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Framework and motivations

Optimization, what is this?

→ Find a set of parameters that minimizes a quantity.

Find the route that minimizes
journey time. Find the training that leads to the best 100-meter

time.



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

The continuous setting:
a guideline for the
discrete analysis

Restart strategies

Attenuating
oscillations
introducing
Hessian-driven
damping

Inertia without
uniqueness of the
minimizers

Conclusion

3/43

Framework and motivations

Minimization problem

min
x∈RN

F (x) = f(x) + h(x),

where:

• f is a convex differentiable function having a L-Lipschitz gradient,

• h is a convex proper lower semicontinuous function,

• F has a non-empty set of minimizers X∗.
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Framework and motivations

Motivations

min
x∈RN

F (x),

Which algorithm is the most efficient according to the assumptions satisfied by F and the
expected accuracy?

→ Convergence analysis of the numerical schemes:

How fast does F (xk)− F ∗ decreases?
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Inertia

A classical algorithm: the proximal gradient method (Combettes and Wajs, ’05)

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Composite version of the Gradient Descent method:

∀k > 0, xk = xk−1 − s∇F (xk−1).

Convergence guarantees

If F is convex and s is sufficiently small:

F (xk)− F ∗ = O
(
k−1)

→ Simple but slow!
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Inertia

A classical algorithm: the proximal gradient method

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Introducing inertia

→ Apply the same transformation to a shifted point.

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + αk(xk − xk−1),

How to chose αk?

• Heavy-Ball schemes (Polyak,’64, Nesterov,’03, ...): constant friction → αk = α.

• FISTA (Beck and Teboulle,’09, Nesterov,’83): vanishing friction → αk = k−1
k+α−1

. If F is
convex, α ⩾ 3 and s is sufficiently small:

F (xk)− F ∗ = O
(
k−2

)
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Geometry of convex functions

Classical geometry assumptions

• Strong convexity (SCµ):
F is µ-strongly convex if for all x ∈ RN , g : x 7→ F (x)− µ

2
∥x∥2 is convex.

• Quadratic growth condition (G2
µ):

F has a quadratic growth around its set of minimizers if

∃µ > 0, ∀x ∈ RN ,
µ

2
d(x,X∗)2 ⩽ F (x)− F ∗.

Example: LASSO problem:

F (x) =
1

2
∥Ax− y∥2 + λ∥x∥1.
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Geometry of convex functions

Convergence rate of F (xk)− F ∗

Algorithm Convex SCµ

Proximal gradient method O
(
k−1

)
O

(
e−

µ
L
k
)

Heavy-Ball methods O
(
k−1

)
O

(
e−2

√
µ
L
k
)

FISTA O
(
k−2

)
O

(
k− 2α

3

)
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The continuous setting

→ Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent→ Gradient flow

xk = xk−1 − s∇F (xk−1)

⇐⇒ xk − xk−1

s
= −∇F (xk−1)

↓

ẋ(t) +∇F (x(t)) = 0.
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The continuous setting

Nesterov’s accelerated gradient→Asymptotic vanishing damping system (Su, Boyd
and Candès,2014)

∀k > 0,


xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk +
k − 1

k + α − 1
(xk − xk−1)

↓

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0

Heavy-Ball schemes→ Heavy-Ball Friction system

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + α(xk − xk−1),

↓
ẍ(t) + αC ẋ(t) +∇F (x(t)) = 0
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The continuous setting

Why is this relevant?

• easier computations (derivatives),

• most of the time, convergence properties of the trajectories can be extended to the iterates
of the related scheme.

Back to the discrete setting

Challenging for the following reasons:

• no more derivative,

• several possible discretization choices,

• which condition on the stepsize?
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Restart strategies

Framework

min
x∈RN

F (x),

where F satisfies a growth condition (SCµ or G2
µ) and the growth parameter µ is not known.

First-order methods

In this setting:

• proximal gradient method: F (xk)− F ∗ = O
(
e−

µ
L
k
)
,

• Heavy-Ball methods: F (xk)− F ∗ = O
(
e−K

√
µ
L
k
)
if µ is known,

• FISTA (Beck and Teboulle,’09, Nesterov,’83):

∀k > 0,


xk = proxsh(yk−1 − s∇f(yk−1)),

yk = xk +
k − 1

k + 2
(xk − xk−1)

→ F (xk)− F ∗ = O
(
k−2

)
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Restart strategies

Restarting FISTA, why?

• to take advantage of inertia,

• to avoid oscillations.

Figure: Projection of the trajectory of the iterates of FISTA (left) and FISTA restart (right) for a
least-squares problem (N = 20).
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Restart strategies

Restarting FISTA, how?

Algorithm 1 : FISTA restart

Require: x0 ∈ RN , y0 = x0, k = 0, i = 0.
repeat

k = k + 1, i = i+ 1
xk = proxsh(yk−1 − s∇f(yk−1))
if Restart condition is True then

i = 1
end if
yk = xk + i−1

i+2
(xk − xk−1)

until Exit condition is True

→ Cutting inertia is equivalent to restarting the algorithm from the last iterate.



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

The continuous setting:
a guideline for the
discrete analysis

Restart strategies

Attenuating
oscillations
introducing
Hessian-driven
damping

Inertia without
uniqueness of the
minimizers

Conclusion

17/43

Restart strategies

Empiric FISTA restart (O’Donoghue and Candès, ’15, Beck and Teboulle, ’09)

Restart under some exit condition

• on F :
F (xk) > F (xk−1),

• on ∇F :
⟨∇F (xk), xk − xk−1⟩ > 0.

Fixed FISTA restart (Nesterov, ’13, O’Donoghue and Candès, ’15...)

Restart every k∗ iterations where k∗ is defined according to the growth parameter µ. If

k∗ =
⌊
2e
√

L
µ

⌋
:

F (xk)− F ∗ = O
(
e−

1
e

√
µ
L
k
)
.

Generalization: Scheduled restarts, Roulet and D’Aspremont ’17.
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Restart strategies

Adaptive FISTA restart

Restart according to the geometry of F and previous iterations.

• Fercoq and Qu, ’19: F (xk)− F ∗ =O


e

−
√

2−1

2
√

e

(
2−
√

µ
µ0

)√ µ
L

k

.

• Alamo et al., ’19: F (xk)− F ∗ = O
(
e−

1
16

√
µ
L
k
)
.

• Alamo et al., ’22: F (xk)− F ∗ = O
(
e−

ln(15)
4e

√
µ
L
k
)
, where ln(15)

4e
≈ 1

4
.

• Renegar and Grimmer, ’22: F (xk)− F ∗ = O
(
e
− 1

2
√

2

√
µ
L
k
)
.
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Restart strategies

Introduction of an automatic restart scheme [1]:

Features: a restart condition that

• does not require to know the growth parameter µ,

• ensures a fast convergence of the method: F (xk)− F ∗ = O(e−
1
12

√
µ
L
k),

• is not computationnaly expensive,

• is easy to implement.

Strategy

• to estimate µ at each restart,

• to adapt the number of iterations of the following restart according to this estimation.

[1] FISTA restart using an automatic estimation of the growth parameter. Aujol, Dossal, L.,
Rondepierre, ’21.
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Restart strategies

Algorithm 2 : Automatic FISTA restart

Require: r0 ∈ RN , j = 1, C = 6.38.
n0 = ⌊2C⌋
r1 = FISTA(r0, n0)
n1 = ⌊2C⌋
repeat

j = j + 1
rj = FISTA(rj−1, nj−1)

µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
Estimation of the parameter µ.

if nj−1 ⩽ C
√

L
µ̃j

then

nj = 2nj−1 Update of the number of iterations per restart.
end if

until exit condition is satisfied
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Restart strategies

Theorem (Aujol, Dossal, L., Rondepierre,’21)

If F satisfies the assumptions stated before, then

F (xk)− F ∗ = O
(
e−

1
12

√
µ
L
k
)
.
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Restart strategies

Image inpainting:

min
x

F (x) :=
1

2
∥Mx− y∥2 + λ∥Tx∥1,

where M is a mask operator and T is an orthogonal transformation ensuring that Tx0 is sparse.
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Restart strategies

Image inpainting:
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Restart strategies

Introducing Free-FISTA, a parameter-free restart scheme [2]:

Combining backtracking and restarting

By combining a backtracking strategy and a restarting strategy, Free-FISTA automatically
estimates µ and L.

• Still efficient if L is not known.

• Adaptation to the local geometry of F .

• Convergence guarantees: F (xk)− F ∗ = O
(
e−

√
ρ

12

√
µ
L
k
)
.

[2] Parameter-Free FISTA by Adaptive Restart and Backtracking. Aujol, Calatroni, Dossal, L.,
Rondepierre, ’23.
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Attenuating oscillations via Hessian-driven damping

Asymptotic vanishing damping system (Su et al., ’14)

FISTA can be seen as a discretization of the following ODE:

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0.

Both the dynamical system and the numerical scheme exhibit an oscillatory behavior.

Convergence properties for convex functions

Convergence rate of the error:
F (x(t))− F ∗ = O

(
t−2

)
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Attenuating oscillations via Hessian-driven damping

Hessian-driven damping

(DIN-AVD) system (Attouch, Peypouquet and Redont,’16)

ẍ(t) +
α

t
ẋ(t) + βHF (x(t))ẋ(t) +∇F (x(t)) = 0.

• Can be discretized to define first-order schemes.

• Attenuation of the oscillations through the introduction of a geometry-driven damping term.

Convergence properties for C2 convex functions

• Convergence rate of the error:
F (x(t))− F ∗ = O

(
t−2

)
• Integrability of the gradient: ∫ +∞

t0

t2∥∇F (x(t))∥2dt < +∞,
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Attenuating oscillations via Hessian-driven damping

What happens if F satisfies G2
µ?

Improved integrability of the gradient

• Theorem ([3]): if F is convex and C2, satisfies G2
µ and has a unique minimizer. Then, for

α ⩾ 3 and β > 0: ∫ +∞

t0

tα−ε∥∇F (x(t))∥2dt < +∞, ∀ε ∈ (0, 1).

[3] Fast convergence of inertial dynamics with Hessian-driven damping under geometry
assumptions. Aujol, Dossal, Hoàng, L., Rondepierre, ’22, accepted in AMOP.
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Attenuating oscillations via Hessian-driven damping

What happens if F satisfies G2
µ?

Improved integrability of the gradient

• Theorem ([3]): if F is convex and C2, satisfies G2
µ and has a unique minimizer. Then, for

α ⩾ 3 and β > 0: ∫ +∞

t0

tα−ε∥∇F (x(t))∥2dt < +∞, ∀ε ∈ (0, 1).

↓∫ +∞

t0

tα−ε(F (x(t))− F ∗)dt < +∞,∀ε ∈ (0, 1).

[3] Fast convergence of inertial dynamics with Hessian-driven damping under geometry
assumptions. Aujol, Dossal, Hoàng, L., Rondepierre, ’22, accepted in AMOP.
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Attenuating oscillations via Hessian-driven damping

Derivating a numerical scheme: IGAHD (Attouch, Chbani, Fadili and Riahi,’20)

ẍ(t) +
α

t
ẋ(t) + βHF (x(t))ẋ(t) +

(
1 +

β

t

)
∇F (x(t)) = 0.

↓
xk = yk−1 − s∇F (yk−1),

yk = xk +
k − 1

k + α− 1
(xk − xk−1)− β

√
s(∇F (xk)−∇F (xk−1))−

β
√
s

k
∇F (xk−1),
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Attenuating oscillations via Hessian-driven damping

Summary

The Hessian-driven damping term is a physical way to attenuate oscillations. As this is a
relatively recent subject of research, there are some limitations:

• the behavior of the numerical schemes derivated from (DIN-AVD) is not fully understood
(current convergence rates hold if β is small),

• the dependency in β is not known,

• there is no proof showing that it is faster than classical inertial schemes.
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Inertia without uniqueness of the minimizers

Problem statement

Let F satisfy a growth condition (e.g. G2
µ or SCµ).

Most improved convergence results for first-order inertial methods (and corresponding dynamical
systems) rely on the assumption that F has a unique minimizer:

Algorithm SCµ G2
µ and unique
minimizer

G2
µ

Proximal gradient
method

O
(
e−

µ
L
k
)

O
(
e−

µ
L
k
)

O
(
e−

µ
L
k
)

Heavy-Ball methods O
(
e−2

√
µ
L
k
)

O
(
e−(2−

√
2)
√

µ
L
k
)

O
(
e−

µ
L
k
)

FISTA O
(
k− 2α

3

)
O

(
k− 2α

3

)
O

(
k−2

)
Is this hypothesis necessary to get fast convergence rates?

No!
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Inertia without uniqueness of the minimizers

Problem statement

Let F satisfy a growth condition (e.g. G2
µ or SCµ).

Most improved convergence results for first-order inertial methods (and corresponding dynamical
systems) rely on the assumption that F has a unique minimizer:

Algorithm SCµ G2
µ and unique
minimizer
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Proximal gradient
method
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k
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Is this hypothesis necessary to get fast convergence rates?

No!
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Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0

Classical Lyapunov energy for this system:

E(t) = F (x(t))− F ∗ +
1

2
∥λ(x(t)− x∗) + ẋ(t)∥2
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Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0

Classical Lyapunov energy for this system:

E(t) = F (x(t))− F ∗ +
1

2
∥λ(x(t)− x∗(t)) + ẋ(t)∥2

where x∗(t) is the projection of x(t) onto the set of minimizers of F denoted X∗.
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Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0

Classical Lyapunov energy for this system:

E(t) = F (x(t))− F ∗ +
1

2
∥λ(x(t)− x∗(t)) + ẋ(t)∥2

where x∗(t) is the projection of x(t) onto the set of minimizers of F denoted X∗.

→ The differentiability of E depends on the regularity of X∗!

If X∗ is sufficiently regular (e.g. polyhedral), several convergence results can be extended
without the uniqueness assumption (e.g. Siegel, ’19, Aujol, Dossal and Rondepierre, ’23).
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Inertia without uniqueness of the minimizers

The discrete setting

Consider V-FISTA (Beck,’17):

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1

2
∥λ(xk − x∗) + xk − xk−1∥2
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Inertia without uniqueness of the minimizers

The discrete setting

Consider V-FISTA (Beck,’17):

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1

2
∥λ(xk − x∗

k) + xk − xk−1∥2

where x∗
k is the projection of xk onto the set of minimizers of F denoted X∗.
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Inertia without uniqueness of the minimizers

The discrete setting

Consider V-FISTA (Beck,’17):

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1

2
∥λ(xk − x∗

k) + xk − xk−1∥2

where x∗
k is the projection of xk onto the set of minimizers of F denoted X∗.

→ Trickier calculations
→ No assumption on X∗ required!
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Inertia without uniqueness of the minimizers

Main results: V-FISTA

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

Theorem ([4]): If F satisfies G2
µ , s = 1

L
and α = 1− 5

3
√
3

√
µ
L

:

F (xk)− F ∗ = O
(
e
− 2

3
√

3

√
µ
L
k
)

• Uniqueness of the minimizer is not required.

• Theoretical guarantees for non optimal values of α.

[4] Fast Convergence of Heavy-Ball Dynamics and Derived Scheme Without Uniqueness of the
Minimizer. Aujol, Dossal, L., Rondepierre, to be submitted.
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Strong convergence of FISTA

Main results: FISTA

∀k > 0,


xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk +
k − 1

k + α− 1
(xk − xk−1)

Theorem ([5]): If there exists ε > 0, K > 0 and γ > 2 such that F satisfies the following
inequality for any minimizer x∗

∀x ∈ B(x∗, ε), Kd(x,X∗)γ ⩽ F (x)− F ∗,

then for α sufficiently large:

F (xk)− F ∗ = O
(
k
− 2γ

γ−2

)
and ∥xk − xk−1∥ = O

(
k
− γ

γ−2

)
→ The sequence (xk)k∈N converges strongly to a minimizer of F .

[5] Strong Convergence of FISTA under a Weak Growth Condition. Aujol, Dossal, L.,
Rondepierre, to be submitted.
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Conclusion

Summary:

• Study of algorithmic designed to eliminate the need to know the growth parameter →
Restart strategy

• Analysis of a physical approach aiming at attenuating oscillations → Hessian-driven
damping

• Proof that inertial methods are still efficient for functions with multiple minimizers.
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Conclusion

Unanswered questions:

• Is it possible to adapt geometry parameter estimation to Heavy-Ball type methods (restart
scheme)?

• Could restarting strategies be combined to Hessian-driven damping? (yes → Maulen and
Peypouquet, ’23)

• How can high-resolution ODEs (see Shi et al., ’18) improve convergence analysis?
• Is it possible to use the Performance Estimation Problem approach (Drori and Teboulle, ’14,

Taylor, Hendrickx and Glineur, ’17, Taylor and Drori, ’22):
• to analyse (DIN-AVD)-schemes?
• for functions satisfying growth conditions (but not strongly convex)?

• How do inertial methods behave in a non-convex setting? (Good luck Julien!)
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Conclusion

Thank you for your attention!

Preprints:
• Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. FISTA restart using an

automatic estimation of the growth parameter. Submitted in 2021 to JOTA (minor revision).
〈hal-03153525v4〉

• Jean-François Aujol, Charles Dossal, Văn Hào Hoàng, Hippolyte Labarrière, Aude Rondepierre. Fast
convergence of inertial dynamics with Hessian-driven damping under geometry assumptions.
Submitted in 2022 to AMOP (accepted). 〈hal-03693218v2〉

• Jean-François Aujol, Luca Calatroni, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre.
Parameter-Free FISTA by Adaptive Restart and Backtracking. Submitted in 2023 to SIOPT.
〈hal-04172497〉

Forthcoming preprints:
• Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Fast Convergence of

Heavy-Ball Dynamics and Derived Scheme Without Uniqueness of the Minimizer.

• Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong Convergence of
FISTA under a Weak Growth Condition.

Website:
https://www.math.univ-toulouse.fr/~hlabarri/

https://www.math.univ-toulouse.fr/~hlabarri/
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