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Framework and motivations

Minimization problem

min
x∈RN

F(x) = f (x)+h(x),

where:

f is a convex differentiable function having a L-Lipschitz gradient,

h is a convex proper lower semicontinuous function,

F has a non-empty set of minimizers X∗.
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Framework and motivations

Motivations

min
x∈RN

F(x),

Which algorithm is the most efficient according to the assumptions satisfied by F and
the expected accuracy?

→ Convergence analysis of the numerical schemes:

How fast does F(xk)−F∗ decreases?
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Framework and motivations

Classical geometry assumptions
Strong convexity (SC µ):
F is µ-strongly convex if for all x ∈ RN , g : x 7→ F(x)− µ

2∥x∥2 is convex.

Quadratic growth condition (G2
µ ):

F has a quadratic growth around its set of minimizers if

∃µ > 0, ∀x ∈ RN ,
µ
2

d(x,X∗)2 ⩽ F(x)−F∗.

Example: LASSO problem:

F(x) =
1
2
∥Ax− y∥2 +λ∥x∥1.
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Framework and motivations

Classical algorithms
Gradient Descent/Forward-Backward:

∀k > 0, xk = proxsh (xk−1 − s∇F(xk−1)) .

Nesterov’s accelerated gradient/FISTA (Beck and Teboulle, 2009):

∀k > 0,


xk = proxsh (yk−1 − s∇F(yk−1)) ,

yk = xk +
k−1

k+α−1
(xk − xk−1),

where α > 0. In general, α = 3.
Heavy-Ball type schemes:

∀k > 0,

{
xk = proxsh (yk−1 − s∇F(yk−1)) ,

yk = xk +α(xk − xk−1),

where α ∈ (0,1).
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The continuous setting: a guideline for the discrete analysis

→ Key tool in convergence analysis: Link numerical schemes to dynamical
systems.

Gradient descent→ Gradient flow

xk = xk−1 − s∇F(xk−1)

⇐⇒ xk − xk−1

s
=−∇F(xk−1)

↓

ẋ(t)+∇F(x(t)) = 0.
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The continuous setting: a guideline for the discrete analysis

Nesterov’s accelerated gradient→Asymptotic vanishing damping
system (Su, Boyd and Candès,2014)

∀k > 0,


xk = yk−1 − s∇F(yk−1),

yk = xk +
k−1

k+α−1
(xk − xk−1)

↓

ẍ(t)+
α

t
ẋ(t)+∇F(x(t)) = 0

Heavy-Ball schemes→ Heavy-Ball Friction system

∀k > 0,

{
xk = yk−1 − s∇F(xk−1) or xk = yk−1 − s∇F(yk−1),

yk = xk +α(xk − xk−1),

↓
ẍ(t)+αẋ(t)+∇F(x(t)) = 0
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The continuous setting: a guideline for the discrete analysis

Why is this relevant?
easier computations (derivatives),

most of the time, convergence properties of the trajectories can be extended to
the iterates of the related scheme.

Back to the discrete setting
Challenging for the following reasons:

no more derivative,

several possible discretization choices,

which condition on the stepsize?
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The continuous setting: a guideline for the discrete analysis

Convergence results
Convergence rates of F(x(t))−F∗:

F convex F µ-strongly convex
Gradient flow

(Gradient descent)
O
(
t−1

)
O (e−µt)

Heavy-Ball friction
(Heavy-Ball schemes)

O
(
t−1

)
O
(
e−2

√
µt
)

if F is C2

O
(

e−
√

2µt
)

if F is C1

Asymptotic Vanishing
Damping

(Nesterov’s accelerated
gradient)

O(t−2) O
(

t−
2α

3

)
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Restart strategies

About inertia
Recall the definition of Nesterov’s accelerated gradient/FISTA:

∀k > 0,


xk = yk−1 − s∇F(yk−1),

yk = xk +
k−1
k+2

(xk − xk−1)

→ taking in account the previous iterates generates inertia.

Issue
Under growth assumptions such as SC µ or G2

µ , inertial methods have to be
parametrized according to the growth parameter µ to reach fast convergence rates.

→ µ is rarely computable!!
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Restart strategies

Restarting FISTA, why?
to take advantage of inertia,

to avoid oscillations.

Figure: Trajectory of the iterates of FISTA (left) and FISTA restart (right) for a least-squares
problem (N = 20).
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Restart strategies

Restarting FISTA, how?

Algorithm 1 : FISTA restart

Require: x0 ∈ RN , y0 = x0, k = 0, i = 0.
repeat

k = k+1, i = i+1
xk = yk−1 − s∇f (yk−1)
if Restart condition is True then

i = 1
end if
yk = xk +

i−1
i+2 (xk − xk−1)

until Exit condition is True

→ Cutting inertia is equivalent to restarting the algorithm from the last iterate.
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Restart strategies

Objective: get a restart condition that
does not require to know the growth parameter µ,

ensures a fast convergence of the method: F(xk)−F∗ = O(e−K
√ µ

L k),

is not computationnaly expensive,

is easy to implement.
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Restart strategies

Empiric FISTA restart (O’Donoghue and Candès, ’15, Beck and
Teboulle, ’09)
Restart under some exit condition

on F:
F(xk)> F(xk−1),

on ∇F:
⟨∇F(xk),xk − xk−1⟩> 0.

Fixed FISTA restart (Nesterov ’13, O’Donoghue and Candès ’15...)
Restart every k∗ iterations where k∗ is defined according to the growth parameter µ. If

k∗ =
⌊

2e
√

L
µ

⌋
:

F(xk)−F∗ = O
(

e−
1
e

√ µ
L k
)
.

Generalization: Scheduled restarts, Roulet and D’Aspremont ’17.
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Restart strategies

Adaptive FISTA restart
Restart according to the geometry of F and previous iterations.

Fercoq and Qu ’19: F(xk)−F∗ =O

e

−
√

2−1
2
√

e(2−
√ µ

µ0
)

√ µ
L k

.

Alamo et al. ’19: F(xk)−F∗ = O
(

e−
1
16

√ µ
L k
)
.

Alamo et al. ’22: F(xk)−F∗ = O
(

e−
ln(15)

4e

√ µ
L k
)
, where ln(15)

4e ≈ 1
4 .

Renegar and Grimmer ’22: F(xk)−F∗ = O
(

e−
1

2
√

2

√ µ
L k
)
.
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Restart strategies

Strategy of our scheme:
to estimate the growth parameter µ at each restart,

to adapt the number of iterations of the following restart according to this
estimation.

to stop the algorithm when the exit condition ∥∇F(rj)∥⩽ ε is satisfied.
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Restart strategies

Algorithm 2 : Automatic FISTA restart

Require: r0 ∈ RN , j = 1
n0 = ⌊2C⌋
r1 = FISTA(r0,n0)
n1 = ⌊2C⌋
repeat

j = j+1
rj = FISTA(rj−1,nj−1)

µ̃j = min
i∈N∗

i<j

4L
(ni−1 +1)2

F(ri−1)−F(rj)

F(ri)−F(rj)
Estimation of the parameter µ.

if nj−1 ⩽ C
√

L
µ̃j

then

nj = 2nj−1 Update of the number of iterations per restart.
end if

until ∥∇F(rj)∥⩽ ε
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Restart strategies

Theorem (Aujol, Dossal, L., Rondepierre, 2021)
If F satisfies the assumptions stated before and C > 4, then

F(r+j )−F∗ = O

e
−

log
(

C2
4 −1

)
4C

√ µ
L

j

∑
i=0

ni

 .

Let C = 6.38, then

F(r+j )−F∗ = O

e
− 1

12

√ µ
L

j

∑
i=0

ni

 .
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Restart strategies

Image inpainting:

min
x

F(x) :=
1
2
∥Mx− y∥2 +λ∥Tx∥1,

where M is a mask operator and T is an orthogonal transformation ensuring that Tx0 is
sparse.
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Restart strategies

Image inpainting:
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Restart strategies

Image inpainting:
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Restart strategies

Summary:
Algorithm Convergence rate

Forward-Backward O
(

e−
µ
L k
)

V-FISTA O
(

e−
9
20

√ µ
L k
)

Optimal FISTA restart O
(

e−
1
e

√ µ
L k
)

Empirical FISTA restart O(k−2)

Fercoq and Qu ’19 O

e

−
√

2−1
2
√

e(2−
√ µ

µ0
)

√
µ
L k


Alamo et al. ’19 O

(
e−

1
16

√ µ
L k
)

Alamo et al. ’22 O
(

e−
ln(15)

4e

√ µ
L k
)

Renegar and Grimmer ’22 O
(

e−
1

2
√

2

√ µ
L k
)

Automatic FISTA restart O
(

e−
1
12

√ µ
L k
)
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Restart strategies

Adding backtracking on L (joint work with Luca Calatroni, to be
submitted)
This restart strategy can be extended to functions whose Lipschitz constant L cannot
be estimated or poorly: this involves a variant of FISTA which estimates L using
backtracking.

→ The method is fully automatic while ensuring a fast convergence rate.
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Attenuating oscillations introducing Hessian-driven damping

Hessian-driven damping
(DIN-AVD) system (Attouch, Peypouquet and Redont, 2016)

ẍ(t)+
α

t
ẋ(t)+βHF(x(t))ẋ(t)+∇F(x(t)) = 0.

Attenuation of the oscillations through the introduction of a geometry-driven
damping term.

Integrability properties

Attouch, Peypouquet and Redont, 2016: if F is convex and C2, α ⩾ 3 and
β > 0: ∫ +∞

t0
t2∥∇F(x(t))∥2dt <+∞,

Aujol, Dossal, Hoàng, L. and Rondepierre, 2022: if F is convex and C2,
satisfies G2

µ and has a unique minimizer. Then, for α ⩾ 3 and β > 0:∫ +∞

t0
tα−ε∥∇F(x(t))∥2dt <+∞,∀ε ∈ (0,1).
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Attenuating oscillations introducing Hessian-driven damping

Derivating a numerical scheme: IGAHD (Attouch, Chbani, Fadili and
Riahi, 2020)

ẍ(t)+
α

t
ẋ(t)+βHF(x(t))ẋ(t)+

(
1+

β

t

)
∇F(x(t)) = 0.

↓
xk = yk−1 − s∇F(yk−1),

yk = xk +
k−1

k+α−1
(xk − xk−1)−β

√
s(∇F(xk)−∇F(xk−1))−

β
√

s
k

∇F(xk−1),
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Attenuating oscillations introducing Hessian-driven damping

Summary
The Hessian-driven damping term is a physical way to attenuate oscillations. As this
is a relatively recent subject of research, there are some limitations:

the behavior of the numerical schemes derivated from (DIN-AVD) is not fully
understood (current convergence rates hold if β is small),

the dependency in β is not known,

there is no proof showing that it is faster than classical inertial schemes.

Hippolyte Labarrière (IMT, INSA Toulouse, IMB) An overview of accelerated methods in convex optimization 12th June 2023 30 / 35



31/35

Plan

1 Framework and motivations

2 The continuous setting: a guideline for the discrete analysis

3 Restart strategies

4 Attenuating oscillations introducing Hessian-driven damping

5 Conclusion

Hippolyte Labarrière (IMT, INSA Toulouse, IMB) An overview of accelerated methods in convex optimization 12th June 2023 31 / 35



32/35

Conclusion

Other comments/questions:
How can high-resolution ODEs (see [2]) improve convergence analysis?

Is it possible to adapt geometry parameter estimation to Heavy-Ball type
methods?

Can we combine restart with parallel calculations?

Are inertial methods still fast without uniqueness of the minimizer? (yes! preprint
forthcoming)

[2] Shi, B., Du, S.S., Jordan, M.I. et al. Understanding the acceleration phenomenon
via high-resolution differential equations. Math. Program. 195, 79–148 (2022).
https://doi.org/10.1007/s10107-021-01681-8
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Conclusion

Thank you for your attention!

Preprints:
Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. FISTA
restart using an automatic estimation of the growth parameter. 2021. 〈hal-03153525v4〉

Jean-François Aujol, Charles Dossal, Văn Hào Hoàng, Hippolyte Labarrière, Aude
Rondepierre. Fast convergence of inertial dynamics with Hessian-driven damping under
geometry assumptions. 2022. 〈hal-03693218v2〉

Website:
https://www.math.univ-toulouse.fr/˜hlabarri/

Hippolyte Labarrière (IMT, INSA Toulouse, IMB) An overview of accelerated methods in convex optimization 12th June 2023 33 / 35

https://www.math.univ-toulouse.fr/~hlabarri/


34/35

References I

T. Alamo, D. Limon, and P. Krupa.
Restart FISTA with global linear convergence.
pages 1969–1974, 2019.

H. Attouch, Z. Chbani, J. Fadili, and H. Riahi.
First-order optimization algorithms via inertial systems with hessian driven damping.
Mathematical Programming, pages 1–43, 2020.

H. Attouch, J. Peypouquet, and P. Redont.
Fast convex optimization via inertial dynamics with hessian driven damping.
Journal of Differential Equations, 261(10):5734–5783, 2016.

J.-F. Aujol, C. Dossal, and A. Rondepierre.
FISTA is an automatic geometrically optimized algorithm for strongly convex functions.
HAL preprint: hal-03491527, 2021.

J.-F. Aujol, C. Dossal, and A. Rondepierre.
Convergence rates of the heavy-ball method under the łojasiewicz property.
Mathematical Programming, pages 1–60, 2022.

A. Beck and M. Teboulle.
A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183–202, 2009.

O. Fercoq and Z. Qu.
Adaptive restart of accelerated gradient methods under local quadratic growth condition.
IMA Journal of Numerical Analysis, 39(4):2069–2095, 2019.

Hippolyte Labarrière (IMT, INSA Toulouse, IMB) An overview of accelerated methods in convex optimization 12th June 2023 34 / 35



35/35

References II

G. Garrigos, L. Rosasco, and S. Villa.
Convergence of the forward-backward algorithm: beyond the worst-case with the help of geometry.
Mathematical Programming, pages 1–60, 2022.

I. Necoara, Y. Nesterov, and F. Glineur.
Linear convergence of first order methods for non-strongly convex optimization.
Mathematical Programming, 175(1):69–107, 2019.

Y. Nesterov.

A method of solving a convex programming problem with convergence rate o(1/k2).
In Sov. Math. Dokl, volume 27, 1983.

B. O’donoghue and E. Candes.
Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715–732, 2015.

W. Su, S. Boyd, and E. Candes.
A differential equation for modeling nesterov’s accelerated gradient method: theory and insights.
Advances in neural information processing systems, 27, 2014.

Hippolyte Labarrière (IMT, INSA Toulouse, IMB) An overview of accelerated methods in convex optimization 12th June 2023 35 / 35


	Framework and motivations
	The continuous setting: a guideline for the discrete analysis
	Restart strategies
	Attenuating oscillations introducing Hessian-driven damping
	Conclusion

