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Abstract

Given f a polynomial automorphism of k2, or a polynomial automorphism of
k3 given as a product of an elementary automorphism and a permutation, we study
the minimality locus of ν(f) for valuations ν in a countable union of apartments.

1 Introduction
We start by recalling the definition of a valuation.

Definition 1.1 (Valuation). A (real) valuation on the ring k[x1, ..., xn] is a function ν :
k[x1, . . . , xn] → R∪{∞} satisfying the following properties, for all P,Q ∈ k[x1, . . . , xn],
c ∈ k∗:

1. ν(P +Q) ⩾ min{ν(P ), ν(Q)}

2. ν(PQ) = ν(P ) + ν(Q)

3. ν(c) = 0

4. ν(0) = ∞ ⇔ P = 0

In particular for deg the usual polynomial degree, −deg is a valuation on k[x1, . . . , xn].
One may also consider a weight ω = (ω1, . . . , ωn), with ωi positive real numbers, and
the weighted degree

degω(P ) = max{ω1i1 + . . .+ ωnin | (i1, . . . , in) ∈ Supp(P )}

such that −degω is a valuation. These valuations play a central role in this article,
called monomial valuations:

Definition 1.2 (Monomial valuation). A tame valuation on k[x1, . . . , xn] is a valuation
of the form νid,ω = − degω, for a weight ω ∈ (R∗

+)
n.

Polynomial automorphisms of kn are of interest, as they act naturally on valuations.

Definition 1.3 (Polynomial endomorphism/automorphism of kn).

End(kn) = {f = (f1, . . . , fn) | fi ∈ k[x1, . . . , xn]}

<

Aut(kn) = {f ∈ End(kn) | f invertible and f−1 ∈ End(kn)}

In this framework, we look at the left action of the group Aut(kn) on the space of
valuations

∀f ∈ Aut(kn), ∀P ∈ k[x1, . . . , xn] : f · ν(P ) = ν(P ◦ f).

Many authors have studied the particular subgroup of such automorphisms generated
by the triangular and linear ones, classically called tame. More particularly, in this paper
we will examine triangular automorphisms and permutations.
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Definition 1.4 (Triangular/elementary automorphism). An automorphism t ∈ Aut(kn)
is triangular if:

t = (a1x1 + P1(x2, . . . , xn), a2x2 + P2(x3, . . . , xn), . . . , anxn + c)

where a1, . . . , an ∈ k∗, c ∈ k, and Pi ∈ k[x1, . . . , xn]. We call T the subgroup of trian-
guar automorphisms.

An automorphism e ∈ Aut(kn) is elementary if:

e = (x1 + P (x2, . . . , xn), . . . , xn)

where P ∈ k[xi+1, . . . , xn]. We call E the subgroup of elementary automorphisms.

In the above, a polynomial P only appears in the first component, but we may
consider automorphisms such as

(x1, . . . , xi−1, xi + P (xi+1, . . . , xn), xi+1, . . . , xn)

that are of a similar form, but not elementary as in the definition above. They are
conjugate of e = (x1 + P (xi+1, . . . , xn), . . . , xi, . . . , xn) by the permutation p = (1i).

In this paper, a composition tp of a permutation p ∈ Sn(k) with a triangular auto-
morphism is called a triangular-permutation automorphism, and a composition ep of a
permutation by an elementary automorphism an elementary-permutation.

Definition 1.5 (Tame automorphism). Tame(An
k) := ⟨GLn(k),E⟩.

Definition 1.6 (Tame valuation). A valuation ν is tame if ν = g · νid,ω for a monomial
valuation νid,ω = −degω and a tame automorphism g.

We usually write g · νid,ω = νg,ω.

Definition 1.7 (ν-degree). For every endomorphism f = (f1, ..., fn) and valuation ν

ν(f) = sup

{
ν(P ◦ f)
ν(P )

with P ∈ k[x1, . . . , xn] non-constant
}
.

For a tame valuation ν = νg,ω it follows that

νg,ω(f) = νid,ω(g
−1 ◦ f ◦ g).

This holds as a consequence of Lemma 3.2.

This gives rise to the classical notion of dynamical degree λ(f), defined as the limit
of νid,ω(f

k)
1
k as k → ∞, for any weight ω ∈ (R∗

+)
n. We recall that the dynamical

degree of a polynomial automorphism is well defined and invariant under conjugation
(Lemma 3.5). Furthermore λ(f) equals the minimum of νid,ω(f) on the set of monomial
valuations νid,ω, if and only if f is algebraically stable with respect to ω (Definition
3.12).

Definition 1.8 (Apartment of monomial valuations). We consider the apartment Eid
of classes of such valuations νid,ω under scaling: ω ∼ λω for any λ ∈ R∗

+.
Given a tame automorphism g, we also denote by Eg the apartment of those tame

valuations of the form νg,ω modulo the relation νg,ω ∼ νg,λω, λ ∈ R∗
+.

For any tame automorphism g, the quotient space Eg is naturally homeomorphic
to the open simplex ∇ ⊂ Pn−1

R of those points [ω] = [ω1 : · · · : ωn] with only positive
coefficients. Elements of Eg may be written as νg,[ω]. When there is no risk of confusion,
we may write νg,ω instead to lighten the notation, in other words designate νg,[ω] by one
of its representatives. We make the comment that νg,ω(f) doesn’t depend on the choice
of a representative. Moreover, the action of Aut(kn) on valuations descends to an action
on the space of classes of valuations. Now if we fix an automorphism f of kn and a word
f = m, we may act upon Eid via the “letters” of m:
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Definition 1.9. For f ∈ ⟨E,Sn⟩, and for any reduced word f = m = g1 . . . gk, with
each gi elementary or a permutation, we write

Em := . . . ∪ Ef−1 ∪ . . . ∪ Eg−1
k g−1

k−1
∪ Eg−1

k
∪ Eid ∪ Eg1 ∪ Eg1g2 ∪ . . . ∪ Ef ∪ Efg1 ∪ . . .

In this order, any apartment intersects the next one and the previous one. As an
example, Eg1 ∩ Eg1g2 = g1 · (Eid ∩ Eg2).

1.1 Main result
Our theorem focuses on the cases n = 2 and n = 3.

Theorem 1.10. Let f be a tame automorphism of kn. For any reduced word m of
minimal length such that f = m, we consider the set M of valuations ν ∈ Em such that
ν(f) = min{µ(f) | µ ∈ Em}.

1. If n = 2, then up to conjugating f by an affine automorphism, the locus M ⊂ Em

is homeomorphic to R. Moreover, ν(f) equals the dynamical degree of f for all
ν ∈ M.

2. If n = 3, we assume that f is an automorphism of type elementary-permutation
whose dynamical degree is not an integer, and that the dynamical degree of f is
reached on M. Then M is homeomorphic to R.

See Sections 4 and 5, more previsely Theorems 4.3 and 5.2, for the proof of our
theorem. Basic facts, definitions and results about the dynamical degree and algebraic
stability are given in Section 3. In Section 6, we give examples of

• an automorphism of k3 of type elementary-permutation for which the dynamical
degree is not reached on Eid, but on its boundary,

• an automorphism of k3 of type triangular-permutation f = tp for which the mini-
mality locus M in Emp is homeomorphic to R,

• a triangular-permutation automorphism for which the minimality locus has dimen-
sion 2.

In the last two cases, we exhibit the fact that the intersection of M with
⋃

m∈Z Efm

is disconnected.

2 Preliminary definitions and results

2.1 Confined valuations
Definition 2.1 (Confined valuations). Let f ∈ Tame(kn) and an apartment Eg. A
valuation ν′ ∈ Eg is confined by f if there exist weights ν ∈ Eg such that f · ν′ = ν. We
denote it by:

Conf(f,Eg) := {νg,ω′ ∈ Eg | ∃ω, f · νg,ω′ = νg,ω}

In other words, Efg ∩Eg is the set of all images via f of those monomial valuations
that are confined by f .

Note that, for an automorphism f , the valuation νg,ω being confined by f in Eg is
equivalent to the valuation νid,ω being confined by g−1fg in Eid.

For this reason, we simply call Conf(f) := Conf(f,Eid) the set of confined monomial
valuations.

Lemma 2.2. Let t ∈ T be a triangular automorphism. Then, for weights ω = (ω1, . . . , ωn)
and ω′ = (ω′

1, . . . , ω
′
n) such that t · νid,ω′ = νid,ω we have ω′ = ω. In other words, any

monomial valuation confined by t is fixed by t.
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Proof : As t and t−1 are triangular, their linear parts lt and lt−1 are invertible upper
triangular matrices. More precisely, if

t = (a1x1 + P1(x2, . . . , xn), a2x2 + P2(x3, . . . , xn), . . . , anxn + c),

with Li being the linear part of Pi, that is, the sum of its degree 1 monomials, then

lt = (a1x1 + L1, a2x2 + L2, . . . , anxn)

where aixi + Li = (lt)i. We write g = t−1. On one side, we have, evaluating in ti for
all i:

νid,ω′(ti) = νid,ω(xi)

and, on the other side, we evaluate in gi for all i:

νid,ω′(xi) = νid,ω(gi)

In particular, as we deal with monomial valuations, this implies on one side for all i:

ωi ⩾ −νid,ω′((lt)i)

and on the other side:
ω′
i ⩾ −νid,ω((lg)i)

As (lt)i and (lg)i are invertible they both depend at least on xi, and, as we are dealing
with monomial valuations:

−νid,ω′((lt)i) = max{ω′
i, ω

′
j : j ̸= i | xj ⊂ (lt)i}

And same for lg:

−νid,ω((lg)i) = max{ωi, ωj : j ̸= i | xj ⊂ (lg)i}

hence, the inequalities imply ωi ⩾ ω′
i on one hand, and ω′

i ⩾ ωi, on the other hand, and
we get the result.

Remark 2.3. The same proof also works for p−1tp, for any permutation p.

2.2 For a triangular automorphism
Here we assume f = t = (x1 + P1, . . . , xn−1 + Pn−1, xn), with each Pi a polynomial in
the variables xi+1, . . . , xn. This section is dedicated to prove the following:

Theorem 2.4. Valuations that are fixed by t are the classes of νid,ω for ω = (ω1, ..., ωn)
satisfying

ωi ≥ degω Pi, ∀i ∈ {1, ..., n− 1} .

In other words, all apartments Etm intersect along {νid,ω | ωi ≥ degω Pi}, which is a
subset Eid delimited by hyperplanes.

We fix t ∈ T and define a subset Ct = {ωi ⩾ degω(Pi) | 1 ⩽ i ⩽ n} of strictly
positive weights. A precomposition by an affine diagonal automorphism, of the form
(α1x1 + β1, . . . , αnxn + βn) does not affect Ct, hence we can suppose that t = (x1 +
P1(x2, . . . , xn), x2 + P2(x3, . . . , xn), . . . , xn).

Lemma 2.5. We have ω ∈ Ct if and only if ω ∈ Ct−1 .

Proof : For t = (x1 + P1(x2, . . . , xn), x2 + P2(x3, . . . , xn), . . . , xn), we have t−1 = (x1 −
P1(x2, . . . , xn), . . . , xn−1 − Pn−1(xn), xn) where the Pi’s are defined recursively, with
Pn−1(xn) = Pn−1(xn) and Pi−1(xi, . . . , xn) = Pi−1(xi − Pi, . . . , xn−1 − Pn−1, xn).

We prove Ct ⊂ Ct−1 by backward induction. We suppose that this is true up to
the relations i to n, and let ωi−1 such that ωi−1 ⩾ degω(Pi−1). We want to prove that
ωi−1 ⩾ degω(Pi−1). But this is equivalent to ωj ⩾ degω(Pj) for j ⩾ i and ωi−1 ⩾
degω(Pi−1) which is true by induction hypothesis and the supposition.

We prove the reverse inclusion by taking t−1 instead of t.

Lemma 2.6. Let t ∈ T and m = xa1
1 . . . xan

n a monomial. Then for any ω ∈ Ct, we
have degω(m) = degω(m ◦ t).
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Proof : By computation, we find that there is a finite family J of indices J ̸= (a1, . . . , an)
such that

m ◦ t = (x1 + P1)
a1(x2 + P2)

a2 . . . xan
n = xa1

1 . . . xan
n +

∑
J∈J

bJx
J .

Hence, we have that m ⊂ m ◦ t (m actually appears as a monomial in m ◦ t) and, since
ω ∈ Ct, m is of maximal degree amongst all the monomials of m ◦ t: degω(m ◦ t) =
degω(m).

Proof of Theorem 2.4 : Let ω ∈ Ct. We want to prove that t fixes νid,ω. Let P ∈
k[x1, . . . , xn]. By additive property of degrees (or valuations), there exists m ⊂ P such
that degω(P ◦t) ⩽ degω(m◦t). By Lemma 2.6 we have degω(m◦t) = degω(m) ⩽ degω(P )
(this last inequality being because we deal with monomial valuations, or weighted de-
grees).

In conclusion, degω(P ◦ t) ⩽ degω(P ).
By Lemma 2.5, we have ω ∈ Ct−1 . and we can apply the inequality just proved for

Q = P ◦ t and t−1: degω(Q ◦ t−1) ⩽ degω(Q) thus degω((P ◦ t) ◦ t−1) = degω(P ) ⩽
degω(P ◦ t) and we get the reverse inequality. Thus, degω(P ) = degω(P ◦ t) which is
t · νid,ω = νid,ω.

Conversely, if there is a j such that ωj < degω(Pj), then t ·νid,ω is not equal to νid,ω.
One only has to consider t · νid,ω(xj) = νid,ω(Pj) (by additive property of valuations).
Thus t · νid,ω(xj) > νid,ω(xj) in this situation.

We end this section by recalling the following result from [LP19]:

Proposition 2.7 (Stabilizer of a valuation). Let ω = (ω1, . . . , ωn) with ω1 > . . . > ωn

and ν = νid,ω. Then, the stabilizer of ν in Tame(kn) is formed by elements (a1x1 +
P1(x2, . . . xn), a2x2 + P2(x3, . . . , xn), . . . , anxn + c) such that degω(Pi) ⩽ ωi.

Proof : We do the case n = 2. Let f ∈ Stab(ν).
As a polynomial automorphism of k is also a polynomial automorphism of k, we

can assume that k is algebraically closed. We can suppose ω = (ω1, 1). We have

1 = degνf,ω (x2) = degνid,ω
(f2)

Hence, f2 only depends on x2 and is linear in this variable: f2 = cx2 + d. Moreover, if
we fix y, we have f1(·, y) automorphism of A1, hence of the form f1 = Q(y)x+ P (y).

If Q was not constant, one could find a root r of Q, and f1(·, r) = P (r) would not
be an automorphism. Hence, we have Q(y) = a and f1 = ax+ P (y).

We proceed by recursion for n general, and get that f = (a1x1+P1(x2, . . . xn), a2x2+
P2(x3, . . . , xn), . . . , anxn + c).

Moreover, we must have that νf,ω(xi) = νid,ω(xi) for all i. Hence ν(fi) = ν(aixi +
Pi) = ν(xi). In particular,

−ν(Pi) ⩽ −ν(fi) = −ν(xi) = ωi

The fact that any element of this form fixes νid,ω has been shown in Theorem 2.4.

2.3 For a permutation
If f = p ∈ Sn.

We recall that permutations act on the basis of kn. There is a similar action on the
space of weights:

Definition 2.8 (Action of permutations over the space of weights). Let p ∈ Sn and
[ω] ∈ ∇. We set:

p · [ω] := [ωp−1(1) : . . . : ωp−1(n)]

Lemma 2.9. Let p ∈ Sn be a permutation, g ∈ Tame(kn), and νid,[ω] a (an homotopy
class of) monomial valuation. Then we have:

νgp,[ω] = νg,p·[ω]
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Proof : We recall that p = (xp−1(1), . . . , xp−1(n)).

Let P ∈ k[x1, . . . , xn]. We write Q = P ◦ g =
∑

I∈N aIx
I . The left-hand side gives:

νgp,[ω](P ) = νid,[ω](Q ◦ p) = νid,[ω](Q(xp−1(1), . . . , xp−1(n)))

The right-hand side gives:

νg,p·[ω](P ) = νid,p·[ω](Q(x1, . . . , xn))

Both are:
max{i1ωp−1(1) + . . .+ inωp−1(n) | aI ̸= 0}

As direct consequences, one can note the following result (to be related to Remark
2.3)

Corollary 2.10. Let f ∈ Tame(kn). Then [ω] ∈ Fix(f) if and only if p · [ω] ∈
Fix(pfp−1).

Proof : We take ν = νid,ω such that f · ν = ν. We have:

f · νid,ω = νid,ω ⇔ pfp−1 · (p · ν) = p · ν

⇔ pfp−1 · νid,p·ω = νid,p·ω

Corollary 2.11. The automorphism p confines every monomial valuation.

Proof : It is a direct consequence from Lemma 2.9.

In other words, all pm · νid,ω are monomial, and Ep = Eid.

2.4 For a tame automorphism of type "triangular–permutation"
Let f = tp with p a nontrivial permutation and t a triangular automorphism.

Lemma 2.12. Let f = tp ∈ Tame(kn), with t ∈ T and p ∈ Sn. Then, for weights
ω = (ω1, . . . , ωn) and ω′ = (ω′

1, . . . , ω
′
n) such that f · νid,ω′ = νid,ω we have ω = p · ω′.

Proof : We have tp · νid,ω′ = t · νid,p.ω′ , by Lemma 2.9. By Lemma 2.2, we have p · ω′ = ω.

Proposition 2.13. Let f, g ∈ Tame(kn). There exist a permutation p such that for any
ω, ω′ such that νf,ω = νg,ω′ we have ω = p · ω′.

Proof : Up to the action by g−1, we only have to prove the Proposition for any f ∈
Tame(kn) and g = id. As only linear parts are involved in proof of Lemma 2.2, we use
the Bruhat decomposition of lf the linear part, this decomposition being lf = t2pt1,
with p ∈ Sn and t1, t2 ∈ T.

But t2pt1 = t2pt1p
−1p while the proof of Lemma 2.2 works for t2 and pt1p

−1. Hence,
by Corollary 2.12 if f · νid,ω′ = νid,ω, we have ω = p.ω′.

We examine the images via f of those monomial valuations that are confined by f , in
other words at the set Ef ∩ Eid:

Lemma 2.14. We have :

Ef ∩ Eid = Et ∩ Eid = Fix(t) ∩ Eid.

Moreover,
Ef−1 ∩ Eid = p−1 · Et ∩ Eid = p−1 · Fix(t) ∩ Eid.
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Proof : Let ν ∈ Et ∩ Eid. As t fixes valuations (Lemma 2.2), we have t · ν = ν. We write
ν′ such that p · ν′ = ν. By Lemma 2.9, we have tp · ν′ = ν.

ν ∈ Et ∩ Eid ⇔ t · ν = ν

⇔ tp · ν′ = ν

⇔ ν ∈ Ef ∩ Eid

For the second part, taking the same notations:

ν ∈ Et ∩ Eid ⇔ tp · ν′ = ν

⇔ ν′ = f−1 · ν
⇔ ν′ ∈ Ef−1 ∩ Eid

Hence the result.

In other words, Eid meets both Ef and Ef−1 , respectively along Fix(t) and p−1 ·Fix(t).
Both these subsets are delimited by hyperplanes (Theorem 2.4).

Lemma 2.15. For all m ∈ Z,

Efm+1 ∩ Efm = Fix(t) ∩ Efm

and
Efm−1 ∩ Efm = p−1 · Fix(t) ∩ Efm .

Proof : For any m, we have an homeomorphism Efm ≃ Eid ≃ ∇, equivariant under the
action of t. So the result follows from the previous lemma.

Corollary 2.16. If p is such that

(p−1 · Fix(t)) ∩ Fix(t) ∩ Eid = ∅,

then each apartment Efm meets the apartments Efm−1 and Efm+1 , but not the other
Efn .

For sanity, we write the result of the action of f (and f−1) over the set of confined
valuations:

Corollary 2.17. We have

Efm+1 ∩ Efm = p · Conf(f,Efm)

And
Efm−1 ∩ Efm = p−1 · Conf(f−1,Efm)

Example : We write those sets explicitly for f = ep, for e = (x1+P (x2, x3), x2, x3) elementary
and p = (x3, x1, x2). We have by Theorem 2.4:

Fix(e) ∩ Eid =
⋂

(a2,a3)∈Supp(P )

{[ω] ∈ ∇ | ω1 ⩾ a2ω2 + a3ω3}

Hence, by Lemma 2.14:

Ef ∩ Eid =
⋂

(a2,a3)∈Supp(P )

{[ω] ∈ ∇ | ω1 ⩾ a2ω2 + a3ω3}

and:
Ef−1 ∩ Eid =

⋂
(a2,a3)∈Supp(P )

{[ω′] ∈ ∇ | ω′
p−1(1) ⩾ a2ω

′
p−1(2) + a3ω

′
p−1(3)}
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3 Algebraic stability with respect to ν and dynamical
degree

3.1 Computation of the degree
We have given in our Introduction (Definition 1.7) the definition of the ν-degree of an
endomorphism, for ν a valuation. We note that this degree is the same for valuations that
are equivalent up to scaling (Definition 1.8), therefore it is well-defined over apartments.
We see a way to compute it for monomial valuations:

Proposition 3.1. Let [ω] := [ω1 : . . . : ωn]. For any class of monomial valuation
νid,[ω] ∈ Eid and f = (f1, . . . , fn) ∈ End(kn), we have:

νid,[ω](f) = max
i

{
νid,[ω](fi)

νid,[ω](xi)

}
= max

i

{−νid,[ω](fi)

ωi

}
Proof : We write ν := νid,[ω].

The inequality

max
i

ν(fi)

ν(xi)
⩽ degν(f) = sup

P∈k[x1,...,xn]\{0}

ν(f∗P )

ν(P )

is obvious. We now prove the converse inequality.
For P ∈ k[x1, . . . , xn], we can write P as a finite sum of its distinct monomials (with

a non-zero coefficient): P =
∑

m⊂P cm.m. As ν is a monomial valuation, we have:

−ν(P ) = max
m⊂P

{−ν(m)}

We have, by the property of valuations:

−ν(P ◦ f) ⩽ max
m⊂P

{−ν(m ◦ f)}

So:

ν(P ◦ f)
ν(P )

⩽
maxm⊂P {−ν(m ◦ f))}
maxm⊂P {−ν(m)}

Let m′ be a monomial such that −ν(m′◦f) = maxm⊂P {−ν(m ◦ f)}. Then we have:

maxm⊂P {−ν(m ◦ f))}
maxm⊂P {−ν(m)} ⩽

ν(m′ ◦ f)
ν(m′)

For a monomial, m′ = xa1
1 . . . xan

n , we have m′ ◦ f = fa1
1 . . . fan

n , so: ν(m′ ◦ f) =∑
aiν(fi) and:

ν(m′ ◦ f)
ν(m′)

=

∑
aiν(fi)∑
aiν(xi)

⩽ max
j

ν(fj)

ν(xj)

The last inequality follows from the fact that, for any values xi, yi > 0, 1 ⩽ i ⩽ n,
we have x1+...+xn

y1+...+yn
⩽ maxi

xi
yi

.
In conclusion, we end up with:

sup
P∈k[x1,...,xn]\{0}

νid,ω(P ◦ f)
νid,ω(P )

⩽ max
j

ν(fj)

ν(xj)

Example : For a monomial valuation ν with weight [ω1 : . . . : ωn] and a monomial endomor-
phism

mi = (0, . . . , 0, xa1
1 . . . xan

n , 0, . . . , 0)

with zeroes everywhere except in the ith component, we have:

ν(mi) =
a1ω1 + . . .+ anωn

ωi

Lemma 3.2. For any g, h ∈ Tame(kn), f ∈ End(kn) we have:

g · νh,[ω](gfg
−1) = νh,[ω](f)
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Proof : Using the change of coordinates P ′ = P ◦ g, we compute:

g · νh,[ω](gfg
−1) = max

P∈k[x1,...,xn]\{0}

{
g · νh,[ω](P ◦ (gfg−1))

g · νh,[ω](P )

}
= max

P∈k[x1,...,xn]\{0}

{
νh,[ω](P ◦ (gf))
νh,[ω](P ◦ g)

}
= max

P ′∈k[x1,...,xn]\{0}

{
νh,[ω](P

′ ◦ f)
νh,[ω](P ′)

}
= νh,[ω](f)

Remark 3.3. To compute the degree over an arbitrary apartment, we will make use of
the following expression, from Lemma 3.2:

νg,[ω](f) = νid,[ω](g
−1fg)

3.2 Dynamical degree
We recall the definition of the dynamical degree:

Definition 3.4 (First dynamical degree). Let f ∈ End(kn) and deg(f) be the standard
degree.

λ(f) := lim
n→∞

(deg(fn))
1
n

It is well-defined because of submultiplicativity of the degree (see Lemma 3.6). We
recall that the dynamical degree is a conjugation invariant.

Lemma 3.5. Let f ∈ Tame(kn), g ∈ Aut(kn). We have:

λ(f) = λ(g−1fg)

Proof : We have deg((g−1fg)n) = deg(g−1fng) ⩽ deg(g−1) deg(fn) deg(g). Taking the
n-th root of both sides of the inequality and letting n go to infinity, we get λ(g−1fg) ⩽
λ(f). We get the reverse inequality from the first, with g−1 instead of g and g−1fg
instead of f .

We have submultiplicativity for the degree for tame valuations in general:

Lemma 3.6. Let f, g ∈ End(kn) and ν (a class of) tame valuation, we have

ν(g ◦ f) ⩽ ν(g)ν(f)

In particular ν(fn) ⩽ ν(f)n.

Proof : We start with Definition 1.7

degν(g ◦ f) := sup
P∈k[x1,...,xn]

{
ν(P ◦ g ◦ f)

ν(P )

}
For any P ∈ k[x1, . . . , xn], we have

ν(P ◦ f ◦ g)
ν(P )

=
ν(P ◦ f ◦ g)
ν(P ◦ g) .

ν(P ◦ g)
ν(P )

ν(P ◦ f ◦ g)
ν(P )

⩽ sup
Q∈k[x1,...,xn]

{
ν(Q ◦ f)
ν(Q)

}
ν(P ◦ g)
ν(P )

Therefore, we have

sup
P∈k[x1,...,xn]

{
ν(P ◦ f ◦ g)

ν(P )

}
⩽ sup

P∈k[x1,...,xn]

{
ν(P ◦ f)
ν(P )

}
sup

P∈k[x1,...,xn]

{
ν(P ◦ g)
ν(P )

}
Hence the result.
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Lemma 3.7. Let f ∈ End(kn). For ν = νg,[ω] with [ω] ∈ ∇ and g ∈ Aut(kn), the limit

lim
m→∞

(ν(fm))
1
m

exists and is denoted by λν(f).

Proof : By Lemma 3.6, an := log (ν(fn)) is a subadditive sequence. By Fekete’s Lemma,
the limit of an

n
exists, and is equal to its infimum.

In particular, we have ν(f) ⩾ λν(f). Moreover, we see that this limit is always the
dynamical degree, for any tame valuation with non-zero weight:

Proposition 3.8. Let f ∈ End(kn). For any g ∈ Tame(kn) and any [ω] ∈ ∇ we have:

λ(f) = lim
m→∞

(
νg,[ω](f

m)
) 1

m

In particular, for all ν, λν = λ.

Proof : We fix a valuation ν and we set Ω = mini(ωi)
maxi(ωi)

> 0. We have:

Ωdeg(fm) ⩽ νid,[ω](f
m) ⩽

1

Ω
deg(fm)

Ω
1
m (deg(fm))

1
m ⩽ (νid,[ω](f

m))
1
m ⩽

1

Ω
1
m

(deg(fm))
1
m

Taking the limit when m goes to infinity, we get the result, as Ω
1
m → 1.

To get the result for νg,[ω], we use the fact that the dynamical degree is an invariant
of conjugation:

λ(f) = λ(g−1fg)

= lim
m→∞

(
νid,[ω](g

−1fmg)
) 1

m

= lim
m→∞

(
νg,[ω](f

m)
) 1

m

3.3 ν-algebraic stability
In order to be able to introduce ν-maximal homogeneous components of a polyno-
mial/endomorphism, we fix the following notation:

Definition 3.9 (Monomial endomorphism). Given a monomial m = xa1
1 . . . xan

n and an
integer 0 ⩽ i ⩽ n, the monomial endomorphism mi is

(0, . . . , 0, xa1
1 . . . xan

n , 0, . . . , 0) ∈ End(An
k)

with the monomial m in the i-th coordinate and zeros everywhere else.

We denote monomial endomorphisms as mi with an index throughout this text. In
our convention, a monomial m (respectively mi) has coefficient 1.

Terminology. In this paper, we say that m belongs to P ∈ k[x1, . . . , xn] (respectively
mi to f ∈ End(kn)) and we write m ⊂ P (respectively mi ⊂ f) for a monomial
m = xa1

1 xa2
2 . . . xan

n , if it belongs to the support of P , i.e. if this monomial features in
the polynomial P with a non-zero coefficient (respectively if the associated monomial
endomorphism features in f with a non-zero coefficient).

In particular, for any polynomial P (resp. any polynomial endomorphism f) there
exist coefficients cm ∈ k∗ (resp. cmi

) such that

P =
∑
m⊂P

cmm (respectively, f =
∑
mi⊂f

cmimi).

More generally, we say that an endomorphism f contains an endomorphism g if all
the monomials contained in g are also contained in f , and we write g ⊂ f . We sometimes
say that g is a component of f in such a situation.
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Definition 3.10. Let P ∈ k[x1, . . . , xn]. We call ω-maximal homogeneous component
and denote by Pω the sum of monomials m ⊂ P such that degω(m) = degω(P ).

Definition 3.11 (ω-maximal homogeneous component). Let ν = νid,[ω] ∈ Eid and
f ∈ End(kn). We define the maximal (or leading) homogeneous component of f for ν
as being the endomorphism f[ω] of f which is the sum of the monomials mi ⊂ f such
that ν(mi) = ν(f), along with their coefficients.

The link between the degree and the dynamical degree is algebraic stability:

Definition 3.12 (ν-algebraic stability). Let f ∈ End(kn).
For a given valuation ν, we say that f is ν-algebraically stable if, for all n, we have:

ν(fn) = (ν(f))
n

If ν = νid,[ω], we say that f is [ω]-algebraically stable.

Lemma 3.13. Let f, g ∈ End(kn). We have νid,[ω](g ◦ f) < νid,[ω](g) · νid,[ω](f) if and
only if g[ω] ◦ f[ω] = 0.

Proof : If g[ω] ◦ f[ω] ̸= 0, then, as g[ω] and f[ω] are ω-homogeneous, g[ω] ◦ f[ω] is ω-
homogemenous of degree νid,[ω](g) · νid,[ω](f). So we have

νid,[ω](g ◦ f) = νid,[ω](g) · νid,[ω](f).

If g[ω] ◦ f[ω] = 0, in other words (g ◦ f)[ω] ̸= g[ω] ◦ f[ω], then

νid,[ω]((g ◦ f)[ω]) < νid,[ω](g[ω]) · degνid,[ω]
(f[ω]).

This means

νid,[ω](g ◦ f) = νid,[ω]((g ◦ f)[ω]) < νid,[ω](g) · degνid,[ω]
(f).

Lemma 3.14. Let f ∈ Tame(kn), and [ω] ∈ ∇. The following statements are equivalent:

(1) f is [ω]-algebraically stable

(2) f[ω] is such that (f[ω])
n ̸= 0 for all n

(3) νid,[ω](f) = νid,[ω](f[ω]) = λ(f)

and imply the fact that νid,[ω](f) is minimal among monomial valuations.

Proof : We prove (1) ⇔ (2). Suppose that f is not algebraically stable. Then there exists
some r > 1 minimal such that νid,[ω](f

r) < (νid,[ω](f))
r. By Proposition 3.13, we get

that (f[ω])
r = 0. Conversely, assume that there exists r such that (f[ω])

r = 0. Then
νid,[ω](f

r) < νid,[ω](f[ω])
r, again by Proposition 3.13, hence f is not algebraically stable.

We prove (1) ⇔ (3). Algebraic stability implies νid,[ω](f) = λ(f) by Proposition
3.8. Conversely, if f is not [ω]-algebraically stable, there exist r, ε > 0 such that
νid,[ω](f)

r −ε > νid,[ω](f
r). By submultiplicativity of the degree and induction, we have

for all k:
(νid,[ω](f)

r − ε)k > νid,[ω](f
r)k ⩾ νid,[ω](f

rk)

We take the power 1
kr

of both sides of the inequality and let k go to infinity. We get:

(νid,[ω](f)
r − ε)

1
r ⩾ λ(f)

As (νid,[ω](f)
r − ε)

1
r < νid,[ω](f) for any r ⩾ 1, we get that νid,[ω](f) > λ(f).

The dynamical degree is a lower bound for the degree over tame valuations by
Lemma 3.7. Hence, any valuation that reaches it is minimal.

It is worth noticing an upper bound for the rank of nilpotent endomorphisms:

Lemma 3.15. We consider h ∈ End(kn) such that h((0, . . . , 0)) = 0. We moreover
suppose that h is nilpotent and we denote by r the smallest integer such that hr = 0.
Then r ⩽ n.
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Proof : We consider some 0 ⩽ i < n, and we denote by Xi := hi(kn) the closure of
the image of hi. It is an irreducible variety. We also denote by gi = h|

hi(kn)
the

restriction (of domain and target) of h to Xi. As gi : Xi → Xi is still nilpotent, it
cannot be dominant, if dim(Xi) > 0. Hence, Xi+1 must be a closed irreducible variety
strictly contained in Xi. Hence, if dim(Xi+1) ̸= 0, we must have dim(Xi+1) < dim(Xi).
As dim(X0) = dim(kn) = n, we must have dim(Xi) ⩽ n − i Hence, we must have
dim(hn(kn)) = 0, hence hn = 0, as h fixes the origin.

Lemma 3.16. Let f ∈ End(kn). For each l ∈ R>0, the set {[ω] ∈ ∇ | νid,[ω](f) ⩽ l} is
a convex polytope in ∇.

Proof : We write P = {[ω] ∈ ∇ | νid,[ω](f) ⩽ l}. Then

P =
⋂

1⩽i⩽n

{[ω] | degω(fi) ⩽ lωi}

By construction, degω(fi) = degω(m) for (at least) one monomial m involved in fi. Then
the subset {degω(fi) ⩽ lωi} is given by linear constraints, as much as there are such
dominant monomials. Hence P is the intersection of finitely many closed semi-spaces,
with frontier hyperplanes, hence a convex polygon.

In particular, the minimality locus is a convex polytope. Its dimension may be
smaller than n− 1: as an example when n = 3, it may be a point or a segment.

4 Minimality locus in the union of apartments over k2

We recall the Theorem of Jung for the structure of automorphisms of k2:

Theorem 4.1 ([Jung42]).

Aut(k2) = Tame(k2) = E ∗ A

Where A denotes the group of affine automorphisms and E ∗ A the amalgamated
product of elementary automorphisms and affine automorphisms along their intersec-
tion E ∩ A.

Let e = (ax1+P (x2), bx2+c) ∈ E and the non-trivial permutation p = (x2, x1) ∈ S2.
The composition h := ep = (ax2 + P (x1), bx1 + c) is said of Hénon type.

Corollary 4.2. Let f ∈ Tame(k2), not affine nor elementary. Up to affine conjugation,
there exists r ∈ N and Hénon automorphisms hi, for i = 1, . . . , r such that f = h1 . . . hr.

Having f = h1 . . . hr, we consider this set of tame valuations:

Eh1...hr = . . .∪Ef−1 ∪ . . .∪Eh−1
r h−1

r−1
∪Eh−1

r
∪Eid ∪Eh1

∪Eh1h2
∪ . . .∪Ef ∪Efh1

∪ . . .

It is the framework of Definition 1.9. This section is dedicated to prove the following:

Theorem 4.3. Let f ∈ Tame(k2), such that f = h1 . . . hr for hi Hénon automorphisms.
Then the minimality locus M of ν(f) for ν ∈ Eh1...hr is connected, homeomorphic to R.

We first compute the degree over Eid for any product for Hénon automorphisms.

Lemma 4.4. Let f = h1 . . . hr with hi = (aix2 + Pi(x1), bix1 + ci) and di = deg(Pi).
Over Eid, the only monomials that matter for the computation of the degree are

(xd1...dr
1 + x

d1...dr−1

2 , xd2...dr
1 ) ⊂ f . In other words,

νid,[ω1:ω2](f) = νid,[ω1:ω2](x
d1...dr
1 + x

d1...dr−1

2 , xd2...dr
1 ), ∀[ω1 : ω2] ∈ ∇.

In particular, if [ω1 : ω2] = [ω : 1]:

νid,[ω:1](h1 . . . hr) = max{d1 . . . dr−1

ω
, d1 . . . dr, d2 . . . drω}.
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Proof : If r = 1, we have f = h1. We have, for any ω > 0, (P1)ω = xdi
1 and degω(P1) = d1ω.

Hence:
νid,[ω:1](h1) = νid,[ω:1](x2 + xd1

1 , x1) = max{ 1
ω
, d1, ω},

as required.
We suppose that the result holds up to r − 1 Hénon automorphisms. Hence we

only consider (x
d1...dr−1
1 + x

d1...dr−2
2 , x

d2...dr−1
1 ) ⊂ h1 . . . hr−1. We also only have to

consider (x2+xdr
1 , x1) ⊂ hr, as those are sums of dominant monomials, by the induction

hypothesis. We compute:

(x
d1...dr−1
1 + x

d1...dr−2
2 , x

d2...dr−1
1 ) ◦ (x2 + xdr

1 , x1)

=((x2 + xdr
1 )d1...dr−1 + x

d1...dr−2
1 , (x2 + xdr

1 )d2...dr−1) (⋆)

We note, as the various monomials appear only once, there is no cancellation in this
composition. Having set all nonzero coefficients as equal to 1 does not change the value
of the degree, so

νid,[ω:1](h1 . . . hr) = νid,[ω:1](⋆) = max
ω>0

{d1 . . . dr−1

ω
, d1 . . . dr, ωd2 . . . dr}

and these correspond to the maximum component of (xd1...dr−1
2 + xd1...dr

1 , xd2...dr
1 ).

Corollary 4.5. Let f = h1 . . . hr, ω > 0 and ν = νid,[ω:1]. Then

f is ν-algebraically stable ⇔ 1

dr
⩽ ω ⩽ d1

In that case, the degree, equal to deg(h1) . . . deg(hr), is minimal, equal to the dynamical
degree of f .

Proof : By Lemma 4.4, if 1
dr

< ω < d1, we have ν(f) = d1 . . . dr and the maximal homo-
geneous component associated to it is f[ω:1] = (xd1...dr

1 , 0), which does not vanish after
iteration. Therefore by Lemma 3.14, f is νid,[ω]-algebraically stable for 1

dr
< ω < d1,

and we have degω f = λ(f). This also holds for 1
dr

⩽ ω ⩽ d1 by continuity of the degree,
so f is νid,[ω:1]-algebraically stable if 1

dr
⩽ ω ⩽ d1, as an application of Lemma 3.14.

Moreover, if ω > d1, we have f[ω:1] = (0, x
d1...dr−1
1 ) and f is not algebraically stable

as (f[ω:1])
2 = (0, 0) and by Lemma 3.14.

Similarly, if ω < 1
dr

, we have f[ω:1] = (xd2...dr
2 , 0) and f is not algebraically stable

for the same reason.

The reason why the minimality locus is homeomorphic to R inside Eh1...hr is the
following:

Lemma 4.6. Borders of the intersection loci ∂(Eh1 ∩Eid), ∂(Eh−1
r

∩Eid) coincide with
change of dominating monomials for f = h1 . . . hr. In addition f is ν-algebraically
stable, with ν ∈ Eid, if and only if ν does not belong to the interior of Eh1

∩Eid, nor to
the interior of Eh−1

r
∩ Eid.

Proof : Given h a Hénon automorphism, we denote h = ep with e elementary and p
the nontrivial permutation. We denote by d its degree. To compute Eh ∩ Eid (and
Eh−1 ∩ Eid), it suffices to compute Fix(e) ∩ Eid by Lemma 2.14. By Theorem 2.4, we
have:

Fix(e) ∩ Eid = {νid,[ω:1] ∈ Eid | ω ⩾ d}
Hence:

Eh ∩ Eid = {νid,[ω:1] ∈ Eid | ω ⩾ d}
And:

Eh−1 ∩ Eid = p−1(Eh ∩ Eid) = {νid,[ω:1] ∈ Eid | ω ⩽
1

d
}

But we see by Lemma 4.4, that if 1
dr

< ω < d1 then (xd1...dr
1 , 0) is dominating alge-

braically stable, and if ω > d1 then (0, x
d1...dr−1
1 ) is dominating non-algebraically stable.

Hence, {νid,[d1:1]} = ∂(Eh1 ∩ Eid) corresponds to a change of dominating monomial.
We also have that if ω < 1

dr
then (xd2...dr

2 , 0) is dominating non-algebraically sta-
ble. Hence {νid,[1:dr ]} = ∂(E

h−1
r

∩ Eid) also corresponds to a change of dominating
monomials.
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As we have denoted by M the minimality locus of ν(f) among ν ∈ Eh1...hr , as a
summary of the above we obtain:

Corollary 4.7. M ∩ Eid is a segment with vertices ∂(Eh1 ∩ Eid) = {νid,[d1:1]} and
∂(Eh−1

r
∩ Eid) = {νid,[1:dr]}.

Proof : By Corollary 4.5, the minimality locus in Eid is equal to {νid,[ω:1] | 1
dr

⩽ ω ⩽ d1}.
By Lemma 4.6, we see that it intersects Eh1 ∩ Eid = {νid,[ω:1] ∈ Eid | ω ⩾ d1} and
E

h−1
r

∩ Eid = {νid,[ω:1] ∈ Eid | ω ⩽ 1
dr

} exactly at their border point.

We now proceed with a proof of our Theore 4.3.
Proof of Theorem 4.3 : For each apartment Eη in Eh1...hr , we have either

• η = fmh1 . . . hi, m ⩾ 0 and 1 ⩽ i ⩽ r, or

• η = fmh−1
r . . . h−1

i , m ⩽ 0 and 1 ⩽ i ⩽ r.

Acting upon Eid via η, by Lemma 3.2, computing the degree of f on Eη amounts to
computing the degree of η−1fη on Eid. By Corollary 4.7, the minimal degree of η−1fη
on Eid is reached on the segment delimited by

• Ehi+1 ∩ Eid and E
h−1
i

∩ Eid, if η = fmh1 . . . hi, m ⩾ 0 (in which case η−1fη =

hi+1 . . . hrh1 . . . hi),

• Ehi ∩ Eid and E
h−1
i−1

∩ Eid, if η = fmh−1
r . . . h−1

i , m ⩽ 0 (in which case η−1fη =

hi . . . hrh1 . . . hi−1).

Via the action of η, we conclude that ν(f) reaches its minimum for ν ∈ Eη, if and only
in ν belongs to the segment delimited by

• Eηhi+1 ∩ Eη and E
ηh−1

i
∩ Eη, if η = fmh1 . . . hi, m ⩾ 0,

• Eηhi ∩ Eη and E
ηh−1

i−1
∩ Eη, if η = fmh−1

r . . . h−1
i , m ⩽ 0.

So M describes a segment in each apartment. Moreover, two consecutive segments
of this form meet at exactly one border point. So M is an infinite line over Eh1...hr .

The locus M is depicted in purple in Figure 1 below.

Eid

ν
h
−1
r ,[1:dr−1]

νh1,[d2:1]

Eh−1
r

Eh1

Eh−1
r ...h−1

2

Ef−1

Ef

Eh1...hr−1

νid,[1:dr ] = ν
h
−1
r ,[dr :1]

•
νid,[1:1] νid,[d1:1] = νh1,[1:d1]

ν
h
−1
r ...h

−1
2 ,[d2:1]

•

ν
f−1,[d1:1]

νf,[1:dr ]

νh1...hr−1,[1:dr−1]

•

• •

•

•

•

•

Figure 1: Minimality locus M for h1 . . . hr

5 The minimality locus in the union of all apartments
over k3

In this section, we focus on the case n = 3 and we study the minimality locus of ν(f)
on all ν ∈ Eep for f a tame automorphism of k3 of type f = ep with e elementary and
p a permutation.

We being by a remark on Eep.
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Remark 5.1. As we can write e = (x1 + P1(x2, x3), x2, x3), we have

f = (xp−1(1) + P (xp−1(2), xp−1(3)), xp−1(2), xp−1(3)).

We remark that there is no expression of f as p′e′ with e′ an elementary automorphism
and p′ a permutation, unless p′ = (x1, x2, x3) — otherwise the polynomial P would not
appear in the first component of f . But then p′e′ = e′′p′ for some other elementary e′′.
Hence we will only consider an expression f = ep. We have:

Eep =
⋃
m∈Z

Efm .

Indeed, Ee = Ef , Efe = Ef2 , and so on.

Theorem 5.2. Assume that f = ep is an elementary-permutation automorphism with
λ(f) /∈ N and that the dynamical degree λ(f) is reached on Eid, i.e. there exists a
monomial valuation νid,[ω] ∈ Eid for which f is algebraically stable.

Then the minimality locus

M = {ν ∈ Eep | ν(f) = λ(f)}

is homeomorphic to R.

5.1 Step-by-step proof of the theorem
We assume that the dynamical degree of f is not an integer and that it is met in Eid.
In particular, as λ(f) ̸= 1, we have deg(P ) ⩾ 2 with deg the standard degree.

Lemma 5.3. Let f = ep, with e = (x1 + P (x2, x3), x2, x3) and p a permutation.
We assume that its dynamical degree is not an integer and that it equal to ν(f) for

ν ∈ M. Then p is of order 3. Moreover we may assume f = ep with p = (123) =
(x3, x1, x2), in other words:

f = ep = (x1 + P (x2, x3), x2, x3)(x3, x1, x2) = (x3 + P (x1, x2), x1, x2)

The condition ν(f) = λ(f) for ν ∈ M is equivalent to the existence of a monomial
valuation νid,[ω] ∈ Eid such that f is νid,[ω]-algebraically stable. In Section 6, we give
examples of f = ep that do not satisfy this condition, where p has order 2, λ(f) is met
on the boundary of Eid and M = ∅.
Proof of Lemma 5.5 : One can first remark that the two order 3 permutations are con-

jugated to by σ = (x1, x3, x2), which has x1 as its invariant coordinate. The conjugate
of e by the two-cycle σ = (x1, x3, x2) is an elementary e′ and

ep = σeσ−1σpσ−1 = e′(σpσ−1).

Hence, we can assume that p = (x3, x1, x2) is the permutation involved in the expression
of f . Now we prove by contradiction that p has order 3:

If p is of order at most 2, we will see that the dynamical degree of ep is an integer.
If p = id, then f is elementary and λ(f) = 1.

If p = (23) = (x1, x3, x2), then we see that (ep)2 is an elementary, hence, by the
fact that λ(f2) = λ(f)2, the dynamical degree of f is the square root of that (ep)2, i.e.
equal to 1.

If p = (12) = (x2, x1, x3) — the case p = (13) = (x3, x2, x1) being conjugated by
(23) — we have ep = (x2 + P (x1, x3), x1, x3). Given [ω] for which f is algebraically
stable, we have (Pω(x1, x3), 0, 0) ⊂ f[ω], otherwise we would have f[ω] ⊂ (x2, x1, x3);
as (x2, x1, x3) is an involution, this would mean λ(f) = 1. Moreover, Pω(x1, x3) is
divisible by x3, or else there would be a monomial xd

1 in Pω and we would have λ(f) =
νid,[ω](x

d
1, 0, 0) = d ∈ N. So (Pω(x1, x3), 0, 0) is nilpotent, hence (Pω(x1, x3), 0, 0) ̸= f[ω].

We cannot have (Pω(x1, x3), 0, x3) ⊂ f[ω], since νid,[ω](0, 0, x3) = 1. Furthermore, we
cannot have (x2 +Pω(x1, x3), 0, 0) = f[ω], as the left member is nilpotent. For the same
reason, (Pω(x1, x3), x1, 0) ̸= f[ω]. So f[ω] = (x2 + Pω(x1, x3), x1, 0), meaning

ω2

ω1
= νid,[ω](x2, 0, 0) = λ(f) = νid,[ω](0, x1, 0) =

ω1

ω2

leading to λ(f) = 1, a contradiction.
The conclusion follows that p has order 3, as required.
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Lemma 5.4. Let f = ep an elementary-permutation automorphism satisfying the same
assumptions as in Lemma 5.3.

f = (x3 + P (x1, x2), x1, x2).

Then we have deg(P ) ⩾ 2 for the standard degree, and for any [ω] such that f is ω-
algebraically stable:

(Pω(x1, x2), x1, 0) ⊂ f[ω]

Moreover Pω(x1, x2) is divisible by x2.

Proof : The fact that (Pω(x1, x2), x1, 0) ⊂ f[ω] can be proven in a similar way as in the
proof of Lemma 5.3: if [ω] is a weight for which f is algebraically stable, we have
(Pω(x1, x3), 0, 0) ⊂ f[ω], otherwise we would have f[ω] ⊂ (x2, x1, x3), which has dynam-
ical degree 1. Pω(x1, x2) is divisible by x2, or else there would be a monomial xd

1 in Pω

and we would have λ(f) = νid,[ω](x
d
1, 0, 0) = d ∈ N. We have (Pω(x1, x2), x1, 0) ⊂ f[ω],

since (x3 + Pω(x1, x2), 0, x2) is nilpotent.

Next, we identify the minimality locus in Eid:

Lemma 5.5. Let f = ep with e = (x1+P (x2, x3), x2, x3) and p = (x3, x1, x2) satisfying
the same assumptions as in Lemma 5.3.

Then the minimality locus of ν(f) among monomial valuations ν is a segment on
the line ω1 = λω2 where λ = λ(f) is the dynamical degree. Its vertices are intersection
points with ω2 = λω3, i.e. [λ2 : λ : 1] and ω3 = λω1, i.e. [λ : 1 : λ2].

Proof : We have f = (x3 + P (x1, x2), x1, x2).
We compute the degree of f , for a weight [ω] = [ω1 : ω2 : ω3]:

νid,[ω](f) = max

{
ω3

ω1
,
degω(P (x1, x2))

ω1
,
ω1

ω2
,
ω2

ω3

}
Finding νid,[ω] for which f is algebraically stable requires finding [ω] such that (P[ω](x1, x2), x1, 0)
is dominating, in other words (P[ω](x1, x2), x1, 0) ⊂ f[ω], by Lemma 5.4.

So a necessary condition is

deg[ω](Pω(x1, x2))

ω1
=

ω1

ω2
= λ(f) =: λ.

Moreover, we have ω1
ω2

⩾ ω3
ω1

, or else the component (Pω(x1, x2), x1, 0) would be domi-
nated by (x3, 0, 0). As ω1 = λω2, this yields ω3 ⩽ λω1 = λ2ω2. We also have ω1

ω2
⩾ ω2

ω3
.

As ω1 = λω2, this yields ω3 ⩾ 1
λ
ω2. Note that the interval [ 1

λ
ω2, λ

2ω2] is nonempty, as
λ > 1 and ω2 > 0.

Conversely, for such a weight [ω], if ω3 ∈] 1
λ
ω2, λ

2ω2[, the maximal homogeneous part
f[ω] is (P[ω](x1, x2), x1, 0).

For any non-zero polynomial Q, for g = (Q(x1, x2), x1) we have g2 ̸= 0, as the
second coordinate of g2 is Q(x1, x2). Hence, by Lemma 3.15, f[ω] never vanishes after
iterations — otherwise, its nilpotent degree would be at most 2.

By Lemma 3.14, we have algebraic stability, and for such a weight [ω], νid,[ω](f) is
equal to the dynamical degree, hence the minimum of ν(f) for ν ∈ Eid.

As a conclusion, by continuity of νid,[ω] with respect to [ω], any weight in the segment
ω1 = λω2 and ω2

λ
⩽ ω3 ⩽ λ2ω2 = λω1 is in the minimality locus.

Lemma 5.6. Let f = ep with e = (x1+P (x2, x3), x2, x3) and p = (x3, x1, x2) satisfying
the same assumptions as in Lemma 5.3. Then Ef ∩Eid (respectively Ef−1 ∩Eid) meets
the minimality locus, a segment, at one of its extremity points (respectively the other
extremity point).

Proof : For any elementary automorphism, confined valuations are fixed (Lemma 2.2). We
determine the set of monomial valuations fixed by e, that is, the set Ef ∩ Eid: by
Theorem 2.4, the condition is ω1 ⩾ degω P (x2, x3) for νid,[ω].

Let νid,[ω] be one of the extremity points of the minimality segment explained in
Lemma 5.5, such that

λ =
degω P (x1, x2)

ω1
=

ω1

ω2
=

ω2

ω3
.
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In particular,
degω P (x1, x2)

ω1
=

degω P (x2, x3)

ω2
.

We choose xa2
2 xa3

3 a dominating monomial of P (x2, x3), such that degω P (x2, x3) =
a2ω2 + a3ω3. The conditions above yield ω1

ω2
= a2ω2+a3ω3

ω2
and λ2 = a2λ+ a3. Hence for

this valuation νid,[ω] we have

λ2 =
ω1

ω2

ω2

ω3
= a2

ω2

ω3
+ a3,

yielding ω1 = a2ω2 + a3ω3 = degω P (x2, x3). We deduce that this valuation is a bound-
ary point of Ef . Conversely, any point in the interior of Ef ∩ Eid satisfies

ω1 > degω P (x2, x3) ⇐⇒ ω1

ω2
>

degω P (x2, x3)

ω2
=

degω P (x1, x2)

ω1
,

which is not in M by Lemma 5.5.
Now, we determine the set of monomial valuations in Ef−1∩Eid; by Lemma 2.14 and

example 2.4, the condition for a weight to be in Ep−1e−1 ∩ Eid is ω3 ⩾ degω P (x1, x2).
Consider the monomial valuation νid,[ω] situated at the other extremity point of the

minimality segment, such that

λ =
degω P (x1, x2)

ω1
=

ω1

ω2
=

ω3

ω1
.

This valuation satisfies ω3 = degω P (x1, x2), so it is on the boundary of Ef−1 . Con-
versely, any valuation in the interior of Ef−1 ∩Eid satisfies ω3 > degω P (x1, x2), which
means

ω3

ω1
>

degω P (x1, x2)

ω1

which is not in M by Lemma 5.5.

Figure 2: Minimality locus M∩ Eid for ep

Now we finish the proof of Theorem 5.2.
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Proof of Theorem 5.2 : We know by Lemma 5.6 that M in Eid describes a segment that
intersects Ef−1 and Ef exactly at its extremity points. This fact holds on all apartments
Efm for m ∈ Z. Indeed, we always have νfm,[ω](f) = νid,[ω](f), and M ∩ Efm is the
image of M under the action of fm. Moreover Efm ∩ Efm+1 = fm · (Eid ∩ Ef ) for all
m ∈ Z.

Moreover, we have Ef ∩ Eid ∩ Ef−1 = ∅ as in Figure 2. The two apartments Ef

and Ef−1 do not meet outside of Eid, or else Eep would not be simpply connected, in
contradiction with [LP21]. More precisely Efm ∩ Efm+n = ∅ unless n = ±1.

The conclusion follows that M is a countable union of compact segment, with two
consecutive segments meeting at an extremity point, and any segment meeting only the
previous and the next one. So M ≃ R.

6 Examples and drawings.

6.1 Example of an elementary-permutation automorphism whose
dynamical degree is not reached in the Eid apartment

We consider f = ep with e = (x1 +x2
2x3, x2, x3) and p = (x2, x1, x3). We note that ν(f)

for ν ∈ Eid does not have a minimum, as illustrated below:

Level lines of ν(f) in Eid.

We note that the dynamical degree of f is an integer, equal to 2 and that it is reached
on the boundary of Eid, not inside. However, it is not in the framework of this paper to
consider weights with zero components. The reader can refer to [BvS22, Section 2] on
this matter.

Note that here p is a permutation of order 2. For f = ep with p a permutation of
order 3, we expect that the dynamical degree is reached in the apartment of monomial
valuations.

6.2 Example of a triangular-permutation automorphism with a
minimality locus of dimension 2.

We consider f = tp with t = (x1+x2x3+x2
3, x2+x3, x3) and p = (x3, x2, x1). Then the

minimality locus in Eid has dimension two, as illustrated below:
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Level lines of ν(f) in Eid.

The quadrilateral depicted at the center is M∩Eid. In this case, the dynamical degree
is reached and is an integer.

6.3 Example of a triangular-permutation automorphism with
minimality locus homeomorphic to R

We make a remark on the case where f is of triangular-permutation type, f = tp:

Remark 6.1. If t = (x1 + P1(x2, x3), x2 + P2(x3), x3) is triangular non-elementary, then
we can write t = e2e1 = ẽ1ẽ2, where e2 = (x1, x2 + P2(x3), x3) = ẽ2, e1 = (x1 +
P1(x2, x3), x2, x3), and ẽ1 = (x1 + P1(x2 − P2(x2), x3), x2, x3).

Lemma 6.2. If t ∈ T \ E, then t = e2e1 = ẽ1ẽ2 as in Remark 5.1(6.1), and those are
the only expressions of t with at most two elementary letters (that is, two elementary
automprphisms, each having two invariant coordinates).

Proof : As t is not elementary, one cannot write t with one letter. If t = ee′ then, as the
third coordinate of t is invariant both e and e′ have their third coordinate invariant.
Moreover, both cannot have the two same invariant coordinates, otherwise the result
would be elementary.

There are two cases left, where e and e′ are uniquely determined by t.

Then, for f = tp, where t ∈ T \ E, we will consider degree over Ee2e1p and E ẽ1ẽ2p.

We give here an explicit example of f = tp, with t = e2e1 a nonelementary triangular
automorphisms, for which M in Ee2e1p is homeomorphic to R. However we will see that
the minimality locus M does not meet Ef and Ef−1 .

For p = (x3, x2, x1) and t = (x1 + x2x3, x2 + x3, x3), with t = e2e1;

e2 = (x1, x2 + x3, x3), e1 = (x1 + x2x3, x2, x3),

the dynamical degree λ(f) equals the golden ratio φ. This value is reached in Eid –
meaning that there exists a weight for which f is algebraically stable. On the apartment
Eid, we draw in red some level lines of the degree ν(f), and in grey and red the respective
intersections Ee2 ∩ Eid and Ep−1e−1

1
∩ Eid:
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Level lines of ν(f) in Eid and the minimality locus.

Notice that the minimality locus in Eid, which is here the segment delimited by the
two nodes, meets the previous and the next apartment of Ee2e1p only at its extremity
points. Now we depict the minimality locus M in the next apartment Ee2 , also here a
segment:

Level lines of ν(f) in Ee2 and the minimality locus.

This segment also meets the next apartment Ef and the previous one Eid only at its
extremity points. This fact holds on all the apartments involved in Ee2e1p; the minimal-
ity locus M is a countable union of compact segments, with two consecutive segments
meeting at an extremity. So it is homeomorphic to R, as in Theorem 5.2.

Furthermore, we also have t = ẽ1ẽ1 with

ẽ2 = e2, ẽ1 = (x1 + (x2 − x3)x3, x2, x3)

and we may also look at the minimality locus in E ẽ1ẽ2p. On the apartments Eid and
Eẽ1 , this gives:
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Level lines of ν(f) in Eid

Level lines of ν(f) in Eẽ1

Notice that the dynamical degree of f is not reached on Eẽ1 , as

min {ν(f) | ν ∈ Eẽ1} = 2 ̸= φ = λ(f),

and that the segment delimited by the two nodes M∩ Eid does not meet Eẽ1 . Hence
M in E ẽ1ẽ2p is disconnected.
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