
ESAIM: COCV 15 (2009) 454–470 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv:2008040 www.esaim-cocv.org
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Abstract. We present below a new series of conjectures and open problems in the fields of (global)
Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-
Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM
Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific refer-
ences, and a view on the state of the art of the subject.
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Introduction

“Some problems open doors, some problems close doors, and some remain curiosities, but all sharpen our
wits and act as a challenge and a test of our ingenuity and techniques”. So said Atiyah in the preface to
Mathematics: frontiers and perspectives (2000, by the International Mathematical Union, published by the
American Mathematical Society). This statement is, in our opinion, a good introduction to what a collection
of problems is or should be. In mathematics, each area or subarea produces its own lists of (more or less
celebrated) problems and open questions, sometimes hard to appreciate or just to understand if one does not
work in the concerned field, as given evidence by the lists of problems offered in the above-referenced book.

Our objective here is more modest: we expose a selected list of questions that all belong to Optimization
or Matrix analysis. They are of unequal importance and diverse origins, but all of rather wide interest. Some
have a theoretical flavour, some others clearly hinge on calculation, and what it is asked for each of them varies.
There are problems about which we know practically nothing, some others have partial answers; and also some
are already solved but in rather indirect manners; for them we would like to have more natural, or at least
different, proofs.

For each of the nine problems described in this paper, we propose a short presentation, the state of the art
and a list of appropriate references. As a result, each of the problems listed can be read independently of the
others, according to the interest or knowledge of the reader. The reader could thus try to tackle some of them,
that is at least our aim in writing down such a paper.
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About notation: 〈., .〉 denotes the usual inner product in R
n and ‖.‖ the associated norm; co(S) stands for

the convex hull of the set S; tr(M) means the trace of the matrix M . The other used notations are standard
ones in the fields of Optimization and Matrix analysis.

List of problems.

Problem 1. Progressive partial convexification of a set.
Problem 2. A generalized multilinear version of the Cauchy-Bouniakovski-Schwarz inequality.
Problem 3. Curves of minimal length in the plane or in the space.
Problem 4. Minimization of an energy for a general Coulombian problem.
Problem 5. Nonconvex global minimization of energy functions between particles.
Problem 6. Global minimization of the permanent function over the set of bistochastic matrices.
Problem 7. The Bessis-Moussa-Villani conjecture.
Problem 8. Conjecture on the lower bound of the inner product of sign vectors and unit vectors.
Problem 9. Conjecture on the determinant of normal matrices.

1. Problem 1. Progressive partial convexification of a set

Let S be a subset of R
n and p an integer ≥ 1. Define the set Sp as follows:

Sp :=

{
p∑

i=1

λixi : xi ∈ S, λi ≥ 0 for all i,

p∑
i=1

λi = 1

}
.

Clearly S1 = S, S1 ⊆ S2 ⊆ ... ⊆ Sn ⊆ Sn+1, and this nested sequence of sets stops at the (n + 1)-th step since
Sn+1 is the convex hull coS of S (Carathéodory’s theorem).

The Sp are “partially convexified forms” of S. A refinement of Carathéodory’s theorem, due to Fenchel and
Bunt (see [33], p. 99 and comments p. 403), states that Sn = coS if S has at most n connected components.

Question: What topological properties do the Sp’s share?
Clearly, each Sp is compact whenever S is compact. Further, the Sp’s are arcwise connected for p ≥ 2 (n steps

make S2 pass to Sn+1 = coS2, which is another illustration of the Fenchel-Bunt theorem). The only result that
we know, concerning the link between Sp and coS ([26], Thm. in p. 590) is far from the question above.

A referee suggested that the variant of this problem for cones is also interesting since then the convex hull
can be replaced by the sum: K + K, etc.

2. Problem 2. A generalized multilinear version

of the Cauchy-Bouniakovski-Schwarz inequality

Let A and M be two symmetric real (n, n) matrices, with A positive semidefinite; if

| 〈Mx, x〉| ≤ 〈Ax, x〉 for all x ∈ R
n,

then
(〈Mx, y〉)2 ≤ 〈Ax, x〉.〈Ay, y〉 for all x, y in R

n.

This is a generalization of the classical Cauchy-Bouniakovski-Schwarz inequality. There is a generalized multi-
linear version, reading as follows: Let k be an integer greater than 2, let H be a symmetric k-linear form on R

n,
let A be a symmetric positive semidefinite (n, n) matrix. Assume that

|H(x, ..., x)| ≤ (〈Ax, x〉) k
2 for all x ∈ R

n;
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then

|H(x1, ..., xk)|2 ≤
k∏

i=1

〈Axi, xi〉 for all x1, ..., xk in R
n.

This result is proved by induction in ([50], Appendix 1). Following a first circulation of this problem by us,
we have been told that there is another proof due to Lojasiewicz, reported in ([10], Prop. 1); we however must
confess it is hard to make a connection with what we are considering here. Anyway, the proofs should be given
more of an optimization flavor. Therefore our question is: Can the above inequality be proven by techniques
from Optimization (we think of optimality conditions, possibly of higher order than second order ones)?

3. Problem 3. Curves of minimal length in the plane or in the space

In many variational problems the unknown is a curve (in the plane R
2 or in the space R

3). The constraints
then concern the curve, and the criterion to be minimized is the length of the curve. The one we are going
to present has two versions: a 2-dimensional one, which is more or less known in the folklore of variational
analysis, and a 3-dimensional one for which very little is known – if anything.

3.1. Searching for a curve of minimal length in the plane

Consider a boat, lost in the sea, whose captain knows that it is located at 1 mile from the shore, assimilated
with a line, (that is what the measuring instruments indicate), but the fog is so heavy that he is unable to assess
the direction to take. The boat moves at a constant speed and the objective is to touch the seaside as soon
as possible; so the question is: What is the path of minimal length that the boat should follow to be sure to
touch or meet the seaside? In mathematical terms: Given a circle centered at O of radius 1, what is the curve
of minimal length, drawn from the origin O, touching or meeting any tangent line to the circle? By “a curve”
we mean here “a continuous rectifiable curve”.

The solution, if any, is not unique: indeed, any optimal curve, twisted around the origin O by an arbitrary
angle, has the same length, hence remains optimal. The first attempt, proving at least the feasibility of the
problem, is to move as follows: the boat leaves the origin following a ray, at the end of the ray (1 mile), it turns
around the circle of radius 1 (see Fig. 1a); in doing so, it will have covered a distance of (2π+1) ≈ 7.2832 miles.
Of course, this proposal is rough. One can do better. How? I posed the problem several times to my students
in mathematics or engineering sciences. One of their typical answers is described in Figure 1b: the boat moves
beyond the end of the radius, returns to the circle along a line-segment tangent to the circle, follows half the
circle, and the path ends with another line-segment tangent to the circle; the angle delimited by the radius
followed when leaving the origin O and the one pointing towards the arrival point is twice 45◦. Not so bad! In
fact, a boat pursuing this path is sure to meet or touch any shore situated at 1 mile from the origin (starting
point), wherever it be! The length of the trajectory is (π + 2 +

√
2) ≈ 6.5556 miles.

But one can do better in the same style. Consider an angular sector Sθ with an angle between 0 and 45◦

(see Fig. 1c), and let us determine the value of θ minimizing the length of the corresponding curve Cθ. The
length L(θ) of Cθ is (2π − 4θ + 2 tan(θ) + 1

cos(θ) ) miles. It is (globally) minimized for θopt ≈ 36.37◦ and the
corresponding length is Lopt ≈ 6.4589 miles. The first proposal chose θ = 0, while the students proposed an
angular sector with θ = 45◦. But is the latest shortest curve optimal? This problem was one of the examples
that served as guide and motivation in the book [49]; the author stopped his discussion there at the proposal
above...

After some search in the literature, we found the full answer to our problem in the reference [39] (see also
Problem A30 in [12] for further variants): the proposed curve is drawn in Figure 2a (beware, the vertical segment
out of the circle is not on the path, it is drawn here to mark the bounds of the path on the right); its length
is 7π

6 +
√

3 + 1 ≈ 6.3972. The proof of optimality is lengthy, a dozen of pages with analytical and geometrical
arguments specific to the plane – and a bit damned annoying, we must confess. So, we ask for a proof using
techniques and results from Calculus of variations or Optimal control.
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Figure 1. Searching for a curve of minimal length.
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Figure 2. Optimal curves.

A related problem, a bit simpler, whose solution helps to understand the optimality of the curve in Figure 2a,
is as follows. A telephone company has marked some spots on the ground to tell that its cable lies within 1 yard
from the mark. A problem is pointed out to the telephone company: where the dispatched technician should
dig, to be sure to find the cable, by digging the least possible (along a curve however)? This resembles to the
preceding problem, except that there is no constraint on the departure point. The optimal trench turns out to
be a half-circle extended with two line-segments like at the end of the preceding curve; see Figure 2b.

3.2. Searching for a curve of minimal length in the space

The problem tackled in Section 3.1 has a 3-dimensional version, no less interesting than the 2-dimensional
one, but decidedly more difficult to handle: given a sphere centered at O of radius 1, what curve, emanating
from the origin O, has minimal length and touches or meets each tangent plane to the sphere? Some of my
colleagues have decorated this mathematical problem in terms of science fiction: an astronaut who left his
space shuttle, knows he is at 10 yards distance from it, and he has to return back there; because the energy
reserve at his disposal is bounded, he therefore has to pursue the shortest path in the space... Admittedly, we
know nothing about the structure of the optimal path. Repeated considerations and collegian discussions have
produced quite a few feasible solutions, some of rather strange shape. The present record (as of May 2006) is a
curve whose length is 13.6699 times the length of the radius, that is to say ≈136.699 yards in our example.
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We end with another problem, similar to the previous one, posed to us by Grigis (university of Paris-
Villetaneuse, France), while reacting to and wrestling with the above challenging problem: What is the curve
of minimal length in the space which can be seen from any point on the earth? As one easily imagines, this
problem has some practical applications: design of a laser neon tube for lighting any point of a sphere, find a
trajectory for an artificial satellite so that any point on the earth could be observed, etc.

4. Problem 4. Minimization of an energy for a general Coulombian problem

As for most of the problems of this kind, the following originates in Physics [46,47]. It was posed to us
by Ley and Mouchet (university of Tours, France): Find the geometrical configuration formed by N particles
so as to minimize a given energy function. More precisely, let N distinct points (= particles) be given in the
3-dimensional space R

3, N ≥ 3. By choosing 3 points among these N points, the considered set of points gives

rise to
(

N
3

)
= N(N−1)(N−2)

6 triangles, each having 3 angles. Whence the number of angles θi built up from

the N points is N(N−1)(N−2)
2 , they will be the decision variables in our optimization problem. The so-called

local energy function to be minimized is defined as EN = − 1
4

[
N(N−1)

2 + FN

]
, where

FN :=
∑

{all angles θi}
cos(θi). (4.1)

The objective function FN depends only on the geometrical configuration of the N points; it is invariant under
the group of Euclidean isometries (rotations for example). Further, the scale independence of Coulombian
interaction makes it also invariant under dilations as well. The optimization problem is now:

(PN )

⎧⎨⎩
Maximize FN over all the configurations formed from the N points,

subject to the
N(N − 1)(N − 2)

6
linear constraints θi + θj + θk = π.

(4.2)

The constraints in the above formulation express that θi, θj, θk are three angles in the same triangle. However,
to get “true” triangles, one should check that the components θi of an optimal θ = (θ1, ..., θn) in (PN ) are
strictly positive.

We did not find this problem listed in the more or less classical geometrical optimization problems posed
in R

3 [1,51]. The following partial results have been obtained in ([47], Sect. IV.B):
– When N = 3. The global maximum of F3, a function of 3 variables, is 3

2 ; it is achieved when the
three points form an equilateral triangle. This is an easy (still interesting) exercise in constrained
optimization: first check that the optimization problem admits a solution, secondly prove that the
components θ1, θ2, θ3 of an optimal θ are necessarily strictly positive, finally use the Lagrange multiplier
rule to find the unique solution (π

3 , π
3 , π

3 ).
– When N = 4. The global maximum of F4, a function of 12 variables, is 6; it is attained when the four

points form a regular tetrahedron.
For larger N , numerical investigations led the author of [47] to the following three conjectures:

– When N = 5. The global maximum of F5, a function of 30 variables, is � 14.59, and attained when the
five points make two mirror-symmetric tetrahedrons sharing one common equilateral basis, the other
faces being 6 isoceles identical triangles. In this problem, the pyramidal configurations with a squared
basis leads to a local maximum of F5, the corresponding value is � 14.57.

– When N = 6. The global maximum of F6, a function of 60 variables, is � 28.97; it is achieved when
the six points make a regular octahedron.

– When N = 8. The global maximum of F8, a function of 168 variables is � 79.50. It is achieved
when the eight points form two identical squares (whose edges could be set of length one, without loss
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of generality) lying in two parallel planes separated by a distance � 0.97; the axis joining the centers of
the two squares is perpendicular to the squares and the two squares are twisted one from the other by
an angle of 45◦. In this problem, the cube-configuration yields the value 79.39 for the function F8.

For a given collection of N points, clustering the sum (4.1) in M -uplets (still M ≥ 3) allows us to decompose
FN into contributions of M -clusters as follows:

FN =
∑

Mi∈{M-subclusters}

(N − M)!(M − 3)!
(N − 3)!

FMi . (4.3)

Explanation: The same angle θi is common to
(

N − 3
M − 3

)
= (N−3)!

(N−M)!(M−3)! subclusters of M points (once one

has chosen an angle, that is 3 points, one has to choose M − 3 points among N − 3 points). By uniformly
distributing the sum of cosines over all the possible M -clusters, one has to divide each cosine by the number of

subclusters of M points; whence the factor appearing in the formula (4.3). The sum in (4.3) involves
(

N
M

)
terms, the number of M -clusters that can be built up from a collection on N points.

As a consequence, it readily comes from (4.2):

sup FN ≤ N(N − 1)(N − 2)
M(M − 1)(M − 2)

supFM

(the involved factor is
(

N
M

)
times (N−M)!(M−3)!

(N−3)! ); this induces the following string of inequalities:

sup FN

N(N − 1)(N − 2)
≤ sup FN−1

(N − 1)(N − 2)(N − 3)
≤ sup FM

M(M − 1)(M − 2)
≤ ... ≤ sup F3

3.2.1
=

1
4
·

For example, when considering the identity (4.3) for N = 4 and N = 3, the optimal configurations for sets of
3 points give rise to optimal configurations for sets of 4 points (see the results above): the faces of the regular
tetrahedron, that are equilateral triangles, maximize the contributions of all the 3-subclusters simultaneously.
In the string of inequalities above, equality actually holds for N = 3 and N = 4; the inequalities are tight for
N = 5, with a difference of less than 4%, if the conjectured configuration is the right one.

Solving the optimization problem (PN ) with accuracy seems out of reach for larger N ; this is a first challenge.
As interesting as the approximate resolution of (PN ) for some values of N , is the asymptotic behavior of the
optimal value and solution sets of (PN ) when N → +∞. In that respect, the following general conjecture was
posed in [47]:

When N → +∞, the configurations that solve (PN ) correspond to
N points uniformly distributed on a sphere, and: supFN ∼ 2

9N3 + o(N3). (4.4)

This conjecture resonates with the celebrated Fekete optimization problem – to be reconsidered in the next
section.

Incidentally, minimizing FN offers less interest; actually the global minimum of FN over all the possible
configurations is obtained when all the N points lie on the same line, the corresponding minimal value is
N(N−1)(N−2)

6 .
A problem similar to (PN ) is considered in [2]. The authors define there another geometrical multi-particle

energy, whose expression is somehow different from FN (it is defined via an ad hoc “volume” function built up
from the N points), but coinciding with it when N = 3; they ended up with the same questions as those posed
here for our problem (PN ) (Sect. 5 in [2], more specifically).
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5. Problem 5. Nonconvex global minimization of energy functions

between particles

Many famous – and among them some ancient – optimization problems originated in Physics, Chemistry
or Mechanics. The ones considered here share some properties like the following ones: (i) they deal with non-
convex energy objective functions; (ii) the global minimizers are the ones of interest; (iii) more conjectures
than proven results are known; (iv) they offer recurrent challenges for testing sophisticated global optimization
routines. Next we present some of them, adding a name when they bear one.

Given a unit-sphere in R
3, the generic problem is to figure out how a family of N electrons (= points) would

distribute themselves so as to minimize a total potential energy V (to be defined). We denote by ‖.‖ the usual
Euclidean norm in R

3, and x1, ..., xN the N distinct points in R
3 (beware, xi is not the ith coordinate of a

point).

– The global optimization problem of M. Fekete (which dates back to 1923):

(QN )

{
Maximize GN (x1, ..., xN ) :=

∏
1≤i<j≤N ‖xi − xj‖ over all

the configurations formed from the N points on the sphere.
(5.1)

Squaring the norm makes the objective function differentiable, but does not help in solving the problem. Since
the xi are constrained to lie on the unit-sphere, ‖xi − xj‖2 = 2(1− cos θi,j), where θi,j := arccos 〈xi, xj〉; this is
another way of expressing the objective function. Sometimes, (QN ) is stated in the following equivalent form:

(QN )

{
Minimize VN (x1, ..., xN ) = − logGN (x1, ..., xN ) =

∑
1≤i<j≤N log 1

‖xi−xj‖
over all the configurations formed from the N points on the sphere.

The solutions are called the (logarithmic or) elliptic Fekete points (of order N). The objective function VN

represents (in Physics) the energy of N charged particles that repel each other according to Coulomb’s law; the
objective is to have physically stable, minimal energy configurations.

For example, for N = 4, the Fekete points form a tetrahedron. Exact solutions indeed are known for N up
to 6. But, already in case of N = 8 points, intuition fails: the elliptic Fekete points do not form a cube. A cube
where, for example, the upper plane is rotated over 45◦ with respect to the bottom plane, gives already a larger
value of VN .

– The global optimization problem of P.M.L. Tammes (1930):

(RN )

{
Maximize HN (x1, ..., xN ) := min1≤i<j≤N ‖xi − xj‖ over all

the configurations formed from the N points on the sphere.
(5.2)

Tammes was a Dutch botanist who encountered this problem when studying the pores in spherical pollen
grains. (RN ) is closely linked to some hard “packing problems” in Combinatorial optimization like: how to
pack N identical circular caps on the surface of an unit sphere so that the diameter of the caps is as large as
possible. An additional difficulty with this problem is that the objective function is not differentiable everywhere;
smoothness is upset by the min operation appearing in its definition. Exact solutions are known for N up to
12 and some very specific values like N = 24.

– The global optimization problem of J.J. Thomson (1921):

(SN )

⎧⎨⎩ Minimize VN (x1, ..., xN ) = IN (x1, ..., xN ) :=
∑

1≤i<j≤N

1
‖xi − xj‖

over

all the configurations formed from the N points on the sphere.
(5.3)
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A bit more general situation arises when the objective function to be minimized depends on p > 0 as follows:
Ip
N (x1, ..., xN ) :=

∑
1≤i<j≤N

1
‖xi−xj‖p . In this case, as p → +∞, with the number N of points fixed, the energy

Ip
N (x1, ..., xN ) is more and more dominated by the term involving the smallest of the distances between points;

thus, in some sense, it becomes asymptotically equivalent to (RN ).

– The global optimization problem of L. Fejes Toth (1956):

(TN )

{
Maximize JN (x1, ..., xN ) :=

∑
1≤i<j≤N ‖xi − xj‖q

over

all the configurations formed from the N points on the sphere.
(5.4)

Here, q > 0; actually, the problem is of interest only for q < 2; for q ≥ 2 and N even, solving (TN ) becomes
easy: an optimal configuration is obtained by placing half the points concentrated at the north pole and the
other half at the south pole. Even for q = 1, (TN ) is a long-standing open problem in Convex geometry.

It is time to state some common results, observations and questions on these problems:
◦ Since these problems are of interest in Physics, Chemistry (especially Crystallography), a huge literature

exists spread apart from the usual journals publishing mathematical results; a sample of chosen references is
proposed at the end. All problems instances display a high degree of symmetry, induced by equivalence of points
arrangements on the sphere. Counting the number of critical points in Thomson’s problem and solving Fekete’s
global optimization problem are considered by Smale ([55], Problems 6 and 7) as two of the main challenging
mathematical questions for the XXI-th century.

◦ For small N , say up to 5, the optimal configurations in all the problems are either the same or look very
similar (the usual regular polyhedrons).

◦ “Massive multiextremality”: Problems (QN )–(TN ) have many local minimizers and saddle points; it is
estimated that the number of distinct local minimizers (ignoring rotations and reflexions) growths exponentially
with N , at least for certain subsequences of integers. Many local solutions are not global ones, and some of
them are fairly close (by their values) to the “true” (most typically unknown, but conjectured) global solutions.

◦ Reference [54] presents a concise review of the theoretical background for several of the considered prob-
lems. Theoretical results include: upper and lower bounds for the optimal values; estimates on the optimal
distributions of points; for example, in the Fekete problem, the optimal solutions xi do satisfy ‖xi − xj‖ ≥ 3

5
√

N

for i �= j ([53], Thm. 3.4); asymptotic results, i.e. estimates on the behavior of optimal values as N → +∞,
rely on hard mathematical calculations (see [41,53,54]).

◦ As said, optimal configurations are known only for a handful of integers N . Indeed, despite the relative
simplicity of the objective function and constraint set, certificates of global optimality are not available; usual
first-order and second-order optimality conditions are easy to derive but of little value. More theoretical work
should be done on the subject, probably in the spirit of necessary and sufficient conditions for global optimality
such as obtained when one has to minimize a quadratic function over a constraint set defined (as an equality
or inequality) by a single quadratic function.

◦ Test problems for “massive high precision computer experimentation”. The evoked problems are well-
suited to testing global optimization routines (examples: [7,36,52,56]). Actually, numerical determination of
solutions leads to rapidly growing computational demands, which can easily become prohibitive. Carrying
out these procedures lead to stable solutions for, say, N = some tens (depending on the problem tackled).
The instance N = 150 is already difficult, although attempts have been made for N = 50 000. In short, the
precise determination of optimal configurations for large N is yet out of reach; however explicit constructions
of configurations that are proven to be close to optimal ones have been constructed.

◦ There is no reason to restrict the constraint set to being the sphere, some applied problems (molecular
modeling of protein structures for example) require the constraint set being an arbitrary compact manifold S
in R

3. Some other constraint sets like the torus, or non-smooth ones, like the unit-cube, are considered from
the numerical viewpoint in the recent works [3,7,28].
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◦ Unconstrained variants of the problems above are also of interest for physicists or chemists, as for example:

(ŜN )

⎧⎪⎨⎪⎩ Minimize ÎN (x1, ..., xN ) :=
∑

1≤i<j≤N

1
‖xi − xj‖

+
N∑

i=1

‖xi‖2
over

all the configurations formed from the N points in R
3.

(5.5)

In a certain sense, this a penalized or regularized version of problem (SN ); it also has a physical interpretation
(the objective function to minimize is an electrostatic repulsion energy plus a mechanical attraction to the
origin).

Another popular unconstrained global optimization problem, coming from the aim of designing the best
protein folding structures is as follows:

– The Lennard-Jones problem:

(ÛN )

⎧⎪⎪⎨⎪⎪⎩
Minimize K̂N (x1, ..., xN ) :=

∑
1≤i<j≤N

[
1

‖xi − xj‖12 − 2
‖xi − xj‖6

]
over all the configurations formed from the N points in R

3.

(5.6)

The Lennard-Jones interaction energy seems to be a good model for rare gas microclusters (aggregate of small
number of atoms). In a journal like Journal of Global Optimization, almost each issue contains a contribution
to the solution of this kind of problem.

6. Problem 6. Global minimization of the permanent function over the set

of bistochastic matrices

6.1. From the conjecture of Van der Waerden to the theorem of Falikman and Egorychev

Van der Waerden stated the following problem in 1926. For a matrix A = [ai,j ], let perA denotes the so-called
permanent of A, that is

perA :=
∑

{permutations σ
of {1,2,...,n}}

n∏
i=1

ai,σ(i)

(this is the little cousin of the determinant of A). Let Bn denote the set of positive bistochastic matrices (i.e.,
matrices with nonnegative entries and whose columns and rows sum up to 1; also called doubly stochastic
matrices); particular matrices in Bn are permutation matrices (with only one 1 in each column and in each
row, other entries being 0) whose permanents equal 1, and the “central” Jn = [ 1

n everywhere] whose permanent
is n!

nn . Van der Waerden conjectured that

perA ≥ perJn for all A in Bn, with equality if and only if A = Jn. (6.1)

The proposed conjecture inspired a flood of papers by many authors who proved the statement for n =
3, 4, 5 and for many special subclasses of bistochastic matrices. Finally, the Van der Waerden conjecture was
independently settled by two soviet mathematicians Falikman and Egorychev in 1981 [17,18,20]. Although the
two proofs differ in details, they both use the same new idea: the main point is the reference to Alexandrov
inequalities for the so-called mixed discriminants of quadratic forms (1937–1938). Actually, perA is the mixed
discriminant of a certain set of diagonal quadratic forms, and Alexandrov proved his inequalities in the process
of giving a proof of better-known Alexandrov-Fenchel inequalities for mixed volumes of convex bodies.
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It is puzzling to observe that Van der Waerden’s inequality is a constrained global optimization problem, and
that the proposed proofs rely on cunning inequalities on quadratic forms... We therefore ask for a proof which
would entirely belong to the optimization realm. Since the objective function perA is a multilinear form as
a function of columns and rows, we think that, like for Problem 2, optimality conditions, possibly of higher
order than second order ones, must be invoked. The main difficulty here is that (6.1) is a constrained global
optimization problem, even if the constraint set looks nice (a convex polyhedral set).

In order to help an enthusiastic reader who wants to try his luck, and save him getting lost in the jungle
of papers devoted on the subject, we delineate below the main properties of the constraint set Bn and of the
objective function perA.

– Bn is a compact convex polyhedral set of the vector space Mn(R). It is “flat” in the sense that its affine
hull is of dimension (n−1)2. Its relative interior (i.e., interior in the affine manifold generated by Bn) consists of
positive bistochastic matrices whose entries all are positive. The orthogonal subspace to the affine hull of Bn as
well as algorithms to find the matrix in Bn closest to a given matrix A are depicted in [57]. Indeed, the function

1∏
1≤i,j≤n ai,j

of A = [ai,j ] was used by D.I. Falikman as an interior penalty function (or barrier function); his
approach was heavily based on the minimization of the perturbed function

perε(A) := per(A) + ε
1∏

1≤i<j≤n ai,j

on the relative interior of Bn; the additional term blows ups as A approaches the relative boundary of Bn.
The vertices of Bn are exactly the permutation matrices (there are n!, making up the finite set Πn), so that

Bn is the convex hull of Πn (this is the celebrated Garrett Birkhoff’s theorem, 1946). The relative boundary
of Bn, hence the various faces of Bn, are much more complicated to describe, and this one of the main difficulties
in optimizing on Bn.

– About the permanent function:
◦ perA is a symmetric multilinear function (of columns and rows), positively homogeneous of degree n (that

is, per(tA) = tnperA for all t ∈ R), but, contrary to its cousin detA, there are numerical difficulties in evaluating
it, and it fails to inherit two key properties of the determinants: the multiplicative property and the invariance
under certain elementary operations on matrices. Moreover, for n ≥ 3, it is impossible to transform a permanent
into a determinant of a modified matrix: indeed, it is not possible to find a sequence (εij) of elements in {−1, +1}
such that per(Aε) = detA for all A ∈ Mn(R), where Aε = [εijaij ].

◦ As a continuous multilinear function, perA is a C∞-function of A, whose Taylor development (is exact)
and stops at the n-th term; in other words the (n + 1)-th differential function of the permanent function is zero
everywhere (see (6.4) below). Concerning the other differentials, we have:

- for all k ∈ {1, ..., n}, the k-th differential Dkper of the permanent function is homogeneous of degree n− k;
- for p ∈ {1, ..., n − 1},

1
(n − p)!

Dn−pper(B) (A, ..., A)︸ ︷︷ ︸
n−p times

=
1
p!

Dpper(A) (B, ..., B)︸ ︷︷ ︸
p times

;

1
n!

Dnper(A) (B, ..., B)︸ ︷︷ ︸
n times

= perA.

◦ perA is not a convex function of A (although it is not too far from being convex); if so was the case, (6.1)
would have been a (nice) convex minimization problem.
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◦ Let A(i, j) denotes the (n− 1, n− 1) matrix obtained from A by deleting the i-th row and the j-th column.
Like for the determinant function, we have:

perA =
n∑

i=1

ai,j perA(i, j) =
n∑

j=1

ai,j perA(i, j)

(development following a column or a row);

(6.2)

per(A + tB) = perA + t
∑
i,j

bi,j perA(i, j) + O(t2).

(first-order development)
(6.3)

From (6.3) we derive that the gradient of the permanent function at A is the matrix whose (i, j)-th entry
is perA(j, i) (working on the space Mn(R) made Euclidean with the usual inner product � U, V �:= trace
of UT V ).

◦ Higher order Taylor developments:

per(A + tB) = perA +
n∑

k=1

tk

k!
Dkper(A) (B, ..., B)︸ ︷︷ ︸

k times

. (6.4)

◦ detA ≤ perA whenever A is symmetric positive semidefinite. The conjectured inequality (6.1) was proved
quite early for symmetric positive semidefinite matrices A (cf. [45]); by a happy combination of circumstances,
that was the object of a long problem in a national competition for hiring teachers in France in 1980, just before
the appearance of proof of the conjecture in the general case [5].

◦ If A ∈ Bn, 0 < perA ≤ 1, and perA = 1 if and only if A is a permutation matrix. The constrained
optimization problem consisting in minimizing the per function on Bn does have solutions: these solutions
cannot be permutation matrices, they lie on the remaining part of the relative boundary of Bn or on its relative
interior. However, rather early, it became known that Jn was the unique permanent-minimizing matrix not on
the relative boundary of Bn ([44] and [45], Chap. 5).

◦ The particular matrix Jn, located at the “center” of Bn, enjoys some bizarre invariance property: per(Jn) =
per(Jn(i, j)) (beware, Jn(i, j) is not Jn−1). It happens that this invariance property per(A) = per(A(i, j))
characterizes the minimizers A of per on Bn, and that was the key ingredient which led to the proofs of the
Van der Waerden conjecture [40,42,45,58].

There still are several conjectures and open problems concerning permanents of matrices (see the survey [11]);
among them we retain one which is very close, in its formulation, to the one exposed above in (6.1): The
permanent function on the set Bn ∩ {A : tr(A) = 0} achieves its minimum uniquely at the matrix all of whose
off-diagonal are 1

n−1 .

6.2. Extensions

It turns out that there are analogs or extensions of Van der Waerden optimization problem, sometimes
connecting unexpectedly different areas of mathematics. One of them is Bapat’s conjecture (1989), quite
recently proved by Gurvits [23]. Let us expose it shortly.

Consider n matrices in Mn(R). Then det(
∑n

i=1 tiAi) is a homogeneous polynomial of degree n in the real
variables ti. The number

D(A1, ..., An) :=
∂n det

∂t1...∂tn

(
n∑

i=1

tiAi

)
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is called the mixed discriminant of A1, ..., An. Among the various expressions of the D function, we retain the
following one

D(A1, ..., An) =
∑

{permutations σ
of {1,2,...,n}}

det(Aσ),

where the matrix Aσ is built up from A1, ..., An as follows: the i-th column vector of Aσ is the i-th column
vector of Aσ(i). For an example, if A1 = ... = An = A, then D(A1, ..., An) is just n! det(A).

Now, let Bn denote the so-called set of positive semidefinite bistochastic n-uples of matrices A1, ..., An,
i.e. satisfying for each i:

Ai is positive semidefinite,
trace of Ai = 1,

A1 + ... + An = In (the identity matrix).
Bapat’s conjecture [4] was:

The minimum value of D(A1, ..., An) over the set Bn is
n!
nn

;

it is attained uniquely for the positive semidefinite n-uple
1
n

In, ...,
1
n

In.
(6.5)

The resemblance of (6.5) with (6.1) is striking – and more precise when one observes the following two points:
firstly, if A is a doubly stochastic matrix, the n-uple of matrices A1, ..., An, where, for all i, Ai is taken as the
diagonal matrix with the i-th column (or row) vector of A on the diagonal, clearly belongs to Bn; secondly,
D(A1, ..., An) = perB if again, for all i, Ai is taken as the diagonal matrix with the i-th column (or row) vector
of B on the diagonal. However, the vertices of Bn are not explicitly known except in some particular cases [4].
So, with what has been noticed earlier concerning D(A, ..., A, ), the mixed discriminant can be viewed as a
generalization of both the determinant and the permanent. As we said before, Bapat’s conjecture was solved
in [23] (even for complex Hermitian positive semidefinite matrices).

It seems that n!
nn is an universal minimum value for some complicated optimization problems. A further

example is the next one. Consider a homogeneous polynomial function p(z1, ..., zn) of degree n in n complex
variables. Assume that this polynomial function satisfies the following property:

|p(z1, ..., zn)| ≥
n∏

i=1

Re(zi)

on the region {(z1, ..., zn) ∈ Cn : Re(zi) ≥ 0 for all i = 1, ..., n}.

Then, Gurvits [24] proves that ∣∣∣∣ ∂np

∂z1...∂zn

∣∣∣∣ ≥ n!
nn

· (6.6)

In the proof, interesting connections are made with another topic, the one dealing with the so-called hyperbolic
polynomials.

But, we wander from our initial question, of a more modest scope, that we repeat here: a proof of the
inequality (6.1), entirely based on optimality conditions of higher order for constrained optimization problems.

7. Problem 7. The Bessis-Moussa-Villani conjecture

7.1. The various forms of the Bessis-Moussa-Villani conjecture

The next conjecture originated in a paper by the physicists Bessis, Moussa and Villani in 1975 [8], who at-
tempted to simplify the calculation of the so-called partition functions of quantum mechanical systems. It refers
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to a positivity property of traces of matrices which, if verified, would allow the calculation of explicit error bounds
in a sequence of approximations known as the Padé approximants. The conjecture seems important in areas
of physics like condensed matter physics. Here is the statement of the BMV conjecture (as it is called in the
literature):

Let A and B be Hermitian (n, n) matrices with B positive semidefinite.

Then λ ∈ R �−→ tr[e(A−λB)] is the Laplace transform of a positive measure μ

on [0, +∞) (i.e., it equals
∫ +∞
0

e−λxdμ(x), μ depending on A and B, of course).
(7.1)

The conjecture is known to be true when A and B commute (the proof is easy), as a general rule for n = 2
(with an explicit construction of the corresponding measure μ), but even for n = 3, the complete answer is not
known. By a classical theorem of Bernstein (sometimes called “the big Bernstein theorem”), (7.1) is equivalent
to (7.2) below, asserting the “complete monotonicity” of some function:

Let f(λ) := tr[e(A−λB)]; then for all positive integer r, (−1)r f (r)(λ) is nonnegative on [0, +∞). (7.2)

Recent results on this question appeared in [15,21,25,27,30,31,37,48]... The most recent one [30] summarizes
the state of the art for this conjecture. The current belief is that the BMV conjecture is true.

A rather recent equivalent formulation of (7.1) has been provided by Lieb and Seiringer [43]; it is more
“palpable” than (7.1), we would say, since it is expressed as only positivity statements about coefficients of a
family of polynomial functions. Here is this statement:

For all Hermitian positive semidefinite (n, n) matrices A and B,
and all positive integer p, the polynomial function

λ ∈ R �−→ g(λ) := tr[(A + λB)p] =
p∑

k=0

akλk

has only nonnegative coefficients ak.

(7.3)

Although not obvious, the polynomial function g above has all real coefficients (indeed they are traces of
Hermitian matrices); some of the factors whose sum give the coefficient of λk may be negative, but what the
conjecture says is that the sum of all these terms (summing up to the coefficient of λk ) are nonnegative. The
coefficients of λk in g have been proved to be nonnegative up to k = 5 (and up to k = 6 for the specific case
where n = 3) in [31]; after having written this paper we have been informed that the case k = 7 is now achieved
(in [25]).

Papers are published in a regular way on the BMV conjecture, in the physics literature as well as in the
mathematics literature. Among the most recent (general) results on the subject, we retain the following one
from [30]: if the coefficient of λk0 of the polynomial function g is nonnegative, then all the coefficients of λk, for
k � k0, are nonnegative; it is therefore equivalent to have (7.3) for infinitely many positive integers k0.

There are also some contributions from the “stochastic side”: in [21], the authors showed that the conjecture
holds in the average for some random choices of matrices; in [15] the case n = 3 is solved but for specific matrices
A and B.

As written in [48], “even if the applications are apparently limited, the BMV conjecture remains mathemati-
cally interesting, due to its simplicity, and due to the numerous unsuccessful attempts which have been performed
to its resolution”.

7.2. A generalization: The “positivity conjecture”

For a (n, n) matrix M , let Sm,p(M) denotes the sum of the (m, m) principal minors of Mp; thus, given two
matrices A and B, Sm,p(A + λB) is a polynomial function of λ, of degree mp.
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The so-called “positivity conjecture” is as follows:

For all Hermitian positive semidefinite (n, n) matrices A and B,
and all positive integer p, the polynomial function

λ ∈ R �−→ gm(λ) := Sm,p(A + λB)
has only nonnegative coefficients.

(7.4)

The coefficient of λk in gm(λ) involves the sum of several matrices, a sum which turns out to be a Hermitian
matrix, but not necessarily positive semidefinite (even if A and B are).

Let us look at the two extreme cases, for m = 1 and for m = n. For m = 1, (7.4) is just the BMV conjecture.
For m = n, this is an easy matter, a relation on determinants: all the coefficients of the polynomial function
λ ∈ R �−→ gn(λ) := det[(A + λB)p] are nonnegative ([38], Thm. 1).

The “positivity conjecture” (7.4) was solved for n = 2 in [38].

8. Problem 8. Conjecture on the lower bound of the inner product

of sign vectors and unit vectors

We discovered this conjecture in the field of Automatic control theory (when dealing with robust solutions
of uncertain quadratic problems [6]), but it also appeared in other areas like Combinatorics and Probability
theory [34]. Consider

– a unit vector a = (a1, a2, ..., an) in R
n (i.e., ‖a‖2 :=

∑n
i=1 a2

i = 1);
– n independent random variables X1, X2, ..., Xn, with the same distribution

P (Xi = 1) = P (Xi = −1) =
1
2
;

then

P

(∣∣∣∣∣
n∑

i=1

Xi ai

∣∣∣∣∣ � 1

)
� 1

2
· (8.1)

The range for the inner product
∑n

i=1 Xi ai is the line segment [−
√

n, +
√

n]; what (8.1) asserts is that the
value of this inner product is “concentrated” more than half the time on the small segment [−1, +1]. The lower
bound 1

2 is sharp, even for small dimensions (example, for n = 2).
If one does not want to speak of probabilities, here is an equivalent way of formulating this conjecture. For

i = 1, ..., n let εi ∈ {−1, +1}, so that the 2n real numbers ε1a1 + ε2a2 + ... + εnan are distributed over the line
segment [−

√
n, +

√
n]; then at least half of them lie in [−1, +1]:

Card {(ε1, ..., εn) : εi ∈ {−1, +1} for all i, and |
∑n

i=1 εi ai| � 1}
2n

� 1
2
· (8.2)

Among the various interpretations of (8.2), in addition to Probability theory and Combinatorics, we retain
the two following ones (from [34]):

– In terms of partitions. If we partition a sum
∑n

i=1 ai (with ‖a‖ = 1) into two partial sums, then at least
half of all partitions are roughly equal, i.e. they differ by at most 1: if

n∑
i=1

εi ai =
∑
i∈I+

ai −
∑
i∈I−

ai, I+ ⊂ {1, ..., n}, I− is the complementary set of I+;

then, according to (8.2), ∑
i∈I−

ai − 1 �
∑
i∈I+

ai �
∑
i∈I−

ai + 1

for at least half of the possibilities on I+.
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– A geometrical interpretation. Consider an n-dimensional Euclidean ball and a smallest n-dimensional cube
containing it. Then the conjecture asserts that for any pair of parallel supporting hyperplanes of the ball, at
least half of the vertices of the cube lie between (or on) the two hyperplanes.

In [6], the authors proved the lower bound 1
3 in (8.1) or (8.2). Actually a better lower bound was provided

in [34]: 3
8 (hence an improvement by about 4%); the main tool in the proof is the following result which is

interesting in its own right: if X and Y are independent real-valued random variables, each having a symmetric
distribution with variance 1

2 , then P (|X + Y | < 1) ≥ 3
8 ... So, still 12.5% is missing in the best known lower

bounds to get at the conjectured 1
2 .

Reacting to a talk on these conjectures we delivered at the beginning of the year 2007, Haraux (University
of Paris VI, personal communication on March 2007) was able to prove the following relaxed version of (8.1),
namely:

P

(∣∣∣∣∣
n∑

i=1

Xi ai

∣∣∣∣∣ � √
2

)
� 1

2
·

Also a variant of (8.1) is proved in [13] (Lem. 27): the inequality (8.1) holds true if the random vector
(X1, X2, ..., Xn) is uniformly distributed over the sphere of R

n of radius
√

n.
There are further lower bounds which could derive from (8.1), for example: if A is a (n, n) symmetric matrix

and the random vector X = (X1, X2, ..., Xn) as for (8.1), then the following inequality was conjectured in [6]:

P (〈AX, X〉 � trA) � 1
4
· (8.3)

The authors in [6] got at 1
n2 as a lower bound. The most recent results in that direction we are aware of

come from putting together the results in [14] and [29]: the probability in (8.3) is bounded from below by
max( 1

2n , 1
87 ).

Nevertheless, the conjectures on minorizations of probabilities in (8.1) and (8.3) remain in force.

9. Problem 9. Conjecture on the determinant of normal matrices

The so-called determinantal conjecture of Marcus and De Oliveira (OMC in short) can be stated as follows:

Let A and B be normal (n, n) matrices with prescribed
eigenvalues a1, ..., an and b1, ..., bn respectively; then :

det(A − B) ∈ co

{
n∏

i=1

(ai − bσ(i)) : σ permutation of {1, 2, ..., n}
}

.
(9.1)

Normal matrices are complex (n, n) matrices which can be diagonalized via unitary matrices; there are many
characterizations of them, more than ninety [9,19,22,35]. Hermitian, skew-Hermitian, unitary matrices are
examples of normal matrices. Note however that A − B is not necessarily normal even if both A and B are.

The OMC conjecture is known to be true in several situations: when n ≤ 3; when both A and B are
Hermitian; when both A and B are unitary; when A is positive definite and B is skew-Hermitian; when A is
positive definite and B is a non-real scalar multiple of a Hermitian matrix; when A is Hermitian and B is a
non-real scalar multiple of a Hermitian matrix (see [16] and references therein). For an easy way to grasp the
meaning of (9.1), think of the two following specific cases:

– When both A and B are Hermitian (hence with real eigenvalues a1, ..., an and b1, ..., bn respectively); then
det(A − B) lies in the line-segment[

min
σ

n∏
i=1

(ai − bσ(i)), max
σ

n∏
i=1

(ai − bσ(i))

]
,

where the min and the max are taken over all the permutations σ of {1, 2, ..., n} ([9], Thm. VI.7.1).
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– When A and B commute: in that case, there is an unitary matrix which diagonalizes both A and B, so
that det(A − B) indeed equals

∏n
i=1(ai − bσ(i)) for some permutation σ of {1, 2, ..., n}.

We began our paper with a statement, let us end it with another one: “One does, by openly facing a well
known unsolved problem, run the risk of being remembered more by one’s failure than anything else”; attributed
to G. Choquet (1915–2006) by A. Connes in his paper in Mathematics: frontiers and perspectives (2000, by the
International Mathematical Union, published by the American Mathematical Society).
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[25] D. Hägele, Proof of the cases p � 7 of the Lieb-Seiringer formulation of the Bessis-Moussa-Villani conjecture. J. Stat. Phys.

127 (2007) 1167–1171.
[26] O. Hanner and H. Radstrom, A generalization of a theorem of Fenchel. Proceedings of the American Mathematical Society 2

(1951) 589–593.
[27] F. Hansen, Trace functions as Laplace transforms. J. Math. Phys. 47 (2006) 043504.
[28] D.P. Hardin and E.B. Saff, Discretizing manifolds via minimum energy points. Notices Amer. Math. Soc. 51 (2004) 1186–1194.
[29] S. He, Z.-Q. Luo, J. Nie and S. Zhang, Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization.

Technical report, Department of systems engineering and engineering management, the Chinese University of Hong-Kong
(2007).

[30] C. Hillar, Advances on the Bessis-Moussa-Villani trace conjecture. Linear Algebra Appl. 426 (2007) 130–142.
[31] C. Hillar and C.R. Johnson, On the positivity of the coefficients of a certain polynomial defined by two positive definite

matrices. J. Statist. Phys. 118 (2005) 781–789.
[32] J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49

(2007) 255–273.
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