd,k and that of

its boundary. Let us remark that our description of kρd,k naturally provides a

polyhedral subdivision of this polytope into convex hulls of unions of hypercubes

and simplices. Consider a (d − l)-dimensional face γd−l of the hypercube γd

where l < k, and the regular (l − 1)-dimensional simplex αl−1 whose vertices

are the points pulled from the facets of γd incident to γd−l in our description

of ρd,k. As l < k, conv(γd−l ∪ αl−1) is a d-dimensional polytope. When l = 0,

we will take as a convention that γd−l is the whole hypercube γd and αl−1

is the empty set. The family of these polytopes when l ranges from 0 to bkc
form a subdivision of ρd,k. This subdivision turns out to be regular. In other

words, it can be recovered by projecting to Rd the lower faces of a (d + 1)-

dimensional polytope [5]. In this particular case, an example of such a polytope

can be obtained by identifying Rd as the subspace of Rd+1 spanned by the first

d coordinates, by leaving the vertices of γd within Rd, by lifting the vertices of

kβd in the hyperplane of Rd+1 wherein the last coordinate is equal to 1, and by

taking the convex hull of all the resulting points.

According to this discussion, the volume of ρd,k can be obtained from that

of conv(γd−l ∪ αl−1). This polytope can be alternatively built by starting from

γd−l, constructing the pyramid over γd−l whose apex is a vertex of αl−1, then

taking the pyramid over that pyramid whose apex is another vertex of αl−1,

and so on until all the vertices of αl−1 have been used.

As a consequence, in order to obtain the volume of this polytope, we first

compute the distance of a vertex x of αl−1 to the affine hull of the union of γd−l

and of i vertices of αl−1 other than x.

Lemma 3.2: The distance between a vertex x of αl−1 and the affine space

spanned by γd−l and by i vertices of αl−1 other than x is

k

√
k2 − 2(i+ 1)k + (i+ 1)l

k2 − 2ik + il
.
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Proof. Consider a set V of i vertices of αl−1. We assume without loss of gener-

ality that γd−l is the (d− l)-dimensional face of the hypercube γd wherein the

first l coordinates are equal to 1 and that the vertices of αl−1 contained in V
are the ones whose positive coordinate is among the first i coordinates. Let us

also translate γd−l and αl−1 by subtracting the center of γd−l, which can be

done without loss of generality as well.

In this setting, the affine space spanned by γd−l∪V contains the origin. After

the translation, the first i coordinates of the points contained in V are given by

the columns of the following matrix, their last d− l coordinates are equal to 0,

and their l − i intermediate coordinates are equal to −1:

k − 1 −1 · · · −1 −1

−1 k − 1
. . .

...
...

−1 −1
. . . −1 −1

...
...

. . . k − 1 −1

−1 −1 · · · −1 k − 1


.

By symmetry, the orthogonal projection of x on the affine space spanned by

γd−l ∪ V is a multiple by a coefficient λ of the sum of the points contained in

V. Now observe that, by symmetry, the equation(
x− λ

∑
v∈V

v

)
· y = 0,

where y is a point from V does not depend on how y is chosen within V.

Solving that equation for λ yields

λ =
−2k + l

k2 − 2ik + il
.

Finally, we obtain∥∥∥∥∥x− λ∑
v∈V

v

∥∥∥∥∥ = k

√
k2 − 2(i+ 1)k + (i+ 1)l

k2 − 2ik + il
,

as desired.

Observe that the volume of γd−l is 2d−l. Together with Lemma 3.2, the

expression of the volume of a pyramid in terms of the volume of its base and

the distance of its apex to it, provides the following.
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Lemma 3.3: The volume of conv(γd−l ∪ αl−1) is 2d−lkl−1(k − l) (d− l)!
d!

.

We obtain the volume of ρd,k from Lemma 3.3.

Theorem 3.4: The volume of ρd,k is
2dkbkc−d

bkc!
.

Proof. By the above remarks on the decomposition of ρd,k as a polyhedral

complex, and since a hypercube has 2l
(

d
d−l
)

faces of dimension d− l, it follows

from Lemma 3.3 that the volume of kρd,k is

2d
bkc∑
l=0

kl−1(k − l)
l!

.

Dividing this quantity by kd, we recover the volume of ρd,k. In addition,

bkc∑
l=0

kl−1(k − l)
l!

=
kbkc

bkc!
,

and we obtain the desired result.

Remark 3.5: It is noteworthy that the volume of ρd,2 does not depend on d: by

Theorem 3.4, this volume is equal to 2. Further note that ρd,2 is a non-zonotopal

parallelotope (see for instance [6] and references therein), and that ρ4,2 is the

24-cell, a 4-dimensional regular, self-dual polytope.

Let us turn our attention to computing the volume of the boundary of ρd,k.

In the remainder of the section, we assume that k is an integer. Since all of

the facets of ρd,k are isometric and we know their number, we only need to

compute the volume of one of these facets in order to establish the volume

of the boundary of ρd,k. Consider the same γd−l and αl−1 as above but, this

time, assuming that k and l coincide. In this case, conv(γd−l∪αl−1) is a facet of

kρd,k. Observe that the polytopes conv(γd−l∪S) where S ranges over the facets

of αl−1 collectively define a polyhedral subdivision of conv(γd−l ∪ αl−1). The

volume of these polytopes can be obtained from Lemma 3.2. As a consequence,

we obtain the volume of conv(γd−l ∪ αl−1).

Lemma 3.6: If k = l, then the volume of conv(γd−l ∪ αl−1) is

2d−kkk−1/2
(d− k)!

d!
.
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Since the number of facets of ρd,k is 2k
(
d
k

)
and these facets are all isometric,

the volume of the boundary of ρd,k is obtained as an immediate consequence of

Lemma 3.6. As above, the volume of a facet of kρd,k should be divided by kd−1

in order to get the volume of a facet of ρd,k.

Theorem 3.7: If k is an integer, then the volume of the boundary of ρd,k is

2d

k!
kk−d+1/2.

4. The geometry of ρ?d,k

By symmetry, the volume of ρ?d,k is 2d times the volume of its intersection

with the hypercube [0, 1]d. That intersection is precisely made up of the points

within [0, 1]d whose sum of coordinates is at most k. It turns out that an

explicit formula is known for the volume of the intersection of [0, 1]d with a

half-space bounded by an arbitrary affine hyperplane [2]. Using this formula,

we immediately derive the volume of the intersection of ρ?d,k with [0, 1]d.

Proposition 4.1: The volume of ρ?d,k ∩ [0, 1]d is

bkc∑
i=0

(−1)i(k − i)d

i!(d− i)!
.

Proof. The expression established in [2] for the volume of the intersection of the

hypercube [0, 1]d with a half-space is a sum over the vertices of [0, 1]d contained

in that half-space. In our special case, the terms in that sum only depend on

the sum of the coordinates of the associated vertex of [0, 1]d. Rearranging these

terms by first summing them over the
(
d
i

)
vertices of [0, 1]d whose coordinates

sum to i and then letting i range from 0 to bkc provides the desired result.

Remark 4.2: Note that, when k is an integer, ρ?d,k ∩ [0, 1]d can be naturally

decomposed into hypersimplices. More precisely, consider an integer l such

that 0 ≤ l < k. The portion of [0, 1]d made up of the points whose sum of

coordinates is between l and l+ 1 is an hypersimplex. It is known [16, 22] that

the volume of hypersimplices is obtained by dividing Eulerian numbers [7] by

d!. Therefore, when k is an integer, the volume of ρ?d,k ∩ [0, 1]d can also be

expressed in terms of a sum of the Eulerian numbers.

The volume of ρ?d,k is obtained as a consequence of Proposition 4.1.
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Theorem 4.3: The volume of ρ?d,k is 2d
bkc∑
i=0

(−1)i(k − i)d

i!(d− i)!
.

Remark 4.4: Since ρd,k and ρ?d,k are polar to one another, their Mahler volume

is the product of their volumes. Hence, by Theorems 3.4 and 4.3, the Mahler

volume of these polytopes is

4dkbkc−d

bkc!

bkc∑
i=0

(−1)i(k − i)d

i!(d− i)!

when k is an integer. We have computed this quantity up to d = 100 for all

integers k such that 1 ≤ k ≤ d and found that, in these cases, the Mahler

volume of ρd,k is at least 4d/d! as Mahler’s conjecture states [13, 17, 18].

Finally, let us compute the volume of the boundary of ρ?d,k. Unlike ρd,k, the

facets of ρ?d,k are not pairwise isometric. The facets of ρ?d,k contained in a facet

of γd are isometric to ρd−1,k−1, and their volume is given by Theorem 4.3. All

the other facets of ρ?d,k are isometric to the intersection δd−1,k of the hypercube

[0, 1]d with the hyperplane made up of the points whose sum of coordinates is

equal to k. It is noteworthy that, when k is an integer, δd−1,k is an hypersim-

plex and, as we mention above, its volume can be computed from the Eulerian

numbers. In fact, we can derive the volume of δd−1,k for any k within [1, d]

using the formula for the volume of the intersection of an hypercube with an

arbitrary affine hyperplane established in [8] based on [1].

Proposition 4.5: The volume of δd−1,k is

√
d

(d− 1)!

bkc∑
i=0

(−1)i
(
d

i

)
(k − i)d−1.

Proof. The expression provided by Theorem 2 from [8] for the volume of the

intersection of [−1, 1]d with a hyperplane is a sum over {−1, 1}d. By a straight-

forward change of variables, that expression can be transformed into a sum over

{0, 1}d that provides the volume of the intersection of the hypercube [0, 1]d with

a hyperplane. Just as in the proof of Proposition 4.1, our special case is such

that the terms in that sum only depend on the sum of the coordinates of the

point from {0, 1}d they correspond to. These terms can therefore be rearranged

as we did in the proof of Proposition 4.1, by first summing over the points whose

coordinates sum to i and then, by letting i range from 0 to d.
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The resulting expression for the volume of δd,k is

√
d

2(d− 1)!

 bkc∑
i=0

(−1)i
(
d

i

)
(k − i)d−1 −

d∑
i=bkc+1

(−1)i
(
d

i

)
(k − i)d−1

.
However, it is well-known (see for instance [21]) that

d∑
i=0

(−1)i
(
d

i

)
(k − i)d−1 = 0.

As a consequence,

d∑
i=bkc+1

(−1)i
(
d

i

)
(k − i)d−1 = −

bkc∑
i=0

(−1)i
(
d

i

)
(k − i)d−1,

and the desired result follows.

Recall that the facets of ρ?d,k are either isometric to ρd−1,k−1 or to δd−1,k. As

ρ?d,k has 2d facets isometric to ρd−1,k−1 and 2d facets isometric to δd−1,k, we

obtain the volume of its boundary from Theorem 4.3 and Proposition 4.5.

Theorem 4.6: The volume of the boundary of ρ?d,k is

2dd

bkc−1∑
i=0

(−1)i(k − 1− i)d−1

i!(d− i− 1)!
+
√
d

bkc∑
i=0

(−1)i(k − i)d−1

i!(d− i)!

.
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