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Abstract: We compare various notions of weak subsolutions to
degenerate complex Monge-Ampère flows, showing that they all
coincide. This allows us to show that the viscosity solution coin-
cides with the envelope of pluripotential subsolutions.
Keywords: Parabolic Monge-Ampère equation, pluripotential so-
lution, viscosity solution, Perron envelope.

1. Introduction

A viscosity approach for parabolic complex Monge-Ampère equations (both
in local and global contexts) has been developed in [EGZ15, EGZ16, EGZ18,
DLT19], while a pluripotential approach has been developed in [GLZ1, GLZ2],
which allows to solve these equations with quite degenerate data. The goal of
this paper is to compare these two notions, extending the dictionary estab-
lished in the elliptic case (see [EGZ11, HL13, GLZ17]).

Let Ω be a smooth bounded strictly pseudoconvex domain of C
n. We

consider the parabolic complex Monge-Ampère flow in ΩT

(1.1) (ddcϕt)n = eϕ̇t+F (t,z,ϕ)g(z)dV (z).

Here

• T > 0 and ΩT =]0, T [×Ω with parabolic boundary

∂0ΩT := {0} × Ω ∪ [0, T [×∂Ω;
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• F : [0, T ] × Ω × R → R is a continuous function;
• dV denotes the euclidean volume form in C

n;
• 0 ≤ g is a continuous function on Ω;
• (t, x) �→ ϕ(t, x) = ϕt(x) is the unknown function and ϕ̇t = ∂tϕ denotes

the time derivative of ϕ.

We assume throughout this article that h : ∂0ΩT → R is a continuous Cauchy-
Dirichlet boundary data, i.e.

• h is continuous on ∂0ΩT , and
• h0 is a continuous plurisubharmonic function in Ω.

We first extend the definition of pluripotential subsolutions proposed in
[GLZ1]. This new definition applies to functions which are not necessarily
locally Lipschitz in t, it thus allows us to consider (1.1) for less regular data.

We then show that these pluripotential parabolic subsolutions coincide
with viscosity subsolutions:

Theorem A. Assume ϕ ∈ P(ΩT ). The following are equivalent:

(i) ϕ is a viscosity subsolution to (1.1);
(ii) ϕ is a pluripotential subsolution to (1.1).

Here P(ΩT ) denotes the set of parabolic potentials, i.e. locally integrable
upper semi-continuous functions ϕ in ΩT whose slices ϕt = ϕ(t, ·) are plurisub-
harmonic in Ω.

The pluripotential parabolic comparison principle [GLZ1, Theorem 6.5]
then allows us to conclude that the envelope of pluripotential subsolutions is
the unique viscosity solution to (1.1):

Theorem B. Assume that g > 0 is positive almost everywhere in Ω. Then
there is a unique viscosity solution to (1.1) with boundary value h which co-
incides with the envelope of all pluripotential subsolutions.

The techniques developed in the local context allow us to obtain analogous
results in the compact setting, comparing viscosity and pluripotential notions
for complex Monge-Ampère flows that contain the Kähler-Ricci flow as a
particular case. These are briefly discussed in Section 5.

2. Pluripotential subsolutions

Let Ω be a smoothly bounded strongly pseudoconvex domain in C
n. By this

we mean there exists a smooth strictly plurisubharmonic function ρ in an
open neighborhood of Ω̄ such that Ω = {ρ < 0} and dρ �= 0 on ∂Ω.
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Definition 2.1. The set of parabolic potentials P(ΩT ) consists of upper
semicontinuous functions u : ΩT :=]0, T [×Ω −→ [−∞,+∞[ such that u ∈
L1

loc(ΩT ) and ∀t ∈]0, T [, the slice ut : z �→ u(t, z) is plurisubharmonic in Ω.

Let us stress that – by comparison with [GLZ1] – we do not assume here
that the family {u(·, z) ; z ∈ Ω} is locally uniformly Lipschitz in ]0, T [. We
nevertheless use the same notation P(ΩT ) for the set of parabolic potentials,
hoping that no confusion will arise.

A pluripotential subsolution is a parabolic potential ϕ that satisfies

(ddcϕ)n ∧ dt ≥ eϕ̇t+F (t,z,ϕ)g(z)dV (z) ∧ dt

in the weak sense of (positive) measures in ΩT .
We need to make sense of all these quantities. The LHS is defined as in

[GLZ1] by using Bedford-Taylor’s theory, the novelty here concerns mainly
the RHS as we explain hereafter.

2.1. Defining the LHS

The LHS can be defined by using Bedford-Taylor theory:

Lemma 2.2. If u ∈ P(ΩT )∩L∞
loc(ΩT ) then dt∧ (ddcut)n is well-defined as a

positive Borel measure in ΩT .

Proof. Fix χ a test function in ΩT with support contained in J × D � ΩT .
We regularize u by taking sup convolution: for (t, z) ∈ J ×D we set

uj(t, z) := sup{u(s, z) − j2(t− s)2 ; s ∈]0, T [ }.

The functions uj decrease pointwise to u on J × D (by upper semi-
continuity of u). Since t �→ uj is continuous, it follows from [GLZ1, Lemma
2.1] that the function

t �→
∫

Ω
χ(t, z)(ddcujt )n

is continuous in t. It follows from [BT82] that

lim
j→+∞

∫
Ω
χ(t, z)(ddcujt )n =

∫
Ω
χ(t, z)(ddcut)n.

Taking limits as j → +∞ we obtain that t �→
∫
Ω χ(t, z)(ddcut)n is a bounded

Borel measurable function in ]0, T [. The Chern-Levine-Nirenberg inequalities
yield ∣∣∣∣

∫
ΩT

χ(t, z)dt ∧ (ddcut)n
∣∣∣∣ ≤ C(J,D, u) sup

ΩT

|χ|,
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where C(J,D, u) > 0 is a constant. It thus follows that the distribution
dt ∧ (ddcut)n extends as a positive Borel measure in ΩT .

2.2. Defining the RHS

For each u ∈ P(ΩT ), we define g∂tu as a distribution on ΩT by setting

〈g∂tu, χ〉 := −
∫

Ω

∫ T

0
∂tχ(t, z)u(t, z)g(z)dtdz,

for all test functions χ ∈ C∞(ΩT ) with compact support.
To define pluripotential subsolutions, we wish to interpret the RHS as a

supremum of (signed) Radon measures, setting

eϕ̇t+F (t,z,ϕ)g = g sup
a>0

{a(∂tϕ + F (t, z, ϕt(z)) − a log a + a} .

This relies on the following observation:

Lemma 2.3. Let T be a positive measure in an open set D ⊂ R
N , f a

bounded measurable function on D, and 0 ≤ g ∈ Lp(D). If, for all a > 0,

T ≥ g(af + a− a log a)λN ,

in the sense of measures, then T ≥ efg in the sense of measures in D.

Here λN denotes the Lebesgue measure in D.

Proof. We first assume that g ≥ b > 0 on D. Replacing T with T/g we can
assume that g ≡ 1. We regularize T by using non-negative mollifiers, setting
Tε := T � ρε. Then for all a > 0

Tε ≥ af � ρε + a− a log a,

pointwise on D. Taking the supremum over a > 0 we obtain

Tε ≥ ef�ρε

pointwise on D. The inequality thus also holds in the sense of measures.
Letting ε → 0 yields the conclusion.

We now remove the positivity condition on g. Since f is bounded, for each
ε > 0 we can find c(ε) > 0, A > 0 such that, for all a ∈]0, A[,

T + ελN ≥ (g + c(ε))(af − a log a + a)λN ,
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It follows from the first step and the fact that f is bounded (so that the
supremum can be restricted to a ∈]0, A[) that

T + ελN ≥ (g + c(ε))efλN

in the sense of measures on D. The conclusion follows by letting ε → 0.

This analysis motivates the following:

Definition 2.4. Let u ∈ P(ΩT ) ∩ L∞
loc(ΩT ). Then u is a pluripotential sub-

solution to (1.1) if for all constants a > 0,

(ddcϕ)n ∧ dt ≥ g(a(∂tϕ + F (t, z, ϕt(z)) − a log a + a) dV (z) ∧ dt

in the sense of distribution in ΩT .

If u ∈ P(ΩT ) ∩ L∞
loc(ΩT ) is locally uniformly semi-concave in t ∈]0, T [,

then by Lemma 2.3 u is a pluripotential subsolution to (1.1) iff

(ddcut)n ≥ e∂
+
t u+F (t,z,ut)gdV,

in the sense of Radon measures in Ω. Here ∂+
t is the right derivative defined

pointwise in ΩT (thanks to the semi-concavity property of t �→ u(t, z)). The
above definition thus coincides with the one given in [GLZ1].

Decreasing limits of pluripotential subsolutions are again subsolutions as
the following result shows:

Lemma 2.5. Let (uj) be a sequence of pluripotential subsolutions to (1.1)
which decreases to u ∈ P(ΩT )∩L∞

loc(ΩT ). Then u is a pluripotential subsolu-
tion to (1.1).

Proof. It follows from [BT82] that the Radon measures (ddcuj)n ∧ dt weakly
converge to (ddcu)n ∧ dt. On the other hand for each a > 0

g(a(∂tuj + F ) + a− a log a) → g(a(∂tu + F ) + a− a log a)

in the weak sense of distributions in ΩT . This completes the proof.

Let us emphasize that in Definition 2.4 we do not ask subsolutions to
be locally uniformly Lipschitz in t while the definition given in [GLZ1] does
assume this regularity. We observe below that the envelopes of subsolutions
in both senses do coincide.

Proposition 2.6. Assume that the data (F, h, g, u0) satisfy the assumption
of [GLZ1]. Let U be the upper envelope of pluripotential subsolutions to (1.1)
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in the sense of Definition 2.4, and Ũ be the envelope of subsolutions to (1.1)
in the sense of [GLZ1]. Then U = Ũ .

Proof. By definition we have Ũ ≤ U . Fix u a pluripotential subsolution to
(1.1) in the sense of Definition 2.4. We regularize u by taking convolution (see
[GLZ1])

uε(t, z) :=
∫
R

u(st, z)χ((s− 1)/ε)ds,

where χ is a cut-off function. Then uε − c(ε)(t + 1) is a pluripotential sub-
solution to (1.1) with data (F, h, g, u0), where c(ε) → 0 as ε → 0. Hence
uε −O(ε)(t + 1) ≤ Ũ . Letting ε → 0 we arrive at u ≤ Ũ , hence U ≤ Ũ .

3. Viscosity vs pluripotential subsolutions

3.1. Viscosity concepts

We now recall the corresponding viscosity notions introduced in [EGZ15].

Definition 3.1. Given u : ΩT → R an u.s.c. bounded function and (t0, x0) ∈
XT , q is a differential test from above for u at (t0, x0) if

• q ∈ C1,2 in a small neighborhood V0 of (t0, x0);
• u ≤ q in V0 and u(t0, x0) = q(t0, x0).

Definition 3.2. An u.s.c. bounded function u : ΩT → R is a viscosity
subsolution to (1.1) if for all (t0, x0) ∈ ΩT and all differential tests q from
above,

(ddcqt0(x0))n ≥ eq̇t0 (x0)+F (t0,x0,u(t0,x0))g(x0)dV (x0).

Here are few basic facts about viscosity subsolutions:

• a C1,2-smooth function is a viscosity subsolution iff it is psh and a
classical subsolution;

• if u1, u2 are viscosity subsolutions, then so is max(u1, u2);
• if (uα)α∈A is a family of subsolutions which is locally uniformly bounded

from above, then ϕ := (sup{uα ; α ∈ A})∗ is a subsolution;
• If u is a subsolution to (1.1)g then it is also a subsolution to (1.1)f with
g replaced by f , as long as 0 ≤ f ≤ g.

• u is a subsolution to (1.1) with g ≡ 0 iff ut is psh for all t.

Definition 3.3. A bounded l.s.c. function u : ΩT → R is a viscosity su-
persolution to (1.1) if for all (t0, z0) ∈ ΩT and all differential tests q from
below,

(ddcqt0(x0))n+ ≤ eq̇t0 (x0)+F (t0,x0,u(t0,x0))g(x0)dV (x0).
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Here, for a real (1, 1)-form α we define α+ to be α if it is semipositive and 0
otherwise.

Definition 3.4. A function u is a viscosity solution to (1.1) if it is both a
viscosity subsolution and a viscosity supersolution to (1.1).

Note in particular that viscosity solutions are continuous functions.
In viscosity theory it is convenient to define the notion of relaxed upper

and lower limits of a family of functions. Let φε : (E, d) → R, ε > 0 be a
family of locally uniformly bounded functions on a metric space (E, d). We
set

φ(x) = lim inf∗ φε(x) := lim inf
(ε,y)→(0,x)

φε(y)

φ(x) = lim sup∗ φε(x) := lim sup
(ε,y)→(0,x)

φε(y).

Observe that φ (resp. φ) is lower (resp. upper) semi-continuous on E and
φ ≤ (lim infε→0+ φε)∗. If the family is constant and equal to φ, φ = φ∗ and
φ = φ∗ correpond to the lower and upper semi-continuous regularisations of
φ respectively.

Lemma 3.5. Assume that (F ε)0<ε<ε0 is a family of continuous functions on
]0, T [×Ω × R which converges locally uniformly to F , and let (gε)0<ε<ε0 be a
family of continuous non negative functions on Ω which converges uniformly
to g.

Assume that for any 0 < ε < ε0, uε : ΩT −→ R is a viscosity subsolution
(resp. supersolution) to the equation (1.1) for the data (F ε, gε). Then the
function u (resp. u) is a viscosity subsolution (resp. supersolution) to the
equation (1.1) for the data (F, g).

The proof below is essentially classical (see [DI04]) but we give a complete
account for the reader’s convenience.

Proof. We prove the statement for supersolutions. The dual arguments work
for subsolutions.

Let q be a lower test function for u at ζ0 := (t0, z0) ∈]0, T [×Ω. Fix r > 0
such that Dr := [t0 − r, t0 + r] × B̄(z0, r) ⊂ Ω. By definition there exists a
sequence (ζj)j∈N in Dr converging to ζ0 and a sequence (εj)j∈N decreasing to
0 such that limj→+∞ uεj (ζj) = u(ζ0).

Fix δ > 0 and set

p(z) := q(t, z) − uεj (t, z) − δ(|z − z0|2 + (t− t0)2), z ∈ Dr.
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For each j ∈ N let wj := (tj , zj) be a point in Dr such that p(wj) =
maxDr p. We have

q(ζj) − uεj (ζj) − δ|ζj − ζ0|2 = p(ζj) ≤ p(wj) = q(wj) − uεj (wj) − δ|wj − ζ0|2.

Taking a subsequence if necessary we can assume that wj → w0 ∈ Dr.
Then letting j → +∞ and taking into account the fact that

lim inf
j→+∞

uεj (wj) ≥ u(w0),

we obtain
q(ζ0) − u(ζ0) ≤ q(w0) − u(w0) − δ|w0 − ζ0|2.

This implies that ζ0 = w0, since q is a lower test function for u at ζ0. Hence
the sequence (wj) converges to ζ0 and then for j large enough wj is in the
interior of Dr. By definition of wj , it follows that for j large enough, the
function qj(t, z) := q(t, z)− δ(|z− z0|2 + (t− t0)2) is a lower test function for
uεj at the point wj . Since uεj is a supersolution to the equation (1.1) for the
data (F εj , gεj ), it follows that at the point wj = (tj , zj) we have

(3.1) (ddcq − δβ)n+ ≤ e∂tq(tj ,zj)−2δ(tj−t0)+F εj (tj ,zj ,q(tj ,zj))gεj (zj)dV,

where β = ddc|z|2 is the standard Kähler form on C
n.

We want to prove that at ζ0 = (t0, z0) we have

(ddcq)n+ ≤ e∂tq+F (t0,z0,q(t0,z0))g(z0)dV.

If ddcq(z0) has an eigenvalue ≤ 0 then (ddcq)n+(z0) = 0 and the inequality
is trivial. If ddcq(z0) > 0 then letting j → +∞ and then δ → 0 in (3.1) we
arrive at the desired inequality.

3.2. Comparison of subsolutions

The main result of this note provides an identification between viscosity and
pluripotential subsolutions:

Theorem 3.6. Let u ∈ P(ΩT ) ∩ L∞
loc(ΩT ). The following are equivalent:

(i) u is a viscosity subsolution to (1.1);
(ii) u is a pluripotential subsolution to (1.1).

The proof relies on corresponding results in the elliptic case, as well as on
the parabolic comparison principle established in [GLZ1, Theorem 6.5].
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Proof. We first prove (i) =⇒ (ii). Assume u is a viscosity subsolution to (1.1).
Fix J1 � J2 �]0, T [ compact subintervals. We are going to prove that u is a
pluripotential subsolution to (1.1) in J1 × Ω.

We regularize u by taking the sup-convolution with respect to the t-
variable: for ε > 0 small enough we define

uε(t, z) := sup
{
u(t′, z) − 1

2ε2 (t− t′)2 ; t′ ∈ J2

}
.

The function uε is semi-convex in t ∈ J1, upper semicontinuous in z. We claim
that

(ddcuε)n ≥ e∂tuε+Fε(t,z,uε)gdV,

in the viscosity sense where

Fε(t, z, r) := inf {F (t + s, z, r) ; |s| ≤ Cε} ,

for a uniform constant C > 0 depending on supJ2×Ω |u|. The argument is
classical but we recall it for the reader’s convenience. Let q be a differential
test from above for uε at (t0, z0) ∈ J1 × Ω and let s0 ∈ J2 be such that

uε(t0, z0) = u(s0, z0) −
1

2ε2 (s0 − t0)2.

Then |t0 − s0| ≤ Cε. Consider the function qε defined by

qε(t, z) := q(t + t0 − s0) + 1
2ε2 (s0 − t0)2.

Then qε(s0, z0) = u(s0, z0), and for all (t, z) ∈ J1 × Ω,

qε(t, z) ≥ uε(t + t0 − s0) + 1
2ε2 (s0 − t0)2 ≥ u(t).

In other words, qε is a differential test from above for u at (s0, z0). Hence

(ddcqε)n(s0, z0) ≥ e∂tqε(s0,z0)+F (s0,z0,qε(s0,z0))g(z0)dV.

Since F is increasing in r and qε(s0, z0) ≥ q(t0, z0) we obtain

(ddcq)n(t0, z0) ≥ e∂tq(t0,z0)+F (s0,z0,q(t0,z0))g(z0)dV
≥ e∂tq(t0,z0)+Fε(t0,z0,q(t0,z0))g(z0)dV,

as claimed.
Let ∂−

t uε denote the left derivative in t of uε. Since ∂−
t uε+Fε is bounded,

by considering uε + δ|z|2 and letting δ → 0, we can assume that g ≥ c > 0 is
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strictly positive in Ω. The function

(t, z) �→ G(t, z) = e∂
−
t uε(t,z)+Fε(t,z,uε(t,z))g(z),

is lower semicontinuous in ΩT . It can be approximated from below by a se-
quence of positive continuous functions (Gj). By definition of viscosity sub-
solutions (applied to uε) we have

(3.2) (ddcuε)n ≥ GjdV

in the parabolic viscosity sense. Since Gj is continuous, we can thus invoke
[EGZ15, Proposition 3.6] to conclude that (3.2) holds in the elliptic viscosity
sense for each t ∈ J1 fixed. It then follows from [EGZ11, Proposition 1.5]
that (3.2) holds in the elliptic pluripotential sense for each t ∈ J1 fixed.
Now, [GLZ1, Proposition 3.2] ensures that uε is a parabolic pluripotential
subsolution to (1.1). Since uε decreases to u, Lemma 2.5 insures that u is a
pluripotential subsolution to (1.1).

We now prove (ii) =⇒ (i). Assume that u is a pluripotential subsolution
to (1.1). Fix (t0, z0) ∈ ΩT and q a differential test from above defined in a
neighborhood J × U �]0, T [×Ω of (t0, z0). We need to prove that

(3.3) (ddcq)n(t0, z0) ≥ e∂tq(t0,z0)+F (t0,z0,q(t0,z0))g(z0)dV.

It follows from [EGZ11] that ddcq is semipositive at (t0, z0). If g(z0) = 0 the
inequality follows from the elliptic theory (see [EGZ11]). Since g is continuous
up to shrinking U , we can assume that g > 0 in U .

Assume by contradiction that (3.3) does not hold. Then, by continuity of
the functions involved, there exists ε, r, δ > 0 small enough such that

(ddcq + εddc|z|2)n < e∂tq(t,z)+F (t,z,q(t,z))−δg(z)dV

holds in the classical sense in [t0 − r, t0 + r]×B(z0, r). Consider the function

v(t, z) := q(t, z) + γ(|z − z0|2 − r2 + t0 − t),

for (t, z) ∈ [t0 − r, t0] ×B(z0, r). For γ small enough one can check that

(ddcv)n ≤ e∂tq(t,z)+F (t,z,q(t,z))−δg(z)dV
≤ e∂tv+F (t,z,v+γr2+γ(t−t0))+γ−δg(z)dV
≤ e∂tv+F (t,z,v)g(z)dV,
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hence v is a supersolution to (1.1) in ]t0 − r, t0[×B(z0, r). We next compare v

and u on the parabolic boundary of ]t0 − r, t0[×B(z0, r). For all z ∈ B(z0, r)
we have

v(t0 − r, z) ≥ q(t0 − r, z) + γ(r − r2) ≥ q(t0 − r, z) ≥ u(t0 − r, z),

if r < 1. For all t ∈ [t0 − r, t0], ζ ∈ ∂B(z0, r) we have

v(t, ζ) = q(t, ζ) + γ(t0 − t) ≥ u(t, ζ).

If u is locally uniformly Lipschitz in t, it follows from [GLZ1, Theorem
6.5] that u ≤ v in [t0 − r, t0] ×B(z0, r). This yields a contradiction as

v(t0, z0) = q(t0, z0) − γr2 < u(t0, z0).

We finally remove the Lipschitz assumption on u. For each ε > 0 we define
uε by

uε(t, z) :=
∫
R

u(st, z)χ((s− 1)/ε)ds,

where χ is a cut-off function. Let Fj be a family of smooth functions which
increases to F . Then u is a pluripotential subsolution to (1.1) with data Fj .
Arguing as in [GLZ1, Theorem 6.5] we can show that uε − c(ε)(t + 1) is a
pluripotential subsolution to (1.1) (with data Fj) which is locally uniformly
Lipschitz. Hence, we can apply the first step to show that uε − c(ε)(t + 1) is
a viscosity subsolution to (1.1) with data Fj . Thanks to Lemma 3.5 we can
let ε → 0 and then j → +∞ to conclude the proof.

4. Viscosity vs pluripotential (super)solutions

The notion of pluripotential supersolutions has been introduced in [GLZ1]. In
case u ∈ P(ΩT ) ∩ L∞

loc(ΩT ) is locally uniformly semiconcave, it is a pluripo-
tential supersolution to (1.1) if

(ddcu)n ∧ dt ≤ e∂
−
t u+F (t,z,u)gdV ∧ dt,

in the sense of Radon measures in ΩT .
As in the viscosity setting, a pluripotential solution is a parabolic potential

which is both a subsolution and a supersolution.
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4.1. Comparison of supersolutions

Theorem 4.1. Assume v ∈ P(ΩT )∩C(ΩT ) is a pluripotential supersolution
to (1.1) which is locally uniformly semi-concave in t ∈]0, T [. Then v is a
viscosity supersolution to (1.1).

The proof relies on the parabolic pluripotential comparison principle
[GLZ1, Theorem 6.5] which requires the extra semi-concavity hypothesis.

Proof. We can assume that g > 0. Fix (t0, z0) ∈ ΩT and let q be a differntial
test from below for v at (t0, z0), defined in J × U � ΩT . We want to prove
that

(4.1) (ddcq)n+(t0, z0) ≤ e∂tq(t0,z0)+F (t0,z0,q(t0,z0))g(z0)dV.

Assume, by contradiction, that it is not the case. Then ddcqt0(z0) is semipos-
itive and there is a constant δ > 0 such that

(ddcqt0(z0))n > e∂tq(t0,z0)+F (t0,z0,q(t0,z0))+2δg(z0)dV (z0).

Since g > 0 and the data is continuous, we can find r ∈]0, 1[ so small that

(ddcq − εddc|z|2)n ≥ e∂tq(t,z)+F (t,z,q(t,z))+δg(z)dV (z)

holds in the classical sense in [t0 − r, t0 + r]×B(z0, r). Consider the function

u(t, z) := q(t, z) − γ(|z − z0|2 − r2 + t0 − t),

for (t, z) ∈ [t0 − r, t0] ×B(z0, r). For γ small enough one can check that

(ddcu)n ≥ e∂tq(t,z)+F (t,z,q(t,z))+δg(z)dV
≥ e∂tu−γ+F (t,z,u−γr2+γ(t0−t))−δg(z)dV
≥ e∂tu+F (t,z,u)g(z)dV,

hence u is a subsolution to (1.1) in ]t0 − r, t0[×B(z0, r). We next compare v
and u on the parabolic boundary of ]t0 − r, t0[×B(z0, r). For all z ∈ B(z0, r)
we have

u(t0 − r, z) ≤ q(t0 − r, z) + γ(r2 − r) ≤ q(t0 − r, z) ≤ v(t0 − r, z),

since r < 1. For all t ∈ [t0 − r, t0], ζ ∈ ∂B(z0, r) we have

u(t, ζ) = q(t, ζ) − γ(t0 − t) ≤ v(t, ζ).
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Since v is locally uniformly semi-concave, we can invoke [GLZ1, Theorem 6.5]
to conclude that u ≤ v in [t0 − r, t0] × B(z0, r). This yields a contradiction
since u(t0, z0) = q(t0, z0) + γr2 > v(t0, z0).

In the reverse direction we have the following observation:

Theorem 4.2. Let v be a viscosity supersolution to (1.1) and assume that v
is locally uniformly semi-concave in t ∈]0, T [. Then P (v) is a pluripotential
supersolution to (1.1).

Here P (v)(t, z) = P (vt)(z) is the slice plurisubharmonic envelope of v: for
each t fixed, we set

P (vt)(z) := sup{w(z); w ≤ vt and w plurisubharmonic in Ω},

i.e. P (v)t := P (vt) is the largest psh function lying below vt.

Proof. We first observe that t �→ P (v)(t, z) is locally uniformly semi-concave.
This follows from the fact that v �→ P (v) is increasing and concave: assume
for simplicity that t �→ v(t, z) is uniformly concave, then

vt+s + vt−s

2 ≤ vt ⇒
P (vt+s) + P (vt−s)

2 ≤ P

(
vt+s + vt−s

2

)
≤ P (vt).

Fix U � Ω and S ∈]0, T [. Let vε denote the inf-convolution of v. Then vε

increases pointwise to v and P (vε) ↑ P (v) as ε ↓ 0. Since ∂tP (vε) converges
a.e. to ∂tP (v) (see [GLZ1]), it suffices to prove that each P (vε) is a pluripo-
tential supersolution to (1.1). We can thus assume that v is continuous in
ΩT .

The left derivative ∂−
t v is upper semicontinuous in ΩT . It follows from

[EGZ15, Proposition 3.6] that, for all t ∈]0, T [, the inequality

(ddcvt)n+ ≤ e∂
−
t v+F (t,·,vt)gdV

holds in the viscosity sense in Ω. It thus follows from [GLZ17] that P (vt)
satisfies

(ddcP (vt))n ≤ e∂
−
t v+F (y,·,P (vt))gdV

in the pluripotential sense. Set

E = {(t, z) ∈ ΩT , ∂
+
t v(t, z) = ∂−

t v(t, z) & ∂+
t P (v)(t, z) = ∂−

t P (v)(t, z)}.
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Then ΩT \ E has zero Lebesgue measure. If (t, z) ∈ E ∩ {P (vt) = vt} then
∂−
t P (v)(t, z) = ∂−

t v(t, z). Therefore,

(ddcP (v))n ∧ dt ≤ e∂tP (v)+F (t,z,P (v))gdV (z) ∧ dt

holds in the pluripotential sense in ΩT .

4.2. Viscosity comparison principle

The following stability estimate follows directly from the viscosity comparison
principle established in [EGZ15, Theorem B].

Lemma 4.3. Assume u is a bounded viscosity subsolution to (1.1) with data
F and v is a bounded viscosity supersolution to (1.1) with data G. Then

sup
ΩT

(u− v) ≤ sup
∂0ΩT

(u∗ − v∗)+ + T‖(G− F )+‖,

where ‖(F −G)+‖ := max[0,T ]×Ω̄×[−C0,+C0](F −G)+ and C0 > 0 is a uniform
bound on |u| and |v| in ΩT .

Proof. Set
M1 := sup

∂0ΩT

(u∗ − v∗)+, M2 := ‖(G− F )+‖,

and ũ := u−M1 −M2t. Then ũ∗ ≤ v∗ on ∂0ΩT . It follows directly from the
definition of viscosity subsolutions that ũ is a viscosity subsolution to (1.1)
with data G since F + (G−F )+ ≥ G. It thus follows from [EGZ15, Theorem
B] that ũ ≤ v, giving the desired estimate.

Corollary 4.4. Assume that F j → F locally uniformly in ΩT × R. Let hj

be a sequence of parabolic boundary data converging locally uniformly to a
parabolic boundary datum h on ∂0Ω.

Let φj be the unique viscosity solution to the Cauchy Dirichlet problem
for the data (F j , g, hj). Then (φj)j∈N converges locally uniformly in ΩT to a
continuous function φ which is the unique viscosity solution to the Cauchy-
Dirichlet problem of the equation (1.1) for the data (F, g, h).

Proof. By the viscosity comparison principle (Lemma 4.3) we have for j, k ∈
N, for any 0 < S < T ,

sup
Ω̄S

|φj − φk| ≤ sup
∂0ΩS

|hj − hk| + S‖F j − F k‖Ω̄S×L,
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where L ⊂ R is a compact set containing the values of φj , j ∈ N, on the
compact set Ω̄S . It follows that (φj) is a Cauchy sequence for the norm of the
uniform convergence on each Ω̄S . Then the sequence has a limit which is a
continuous function φ : [0, T [×Ω̄. By Lemma 3.5, the function φ is a solution
to the equation (1.1) for the data (F, g, h). Set

αj := sup
∂0ΩS

|hj − hk| + S‖F j − F k‖Ω̄S×L.

Then αj → 0 and for j >> 1 we have

φj − αj ≤ φ ≤ φj + αj ,

in ΩS . From this inequality it follows that the boundary values of φ coincide
with h on ∂0ΩS . Letting S → T , we see that φ is the unique solution to the
equation (1.1) for the data (F, g, h).

4.3. Viscosity vs pluripotential solutions

If h does not depend on t, it was shown in [EGZ15] that there exists a unique
viscosity solution to (1.1) with boundary value h. This is the Perron envelope
of all viscosity subsolutions with boundary value h.

This result has been recently extended by Do-Le-Tô [DLT19] to bound-
ary data that are time-dependent. Combining viscosity and pluripotential
techniques we provide an alternative proof of this existence result:

Theorem 4.5. The Perron envelope of viscosity subsolutions to (1.1) with
boundary value h is the unique viscosity solution to (1.1) with boundary value
h. It coincides with the envelope of all pluripotential subsolutions to (1.1) with
boundary value h.

Proof. We first assume that the data (h, F ) satisfiy the assumptions of [GLZ1].
Let U be the envelope of all pluripotential subsolutions to (1.1) with bound-
ary value h, and V be the Perron envelope of viscosity subsolutions to (1.1)
with boundary value h. Theorem 3.6 ensures that U = V . By Proposition 2.6
and [GLZ1], U ∈ C(ΩT ) is a pluripotential solution to (1.1) which is locally
uniformly semi-concave. It then follows from Theorem 4.1 that U is a viscos-
ity supersolution to (1.1), hence U is a viscosity solution to (1.1). Lemma 4.3
ensures that U is the unique viscosity solution to (1.1) with boundary value
h.

We now treat the general case. Let (hj , Fj) be approximants of (h, F )
which satisfy the assumptions in [GLZ1], and let Uj be the envelope of pluripo-
tential subsolutions to (1.1) with data (hj , Fj). Then Uj is a pluripotential
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solution to (1.1) which is locally uniformly semiconcave. The previous step
ensures that Uj is a viscosity solution to (1.1) with data (hj , Fj). By stabil-
ity of viscosity solutions (see Lemma 4.3), Uj uniformly converges to U and
U = h on ∂0ΩT . By Corollary 4.4, U is a solution to the equation (1.1) in ΩT .
Hence U is a solution to the Cauchy-Dirichlet problem for (1.1) in ΩT with
boundary values h.

Uniqueness follows from the viscosity comparison principle in Lemma 4.3
(see [EGZ15, Theorem B]).

5. Compact Kähler manifolds

The techniques developed in the local context allow us to obtain analogous
results in the compact setting.

We consider the following complex Monge-Ampère flow

(5.1) (ωt + ddcϕt)n = eϕ̇t+F (t,x,ϕt)gdV,

where X is a compact Kähler manifold of dimension n and

1. XT :=]0, T [×X with T > 0;
2. 0 < g is a continuous function on X;
3. t �→ ω(t, x) is a smooth family of closed semi-positive (1, 1)-forms such

that θ(x) ≤ ωt(x) ≤ Θ, where θ is a closed semi-positive big form, and
Θ is a Kähler form;

4. (t, x, r) �→ F (t, x, r) is continuous in [0, T [×X × R, increasing in r;
5. ϕ : [0, T [×X → R is the unknown function, with ϕt := ϕ(t, ·).

Let ϕ0 be a bounded ω0-psh function on X which is continuous in Ω, the
ample locus of {θ}.

Definition 5.1. The set P(XT , ωt) of parabolic potentials consists of func-
tions u : XT → R ∪ {−∞} such that

• u is upper semi-continuous on XT and u ∈ L1
loc(XT );

• for each t ∈]0, T [, the function ut := u(t, ·) is ωt-psh on X.

Definition 5.2. A parabolic potential u ∈ P(XT , ωt)∩L∞(XT ) is a pluripo-
tential subsolution to (5.1) if for all constant a > 0,

(ωt + ddcut)n ∧ dt ≥ g(a(∂tϕ + F (t, z, ut(z)) − a log a + a) dV (z) ∧ dt

holds in the sense of distribution in XT .
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If u ∈ P(XT , ωt) ∩ L∞(XT ) is locally uniformly Lipschitz in t then our
definition coincides with that of [GLZ2].

Theorem 5.3. Let U (respectively V ) be the envelope of all pluripotential
(respectively viscosity) subsolutions u to (5.1) such that lim supt→0 ut ≤ ϕ0.
Then U = V is the unique viscosity solution to (5.1) starting from ϕ0.

The last condition in the theorem means that limt→0+ Ut = ϕ0 locally
uniformly in Ω := Amp({θ}), the ample locus of the class {θ}.
Proof. The equivalence of pluripotential and viscosity subsolutions for a given
parabolic potential u ∈ P(XT )∩L∞(XT ) follows from Theorem 3.6, since be-
ing a pluripotential (resp. viscosity) subsolution is a local property. It follows
in particular that U = V on XT .

We approximate F uniformly by a sequence of data F j which satisfy the
assumptions in [GLZ2] (one can e.g. take the convolution with a smoothing
kernel in t, r). We approximate ωt by ωj

t := ωt + 2−jΘ. Then ωj also satisfies
the assumptions in [GLZ2]. Let U j be the envelope of pluripotential subsolu-
tions to (1.1) with data (F j , ωj , ϕ0). By [GLZ2] and the proof of Proposition
2.6, U j is locally uniformly semi-concave in t, limt→0+ U j

t = ϕ0, for all j,
and U j is a pluripotential solution to (1.1) with data (F j , ωj). By continuity
of ϕ0 in Ω and [GLZ2, Proposition 2.2], we infer that U j

t locally uniformly
converges to ϕ0 in Ω.

The proof of Theorem 4.1 shows that U j is a viscosity solution to (5.1)
in Ω. We now prove that U j locally uniformly converges to U on ΩT . If we
can do this then U ∈ C(ΩT ) is a viscosity solution to (5.1) (thanks to Lemma
3.5), and limt→0+ Ut = ϕ0 locally uniformly in Ω.

In the arguments below we use ε(j) to denote various positive constants
which tend to 0 as j → +∞.

Since ω ≤ ωj , the function U − ε(j)t is a pluripotential subsolution to
(5.1) with datum (F j , ωj), hence

(5.2) U − ε(j)t ≤ U j .

To obtain the other bound we fix ρ ∈ PSH(X, θ) ∩ L∞(X), supX ρ = 0, such
that

(θ + ddcρ)n = 2nec1gdV,
for some constant c1 ∈ R. The existence of ρ follows from [EGZ09]. Let ψ ≤ 0
be a θ-psh function which is smooth in Ω and satisfies

θ + ddcψ ≥ 2c0Θ,

for some positive fixed constant c0.
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Set for j ∈ N,

W j := (1 − λj)U j + λj
ρ + ψ

2 , with λj := 2−j

2−j + c0
.

Given this choice of λj , a direct computation shows that

ωt + ddcW j ≥ (1 − λj)(ωt + ddcU j
t ) + λj(ωt + ddc((ρ + ψ)/2))

≥ (1 − λj)(ωj
t + ddcU j

t ) + λj(θ + ddcρ)/2 ≥ 0.

Hence, applying [GLZ2, Lemma 3.15] we obtain

(ωt + ddcW j)n ≥ e(1−λj)(∂tUj
t +F j(t,x,Uj))+λjc1gdV

≥ e∂tW
j+F (t,x,W j)−ε′(j)gdV,

in the weak sense on Ω, where ε′(j) → 0.
It thus follows that W j − ε(j)t is a pluripotential subsolution to the

equation (5.1) on ΩT with datum (F, ω). Observe that W j is not bounded
on X. Since, for C large enough u := ρ + nt log t − Ct − C is a bounded
pluripotential subsolution to the equation (5.1) in XT with datum (F, ω),
it follows that W̃ j := sup{W j − ε(j)t, u} is a bounded subsolution to the
equation (5.1) on XT . Since W j(t, x) ≤ U j(t, x) + ε′′j where ε′′j → 0, and
limt→0 U

j(t, x) = ϕ0(x) for any x ∈ X, it follows that

(5.3) W̃ j − ε′′j ≤ U, in XT .

From (5.2) and (5.3) we conclude that U j locally uniformly converges to
U on XT .

The uniqueness follows from [To19].
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