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Abstract. This work surveys essential properties of the so-called copositive matrices,
the study of which is spread over more than fifty-five years. Special emphasis is given to
variational aspects related to the concept of copositivity. In addition, some new results
on the geometry of the cone of copositive matrices are presented here for the first time.
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1 Introduction

1.1 Historical background

The concept of copositivity usually applies to a symmetric matrix or, more precisely, to its associ-
ated quadratic form. One could equally well consider a self-adjoint linear continuous operator on a
Hilbert space, but in this work we stick to finite dimensionality. The definition of copositivity can
be traced back to a 1952 report by Theodore S. Motzkin [85]. In the sequel, the superscript “T”
indicates transposition. In particular, xT y =

∑n
j=1 xjyj corresponds to the usual inner product in

the Euclidean space Rn.

Definition 1.1. Let A be a real symmetric matrix of order n. One says that A is copositive
if its associated quadratic form x ∈ Rn 7→ qA(x) = xT Ax takes only nonnegative values on the
nonnegative orthant Rn

+. Strict copositivity of A means that xT Ax > 0 for all x ∈ Rn
+\{0}.

Of course, changing the nonnegative orthant by an arbitrary closed convex cone K would lead
to a more general concept of copositivity. One could speak of copositivity relative to the ice-cream
cone [41, 80], copositivity relative to a given polyhedral cone [81, 82, 100], and so on. One could
even consider the case of a nonconvex cone K. The complexity of the concept of K-copositivity is
very much dependent on K:
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- When K = {x ∈ Rn : qB(x) ≥ 0} is given by a quadratic form that is positive somewhere, the
K-copositivity of A amounts to the positive semidefiniteness of A− tB for some t ∈ R+; this
is the so-called S- lemma of Yakubovich (cf. [93, 102]), an ancestor of which is the celebrated
lemma of Debreu-Finsler.

- When K = {x ∈ Rn : qB1(x) ≥ 0, . . . , qBm(x) ≥ 0} is described by means of a finite number
of quadratic forms, the K-copositivity of A joins up with the notion of the S-procedure, which
is a theory with its own motivation and field of applications (cf. [34, 93]).

- When K = Rn
+, which is our case, we note immediately a conflict between the quadratic

world (represented by the quadratic form qA) and the cone K which is polyhedral. This
is the main cause of all the difficulties inherent to Rn

+- copositivity. Note incidentally that
Rn

+- copositivity and Rn
−- copositivity amount to the same (simply because Rn

− = −Rn
+ and a

quadratic form is an even function).

We do not wish to go beyond the setting of Definition 1.1, because otherwise the presentation
of copositivity would be obscured by endless remarks and ramifications. As early as 1958, Gaddum
[44] studied the concept of copositivity in connection with the analysis of matrix games and systems
of linear inequalities. The theory of copositive matrices was consolidated in the beginning of the
sixties with the pioneering contributions of Diananda [35], Hall and Newman [50], and Motzkin
himself [86]. By the end of the seventies, the use of copositive matrices was already spread in
many areas of applied mathematics, specially in control theory [66]. In the last decade there has
been a renewal of interest in copositivity due to its impact in optimization modeling [23], linear
complementarity problems [40, 69], graph theory [2, 36, 75, 92], and linear evolution variational
inequalities [45].

1.2 Purpose of this work

The natural framework for discussing copositivity is the linear space Sn of real symmetric matrices
of order n. As usual, Sn is equipped with the trace inner product 〈A,B〉 = tr(AB) and the associated
norm. The mathematical object on which our attention will be concentrated is the set

Cn = {A ∈ Sn : A is copositive}.

To put everything in the right perspective, we recall at the outset of the discussion a few basic
things about this set (cf. [49, 57] or the recent Ph.D. thesis by Bundfuss [21, Section 2.1] that we
received after the first submission of this paper).

Proposition 1.2. The set Cn is a closed convex cone in Sn. Furthermore,

(a) Cn has nonempty interior and is pointed in the sense that Cn ∩ −Cn = {0}.

(b) The closed convex cones

Pn = {A ∈ Sn : A is positive semidefinite},
Nn = {A ∈ Sn : A is nonnegative entrywise}

are both contained in Cn. Whence Pn +Nn ⊂ Cn.
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(c) Cn is non-polyhedral, that is to say, it cannot be expressed as the intersection of finitely many
closed half-spaces.

This is more or less what every non-specialist knows about Cn. The purpose of this work is
to list the most fundamental theorems concerning the set Cn, including negative results and open
questions. We wish also to add a few contributions of our own. Linear algebraists will find of
interest the good survey on copositivity written by Ikramov and Savel’eva [57], as well as the
book on completely positive matrices by Berman and Shaked-Monderer [10]. In this work, special
emphasis will be given to variational aspects related to the concept of copositivity. The term
“variational” is not to be understood in its old historical meaning (calculus of variations), but
in the broadest possible sense (optimization, game theory, complementarity problems, equilibrium
problems).

Definition 1.1 is in fact related to the variational (or optimization) problem

µ(A) = min
x≥0
‖x‖=1

xT Ax, (1)

where ‖·‖ is the usual Euclidean norm and x ≥ 0 indicates that each component of x is nonnegative.
Despite its rather simple appearence, the above optimization problem offers an interesting number
of challenges. Note that (1) is about minimizing a quadratic form (not necessarily convex) on a
nonconvex compact portion of the nonnegative orthant.

There is yet another interesting variational problem related to copositivity. It concerns the
minimization of a quadratic form on a simplex, more precisely

γ(A) = min
x∈Λn

xT Ax , (2)

where Λn = {x ∈ Rn
+ : x1 + . . . + xn = 1} stands for the unit-simplex of Rn. One usually refers to

(2) as the Standard Quadratic Program.

Proposition 1.3. Let A ∈ Sn. Then, the following conditions are equivalent:

(a) A is copositive.

(b) µ(A) is nonnegative.

(c) γ(A) is nonnegative.

The equivalence between (a) and (c) was pointed out by Micchelli and Pinkus in [83]. The
full Proposition 1.3 is trivial because the cost function qA is positively homogeneous of degree two.
What is less obvious is how to compute numerically the minimal value µ(A) or the minimal value
γ(A). We shall come back to this point in Sections 4 and 5, respectively. Parenthetically, observe
that the functions µ : Sn → R and γ : Sn → R are positively homogeneous and concave. Hence,
the representation formulas

Cn = {A ∈ Sn : µ(A) ≥ 0}
= {A ∈ Sn : γ(A) ≥ 0}

confirm that Cn is a closed convex cone.

3



Remark 1.4. To avoid unnecessary repetitions, we rarely mention the “strict” version of copositivity.
It is useful to keep in mind that

{A ∈ Sn : A is strictly copositive} = int(Cn),
cl{A ∈ Sn : A is strictly copositive} = Cn,

where “int” and “cl” stand for topological interior and closure, respectively. In particular, a copos-
itive matrix can be seen as a limit of a sequence of strictly copositive matrices.

2 Results valid only in small dimensions

Testing copositivity is a challenging question. For methodological reasons, we consider first the
case in which the dimension n does not exceed four.

2.1 Copositivity as system of nonlinear inequalities

The two-dimensional case is clear and offers no difficulty. One simply has:

Proposition 2.1. A symmetric matrix A of order 2 is copositive if and only if

a1,1 ≥ 0, a2,2 ≥ 0, (3)
a1,2 +

√
a1,1a2,2 ≥ 0. (4)

As observed by Nadler [88], the system (3)-(4) is exactly what is needed for ensuring that the
quadratic Bernstein-Bézier polynomial

p(t) = a1,1(1− t)2 + 2a1,2(1− t)t + a2,2t
2

is nonnegative on the interval [0, 1]. Proposition 2.1 is part of the folklore on copositive matrices
and can be found in numerous references (cf. [1, 48, 57, 79]). By the way, the presence of the square
root term in (4) confirms that C2 is non-polyhedral.

The three-dimensional case is still easy to handle. Checking copositivity is again a matter of
testing the validity of a small system of nonlinear inequalities.

Proposition 2.2. A symmetric matrix A of order 3 is copositive if and only if the six inequalities

a1,1 ≥ 0, a2,2 ≥ 0, a3,3 ≥ 0,

ā1,2 := a1,2 +
√

a1,1a2,2 ≥ 0,

ā1,3 := a1,3 +
√

a1,1a3,3 ≥ 0,

ā2,3 := a2,3 +
√

a2,2a3,3 ≥ 0,

are satisfied, as well as the last condition

√
a1,1a2,2a3,3 + a1,2

√
a3,3 + a1,3

√
a2,2 + a2,3

√
a1,1 +

√
2 ā1,2 ā1,3 ā2,3 ≥ 0. (5)
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The above proposition can be found, for instance, in Chang and Sederberg [25]. There are seven
inequalities in all, the last one being the only one that looks a bit bizarre. The first six inequalities
simply say that the principal submatrices[

a1,1 a1,2

a1,2 a2,2

]
,

[
a1,1 a1,3

a1,3 a3,3

]
,

[
a2,2 a2,3

a2,3 a3,3

]
of order 2 are copositive. A variant of Proposition 2.2 was suggested earlier by Hadeler [48, Theorem
4]. It consists in writing the inequality (5) in the disjunctive form

detA ≥ 0 or
√

a1,1a2,2a3,3 + a1,2
√

a3,3 + a1,3
√

a2,2 + a2,3
√

a1,1 ≥ 0.

There is also a “strict” version of Proposition 2.2 due to Simpson and Spector [99, Theorem 2.2].
The latter authors applied such a proposition for characterizing strong ellipticity in isotropic elastic
materials. In connection with this theme, see also the work by Kwon [77].

Remark 2.3. The case n = 4 is treated by Li and Feng [79]. Their results are displayed by case
analysis. According to the sign distribution of the off-diagonal entries of A, eight different subcases
are to be considered. Writing down all the details is space consuming and, besides, it does not
provide a good insight on what could happen in higher dimensions.

2.2 Diananda’s decomposition

As observed in Proposition 1.2, one has Pn +Nn ⊂ Cn for any dimension n. In a celebrated paper
of 1962, Diananda [35] observed that the reverse inclusion is true if n does not exceed four.

Theorem 2.4. Let n ≤ 4. Then, Cn = Pn +Nn.

In words, a symmetric matrix A of order n ≤ 4 is copositive if and only if it is decomposable
as sum A = A1 + A2 of a positive semidefinite symmetric matrix A1 and a nonnegative symmetric
matrix A2. Curiously enough, Diananda’s decomposition theorem fails for n ≥ 5. This can be seen
by working out the counter-example

A =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


proposed by A. Horn (cf. [35]). The above matrix is copositive, but it cannot be decomposed in the
requested form. We mention in passing a beautiful paper by Cottle [27] with a long list of theorems
that are valid up to n = 4, but not beyond this threshold.

Remark 2.5. The set Pn +Nn is a closed convex cone. A matrix A ∈ Cn which is not in Pn +Nn is
said to be “exceptional”. A general mechanism for constructing exceptional matrices is proposed
in [68].
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3 Recursive strategies for detecting copositivity

There is an obvious link between the copositivity of a matrix of order n and the copositivity of its
principal submatrices of order n − 1. If one sets a particular component of x ∈ Rn equal to zero,
then qA(x) becomes a quadratic form in the remaining variables. One thus clearly has:

Proposition 3.1. If A ∈ Sn is copositive, then each principal submatrix of A of order n − 1 is
copositive.

Of course, one can apply Proposition 3.1 recursively. If A ∈ Sn is copositive, then a principal
submatrix of any order less than n is also copositive. Writing the converse of Proposition 3.1 is a
more delicate matter. Suppose that A is a symmetric matrix of order n such that each principal
submatrix of order n − 1 is copositive. What exactly must be added to make sure that A itself is
copositive?

3.1 Gaddum’s copositivity test

Gaddum [44, Theorem 3.2] answers the above question by using the formalism of two-person zero-
sum matrix games.

Theorem 3.2. Let A be a symmetric matrix of order n such that each principal submatrix of order
n− 1 is copositive. Then, A is copositive if and only if the value

val(A) := min
x∈Λn

max
y∈Λn

yT Ax = max
y∈Λn

min
x∈Λn

yT Ax (6)

of the matrix game induced by A is nonnegative.

The second equality in (6) is just a reminder of von Neumann’s minimax theorem. The impor-
tant point concerning the formulation of Theorem 3.2 is that val(A) can be computed by solving a
standard linear programming problem, namely

minimize t1 − t2

x1 + . . . + xn = 1
aT

i x− t1 + t2 + si = 0 i = 1, . . . n

(x, s, t) ∈ R2n+2
+

with ai standing for the i-th column of A.
Gaddum’s copositivity test is of interest only if the dimension n is moderate. If fgame(k)

represents the cost of evaluating the value of a matrix game of order k, then the cost of checking
the copositivity of a matrix of order n is given by

Fgame(n) =
n∑

k=1

Ck
n fgame(k)

with Ck
n = n!/ [k!(n− k)!] standing for the usual binomial coefficient. In practice, the implemen-

tation of Gaddum’s copositivity test is a reasonable option when n does not exceed twenty. Of
course, the final word is given by the quality of the matrix game solver.
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3.2 The copositivity test of Cottle-Habetler-Lemke

The approach of Cottle, Habetler, and Lemke [28, 29] differs substantially from Gaddum’s one.
Instead of computing values of matrix games, the main task now consists in computing determinants
and adjugate matrices.

Theorem 3.3. Let A be a symmetric matrix of order n such that each principal submatrix of order
n− 1 is copositive. Then,

A is copositive ⇐⇒ detA ≥ 0 or adjA contains a negative entry. (7)

Adjugation of a square matrix is defined as usual, i.e., the adjugate matrix adjA is the transpose
of the matrix of cofactors of A (cf. [55]). Given that A is assumed to be symmetric, transposition
is unnecessary after forming the matrix of cofactors. The equivalence (7) is sometimes rephrased
in a negative form. In such a way, one sees that checking copositivity boils down to inverting a
family of 2n − 1 matrices of different sizes.

Theorem 3.4. Let A be a symmetric matrix of order n such that each principal submatrix of order
n− 1 is copositive. Then,

A is not copositive ⇐⇒ A−1 exists and is nonpositive entrywise.

A short proof of Theorem 3.4 can be found in Hadeler [48]. These results pertain to the realm
of classical matrix analysis, so we shall not insist too much on them. Additional comments on
copositivity and invertibility will be given in Section 7.4.

3.3 A copositivity test for specially structured matrices

The next theorem can be traced back to Bomze [11, 12], see also [1, 67, 79]. Other results in the
same spirit, but involving more general Schur complements, are proposed in [14, Theorem 5] and
[17, Theorem 2].

Theorem 3.5. Let b ∈ Rn−1 and C ∈ Sn−1. The matrix

A =
[

a bT

b C

]
∈ Sn (8)

is copositive if and only if the following conditions are satisfied:

i) a ≥ 0, C is copositive,

ii) yT (aC − bbT )y ≥ 0 for all y ∈ Rn−1
+ such that bT y ≤ 0.

The most bothersome aspect of Theorem 3.5 is the verification of (ii). What this condition says
is that aC − bbT ∈ Sn−1 is copositive relative to the closed convex cone

{y ∈ Rn−1 : y ≥ 0, bT y ≤ 0}.

There is an alternative formulation of (ii) that deserves a special mention. If one enters into the
proof of [79, Theorem 2], then one realizes that the matrix in (8) is copositive if and only if[

a bT y
bT y yT Cy

]
∈ C2 for all y ∈ Rn−1

+ . (9)
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In other words, everything boils down to checking copositivity of a symmetric matrix of order 2.
If one applies Proposition 2.1 to the matrix appearing in (9), then one obtains (i) and the extra
condition

bT y +
√

a
√

yT Cy ≥ 0 for all y ∈ Rn−1
+ . (10)

The inequality (10) is undoubtedly a simpler way of formulating (ii). By a positive homogeneity
argument, the condition (ii) then amounts to saying that the minimal value

min
y∈Λn−1

{
bT y +

√
a
√

yT Cy
}

(11)

is nonnegative. Although the above variational problem does not look easier than (2), one must
observe that the minimization vector in (11) ranges over a simplex of smaller dimension.

Remark 3.6. When n = 3, the variational problem (11) consists simply in minimizing

g(t) = a1,2t + a1,3(1− t) +
√

a1,1

√
a2,2t2 + 2a2,3 t(1− t) + a3,3(1− t)2

over the interval [0, 1]. This leads to the bizarre inequality (5) of Proposition 2.2.

We end this section with two immediate by-products of Theorem 3.5. The first corollary appears
in [79, Theorem 3], while the second one is a result proposed in [87, Exercise 3.53].

Corollary 3.7. Suppose that b is a nonpositive vector in Rn−1 and that C ∈ Sn−1. Then,[
a bT

b C

]
is copositive ⇐⇒ a ≥ 0 and C, aC − bbT are copositive

⇐⇒
{

either a = 0, b = 0 and C is copositive
or a > 0 and aC − bbT is copositive.

Corollary 3.8. Suppose that the off-diagonal entries of A ∈ Sn are all nonpositive. Then, A is
copositive if and only if A is positive semidefinite.

4 Results involving classical eigenvalues and Pareto eigenvalues

4.1 Spectral properties of copositive matrices

Even if all the eigenvalues of A ∈ Sn are known, this information alone is not enough to decide
whether A is copositive or not.

Proposition 4.1. Let A ∈ Sn.

(a) If A is copositive, then at least one of the eigenvalues of A is nonnegative (in fact, the sum
of all the eigenvalues of A, counting multiplicity, is nonnegative).

(b) If all the eigenvalues of A are nonnegative, then A is copositive (in fact, positive semidefinite).
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For proving (a) note that the diagonal entries of a copositive matrix are nonnegative and its
trace is equal to the sum of the eigenvalues. Needless to say, Proposition 4.1 is very crude. What
is important to know about A ∈ Sn is not its usual spectrum, but its so-called Pareto spectrum.
The concept of Pareto eigenvalue is not associated with the classical Rayleigh-Ritz minimization
problem

λmin(A) = min
‖x‖=1

xT Ax ,

but with the cone-constrained minimization problem (1). The minimal value µ(A) defined in (1)
is a mathematical expression of interest by its own sake. Such a term appears once and over again
in diverse situations (cf. [46, 47]). By writing down the optimality conditions for problem (1), one
arrives at a complementarity system of the form

x ≥ 0, Ax− λx ≥ 0, xT (Ax− λx) = 0, (12)
‖x‖ = 1, (13)

where λ ∈ R is viewed as a Lagrange multiplier associated with the normalization constraint (13).
The definition below is taken from Seeger [96]. It applies to an arbitrary matrix, be it symmetric
or not.

Definition 4.2. Let A be a real matrix of order n. The number λ ∈ R is called a Pareto eigenvalue
of A if the complementarity system (12) admits a nonzero solution x ∈ Rn. The set of all Pareto
eigenvalues of A, denoted by Π(A), is called the Pareto spectrum of A.

Theoretical results and algorithms for computing Pareto spectra can be found in [96, 97, 98]
and [70, 71, 90, 91, 94], respectively. The next theorem displays the link between Pareto spectra
and copositivity.

Theorem 4.3. A symmetric matrix A of order n is copositive if and only if all the Pareto eigen-
values of A are nonnegative.

The proof of Theorem 4.3 is not too difficult. The key observation is that, in the symmetric
case, the coefficient µ(A) turns out to be the smallest element of Π(A). In short,

µ(A) = min
λ∈Π(A)

λ.

The proposition below, taken from [96], tells us how to compute Pareto spectra in practice.
In what follows, J (n) denotes the collection of all nonempty subsets of {1, . . . , n}, the symbol |J |
stands for the cardinality of J ∈ J (n), and AJ refers to the principal submatrix of A formed with
the rows and columns of A indexed by J .

Proposition 4.4. Let A be a matrix of order n. Then, λ ∈ Π(A) if and only if there are an index
set J ∈ J (n) and a vector ξ ∈ R|J | such that

AJξ = λξ (14)

ξ ∈ int(R|J |
+ ) (15)∑

j∈J

Aijξj ≥ 0 ∀i /∈ J. (16)
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Computing a Pareto spectrum is a much harder problem than computing a usual spectrum. In
the first case one has to take into consideration all the possible ways of selecting the index set J .
In practice, one has to solve 2n − 1 classical eigenvalue problems. To be more precise, one has to
solve (14)-(16) for each principal submatrix of A. Keeping in mind Proposition 4.4, one can see the
next result by Kaplan [73, 74] as a simplification of Theorem 4.3. What Kaplan suggests, in fact, is
testing copositivity by working out (14)-(15) and neglecting (16).

Corollary 4.5. A symmetric matrix A of order n is copositive if and only if

AJξ = λξ and ξ ∈ int(R|J |
+ ) =⇒ λ ≥ 0

for every nonempty index set J ⊂ {1, . . . , n}.

Kaplan’s corollary is perhaps better understood if one introduces the concept of interior eigen-
value.

Definition 4.6. Let A be a real matrix of order n. A real eigenvalue of A associated with an
eigenvector with positive components is called an interior eigenvalue of A. The set of all interior
eigenvalues of A is denoted by σint(A).

As shown by Seeger and Torki [98], for a symmetric matrix A, one always has

µ(A) = min
J∈J (n)

inf
λ∈σint(AJ )

λ , (17)

where the inner infimum is defined as +∞ if the principal submatrix AJ does not admit interior
eigenvalues. This explains why the condition (16) is irrelevant when it comes to check copositivity.

If fspec(k) represents the cost of computing the eigenvalues of a matrix of order k, then the cost
of checking the copositivity of a matrix of order n is given by

Fspec(n) =
n∑

k=1

Ck
n fspec(k).

As was the case with Gaddum’s method, the implementation of Kaplan’s copositivity test is a
viable option only if the dimension n is moderate. According to our computational experience,
Kaplan’s method must be abandoned when n is larger than 20.

4.2 Dual interpretation of the smallest Pareto eigenvalue

The minimal value of the variational problem (1) admits the inf-sup formulation

µ(A) = inf
x≥0

sup
λ∈R

L(x, λ)

with L(x, λ) = xT Ax − λ(xT x − 1). By exchanging the order of the infimum and the supremum
one gets

β(A) = sup
λ∈R

inf
x≥0

L(x, λ),

which, after a short simplification, yields

β(A) = sup{λ ∈ R : A− λIn ∈ Cn} (18)
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with In denoting the identity matrix of order n. One refers to (18) as the dual problem associated
with (1). Although the Lagrangean function L : Rn × R → R is not convex with respect to the
minimization vector x, there is no duality gap between the primal problem (1) and its dual (18).
The proposition below is a particular case of a more general result taken from [98].

Proposition 4.7. Let A ∈ Sn. Then,

(a) There is no duality gap between (1) and (18), i.e., µ(A) = β(A).

(b) The dual problem (18) has exactly one global solution, namely λ = µ(A).

A key observation concerning the minimization problem (1) is that the cost function qA is
positively homogeneous (of degree 2) and the constraint function ‖ · ‖ is nonnegative and posi-
tively homogeneous (of degree 1). Proposition 4.7 can be obtained from a general duality result on
minimization problems with positively homogeneous data.

5 Copositivity and the Standard Quadratic Program

This section discusses copositivity in connection with the Standard Quadratic Program (2). As
shown in the review paper by Bomze [16], the Standard Quadratic Program arises in many areas,
including graph theory, portfolio optimization, game theory, and population dynamics.

5.1 Dual interpretation of γ(A)

Sometimes one writes the Standard Quadratic Program in the equivalent form

γ(A) = min{xT Ax : x ≥ 0, xT1n1n
T x = 1}

with 1n = (1, . . . , 1)T ∈ Rn denoting a vector of ones. Of course, 1n1n
T is the matrix of order n

with ones everywhere. If one exchanges the order of the infimum and the supremum in the inf-sup
formulation

γ(A) = inf
x≥0

sup
λ∈R

{
xT Ax− λ(xT1n1n

T x− 1)
}

,

then one ends up with the dual problem

δ(A) = sup{λ ∈ R : A− λ1n1n
T ∈ Cn}. (19)

Similarly as in Section 4.2, one gets:

Proposition 5.1. Let A ∈ Sn. Then,

(a) There is no duality gap between (2) and (19), i.e., γ(A) = δ(A).

(b) The dual problem (19) has exactly one global solution, namely λ = γ(A).

The equality between γ(A) and δ(A) has been pointed out by de Klerk and Pasechnik (cf. [75,
76]). Such an equality corresponds to a particular instance of a general duality result from the
theory of linear conic programming.
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5.2 LP reformulation of γ(A)

As shown by de Klerk and Pasechnik [76], the minimization problem (2) can be converted into
a linear program. The price to pay for this simplification is the introduction of a huge number
of optimization variables. The mechanism that transforms (2) into a linear program is explained
next. The basic idea is exploiting the theorem stated below, which is yet another contribution of
Gaddum [44] to the theory of copositive matrices.

Theorem 5.2. For A ∈ Sn, the following statements are equivalent:

i) A is copositive,

ii) For all J ∈ J (n), the system AJξ ≥ 0 admits a nonzero solution ξ ∈ R|J |
+ .

By homogeneity, there is no loss of generality in asking the entries of ξ to sum up to one. A nice
and short proof of Theorem 5.2 can be found in [76]. If one applies Theorem 5.2 for characterizing
the copositivity constraint A−λ1n1n

T ∈ Cn in problem (19), then, after a short simplification, one
ends up with the linear program

γ(A) = max
{

λ : AJxJ − λ1|J | ≥ 0, xJ ≥ 0, 1T
|J |xJ = 1 for all J ∈ J (n)

}
. (20)

Of course, 1|J | is a vector of ones, the subscript being used for indicating its dimension. The
maximization variables in (20) are λ and the components of the different vectors xJ ’s. There are

1 +
n∑

k=1

k Ck
n = 1 +

1
2
n2n

maximization variables in all, a number that grows exponentially with the dimension n. An expo-
nential growth is also observed when its comes to count the number of constraints in (20). There
are 2n − 1 equality constraints plus n2n inequality constraints (including the nonnegativity of the
variables).

5.3 Quartic reformulation of γ(A)

As explained by Bomze and Palagi [20], it is possible to get rid of the nonnegativity constraints
xj ≥ 0 in (2) by writing xj = u2

j . The condition 1n
T x = 1 becomes ‖u‖2 = 1, and one finally gets

at the ball-constrained minimization problem

γ(A) = min
‖u‖2=1

n∑
i,j=1

ai,ju
2
i u

2
j . (21)

A careful analysis of problem (21) is carried out in [20]. Although the feasible set in (21) is quite
simple, one should not be overly optimistic about this reformulation of γ(A). Anyway, what is
important to retain is the following corollary.

Corollary 5.3. A ∈ Sn is copositive if and only if the quartic multivariate polynomial

u ∈ Rn 7→ pA(u) =
n∑

i,j=1

ai,ju
2
i u

2
j

is nonnegative everywhere (or, equivalently, nonnegative on the unit vector sphere of Rn).
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With Corollary 5.3 one enters the classical domain of mathematics dealing with the nonnega-
tivity of multivariate polynomials. We shall come back to this theme in Section 8.1.

5.4 Comparison between γ(A) and µ(A)

Is there any order relationship between the functions γ : Sn → R and µ : Sn → R? The following
example shows that neither one of these functions is pointwisely greater than the other.

Example 5.4. Consider the matrices

A =
[

2 0
0 2

]
, A′ =

[
−1 −1
−1 −1

]
.

On the one hand, µ(A) = 2 is bigger than γ(A) = 1, but, on the other hand, µ(A′) = −2 is smaller
than γ(A′) = −1. So, the functions γ and µ simply cannot be compared.

Both γ and µ can be immersed in a special class {Fp}p≥1 of functions Fp : Sn → R of the type

Fp(A) = min
B∈∆p

〈B,A〉,

i.e., representable as lower envelope of linear forms. The supporting set ∆p is here a compact
convex set of Sn, namely

∆p = co{xxT : x ≥ 0, xp
1 + . . . + xp

n = 1}.

As usual, “co” indicates the convex hull operation.

Proposition 5.5. For all p, q ≥ 1, one has

sup
‖A‖=1

|Fp(A)− Fq(A)| = haus(∆p,∆q), (22)

where “haus” stands for the Pompeiu-Hausdorff metric on the nonempty compact subsets of Sn. In
particular,

|γ(A)− µ(A)| ≤ haus(∆1,∆2)‖A‖ for all A ∈ Sn. (23)

Formula (22) follows from the well known support function characterization of the Pompeiu-
Hausdorff metric. The concept of support function is standard in convex analysis [53], so we can
dispense with its formal presentation. What we wish to retain from Proposition 5.5 is the inequality
(23). The term haus(∆1,∆2) is the smallest constant that one can put in front of ‖A‖. Although
γ and µ are not comparable in the pointwise ordering sense, these functions are somewhat related
after all.

Remark 5.6. We mention in passing that (1) and (2) are particular instances of the variational
problem

minimize

{∑
α

cαxα1
1 · · ·xαn

n : x ≥ 0, xp
1 + . . . + xp

n = 1

}
, (24)

where the summation index α = (α1, . . . , αn) ranges over a finite set and the cα’s are given co-
efficients. As explained in [4], such a minimization problem arises in pattern recognition, image
processing, and other areas of applied mathematics. The reader interested in the analysis of (24)
may consult [4] and references therein. See also [78] for related material.
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6 The convex cone Cn of copositive matrices

6.1 Dual cone of Cn

Copositivity is a rather mild form of positivity. There exists another concept of positivity which is
much stronger. It reads as follows:

Definition 6.1. A symmetric matrix B of order n is completely positive if one can find an integer
m and a matrix F of size n×m with nonnegative entries such that B = FF T . The smallest possible
number m is called the CP-rank of B.

The above concept of positivity goes back to Hall and Newman [50] at least. According to
Berman and Plemmons [9], the first application of this concept was block designs in Hall [49]. The
recent book by Berman and Shaked-Monderer [10] is devoted to the study of completely positive
matrices, but the emphasis there is not on variational aspects.

It is fairly easy to prove that the set

Gn = {B ∈ Sn : B is completely positive}

is a closed convex cone in Sn. Furthermore, Gn has nonempty interior and is pointed. In fact, all
these observations follow from the next duality result already established by Hall [49].

Theorem 6.2. Cn and Gn are dual to each other in the sense that

Gn = {B ∈ Sn : 〈A,B〉 ≥ 0 for all A ∈ Cn},
Cn = {A ∈ Sn : 〈A,B〉 ≥ 0 for all B ∈ Gn}.

The convex coneNn is self-dual, and so is the convex cone Pn. Hence, Diananda’s decomposition
theorem can be reformulated as follows.

Corollary 6.3. Let n ≤ 4. Then, Gn = Pn ∩Nn.

Regardless of the dimension n, one always has the inclusion Gn ⊂ Pn ∩ Nn. By the way, the
matrices in Pn ∩ Nn sometimes are called “doubly nonnegative”. Of course, in dimension n ≥ 5
there are matrices which are doubly nonnegative but not completely positive. The counter-example

A =


4 0 0 2 2
0 4 3 0 2
0 3 4 2 0
2 0 2 4 0
2 2 0 0 4


proposed by Hall [49] illustrates this point; see also [24].

We comment in passing that the problem of characterizing the interior of Gn is treated in [37].
Also, there is a vast literature devoted to the problem of estimating the CP-rank of a completely
copositive matrix. This topic falls beyond the context of our survey, but the reader may find
relevant information in the books [9, 10] and references therein.
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6.2 Boundary of Cn

Is it easy to recognize the boundary points of Cn? The answer is yes if one admits that the evaluation
of µ : Sn → R can be carried out without trouble. Indeed, the boundary of Cn is representable in
the form

∂Cn = {A ∈ Sn : µ(A) = 0}. (25)

In other words, A ∈ Sn is a boundary point of Cn if and only if the smallest Pareto eigenvalue of A
is equal to 0. One must keep in mind, however, that Pareto spectra are difficult to compute when
the dimension n is larger than 20. Of course, if one considers the alternative characterization

∂Cn = {A ∈ Sn : γ(A) = 0},

then everything boils down to evaluating γ : Sn → R in an efficient manner. Anyway, by combining
(25) and (17), one gets the following by-product.

Corollary 6.4. Let A ∈ Sn be copositive. Then, A belongs to ∂Cn if and only if AJξ = 0 for some
index set J ∈ J (n) and some vector ξ ∈ R|J | with positive components.

Remark 6.5. As a direct by-product of Corollary 6.4, one has the following necessary condition for
membership in ∂Cn: every matrix in ∂Cn admits a principal submatrix whose determinant is equal
to zero.

6.3 Extreme rays and faces of Cn

The question of characterizing the extreme rays of Cn was addressed already in the sixties by Hall
and Newman [50], Baumert [7, 8], and Baston [6]. The classical definition of extreme ray adjusted
to the case of the cone Cn reads as follows:

Definition 6.6. An extreme ray of Cn is a set of the form R+A, where A ∈ Sn is a nonzero
copositive matrix such that

A = A1 + A2 (with A1, A2 ∈ Cn) =⇒
{

there exists t ∈ [0, 1] such that
A1 = (1− t)A and A2 = tA.

By abuse of language, a matrix A as in Definition 6.6 is called an extreme copositive matrix. The
term “extreme copositive” is also used while referring to the associated quadratic form. The theory
of extreme copositive matrices is highly technical and it would be too space consuming entering
into the details. Nonetheless, mentioning a few simple results could be a welcome introduction to
the topic.

Clearly, any extreme copositive matrix of order n belongs to ∂Cn. However, a nonzero matrix
in ∂Cn does not need to be an extreme copositive matrix. For instance, the matrix[

2 1
1 0

]
=
[

2 0
0 0

]
+
[

0 1
1 0

]
(26)

is in the boundary of C2, but it is not extreme. Below we state a theorem by Hall and Newman
[50] which takes place in dimension n ∈ {2, 3, 4}. Recall that in such low dimensions one can rely
on Diananda’s decomposition theorem.

15



Theorem 6.7. Let n ∈ {2, 3, 4}. The extreme copositive quadratic forms in n variables are of three
types:

i) ax2
k, where a > 0 and k ∈ {1, . . . , n}.

ii) bxkx`, where b > 0 and k, ` ∈ {1, . . . , n}, k 6= `.

iii)
(∑

i∈I aixi −
∑

j∈J bjxj

)2
, where each ai is positive, each bj is positive, and the nonempty

index sets I, J ⊂ {1, . . . , n} are disjoint.

For instance, the extreme copositive matrices of order two are[
a 0
0 0

]
,

[
0 0
0 b

]
︸ ︷︷ ︸

type (i)

,

[
0 b
b 0

]
︸ ︷︷ ︸

type (ii)

,

[
a2 −ab
−ab b2

]
︸ ︷︷ ︸

type (iii)

with a > 0 and b > 0. In dimension n = 3, an example of an extreme copositive matrix of type
(iii) is  a2

1 a1a2 −a1b3

a1a2 a2
2 −a2b3

−a1b3 −a2b3 b2
3


with a1, a2, b3 > 0. This corresponds to the particular choice I = {1, 2} and J = {3}.

For n ≥ 5, the extreme rays of Cn include the three types mentioned in Theorem 6.7, but there
are other more involved types as well. The next theorem by Baumert [7] provides a necessary
condition for extreme copositivity. This time, no restriction on the dimension n is imposed. Of
course, the case n = 1 is automatically ruled out because it has no interest.

Theorem 6.8. Let A ∈ Sn be an extreme copositive matrix. Then, for all indices k ∈ {1, . . . , n},
the following equivalent conditions hold:

(a) uT Au = 0 for some u ∈ Λn such that uk > 0.

(b) For any ε > 0, the shifted quadratic form x ∈ Rn 7→ xT Ax− εx2
k is not copositive.

Baumert’s theorem is quite elegant, but it does not fully answer the question of characterizing
extreme copositivity. To the best of our knowledge, a complete and tractable characterization of
extreme copositivity for n ≥ 5 has not been given so far.

Under additional structural assumptions on A ∈ Sn (for instance, specific constraints affecting
one or more entries of the matrix), it is possible to decide whether A ∈ Sn is extreme copositive
or not. In this category of works, one can mention the contributions of Baston [6], Hoffman and
Pereira [54], Haynsworth and Hoffman [52], and others. But, as said before, the general case is still
waiting for a satisfactory answer.

The theory of faces of convex cones (cf. [5]) goes far beyond the concept of extreme ray. In the
parlance of facial analysis, extreme rays correspond to one dimensional faces. The boundary of any
closed convex cone can be partioned into its faces. Some faces are one dimensional, some others
are two dimensional, and so on. In general, not all the dimensions show up in the facial partition
of the boundary. For instance, the ice-cream cone in R3 does not admit two dimensional faces.
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Identifying the higher dimensional faces of Cn is even more complicated than finding its extreme
rays. The following proposition is elementary and does not reflect the complexity of the facial
detection problem. We mention this proposition because we want to emphasize that some portions
of ∂Cn exhibit a sort of curvature like in a revolution cone, but other portions are flat like in a
polyhedral cone.

Proposition 6.9. For all n ≥ 2, there are linearly independent matrices A1, A2 ∈ Sn such that

cone{A1, A2} = {t1A1 + t2A2 : t1, t2 ≥ 0} (27)

is contained in ∂Cn. One can choose A1, A2 as being extreme copositive, so that (27) is a two
dimensional face of Cn.

Proof. Let n = 2. Inspired by (26) and Theorem 6.7, we consider the extreme copositive matrices

A1 =
[

1 0
0 0

]
, A2 =

[
0 1
1 0

]
. (28)

Let t1, t2 ≥ 0. The matrix t1A1 + t2A2 belongs to ∂C2 because its smallest Pareto eigenvalue is
equal to 0. Indeed,

Π
([

t1 t2
t2 0

])
=

{
0, t1,

t1 +
√

t21 + 4t22
2

}
.

For n ≥ 3, one just needs to enlarge the matrices in (28) by filling with zeros.

6.4 Metric projection onto Cn

How far is an arbitrary matrix A ∈ Sn from being copositive? Rigorously speaking, this question
is about measuring the distance

dist[A, Cn] = inf
X∈Cn

‖A−X‖ (29)

from A to the closed convex cone Cn. Here, ‖ · ‖ refers to the norm associated with the trace inner
product. Given the Euclidean nature of the normed space (Sn, ‖·‖), the minimization problem (29)
admits a unique solution, denoted by proj[A, Cn] and called the metric projection of A onto Cn.

Thanks to Moreau’s decomposition theorem [84], any matrix A ∈ Sn can be decomposed in the
form

A = proj[A, Cn] + proj[A,−Gn] (30)

with
−Gn = {B ∈ Sn : 〈A,B〉 ≤ 0 for all A ∈ Cn} (31)

standing for the “polar” cone of Cn. We use the notation −Gn because the set on the right-hand
side of (31) is simply the opposite of the dual cone Gn. Sometimes one refers to −Gn as the cone of
completely negative matrices. Since the projections

Acop := proj[A, Cn], Acn := proj[A,−Gn] (32)
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are mutually orthogonal matrices in the Euclidean space (Sn, 〈·, ·〉), the decomposition (30) yields
the Pythagorean law

(dist[A, Cn])2 + (dist[A,−Gn])2 = ‖A‖2.

So, if one wishes, one can shift the attention from (29) to the minimal distance problem

dist[A,−Gn] = inf
Y ∈−Gn

‖A− Y ‖. (33)

Even better, one can work with (29) and (33) in tandem.
To the best of our knowledge, nobody has obtained so far an explicit formula for either one

of the projections mentioned in (32). Due to the difficulty of the problem, we shall not attempt
here to obtain explicit characterizations for such projections. We shall not even try to derive exact
estimates for the terms dist[A, Cn] and dist[A,−Gn]. The next upper bound for dist[A, Cn] is coarse
in general, but it has the merit of being easily computable.

Proposition 6.10. For any A ∈ Sn, one has

dist[A, Cn] ≤ min{dist[A,Nn], dist[A,Pn]}. (34)

The terms in the above minimum can be evaluated with the help of the formulas

dist[A,Nn] =

 n∑
i,j=1

(min{ai,j , 0})2
1/2

, (35)

dist[A,Pn] =

[
n∑

i=1

(min{λi(A), 0})2
]1/2

, (36)

where λ1(A), . . . , λn(A) are the eigenvalues of A.

Proof. The inequality (34) is a direct consequence of the inclusion Nn∪Pn ⊂ Cn. The equality (35)
is obvious. Formula (36) is known or ought to be known. A sketch of the proof runs as follows:
first of all, observe that Pn is unitarily invariant in the sense that

A ∈ Pn =⇒ UT AU ∈ Pn for all U ∈ On

with On denoting the group of orthogonal matrices of order n. By relying on the Commutation
Principle [61, Lemma 4] for variational problems with unitarily invariant data, one obtains the
reduction formula

dist[A,Pn] = dist[λ(A), Rn
+], (37)

where λ(A) = (λ1(A), . . . , λn(A))T denotes the vector of eigenvalues of A. For avoiding any am-
biguity in the definition of λ(A), we arrange the eigenvalues of A in a nondecreasing order, i.e.,
from λ1(A) = λmin(A) to λn(A) = λmax(A). The choice of the ordering mechanism is not essential
because Rn

+ is permutation invariant. By working out the right-hand side of (37), one readily gets
the announced characterization of dist[A,Pn].
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One should not be overly optimistic concerning Proposition 6.10. The relation (34) can be writ-
ten as an equality when n = 2, but starting from n = 3 the situation can deteriorate dramatically.
It is not difficult to construct a copositive matrix such that the upper bound (34) is as large as one
wishes. To see this, just form the matrix

A =

 t −t 0
−t t t
0 t 0

 =

 t −t 0
−t t 0
0 0 0


︸ ︷︷ ︸

in P3

+

 0 0 0
0 0 t
0 t 0


︸ ︷︷ ︸

in N3

and let the positive parameter t go to ∞. The degeneracy phenomenon pointed out in the above
lines is not surprising altogether. We knew already that the usual spectrum of a symmetric matrix
is not a proper mathematical tool for dealing with copositivity issues. The following result is a
Hoffman-type upper estimate for dist[A, Cn] that can be derived by using the theory of Pareto
spectra.

Proposition 6.11. For any A ∈ Sn, one has

dist[A, Cn] ≤
√

n [µ(A)]− , (38)

where a− = max{−a, 0} stands for the negative part of a ∈ R.

Proof. One may suppose that A is not copositive, otherwise each side of (38) is equal to zero. As
pointed out in [90, Proposition 2], Pareto spectra obey the translation rule

Π(A− tIn) = Π(A)− t (39)

for all t ∈ R. In view of (39) and Theorem 4.3, the shifted matrix A− µ(A)In is copositive. Hence,

dist[A, Cn] ≤ ‖A− (A− µ(A)In)‖ = −
√

n µ(A).

Note, incidentally, that the right-hand side of (38) is always nonnegative.

For seeing that
√

n is the smallest possible factor in front of [µ(A)]−, consider the example

A =
[
−1 1
1 −1

]
, Acop =

[
0 1
1 0

]
.

The matrix Acop is obtained by exploiting Moreau’s theorem. One gets in this case dist[A, C2] =
√

2
and µ(A) = −1. However, the inequality (38) is not meant to be sharp. We mention this upper
bound just to show an interesting application of the coefficient µ(A). In the same vein as in
Proposition 6.11, one can write also

dist[A, Cn] ≤ n [γ(A)]− . (40)

The key observation for obtaining the upper estimate (40) is that A − γ(A)1n1n
T is copositive

thanks to Proposition 5.1. The inequality (40) is less interesting than (38), just because the factor
n is worse than

√
n.
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Remark 6.12. For each p ∈ {1, . . . , n}, consider the positively homogeneous concave function

A ∈ Sn 7→ gp(A) = sum of the p smallest eigenvalues of A

and the corresponding closed convex cone

Kp,n = {A ∈ Sn : gp(A) ≥ 0}. (41)

Clearly, K1,n ⊂ K2,n ⊂ . . . ⊂ Kn,n. Also Cn is sandwiched between K1,n = Pn and the half-space
Kn,n = {A ∈ Sn : tr(A) ≥ 0}, like all the Kp,n (p = 2, . . . , n − 1); however there is no direct
comparison between such Kp,n and Cn. By the way, the sets defined by (41) are unitarily invariant,
but Cn is not. From a complexity point of view, this is a substantial difference. Formula (38) is
close in spirit to the Hoffman-type estimate

dist[A,Kp,n] ≤
√

n

[
gp(A)

p

]−
(42)

derived by Azé and Hiriart-Urruty [3, Theorem 2.1]. The shortest possible way to prove this
inequality is by observing that A−(gp(A)/p) In ∈ Kp,n, a relation that explains why the eigenvalues
λ1(A), . . . , λp(A) must be averaged in (42).

6.5 Angular structure of Cn

As mentioned in Proposition 1.2, the convex cone Cn contains both Pn and Nn. How big is Cn after
all? There are different coefficients that serve to measure the size of a convex cone, one of them
being the so-called maximal angle. By definition, the maximal angle of Cn is the largest angle that
can be formed with a pair of unit vectors taken from Cn. In short,

θmax(Cn) = max
X,Y ∈Cn

‖X‖=1,‖Y ‖=1

arccos〈X, Y 〉. (43)

If X and Y are matrices solving (43), then (X, Y ) is called an antipodal pair of Cn.
In order to avoid the bothersome inverse cosinus operation, it is convenient sometimes to write

the angle maximization problem (43) in the equivalent form

cos[θmax(Cn)] = min
X,Y ∈Cn

‖X‖=1,‖Y ‖=1

〈X, Y 〉. (44)

Despite its simple appearence, the nonconvex minimization problem (44) is quite tricky.
The concept of minimal angle is also of importance, but it takes longer to introduce and it is

not so easy to apprehend. The first thing one has to do is write down the optimality conditions for
the minimization problem (44). One gets in this way a combination of feasibility conditions

X ∈ Cn, Y ∈ Cn, (45)
‖X‖ = 1, ‖X‖ = 1, (46)

plus criticality (or stationarity) conditions

Y − 〈X, Y 〉X ∈ Gn, (47)
X − 〈X, Y 〉Y ∈ Gn. (48)

Feasibility and criticality are both necessary, but not sufficient, for antipodality.

20



Definition 6.13. If X, Y ∈ Sn are distinct matrices satisfying the system (45)-(48), then one says
that (X, Y ) is a critical pair of Cn. The angular spectrum of Cn is defined as the set

Ω(Cn) = {arccos〈X, Y 〉 : (X, Y ) is a critical pair of Cn}. (49)

Each element of (49) is called a critical angle of Cn. The smallest element of (49), denoted by
θmin(Cn), is called the minimal angle of Cn.

The notation for the minimal angle is consistent with the corresponding one for the maximal
angle. Indeed, one has

θmin(Cn) = min{θ : θ ∈ Ω(Cn)},
θmax(Cn) = max{θ : θ ∈ Ω(Cn)}.

Angular spectra of general convex cones have been studied in depth by Iusem and Seeger in
a series of papers [59, 61, 62, 64]. Here we concentrate on the specific case of Cn. The angle
maximization problem

θmax(Gn) = max
U,V ∈Gn

‖U‖=1,‖V ‖=1

arccos〈U, V 〉, (50)

relative to the dual cone Gn can be treated in the same manner. The feasibility-criticality system
associated with (50) is

U ∈ Gn, V ∈ Gn,

‖U‖ = 1, ‖V ‖ = 1,

V − 〈U, V 〉U ∈ Cn,

U − 〈U, V 〉V ∈ Cn,

and with such an ingredient one can define the angular spectrum of Gn.
As a particular instance of a general duality result established in [64, Theorem 3], one has

Ω(Gn) = {π − θ : θ ∈ Ω(Cn)},
Ω(Cn) = {π − θ : θ ∈ Ω(Gn)}.

Hence, up to a reflexion, the cones Cn and Gn have the same angular structure. Observe also that

θmin(Cn) + θmax(Gn) = π, (51)
θmin(Gn) + θmax(Cn) = π.

By exploiting the equality (51), one easily gets:

Proposition 6.14. For all n ≥ 2, one has θmin(Cn) = π/2. Furthermore, (X, Y ) is a critical pair
forming the angle π/2 if and only if X, Y ∈ Sn are completely positive, of unit length, and such
that Xi,jYi,j = 0 for all i, j ∈ {1, . . . , n}.

Proof. Clearly, θmax(Gn) ≤ θmax(Pn) ≤ π/2. On the other hand, if e1 and e2 denote the first two
canonical vectors of Rn, then the matrices e1e

T
1 and e2e

T
2 are completely positive, of unit length,

and such that 〈e1e
T
1 , e2e

T
2 〉 = 0. This shows that θmax(Gn) = θmax(Pn) = π/2. Hence,

θmin(Cn) = π − θmax(Gn) = π − π/2 = π/2.
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Let (X, Y ) be a critical pair achieving the minimal angle of Cn. Since X and Y are orthogonal, the
criticality conditions (47)-(48) force X and Y to be completely positive. In particular, X and Y
are nonnegative entrywise, and Xi,jYi,j = 0 for all i, j ∈ {1, . . . , n}.

Computing the maximal angle of Cn is a more delicate matter. The analysis of the two-
dimensional case is as follows.

Proposition 6.15. The maximal angle of C2 is 3π/4. Furthermore, the pair

X̂ =
[

1/2 −1/2
−1/2 1/2

]
, Ŷ =

[
0

√
2/2√

2/2 0

]
(52)

is the only one that achieves this angle.

Proof. As observed in [64], the copositive matrices X̂ and Ŷ have unit length and form an angle
equal to 3π/4. So, one knows already that θmax(C2) ≥ 3π/4. For proving that (52) is the unique
antipodal pair of C2, we write

X =
[

a b
b c

]
, Y =

[
d e
e f

]
and solve the variational problem

cos [θmax(C2)] = min
a,b,c
d,e,f

(ad + 2be + cf), (53)

where the minimization variables are restricted to the normalization constraints

a2 + 2b2 + c2 = 1, (54)
d2 + 2e2 + f2 = 1, (55)

and the copositivity ones

b +
√

ac ≥ 0,

e +
√

df ≥ 0,

a ≥ 0, c ≥ 0, d ≥ 0, f ≥ 0.

It is clear that b and e must be chosen of opposite signs. We take, for instance, b ≤ 0 and e ≥ 0.
In such a case, the copositivity constraints take the simpler form

ac− b2 ≥ 0, (56)
b ≤ 0,

a ≥ 0, c ≥ 0, d ≥ 0, f ≥ 0, e ≥ 0.

Next, one observes that the best strategy consists in taking e as large as possible and, at the same
time, d and f as small as possible. This observation and (55) lead to d = 0, f = 0 and e =

√
2/2.

This explains the form of Ŷ . Plugging this information into (53), one gets the smaller size problem

cos [θmax(C2)] = min
a,b,c

√
2 b, (57)

where the variables a ≥ 0, c ≥ 0, b ≤ 0 are restricted to (54) and (56). One can easily check that
(a, b, c) = (1/2,−1/2, 1/2) is the unique solution to (57). This explains the form of X̂.
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Remark 6.16. The matrices X̂ and Ŷ given by (52) belong to ∂C2. This is consistent with the
general theory of critical pairs in convex cones. By contrast, what is more specific to the case of C2

is that X̂ and Ŷ are extreme copositive matrices.

It is not clear to us how to derive an explicit formula for θmax(Cn) when n ≥ 3. This question will
have to be left open for the time being. We are aware, however, that the sequence {θmax(Cn)}n≥2

behaves monotonically.

Proposition 6.17. For all n ≥ 2, one can write the inclusion Ω(Cn) ⊂ Ω(Cn+1) and, in particular,
the inequality θmax(Cn) ≤ θmax(Cn+1).

Proof. Let θ ∈ Ω(Cn). Then, θ = arccos〈X, Y 〉 corresponds to the angle formed by some critical
pair (X, Y ) of Cn. The matrices

X ′ =
[

X 0
0 0

]
, Y ′ =

[
Y 0
0 0

]
of order n + 1 have unit length and belong to Cn+1. Furthermore,

Y ′ − 〈X ′, Y ′〉X ′ = Y ′ − 〈X, Y 〉X ′ =
[

Y − 〈X, Y 〉X 0
0 0

]
∈ Gn+1.

Similarly, X ′ − 〈X ′, Y ′〉Y ′ ∈ Gn+1. In short, (X ′, Y ′) is a critical pair of Cn+1, and

θ = arccos〈X, Y 〉 = arccos〈X ′, Y ′〉 ∈ Ω(Cn+1).

This completes the proof of the announced inclusion. The upward monotonicity of {θmax(Cn)}n≥2

is then obtained by taking the supremum on each side of the inclusion.

Remark 6.18. Intensive numerical experimentation with randomly generated pairs of copositive
matrices of order 3 has shown that

X̂ =

 1/2 −1/2 0
−1/2 1/2 0

0 0 0

 , Ŷ =

 0
√

2/2 0√
2/2 0 0
0 0 0


is a strong candidate as antipodal pair of C3. From here, this is only one step to conjecture that
θmax(Cn) = 3π/4 for all n ≥ 2. It is quite bothersome, but we do not have yet a serious argument
for proving (or disproving) this conjecture.

6.6 Degree of solidity of Cn

Recall that a convex set in a normed vector space is said to be solid if its interior is nonempty. There
are several ways of measuring the degree of solidity of a closed convex cone in a given Euclidean
space. A large variety of solidity indices have been introduced and studied by Iusem and Seeger
[58, 60, 63]. For instance, the “angular” solidity index of a closed convex cone K is defined by

Sang(K) = sin
(

θmin(K)
2

)
.
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Another interesting choice is the so-called Frobenius solidity index, whose definition is

Sfrob(K) = sup
z∈K
‖z‖=1

dist[z, ∂K]. (58)

Freund and collaborators [39, 42, 43] refer to (58) as the width of K, but we shall not follow this
terminology because it also has another meaning in convex analysis.

Concerning the specific case of the cone Cn, its angular solidity index is trivial to evaluate. In
view of Proposition 6.14, one knows already that:

Corollary 6.19. Sang(Cn) =
√

2/2 for all n ≥ 2.

A little bit more difficult is estimating the expression

Sfrob(Cn) = sup
Z∈Cn
‖Z‖=1

dist[Z, ∂Cn], (59)

or, equivalently,
Sfrob(Cn) = sup {r : ‖Z‖ = 1, r ≥ 0, Br(Z) ⊂ Cn} (60)

with Br(Z) denoting the closed ball of center Z and radius r. According to the latter formulation,
the term Sfrob(Cn) corresponds to the radius of the largest closed ball centered at a unit matrix and
contained in Cn. Indeed, the radius maximization problem (60) has a unique solution, say (Zn, rn),
and

Sfrob(Cn) = rn

= sup {r : r ≥ 0, Br(Zn) ⊂ Cn}.

The center Zn of the largest ball is, of course, the unique solution to (59). For convenience, we refer
to Zn as the metric center of Cn. Geometrically speaking, the half-line generated by the metric
center can be seen as a sort of central axis of Cn. Parenthetically, the existence and uniqueness of
the metric center is not exclusive of Cn, but it concerns any nontrivial solid closed convex cone in
an Euclidean space.

Proposition 6.20. For all n ≥ 2, the metric center of Cn is the normalized identity matrix În =
1√
n

In. Furthermore, Sfrob(Cn) = 1/
√

n .

Proof. As a particular instance of [58, Proposition 6.3], one can write

Sfrob(Cn) = inf
B∈co[Gn∩Σn]

‖B‖

with Σn standing for the unit sphere in Sn. Let {e1, . . . , en} denote the canonical basis of Rn. Since

1
n

In =
1
n

e1e
T
1 + . . . +

1
n

eneT
n

is a convex combination of matrices in Gn ∩ Σn, one has

Sfrob(Cn) ≤ ‖(1/n)In‖ = 1/
√

n .
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On the other hand, it can be shown that the ball{
A ∈ Sn :

∥∥∥A− În

∥∥∥ ≤ 1/
√

n
}

is contained in the cone Pn, which in turn is contained in Cn. It follows that

1/
√

n ≤ Sfrob(Pn) ≤ Sfrob(Cn).

In this way, we have proven that

Sfrob(Cn) = Sfrob(Pn) = 1/
√

n.

Let Z be the metric center of Cn. One necessarily has

min{Z1,1, . . . , Zn,n} ≥ 1/
√

n, (61)

otherwise the ball B1/
√

n (Z) touches the exterior of Cn (recall that the diagonal entries of a copos-
itive matrix are nonnegative). Since Z has unit length, the requirement (61) forces Z to be equal
to În.

Remark 6.21. A closer inspection of the above proof reveals that Proposition 6.20 is not specific to
Cn, but it applies to any closed convex cone lying between Pn and {A ∈ Sn : a1,1 ≥ 0, . . . , an,n ≥ 0}.

The following corollary concerning the asymptotic behavior of the sequence {Sfrob(Cn)}n≥2 is
somehow against intuition: despite the fact that Cn has a large minimal angle, its Frobenius index
of solidity is rather small.

Corollary 6.22. Cn loses solidity in the Frobenius sense as the dimension n increases. More
precisely, limn→∞ Sfrob(Cn) = 0.

7 Selected topics related to copositivity

7.1 Copositivity with respect to a polyhedral cone

Recall that copositivity of A ∈ Sn relative to a closed convex cone K refers to the property

xT Ax ≥ 0 for all x ∈ K. (62)

If the cone K is polyhedral, then one can represent it in the form K = {Gz : z ∈ Rp
+}, where G

stands for a real matrix whose columns {g1, . . . , gp} are positively linearly independent vectors in
Rn. In such a case, the condition (62) takes the form

zT GT AGz ≥ 0 for all z ∈ Rp
+.

This corresponds to the usual notion of copositivity applied to the matrix GT AG ∈ Sp, so we are
back to a well known framework. In most applications, hovever, p is much larger than n. That
copositivity with respect to a polyhedral cone can be converted into usual copositivity has been
observed by a number of authors (cf. [11, 38]).
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The concept of copositivity with respect to a polyhedral cone has many applications. For
instance, it enters into the picture when it comes to write down a second-order local optimality
condition for the minimization of a quadratic function on a polyhedral set:

min
x∈Ω

{
bT x +

1
2

xT Ax

}
. (63)

The next theorem by Contesse [26, Theorem 1] shows elegantly the role of copositivity in this
matter. Other results in the same vein can be found in [12, 13, 33]. The notation TΩ(x̄) refers to
the tangent cone to Ω at x̄.

Theorem 7.1. Let A ∈ Sn and Ω be a polyhedral set in Rn. Then, x̄ ∈ Ω is a local solution to
(63) if and only if

(a) (Ax̄ + b)T h ≥ 0 for all h ∈ TΩ(x̄), and

(b) A is copositive with respect to the polyhedral cone K = {h ∈ TΩ(x̄) : (Ax̄ + b)T h = 0}.

7.2 Copositivity and linear complementarity

The standard linear complementarity problem consists in finding a solution x ∈ Rn to the system

x ≥ 0, Ax + b ≥ 0, xT (Ax + b) = 0. (64)

There is a good dozen of books and surveys devoted to this specific equilibrium model, so we do
not need to indulge in lengthy explanations. The vector b ∈ Rn is usually viewed as a parameter.
The problem (64) makes sense for a general n × n real matrix A, but we concentrate only on the
symmetric case.

Under symmetry, the system (64) corresponds to the stationary point problem associated to
the linear-quadratic program

v(A, b) = inf
x≥0

{
bT x +

1
2

xT Ax

}
. (65)

A particular version of the celebrated Frank-Wolfe theorem asserts that (65) is solvable if and
only if the infimal value v(A, b) is finite. The next proposition explains the role of copositivity in
connection with this issue.

Proposition 7.2. For A ∈ Sn, the following statements are equivalent:

(a) A is copositive (respectively, strictly copositive).

(b) for all b ∈ Rn
+ (respectively, for all b ∈ Rn), the quadratic function

x ∈ Rn 7→ f(x) = bT x +
1
2

xT Ax

is bounded from below on Rn
+.

As one can see, the difference between copositivity and strict copositivity is subtle, but it has
a profound impact on the solvability of linear-quadratic programs. More specialized applications
of copositivity in the realm of linear complementarity can be found in [69] or in Section 2.5 of the
book [40].
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7.3 Probabilistic considerations concerning copositivity

If E ∈ Sn is a nonzero matrix, then {X ∈ Sn : 〈E,X〉 ≥ 0} is a half-space in Sn. As indicated by
its name, such a set fills half of the space Sn. The room occupied by the cone Nn is only 2−n(n+1)/2

of the space of Sn. Recall that Gn is contained in Nn. Hence, when n is large, Gn fills an incredibly
small portion of Sn.

From a measure theoretic point of view, also the size of Cn is very small. This can be better
explained by using the concept of normalized volume studied in [47]. The fact that Cn fills only
a small portion of Sn should not be so surprising after all. To see this, just think of the low
dimensional case n = 3, in which already 7 inequalities must be fulfilled in order to qualify for
copositivity. Contrarily to popular belief, joining the elite of copositive matrices is a tough job!

Thanks to [47, Proposition 5], evaluating the normalized volume of a closed convex cone K in
some Euclidean space, say Rd, amounts to computing

P [x ∈ K] ≡ probability that x falls in K,

where x is a d-dimensional random vector with a spherically symmetric distribution law. For all
practical purposes, think of x as a Gaussian vector, i.e., normally distributed with the origin as
mathematical expectation and with the identity matrix as covariance matrix. We shall not recall
here the concept of normalized volume, but we shall explain the smallness of Cn by using the
formalism of probability theory.

Suppose that A is a Gaussian random matrix in Sn, meaning that

- the entries ai,j (with i, j ∈ {1, . . . , n}, i ≤ j) are stochastically independent random variables
with standard normal distribution, and

- the lower triangular part of A is a copy of its upper triangular part, so as to get a symmetric
matrix.

The problem at hand is that of evaluating the probability pn = P [A ∈ Cn]. If this number is small,
then one can legitimely say that Cn fills a small portion of the space Sn. Unfortunately, obtaining
an explicit and easily computable formula for pn is a task beyond reach. Already the case n = 2 is
relatively nasty.

Proposition 7.3. Let Φ : R → [0, 1] be the cumulative distribution function of the standard normal
law. Then,

p2 =
1
4
− 1

2π

∫ ∞

0

∫ ∞

0
Φ(−

√
t1t2) e−

1
2
(t21+t22) dt1dt2 ≈ 0.1829.

Proof. In view of Proposition 2.1 and the Gaussian character of A, one just needs to simplify the
triple integral

p2 =
∫

Ω

(
1√
2π

)3

e−
1
2
(t21+t22+t23) dt1dt2dt3,

where integration takes place over the region Ω = {t ∈ R3 : t1 ≥ 0, t2 ≥ 0, t3 +
√

t1t2 ≥ 0}. In
fact, the only thing one can do explicitly is carrying out the integration with respect to t3. The
approximated value of p2 can be obtained by numerical integration of the double integral. For
avoiding cumbersome numerical work, we just used Monte Carlo simulation with a sample of 108

Gaussian random matrices in S2.
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As far as the case n = 3 is concerned, one readily sees that p3 ≤ 1/8. This crude upper
bound is obtained by neglecting all the copositivity constraints, except for the nonnegativity of the
diagonal entries. Monte Carlo simulation3 with a sample of 108 Gaussian random matrices in S3

gave the estimation p3 ≈ 0.0496. Roughly speaking, only 1 out of 20 matrices in S3 turned out to
be copositive.

Remark 7.4. When n increases, the number of copositivity constraints increases as well. That

P [A ∈ Nn] =
(

1
2

)n(n+1)/2

≤ pn ≤
(

1
2

)n

is clear, but there are good reasons to conjecture that pn goes to 0 much faster than (1/2)n. In
fact, one has the sharpening

pn ≤ pbn/2cpn−bn/2c ≤ (1/2)n,

and there is still room for improvement. Here, bn/2c denotes the lower integer part of n/2.

We end this section by addressing a question raised by one of the referees. Suppose that one
cuts Cn with a prescribed affine hyperplane in order to produce a compact convex set, say

CE
n = {X ∈ Cn : 〈E,X〉 = 1}. (66)

Is it possible to derive an estimate for the relative Lebesgue measure of this set? The next result
is obtained by relying on the Brunn-Minkowski inequality. The symbols PE

n and NE
n are defined

as in (66).

Proposition 7.5. Let E ∈ int(Gn) and meas( · ) be the Lebesgue measure on the affine hyperplane
defined by E. Then, [

meas(PE
n )
]1/d

+
[
meas(NE

n )
]1/d ≤ 2

[
meas(CE

n )
]1/d

with d + 1 = n(n + 1)/2.

Proof. Since E belongs to the interior of Gn, the set CE
n is compact. Due to Proposition 1.2, also

PE
n and NE

n are compact, and one has

(1/2)PE
n + (1/2)NE

n ⊂ (Pn +Nn)E ⊂ CE
n .

Since d is equal to the dimension of the affine hyperplane {X ∈ Sn : 〈E,X〉 = 1}, the Brunn-
Minkowski inequality tells us that the function [meas( · )]1/d is concave. Hence,

(1/2)
[
meas(PE

n )
]1/d

+ (1/2)
[
meas(NE

n )
]1/d ≤

[
meas

(
(1/2)PE

n + (1/2)NE
n

)]1/d

≤
[
meas(CE

n )
]1/d

.

This completes the proof.
3We thank our colleague D. Gourion (Avignon) for the computer implementation and numerical testing with

randomly generated data.
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7.4 Copositivity and invertibility

The inverse A−1 of a positive definite matrix A ∈ Sn is again positive definite. Now, suppose that
A ∈ Sn is nonsingular and copositive. What can be said about A−1? There are not too many
results on inverses of copositive matrices. To start, it should be mentioned that copositivity is not
preserved by inversion.

Example 7.6. Consider the 2× 2 matrices

A =
[

1
√

2√
2 1

]
, A−1 =

[
−1

√
2√

2 −1

]
.

The matrix A is copositive because all of its entries are nonnegative. However, its inverse A−1 fails
to be copositive.

Similar examples can be constructed in higher dimensions. In the above example, one sees
that each column of A−1 contains at least one positive entry. This is not fortuitous, since such a
behavior of A−1 can be predicted by a general result due to Valiaho [100, Theorem 3.4].

Proposition 7.7. If A ∈ Sn is nonsingular and copositive, then each column of A−1 contains a
positive entry.

How likely is it to have A and A−1 copositive at the same time? An answer to the “strict”
version of this question is given by the next theorem of Han and Mangasarian [51, Section 3].

Theorem 7.8. Let A ∈ Sn be nonsingular. Then, the following statements are equivalent:

(a) A and A−1 are strictly copositive.

(b) A is strictly copositive and A−1 is copositive.

(c) A is copositive and A−1 is strictly copositive.

(d) A is positive definite.

From a practical point of view, it is perhaps better to reformulate Theorem 7.8 in a negative
way. Testing whether a given matrix A ∈ Sn is copositive is known to be coNP-complete, i.e.,
testing whether A does not belong to Cn is NP-complete (cf. [72]). There are no polynomial time
algorithms for checking copositivity, unless P=coNP. Testing whether A ∈ Sn is positive semidefinite
can be answered, for example, by calculating the smallest eigenvalue of A (realm of numerical linear
algebra); the same approach for copositivity by using µ(A) is a completely different story. So, if a
nonsingular A ∈ Sn is known not to be positive definite, what can be said about its copositivity or
that of A−1? What Theorem 7.8 says is that:

A ∈ Sn nonsingular and not positive definite =⇒ A or A−1 is not strictly copositive.

On the other hand, we mention that strictness is an essential requirement in the formulation
of Theorem 7.8. Indeed, the copositivity of both A and A−1 does not guarantee the positive
definiteness of A. The next example illustrates this point.
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Example 7.9. Both matrices

A =
[

0 2
2 0

]
, A−1 =

[
0 1

2
1
2 0

]
are copositive, but neither one is positive semidefinite.

As an alternative to the Han-Mangasarian approach, the question concerning the copositivity
of both A and A−1 can be handled with the help of the next lemma established by Jacobson [65].

Lemma 7.10. For a nonsingular A ∈ Sn, the following statements are equivalent:

(a) {x ∈ Rn : xT Ax ≥ 0} ⊂ {x ∈ Rn : xT A−1x ≥ 0}.

(b) There is a scalar r ≥ 0 such that A− rA3 is positive semidefinite.

Yes, A3 stands for A to the power 3. Is not it weird such a result? Anyway, as a direct
by-product of Jacobson’s lemma, one obtains:

Corollary 7.11. Let A ∈ Sn be nonsingular and copositive. Assume any of the following equivalent
conditions:

(a) The half-line A− R+A3 intersects the cone Pn.

(b) There is a scalar r ≥ 0 such that λi(A)− r [λi(A)]3 ≥ 0 for all i ∈ {1, . . . , n}.

Then, also A−1 is copositive.

We strongly suspect that the copositivity of A−1 can be guaranteed under much weaker assump-
tions. As said before on a couple of occasions, usual eigenvalues are not sharp tools for dealing
with copositivity issues.

7.5 Copositivity of a convex combination of quadratic forms

Yuan established in [103] a necessary and sufficient condition for a pair of symmetric matrices to
admit a convex combination which is positive semidefinite.

Proposition 7.12. Let A,B ∈ Sn. Then, the following statements are equivalent:

(a) There exists t ∈ [0, 1] such that (1− t)A + tB is positive semidefinite.

(b) max{xT Ax, xT Bx} ≥ 0 for all x ∈ Rn
+.

When does a pair of symmetric matrices admit a convex combination which is copositive?
Answering this question is not a trivial matter. The answer provided by Crouzeix et al. [30, Theo-
rem 4.1] reads as follows.

Proposition 7.13. Let A,B ∈ Sn. Then, the following statements are equivalent:

(a) There exists t ∈ [0, 1] such that (1− t)A + tB is copositive.

(b) max{uT Au + vT Av, uT Bu + vT Bv} ≥ 0 for all u, v ∈ Rn
+.
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Note that the condition (b) in Proposition 7.13 can be writen also in the “max-linear” form

max{〈A,X〉, 〈B,X〉} ≥ 0 for all X ∈ G[2]
n ,

where

G[2]
n = {X ∈ Gn : CP-rank(X) ≤ 2}

= {uuT + vvT : u, v ∈ Rn
+}.

So, this is a situation in which the CP-rank of a completely copositive matrix must be taken into
account.

7.6 Copositivity, convexity, and Minty monotonicity

A symmetric matrix is positive semidefinite if and only if the associated quadratic form is a convex
function. Is it possible to characterize the copositivity of A ∈ Sn by means of the convexity of qA

on a certain convex subset C of Rn? Although this idea is natural, it turns out that such a way of
handling copositivity leads to nowhere. First of all,

qA is convex on Rn
+ ⇐⇒ qA is convex on the whole Rn

⇐⇒ A is positive semidefinite.

So, one must try with a set C that is smaller than the nonnegative orthant. What about the unit
simplex? Once again, one misses the target:

qA is convex on Λn ⇐⇒ xT Ax ≥ 0 whenever x1 + . . . + xn = 0.

All attempts in finding the right C will fail because such a convex set simply does not exist. The
explanation of this fact is given below.

Proposition 7.14. Let A ∈ Sn and C be a nonempty convex set in Rn. The convexity of qA on C
is equivalent to the copositivity of A relative to the linear subspace LC = R+(C − C).

Proof. That LC is a linear subspace is clear. Note that qA is convex on C if and only if, for any
pair u, v of points in C, the second degree polynomial t ∈ [0, 1] 7→ qA(u + t(v − u)) is convex. This
is yet equivalent to saying that

(v − u)T A(v − u) ≥ 0 for all u, v ∈ C.

A simple homogeneity argument completes the proof.

It is worthwhile to mention that copositivity of A on LC is simply positive semidefiniteness of
an associated matrix (namely of the matrix GT AG, where the columns of G form a basis for LC).

Is there a link between copositivity of A and some vague sort of convexity of qA? This time the
answer is yes, but the obtained result has a limited interest. Anyway, here is what one gets:

Proposition 7.15. For A ∈ Sn, the following statements are equivalent:

(a) A is copositive.
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(b) qA satisfies the Jensen inequality

qA((1− t)u + tv) ≤ (1− t)qA(u) + tqA(v)

for all t ∈]0, 1[ and all u, v ∈ Rn such that v − u ∈ Rn
+.

(c) For all u ∈ Rn and all d ∈ Rn
+, the function qA is convex on the half-line u + R+d.

An alternative characterization of positive semidefiniteness is Minty monotonicity of the gradient
map of the associated quadratic form. Recall that a vector function Φ : Rn → Rn is called Minty
monotone if

[Φ(v)− Φ(u)]T (v − u) ≥ 0 for all u, v ∈ Rn.

Characterizing copositivity in terms of a Minty type monotonicity concept is also possible. However,
as happens with Proposition 7.15, the obtained characterization is not very promising.

Proposition 7.16. For A ∈ Sn, the following statements are equivalent:

(a) A is copositive.

(b) [∇qA(v)−∇qA(u)]T (v − u) ≥ 0 for all u, v ∈ Rn such that v − u ∈ Rn
+.

Propositions 7.15 and 7.16 are both easy to prove. We mention them only because they provide
a different angle for visualizing copositivity.

7.7 Understanding copositivity via nonsmooth analysis

Projecting onto a closed convex cone is a typical example of an operation that lacks differentiability.
For instance, projecting x ∈ Rn onto the nonnegative orthant Rn

+ produces the vector

x+ = (x+
1 , . . . , x+

n )T

whose components x+
i = max{xi, 0} are clearly nondifferentiable. If one accepts working with

nonsmooth functions, then a large avenue is open for characterizing copositivity in the most diverse
and unexpected ways. A first result in this line concerns the use of the function

x ∈ Rn 7→ QA,κ(x) = xT Ax + κ ‖x+‖2, (67)

which can be seen as a “penalized” version of the quadratic form qA. Note that x ∈ Rn 7→ ‖x+‖2

is differentiable, but not twice differentiable.

Theorem 7.17. For A ∈ Sn, the following statements are equivalent:

(a) A is strictly copositive.

(b) There exists a “penalty” parameter κ ≥ 0 such that

xT Ax + κ ‖x+‖2 > 0 for all x ∈ Rn\{0}. (68)
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Proof. Clearly x+ = 0 whenever x ∈ Rn
−. Hence, the relation (68) yields in particular

xT Ax > 0 for all x ∈ Rn
−\{0},

which is just another way of expressing the strict copositivity of A. Conversely, let A be strictly
copositive. Ab absurdo, suppose that (b) does not hold. Then, for any integer k ≥ 1, there exists
a nonzero vector x(k) in Rn such that

(x(k))T Ax(k) + k
∥∥∥(x(k))+

∥∥∥2
≤ 0.

Hence, the normalized vector u(k) = x(k)/
∥∥x(k)

∥∥ satisfies

(u(k))T Au(k)

k
+
∥∥∥(u(k))+

∥∥∥2
≤ 0 for all k ≥ 1. (69)

Extracting a subsequence if necessary, we may suppose that {u(k)}k≥1 converges to some unit vector
u ∈ Rn. Passing to the limit in (69), one gets u+ = 0, that is to say, u belongs to Rn

−. We now
use the strict copositivity of A in order to write uT Au > 0. In turn, this inequality implies that
(u(k))T Au(k) > 0 for all k large enough, contradicting the relation (69).

Remark 7.18. The most striking feature of the inequality (68) is that the argument x is not forced to
lie on the cone Rn

+ (or, what is equivalent, on the cone Rn
−). The conic restriction has been removed

or, more precisely, it has been incorporated in the penalty term ‖x+‖2. By the way, Theorem 7.17
could have been written by using instead the penalty term ‖x−‖2, where x− = (x−1 , . . . , x−n )T is the
vector whose i-th component is given by x−i = max{−xi, 0}. As everyone working in optimization,
we stick to the old habit of giving the preference to x+ over x−.

Theorem 7.17 admits also a nonstrict version, but its formulation is a bit more elaborate. For
convenience, we introduce first a slight variant of the concept of copositivity.

Definition 7.19. A matrix A ∈ Sn is supra-copositive if there is a real κ ≥ 0 such that

xT Ax + κ ‖x+‖2 ≥ 0 for all x ∈ Rn. (70)

The infimum of all κ ≥ 0 satisfying (70) is denoted by κ(A).

The link between copositivity and supra-copositivity is explained in the next theorem, see also
Figure 1.

Theorem 7.20. For A ∈ Sn, the following statements hold true:

(a) If A is supra-copositive, then A is copositive.

(b) If A is copositive, then A can be expressed as limit of supra-copositive matrices, say A =
limr→∞ A(r). The limit itself does need to be supra-copositive. Failure of supra-copositivity in
the limit is reflected by the fact that {κ(A(r))}r≥1 is an unbounded sequence.

33



Proof. Part (a) is proven as in Theorem 7.17. In order to prove (b), we introduce the set

En = {A ∈ Sn : A is supra-copositive}.

One can easily check that En is a convex cone. Thanks to Theorem 7.17, any strictly copositive
matrix is supra-copositive. So far, we have shown that

int(Cn) ⊂ En ⊂ Cn.

This, of course, implies that Cn is the closure of En. Finally, suppose that A ∈ Cn\En and write
A = limr→∞ A(r) as limit of supra-copositive matrices. Suppose, on the contrary, that {κ(A(r))}r≥1

is bounded. Taking a subsequence if necessary, one may assume that κ̄ = limr→∞ κ(A(r)) exists.
Pick any ε > 0. By fixing x ∈ Rn and passing to the limit in

xT A(r)x +
(
κ(A(r)) + ε

)
‖x+‖2 ≥ 0,

one arrives at a contradiction, namely, that A is supra-copositive (with κ(A) ≤ κ̄ + ε).

Figure 1: Manifolds paths leading to copositivity. All implications are irreversible.

Although less interesting than (67), another option is considering the parameter-free nonsmooth
function

x ∈ Rn 7→ fA(x) = (x+)T Ax+. (71)

Such a pseudo-quadratic form corresponds to the composition of the quadratic form qA and the
projection operator x 7→ x+.

Proposition 7.21. A ∈ Sn is copositive if and only if (x+)T Ax+ ≥ 0 for all x ∈ Rn.
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The above proposition is trivial. It is not clear to us whether such a characterization of coposi-
tivity has a potential use or not. Anyway, it is worth mentioning that (71) is positively homogeneous
of degree two, and therefore the copositivity of A amounts to the nonnegativity of the coefficient

ξ(A) = inf
‖x‖=1

(x+)T Ax+. (72)

The cost function in (72) is nonsmooth, but the constraint x ≥ 0 does not show up. The above
minimization problem is structurally different from the old minimization problem (1). In particular,
the criticality conditions for (72) lead to a multivalued spectral theory that can be developed as an
alternative to the Pareto spectral analysis.

7.8 Copositivity and Legendre-Fenchel conjugation

Since our survey has an optimization or variational flavor, let us see in this paragraph what
Legendre-Fenchel conjugation could provide as additional information on copositivity. Recall that
the (Legendre-Fenchel) conjugate of an extended-real-valued function ϕ on Rn is another extended-
real-valued function on Rn, denoted by ϕ∗ and given by

ϕ∗(y) = sup
x∈Rn

{yT x− ϕ(x)}.

A clever application of the theory of conjugate functions leads to the next result, which is a
rather unorthodox characterization of copositivity.

Theorem 7.22. Let A ∈ Sn. Consider any parameter κ positive and larger than λmax(A). Then,
A is copositive if and only if

yT (κIn −A)−1y ≥ 1
κ
‖y+‖2 for all y ∈ Rn. (73)

Proof. That A ∈ Sn is copositive can be expressed in the “unconstrained” form

−(1/2) xT Ax ≤ ΨRn
+
(x) for all x ∈ Rn, (74)

where ΨΩ stands for the indicator function of a given set Ω in Rn, i.e.,

ΨΩ(x) =
{

0 if x ∈ Ω
+∞ if x /∈ Ω.

The factor 1/2 in front of the quadratic form has been introduced only for computational conve-
nience. By adding the term (κ/2) ‖x‖2 on each side of (74), one gets an equivalent inequality

g(x)︷ ︸︸ ︷
(1/2) xT (κIn −A)x ≤

h(x)︷ ︸︸ ︷
(κ/2)‖x‖2 + ΨRn

+
(x) for all x ∈ Rn

that has the merit of comparing two convex functions. The way the parameter κ has been chosen
ensures the positive definiteness of the matrix κIn −A. Since the Legendre-Fenchel conjugation of
convex functions reverse the order of inequalities, the copositivity of A is yet equivalent to

g∗(y)︷ ︸︸ ︷
(1/2) yT (κIn −A)−1y ≥

h∗(y)︷ ︸︸ ︷
(1/2κ)‖y+‖2 for all y ∈ Rn.

This completes the proof of the theorem.
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The result of Theorem 7.22 resembles that of Theorem 7.17. This time, however, the leading role
is played by the resolvent map κ 7→ (κIn − A)−1, and not by A itself. For this reason, we baptize
(73) as the resolvent characterization of copositivity. A direct by-product of Theorem 7.22 is this:
if A is copositive, then (κIn − A)−1 is strictly copositive for all κ > λmax(A). Simple examples
show that the converse is not true.

8 By way of conclusion

There are still many things one could say about copositity, but at some moment we must put an
end to this survey. Our last lines are devoted to two important items, but we shall not treat them
in extenso. Some brief remarks and suggestions of further reading will be enough.

8.1 Testing copositivity in high dimensions

The copositivity detection methods mentioned in Sections 3 and 4 are well suited for matrices of
moderate order. Copositivity tests intended for matrices of large order have been proposed in
[15, 22, 31, 56, 89]. We briefly recall the approach of Parrilo [89]. It consists in approximating Cn

to any given accuracy by another convex cone C(r)
n that depends on a nonnegative integer r. By

definition, the approximating cone C(r)
n contains A ∈ Sn if and only if the multivariate polynomial

u ∈ Rn 7→ PA,r(u) =

 n∑
i,j=1

ai,ju
2
i u

2
j

( n∑
i=1

u2
i

)r

(75)

admits a sum-of-squares decomposition.
Notice that the first factor in the product (75) corresponds to the quartic multivariate polyno-

mial introduced in Corollary 5.3. Hence, C(0)
n ⊂ Cn. Better inner approximations of Cn are obtained

by successively increasing the parameter r:

C(0)
n ⊂ C(1)

n ⊂ C(2)
n ⊂ . . . ⊂ Cn.

The big merit of Parrilo’s approach is that membership in a given C(r)
n can be tested by solving

a certain system of Linear Matrix Inequalities (LMI), so one is back in the better known realm of
semidefinite programming.

8.2 Copositivity as tool for optimization modeling

Copositivity helps in the reformulation of difficult nonconvex quadratic programs. A recent line of
research has shown that several NP-hard optimization problems can be expressed as linear programs
over Cn. Burer [23] provides a long (and presumably complete) list of problems known to have a
linear copositive programming representation.

Sometimes the leading role is played by the dual cone Gn, and not by the original cone Cn.
For instance, Burer [23] models any nonconvex quadratic program having a mix of binary and
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continuous variables as a linear program over Gn. The general-form problem considered there is:

Minimize xT Qx + 2cT x
aT

i x = bi for i ∈ I
x > 0

xj ∈ {0, 1} for j ∈ J

(76)

with I = {1, ...,m} indexing linear equality constraints, and J ⊂ {1, ..., n} indexing the components
of x that are required to be binary.

Under mild assumptions (cf. [23, Theorem 2.6]), the above problem is shown to be equivalent
to the problem below (in the variables x and X):

Minimize 〈Q,X〉+ 2cT x
aT

i x = bi for i ∈ I〈
aia

T
i , X

〉
= b2

i for i ∈ I
xj = Xjj for all j ∈ J[

1 xT

x X

]
∈ Gn+1.

(77)

The equivalence between (76) and (77) must be understood in the following sense: both problems
have same the optimal value, and if (x, X) is a solution to (77), then x lies in the convex hull of the
solution set to (76). Hence, a broad class of NP-hard problems can be transformed into a specific
class of well-structured convex minimization problems. However, the difficulty of (76) is transferred
in the last constraint of (77), namely the completely positive constraint. Unfortunately, there is no
known self-concordant barrier function naturally associated with Gn or Cn, as is the case with Pn.

Remark 8.1. As rightly pointed out by one of the referees, the approximations C(r)
n of Cn and their

dual cones G(r)
n can be used to achieve tractable approximations of (77).

There are many other interesting references concerning the role of copositivity in the modeling
and analysis of optimization problems. We mention [2, 18, 19, 32, 33, 95], but this list is by no
means exhaustive.

Aknowledgements. Two anonymous referees draw our attention to a number of relevant refer-
ences on copositivity and provided us with many insightful remarks. We thank both of them for
their unusually long and deep refereeing work.
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