
KÄHLER-RICCI FLOWS ON SINGULAR VARIETIES
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Abstract. These are lecture notes from a mini-course given by the authors
in Toulouse (France), in june 2011. The goal was to illustrate the smooth-
ing properties of the Kähler-Ricci flow on compact Kähler manifolds and to
define the former on mildly singular varieties, following the recent works by
Szekelehydi-Tosatti [SzTo11] and Song-Tian [ST09].
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Introduction

The Kähler-Ricci flow ω̇t = −Ric(ωt), defined on a compact Kähler manifold
X endowed with an initial Kähler form ω0, has been the object of intensive study
over the last decades. In particular, it is known that the flow is defined as long as
the cohomology class [ωt] = [ω0] + t[KX ] stays in the Kähler cone of X. The flow
is thus defined on a time interval interval [0, T [ with either T = +∞, in which
case KX is nef and X is thus minimal by definition, or T < +∞ and [ω0]+T [KX ]
lies on the boundary of the Kähler cone.

In [ST09], J.Song and G.Tian proposed to use the Minimal Model Program
(MMP for short) to continue the flow beyond time T . At least when [ω0] is
a rational class (and hence X is projective), the MMP allows to find a mildly
singular projective variety X ′ birational to X such that [ω0] + t[KX ] induces a
Kähler class on X ′ for t > T sufficiently close to T . It is therefore natural to try
and continue the flow on X ′, but new difficulties arise due to the singularities of
X ′. After blowing-up X ′ to resolve these singularities, the problem boils down
to showing the existence of a unique solution to a certain degenerate parabolic
Monge-Ampère equation, whose initial data is furthermore singular.

The purpose of these notes is to survey Song and Tian’s solution to this prob-
lem. Along the way, a regularizing property of parabolic Monge-Ampère equa-
tions is exhibited, which can in turn be applied to prove the regularity of weak
solutions to certain elliptic Monge-ampère equations, following [SzTo11].

Nota Bene. These notes are written after the lecture the authors delivered
at the second ANR-MACK meeting (8-10 june 2011, Toulouse, France). As the
audience consisted of non specialists, we have tried to make these lecture notes
accessible with only few prerequisites.

1. The Kähler-Ricci flow on a singular variety

1.1. Forms and currents with potentials. Let X be a complex analytic va-
riety with normal singularities. Since closed (1, 1)-forms on X are not necessar-
ily locally ddc-exact, we introduce the following terminology (compare [EGZ09,
§5.2]). Let D′

X , C∞
X and PHX = ker ddc denote respectively the sheaves of germs

of distributions, smooth and pluriharmonic functions on X.

Definition 1.1. A (1, 1)-form (resp. (1, 1)-current) with potentials on X is de-
fined to be a section of the quotient sheaf C∞

X /PHX (resp. D′
X/PHX). We also

set

H1,1
ddc(X) := H1(X,PHX).

Concretely, a (1, 1)-form with potentials is thus a closed (1, 1)-form θ that is
locally of the form θ = ddcu for some smooth function u. We say that θ is a
Kähler form if u is strictly psh. Similarly, a (1, 1)-current with potentials T is
locally of the form ddcφ where φ is a distribution. Note that T is positive iff φ is
a psh function (see for instance [Dem85] for the basic facts about psh functions
on complex varieties).
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The space H1,1
ddc(X) is isomorphic to the usual ddc-cohomology space computed

using either (1, 1)-forms or currents with potentials, since the sheaves C∞
X and D′

X
are both soft, hence acyclic.

Proposition 1.2. Let α ∈ H1,1
ddc(X) and let T be a closed positive (1, 1)-current

on Xreg representing the ddc-class α|Xreg .

(i) There exists a unique positive (1, 1)-current with potentials on X extend-
ing T , and its ddc-cohomology class is α.

(ii) If X is compact Kähler and T has locally bounded potential on Xreg then∫
Xreg

Tn is finite, bounded above by vol(α).

Proof. Let θ be a (1, 1)-form with potentials on X representing α. We then have
T = θ|Xreg + ddcφ for some quasi-psh function φ on Xreg. If U is a small enough
neighborhood of a given point of X then θ = ddcu for some smooth function u on
U , and u + φ is a psh function on Ureg. By the Riemann extension theorem for
psh function [GR56], u + φ automatically extends to a psh function on U , and
(i) easily follows. (ii) is then a consequence of [BEGZ10]. �

We will also use the following simple fact.

Lemma 1.3. Let µ : X → X ′ be a birational morphism between compact normal
varieties, let A ⊂ X and A′ ⊂ X ′ be closed analytic subsets of codimension at
least 2, and let u be a psh function on µ−1(X ′ \A′)∩X \A. Then u is constant.

Proof. By [GR56] u extends to a psh function on µ−1(X ′\A′), hence descends to a
psh function u′ on X ′ \A′ since µ has connected fibers by Zariski’s main theorem.
By [GR56] again, u′ extends to a psh function on X ′, hence is constant. �

1.2. Log terminal singularities. Recall that a normal varietyX is Q-Gorenstein
if its canonical divisor KX exists as a Q-line bundle, which means that there ex-
ists r ∈ N and a line bundle L on X such that L|Xreg = rKXreg . If X is compact
Kähler and Q-Gorenstein, it follows from Proposition 1.2 that any Kähler form
ω on Xreg with ddc-cohomology class c1(±KXreg) (in particular, ± the Ricci form
of a Kähler metric on Xreg) automatically has finite volume.

Let X be a Q-Gorenstein variety and choose a log resolution of X, i.e. a
projective birational morphism π : X ′ → X which is an isomorphism over Xreg

and whose exceptional divisor E =
∑

iEi has simple normal crossings. There is
a unique collection of rational numbers ai, called the discrepancies of X (with
respect to the chosen log resolution) such that

KX′ ∼Q π
∗KX +

∑
i

aiEi.

By definition, X has log terminal singularities if ai > −1 for all i. This definition
is independent of the choice of a log resolution; this will be a consequence of the
following analytic interpretation of log terminal singularities as a finite volume
condition.

After replacing X with a small open set, we may choose a non-zero section σ
of the line bundle rKX for some r ∈ N∗. Restricting to Xreg we get a smooth
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positive volume form by setting

µσ :=
(
irn

2
σ ∧ σ̄

)1/r
(1.1)

Such measures are called adapted measures in [EGZ09]. The key fact fact is then:

Lemma 1.4. Let zi be a local equation of Ei, defined on a neighborhood U ⊂ X ′

of a given point of E. Then

(π∗µσ)U\E =
∏
i

|zi|2aidV

for some smooth volume form dV on U .

As a consequence we see that a Q-Gorenstein variety X has log terminal singu-
larities iff every adapted measure µσ has locally finite mass near points of Xsing.
The construction of adapted measures can be globalized as follows: let ϕ be a
smooth metric on the Q-line bundle KX . Then

µϕ :=

(
irn

2
σ ∧ σ̄

|σ|rϕ

)1/r

(1.2)

becomes independent of the choice of a local non-zero section σ of rKX , hence
defines smooth positive volume form on Xreg, which has locally finite mass at
infinity (i.e. near points of Xsing) iff X is log terminal.

Remark 1.5. In [ST09] the authors define a smooth volume form on X to be a
measure of the form µϕ for a smooth metric ϕ on KX . We prefer to avoid this
terminology, which has the drawback that ωn might not be smooth in this sense
even if ω is a (smooth) Kähler form on X.

The following simple result illustrates why log terminal singularities are natural
in the context of Kähler geometry.

Proposition 1.6. Let X be a Q-Gorenstein compact Kähler variety, and assume
that there exists a Kähler form ω on Xreg with non-negative Ricci curvature and
which extends as a (1, 1)-current with potentials on X. Then X necessarily has
log terminal singularities.

Proof. Let ϕ = logωn be the smooth metric of KXreg corresponding to the volume
form ωn. The curvature of −ϕ is equal to Ric(ω), which is non-negative by
assumption. It follows that −ϕ is psh, hence extends to a psh metric on −KX

by Proposition 1.2. If σ is a local generator of mKX near a given point of X
as above, then − log |σ|mϕ is the corresponding local weight of mϕ, and is thus
bounded below. This means that µσ ≤ Cωn for some C > 0, which shows that
µσ has finite mass near the given point of X by Proposition 1.2. �
Remark 1.7. Using the techniques of Remmert-Shiffman and Skoda-El mir, one
can show that ω automatically extends to X as a closed positive (1, 1)-current
(that might however not have local potentials near singular points). It is likely
that the assumption that this extension has local potentials in Proposition 1.6 is
superfluous.
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1.3. Kähler-Ricci flows on singular varieties. The following results are a
mild generalization of [ST09]. The first one deals with the non-normalized Kähler-
Ricci flow.

Theorem 1.8. Let X be a compact Kähler variety with log terminal singularities
and let f : X → Y be a birational morphism with Y compact normal, such that
KX is f -ample. Let α ∈ H1,1

ddc(Y ) be a Kähler class on Y and set

T := sup {t > 0 | f∗α+ t[KX ] Kähler class on X} .
Set Ω := Xreg ∩ f−1(Yreg) and let ω0 ∈ f∗α be a positive (1, 1)-current on X
with continuous potentials. Then there exists a unique family of (1, 1)-currents
ωt ∈ f∗α+ t[KX ], t ∈]0, T [, such that

(i) ωt has uniformly bounded potentials w.r.t. to t ∈]0, T ′[ for each T ′ < T .
(ii) on Ω×]0, T [ ωt is smooth and satisfies ω̇t = −Ric(ωt).

(iii) the potentials of ωt converge to those of ω0 in C0(Ω).

For the so-called normalized Kähler-Ricci flow, the result implies:

Corollary 1.9. Let X be a compact variety with log terminal singularities and
±KX ample (and hence X projective). Given a positive (1, 1)-current ω0 with
continuous potentials such that [ω0] = [±KX ], there exists a unique unique family
of (1, 1)-currents ωt ∈ [±KX ], t ∈]0,+∞[, such that

(i) ωt has uniformly bounded potentials w.r.t. to t ∈]0, T ′[ for each T ′ < +∞.
(ii) on Xreg×]0,+∞[ ωt is smooth and satisfies ω̇t = −Ric(ωt) on Ω×]0,+∞[.

(iii) the potentials of ωt converge to those of ω0 in C0(Xreg).

A simple change of variable reduces Corollary 1.9 to a special case of Theorem
1.8. More specifically, setting

ω̃s := (1 ± s)ω± log(1±s)

transforms a solution of ω̇t = −Ric(ωt) ∓ ωt on Xreg×]0,+∞[ into a solution of
˙̃ωs = −Ric(ω̃s) on Xreg×]0, T [, with [ωs] = [ω0] + s[KX ] where T = +∞ if KX is
ample and T = 1 if −KX is ample.

1.4. Reduction to a parabolic Monge-Ampère equation. As a first step,
we will reduce Theorem 1.8 to a degenerate parabolic Monge-Ampère equation
on a log resolution of X.

With the notation of Theorem 1.8, let θ0 ∈ f∗α be a smooth representative,
so that ω0 = θ0 + ddcφ0 for some θ0-psh function φ0 ∈ C0(X). Let also ϕ be a
smooth metric on KX , with curvature form χ and associated adapted measure
µ = µϕ as in (1.2). For any Kähler form ω on Xreg, it follows from the definitions
that

−ddc log (ωn/µ) = χ+ Ric(ω) (1.3)

holds on Xreg. Setting
θt := θ0 + tχ,

we are looking for a family of positive currents of the form ωt = θt + ddcφt where
φt is smooth on Ω×]0, T [. Using (1.3), the equation ω̇t = −Ric(ωt) reads

ddc (φ̇t − log (ωnt /µ)) = 0
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on Ω for each t ∈]0, T [, which implies that φ̇t− log (ωnt /µ) is constant by Lemma
1.3. After writing this constant c(t) as a time derivative to absorb it in φt, we
end up with the parabolic Monge-Ampère equation on Ω×]0, T [

φ̇t = log (θt + ddcφt)
n /µ.

with θt := θ0 + tχ. Now let as in §1.2 π : X ′ → X be a log resolution. By Lemma
1.4 µ′ := π∗µ is of the form

µ′ := eψ
+−ψ−

dV

where dV is a smooth volume form on X ′, ψ± are quasi-psh functions with
logarithmic poles along the exceptional divisor E, smooth on X \ E, and such

that e−ψ
− ∈ Lp for some p > 1.

If we set θ′t := π∗θt and φ′
0 := π∗φ0 then θ′t is an affine path of closed (1, 1)-

forms on X ′ with semipositive class, and the ample locus Ω of [θ′0] is contained in
X ′ \E. After dropping the primes, we are thus reduced to proving the following
theorem:

Theorem 1.10. Let X be a compact Kähler manifold. Assume given the follow-
ing data:

• an affine path θt = θ0 + tχ, t ∈ [0, T [, of closed (1, 1)-forms such that the
cohomology class of θt is semipositive and big for t ∈ [0, T [.

• a positive measure µ of the form

µ = eψ
+−ψ−

dV

where ψ± are quasi-psh functions that are smooth on a Zariski open subset

Ω of the ample locus of [θ0] and such that e−ψ
− ∈ Lp for some p > 1.

• a function φ0 ∈ C0(X) ∩ PSH(X, θ0).

Then there exists a unique family φt, t ∈]0, T [, of functions on X such that:

(i) φt is θt-psh and uniformly bounded w.r.t. t ∈]0, T ′[ for each T ′ < T .
(ii) on Ω×]0, T [ φt is smooth and satisfies φ̇t = log (θt + ddcφt)

n /µ.
(iii) φt → φ0 uniformly on compact subsets of Ω as t→ 0.

2. Toolbox

2.1. The maximum principle. The following simple maximum principle will
the main tool to establish upper an lower bounds.

Proposition 2.1. Let X be a (not necessarily compact) Kähler manifold, let ωt,
t ∈ [0, T ], be a smooth family of Kähler metrics on X, and denote by ∆t = trωt dd

c

the Laplacian with respect to ωt. Assume that H ∈ C∞(X × [0, T ]) satisfies(
∂

∂t
− ∆t

)
H ≥ 0

or
∂

∂t
H ≥ log

[
(ωt + ddcHt)

n

ωnt

]
,

and assume also that H → +∞ near ∂X × [0, T ] if X is not compact. Then
infX Ht ≥ infX H0 for all t ∈ [0, T ]. If we replace ≥ with ≤ and assume that
H → −∞ near ∂X × [0, T ] then supX Ht ≤ supX H0.
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Proof. Upon replacing H with H±εt with ε > 0, we may assume in each case that
the inequality is strict. The properness assumption guarantees that H achieves
its infimum (resp. supremum) at some point (x0, t0) ∈ X × [0, T ], and the strict
differential inequality implies that t0 is necessarily 0, since we would have ∂

∂tH ≤ 0
(resp. ≥ 0) and ddcH ≥ 0 (resp. ≤ 0) at (x0, t0) otherwise. �
2.2. A Laplacian inequality. If θ, ω are (1, 1)-forms with ω Kähler, recall that
the trace of θ with respect to ω is defined by

trω(θ) := n
θ ∧ ωn−1

ωn
.

At each point of X one can diagonalize θ with respect to ω, with eigenvalues
λ1 ≤ ... ≤ λn, and we then have trω(θ) =

∑
i λi. If φ is a function, its Laplacian

with respect to ω is given by

∆ωφ = trω(ddcφ).

Proposition 2.2. Let ω, ω′ be two Kähler forms on a Kähler manifold X.

(i) We have (
ω′n

ωn

) 1
n

≤ 1
n trω(ω′) ≤

(
ω′n

ωn

)
(trω′(ω))n−1 .

(ii) If the holomorphic bisectional curvature of ω is bounded below by B ∈ R,
then

∆ω′ log trω(ω′) ≥ −trω Ric(ω′)

trω(ω′)
+B trω′(ω).

The inequality in (ii) goes back to [Aub78, Yau78]; in the present form it is
due to Siu [Siu87, pp. 97–99]. We include a proof for the reader’s convenience.

Proof. The left-hand inequality in (i) amounts to the arithmetico-geometric in-
equality for the eigenvalues of ω′ wrt ω; the right-hand inequality follows from
similar elementary eigenvalue considerations.

We now prove (ii). Since this is a pointwise inequality, we can choose normal
coordinates (zi) at a given point 0 ∈ X so that ω =

√
−1
∑

k,l ωkldzk ∧ dzl and

ω′ =
√
−1
∑

k,l ω
′
kldzk ∧ dzl satisfy

ωkl = δkl −
∑
i,j

Rijklzizj +O(∥z∥3).

near 0 and ω′
kl = λkδkl at 0. Here Rijkl denotes the curvature tensor of ω, δkl

stands for the Kronecker symbol, and λ1 ≤ ... ≤ λn are the eigenvalues of ω′ with
respect to ω at 0.

Observe that the inverse matrix (ωkl) = (ωkl)
−1 satisfies

ωkl = δkl +
∑
i,j

Rijklzizj +O(∥z∥3). (2.1)

Recall also that the curvature tensor of ω′ is given in local coordinates (zi) by

R′
ijkl = −∂i∂jω′

kl +
∑
p,q

ω′
pq∂iω

′
kq∂jω

′
pl,
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hence
R′
ijkl = −∂i∂jω′

kl +
∑
p

λ−1
p ∂iωkp∂jω

′
pl (2.2)

at the point 0. Setting u := trω(ω′) we have ddc log u = u−1ddcu− u−2du ∧ dcu,
hence

∆ω′ log u = u−1∆ω′u− u−2 trω′(du ∧ dcu).

Now we have at 0
∆ω′u =

∑
ik

λ−1
i ∂i∂i(ω

kkω′
kk)

and
trω′ (du ∧ dcu) =

∑
i,k,l

λ−1
i ∂iω

′
kk∂iω

′
ll,

with
∂i∂i(ω

kkω′
kk) = λkRiikk + ∂i∂iω

′
kk

thanks to (2.1). It follows that

∆ω′ log u = u−1

∑
ik

λ−1
i λkRiikk +

∑
i,k

λ−1
i ∂i∂iω

′
kk

−u−2

∑
i,k,l

λ−1
i ∂iω

′
kk∂iω

′
ll

 .

(2.3)
On the one hand, the assumption on the holomorphic bisectional curvature of ω
reads Riikk ≥ B for all i, k, hence∑

ik

λ−1
i λkRiikk ≥ B(

∑
i

λ−1
i )(

∑
k

λk) = B trω′(ω)u. (2.4)

On the other hand, (2.2) yields∑
i,k

λ−1
i ∂i∂iω

′
kk = −

∑
i,k

λ−1
i R′

iikk +
∑
i,k,p

λ−1
i λ−1

p |∂iω′
kp|2.

Note that
∑

i,k λ
−1
i R′

iikk = trω Ric(ω′), while∑
i,k,p

λ−1
i λ−1

p |∂iω′
kp|2 ≥

∑
i,k

λ−1
i λ−1

k |∂iω′
kk|2 ≥ u−1

∑
i,k,l

λ−1
i ∂iω

′
kk∂iω

′
ll

by the Cauchy-Schwarz inequality. Combining this with (2.3) and (2.4) yields
the desired inequality. �

2.3. Existence theorem for parabolic Monge-Ampère equations. The fol-
lowing result is basically due to Cao [Cao85], Tsuji [Tsu88] and Tian-Zhang
[TZha06].

Theorem 2.3. Let X be a compact Kähler manifold and µ be a smooth positive
volume form on X. Let also (ωt)t∈[0,T [ be a smooth family of Kähler forms. Then
every φ0 ∈ C∞(X) such that ω0 + ddcφ0 > 0 uniquely extends to a solution
φ ∈ C∞(X × [0, T [) of

∂

∂t
φ = log

[
(ωt + ddcφt)

n

µ

]
.
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Uniqueness follows from the maximum principle (Proposition 2.1). We refer to
the lecture notes by Song and Weinkove for a proof of existence, which amounts
to proving a priori estimates similar to §4 below.

3. Smoothing property of the Kähler-Ricci flow

By analogy with the regularizing properties of the Heat equation, it is expected
that the Kähler-Ricci flow can be started from a degenerate initial data (say a
positive current, rather than a Kähler form), instantaneously smoothing out the
latter.

The goal of this section is to illustrate positively this expectation by explaining
the proof of the following result of Szekelyhidi-Tosatti [SzTo11]:

Theorem 3.1. Let (X,ω) be a n-dimensional compact Kähler manifold. Let
F : R×X → R be a smooth function and assume ψ0 ∈ PSH(X,ω) is continuous1

and satisfies

(ω + ddcψ0)
n = e−F (ψ0,x)ωn.

Then ψ0 ∈ C∞(X) is smooth.

As the reader will realize later on, the proof is a good warm up, as the argu-
ments are similar to the ones we are going to use when proving Theorem 1.10.

Let us recall that such equations contain as a particular case the Kähler-
Einstein equation. Namely when the cohomology class {ω} is proportional to
the first Chern class of X2, λ{ω} = c1(X) for some λ ∈ R, then the above
equation is equivalent to

Ric(ω + ddcψ0) = ω + ddcψ0,

when taking
F (φ, x) = λφ+ h(x)

with h ∈ C∞(X) such that Ric(ω) = λω + ddch. Szekelyhidi-Tosatti’s result is
thus particularly striking since there isn’t uniqueness3 of the solutions to such
equations (when one exists).

The interest in such regularity results stems for example from the recent works
[BBGZ09, EGZ11] which provide new tools to construct weak solutions to such
complex Monge-Ampère equations.

The idea of the proof is both simple and elegant, and goes as follows: assume
we can run a complex Monge-Ampère flow

∂φt
∂t

= log

[
(ω + ddcφt)

n

ωn

]
+ F (φt, x)

with an initial data φ0 ∈ PSH(X,ω) ∩ C0(X) in such a way that

(1) (x, t) 7→ φt is continuous on X × [0, T ],

1The authors state their result assuming that ψ0 is merely bounded, but they use in an
essential way the continuity of ψ0, which is nevertheless known in this context by [Ko l98].

2This of course assumes that c1(X) has a definite sign.
3In the Kähler-Einstein Fano case, a celebrated result of Bando and Mabuchi [BM87] asserts

that any two solutions are connected by the flow of a holomorphic vector field.
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(2) (x, t) 7→ φt is C∞-smooth on X×]0, T ].

Then ψ0 will be a fixed point of such a flow hence if ψt denotes the flow originating
from ψ0, ψ0 ≡ ψt has to be smooth !

To simplify our task, we will actually give full details only in case

F (s, x) = −G(s) + h(x) with s 7→ G(s) being convex

and merely briefly indicate what extra work has to be done to further establish
the most general result. Note that this particular case nevertheless covers the
Kähler-Einstein setting.

In the sequel we consider the above flow starting from a smooth initial potential
φ0 and establish various a priori estimates that eventually will allow us to start
from a poorly regular initial data. We fix once and for all a finite time T > 0
(independent of φ0) such that all flows to be considered are well defined on
X × [0, T ]: it is standard that the maximal interval of time on which such a flow
is well defined can be computed in cohomology, hence depends on the cohomology
class of the initial data rather than on the (regularity properties of the) chosen
representative.

3.1. A priori estimate on φt. We consider in this section on X × [0, T ] the
complex Monge-Ampère flow (CMAF )

∂φt
∂t

= log

[
(ω + ddcφt)

n

ωn

]
+ F (φt, x)

with initial data φ0 ∈ PSH(X,ω)∩C∞(X). Our aim is to bound ∥φt∥L∞(X×[0,T ])

in terms of ∥φ0∥L∞(X) and T .

3.1.1. Heuristic control. Set M(t) = supX φt. It suffices to bound M(t) from
above, the bound from below for m(t) := infX φt will follow by symmetry.

Assume that we can find t ∈ [0, T ] 7→ x(t) ∈ X a differentiable map such that
M(t) = φt(x(t)). Then M is differentiable and satisfies

M ′(t) =
∂φt
∂t

(x(t)) ≤ F (φt(x(t)), x(t)) ≤ F (M(t)),

where
F (s) := sup

x∈X
F (s, x)

is a Lipschitz map.
It follows therefore from the Cauchy-Lipschitz theory of ODE’s that M(t) is

bounded from above on [0, T ] in terms of T,M(0) = supX φ0 and F (hence F ).

3.1.2. A precise bound. We now would like to establish a more precise control
under a simplifying assumption:

Lemma 3.2. Assume φt, ψt are smooth families of ω-psh functions such that

∂φt
∂t

≤ log [(ω + ddcφt)
n/ωn] + F (φt, x)

and
∂ψt
∂t

≥ log [(ω + ddcψt)
n/ωn] + F (ψt, x),
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where

F (s, x) = λs−G(s, x) with s 7→ G(s, ·) non-decreasing.

Then for all t ∈ [0, T ],

sup
X

(φt − ψt) ≤ eλT max{sup
X

(φ0 − ψ0), 0}.

Proof. Set u(x, t) := e−λt(φt − ψt)(x) − εt ∈ C0(X × [0, T ]), where ε > 0 is fixed
(arbitrary small). Let (x0, t0) ∈ X × [0, T ] be a point at which u is maximal.

If t0 = 0, then u(x, t) ≤ (φ0 − ψ0)(x0) ≤ supX(φ0 − ψ0) and we obtain the
desired upper bound by letting ε > 0 decrease to zero.

Assume now that t0 > 0. Then u̇ ≥ 0 at this point, hence

0 ≤ −ε− λe−λt(φt − ψt) + e−λt(φ̇t − ψ̇t).

On the other hand ddcxu ≤ 0, hence ddcxφt ≤ ddcxψt and

φ̇t − ψ̇t ≤ F (φt, x) − F (ψt, x) + log

[
(ω + ddcφt)

n

(ω + ddcψt)n

]
≤ F (φt, x) − F (ψt, x).

Recall now that F (s, x) = λs−G(s, x). Previous inequalities therefore yield

G(φt, x) < G(ψt, x) at point (x, t) = (x0, t0).

Since s 7→ G(s, ·) is assumed to be non-decreasing, we infer φt0(x0) ≤ ψt0(x0), so
that for all (x, t) ∈ X × [0, T ],

u(x, t) ≤ u(x0, t0) ≤ 0.

Letting ε decrease to zero yields the second possibility for the upper bound. �

By reversing the roles of φt, ψt, we obtain the following useful:

Corollary 3.3. Assume φt, ψt are solutions of (CMAF ) with F as above. Then

∥φt − ψt∥L∞(X×[0,T ]) ≤ eλT ∥φ0 − ψ0∥L∞(X).

As a consequence, if φ0,j is a sequence of smooth ω-psh functions decreasing to
φ0 ∈ PSH(X,ω)∩C0(X), and φt,j are the corresponding solutions to (CMAF ) on
X× [0, T ], then the sequence (φt,j)j uniformly converges towards φt on X× [0, T ]
as j → +∞ with φt ∈ C0(X × [0, T ]).

3.2. A priori estimate on φ̇t. We assume here again that on X × [0, T ]

∂φt
∂t

= log

[
(ω + ddcφt)

n

ωn

]
+ F (φt, x)

with initial data φ0 ∈ PSH(X,ω) ∩ C∞(X).

Lemma 3.4. There exists C > 0 which only depends on ∥φ0∥L∞(X) such that for
all t ∈ [0, T ],

∥φ̇t∥L∞(X) ≤ eCT ∥φ̇0∥L∞(X).
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Let us stress that such a bound requires both that the initial potential φ0 is
uniformly bounded and that the initial density

f0 =
(ω + ddcφ0)

n

ωn
= log φ̇0 − F (φ0, x)

is uniformly bounded away from zero and infinity. We shall consider in the sequel
more general situations with no a priori control on the initial density f0.

Proof. Observe that
∂φ̇t
∂t

= ∆tφ̇t +
∂F

∂s
(φt, x)φ̇t,

where ∆t denotes the Laplace operator associated to ωt = ω + ddcφt.
Since F is C1-smooth, we can find a constant C > 0 which only depends on (F

and) ∥φt∥L∞(X×[0,T ]) such that

−C <
∂F

∂s
(φt, x) < +C.

Consider H+(x, t) := e−Ctφ̇t(x) and let (x0, t0) be a point at which H+ realizes
its maximum on X × [0, T ]. If t0 = 0, then φ̇t(x) ≤ eCT supX φ0 for all (x, t) ∈
X × [0, T ]. If t0 > 0, then

0 ≤
(
∂

∂t
− ∆t

)
(H+) = e−Ct

[
∂F

∂s
(φt, x) − C

]
φ̇

hence φ̇t0(x0) ≤ 0, since ∂F
∂s (φt, x) − C < 0. Thus φ̇t(x) ≤ 0 in this case. All in

all, this shows that

φ̇t ≤ eCT max

{
sup
X
φ̇0, 0

}
.

Considering the minimum of H−(x, t) := e+Ctφ̇t(x, t) yields a similar bound
from below and finishes the proof since max{supX φ̇0,− infX φ̇0} ≥ 0. �

3.3. A priori estimate on ∆φt. Recall that we are considering on X × [0, T ]

∂φt
∂t

= log

[
(ω + ddcφt)

n

ωn

]
+ F (φt, x)

with initial data φ0 ∈ PSH(X,ω)∩C∞(X). Our aim in this section is to establish
an upper bound on ∆ωφt, which is uniform as long as t > 0 and is allowed to
blow up when t decreases to zero.

3.3.1. A convexity assumption. To simplify our task, we shall assume that

F (s, x) = −G(s) + h(x), with s 7→ G(s) being convex.

This assumption allows us to bound from above ∆ωF (φ, x) as follows:

Lemma 3.5. There exists C > 0 which only depends on ∥φ0∥L∞(X) such that

∆ω (F (φt, x)) ≤ C [1 + trω(ωt)] ,

where ωt = ω + ddcφt.
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Recall here that for any smooth function h and (1, 1)-form β,

∆ωh := n
ddch ∧ ωn−1

ωn
while trω β := n

β ∧ ωn−1

ωn
.

Proof. Observe that

ddc (F (φ, x)) = −G′′(φ)dφ ∧ dcφ−G′(φ)ddcφ ≤ −G′(φ)ddcφ

since G is convex. Now ddcφ = (ω+ ddcφ)− ω = ωφ − ω = ωt − ω is a difference
of positive forms and −C ≤ −G′(φ) ≤ +C, therefore

ddc (F (φ, x)) ≤ C (ωt + ω) ,

which yields the desired upper bound. �

Our simplifying assumption thus yields a bound from above on ∆ω (F (φ, x))
which depends on trω(ωφ) (and ∥φ0∥L∞(X)) but not on ∥∇φt∥L∞(X×[ε,T ]). A
slightly more involved bound from above is available in full generality, which
relies on Blocki’s gradient estimate [B lo09]. We refer the reader to the proofs of
[SzTo11, Lemmata 2.2 and 2.3] for more details.

3.3.2. The estimate.

Proposition 3.6. Assume that F (s, x) = −G(s) + h(x), with s 7→ G(s) convex.
Then

0 ≤ trω(ωt) ≤ C exp (C/t)

where C > 0 depends on ∥φ0∥L∞(X) and ∥φ̇0∥L∞(X).

Proof. We set u(x, t) := trω(ωt) and

α(x, t) := t log u(x, t) −Aφt(x),

where A > 0 will be specified later. The desired inequality will follow if we can
uniformly bound α from above. Our plan is to show that(

∂

∂t
− ∆t

)
(α) ≤ C1 + (Bt+ C2 −A) trωt(ω)

for uniform constants C1, C2 > 0 which only depend on ∥φ0∥L∞(X), ∥φ̇0∥L∞(X).
Observe that(

∂

∂t
− ∆t

)
(α) = log u+

t

u

∂u

∂t
−Aφ̇t − t∆t log u+A∆tφt.

The last term yields A∆tφt = An − A trωt(ω). The for to last one is estimated
thanks to Proposition 2.2,

−t∆t log u ≤ Bt trωt(ω) + t
trω(Ric(ωt))

trω(ωt)
.
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It follows from Lemma 3.5 that

t

u

∂u

∂t
=

t

u
∆t

(
log

ωnt
ωn

)
+
t

u
∆ωF (φt, x)

=
t

u
{− trω(Ricωt) + trω(Ricω)} +

t

u
∆ωF (φt, x)

≤ −ttrω(Ricωt)

trω(ωt)
+ C

(1 + u)

u
.

We infer

−t∆t log u+
t

u

∂u

∂t
≤ Bt trωt(ω) + C1,

using that u is uniformly bounded below as follows from Proposition 2.2 again.
To handle the remaining (first and third) terms, we simply note that φ̇t is

uniformly bounded below, while

log u ≤ log
[
C trωt(ω)n−1

]
≤ C2 + C3 trωt(ω)

by Proposition 2.2 and the elementary inequality log x < x. Altogether this yields(
∂

∂t
− ∆t

)
(α) ≤ C4 + (Bt+ C3 −A) trωt(ω) ≤ C4,

if we choose A > 0 so large that Bt + C3 − A < 0. The desired inequality now
follows from the maximum principle. �

3.4. Proof of Theorem 3.1.

3.4.1. Higher order estimates. Using the complex parabolic Evans-Krylov theory
together with Schauder’s estimates, it follows from our previous estimates that
the following higher order a priori estimates hold:

Proposition 3.7. For each fixed ε > 0 and k ∈ N, there exists Ck(ε) > 0 which
only further depends on ∥φ0∥L∞(X) and ∥φ̇0∥L∞(X) such that

∥φt∥Ck(X×[ε,T ]) ≤ Ck(ε).

3.4.2. A stability estimate. Let 0 ≤ f, g ∈ L2(ωn) be densities such that∫
X
fωn =

∫
X
gωn =

∫
X
ωn.

It follows from the celebrated work of Kolodziej [Ko l98] that there exists unique
continuous ω-psh functions φ,ψ such that

(ω + ddcφ)n = fωn, (ω + ddcψ)n = gωn and

∫
X

(φ− ψ)ωn = 0.

We shall need the following stability estimates:

Theorem 3.8. There exists C > 0 which only depends on ∥f∥L2 , ∥g∥L2 such that

∥φ− ψ∥L∞(X) ≤ C∥f − g∥γ
L2(X)

,

for some uniform exponent γ > 0.
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Such stability estimates go back to the work of Kolodziej [Ko l03] and Blocki
[B lo03]. Much finer stability results are available by now (see [DZ10, GZ11]). We
sketch a proof of this version for the convenience of the reader.

Proof. The proof decomposes in two main steps. We first claim that

∥φ− ψ∥L2(X) ≤ C∥f − g∥
1

2n−1

L2(X)
, (3.1)

for some appropriate C > 0. Indeed we are going to show that∫
X
d(φ− ψ) ∧ dc(φ− ψ) ∧ ωn−1 ≤ C1I(φ,ψ)2

−(n−1)
, (3.2)

where

I(φ,ψ) :=

∫
X

(φ− ψ) {(ω + ddcψ)n − (ω + ddcφ)n} ≥ 0

is non-negative, as the reader can check that an alternative writing is

I(φ,ψ) =

n−1∑
j=0

∫
X
d(φ− ψ) ∧ dc(φ− ψ) ∧ ωjφ ∧ ωn−1−j

ψ .

In our case the Cauchy-Schwarz inequality yields

I(φ,ψ) =

∫
X

(φ− ψ)(g − f)ωn ≤ ∥φ− ψ∥L2∥f − g∥L2 ,

therefore (3.1) is a consequence of (3.2) and Poincaré’s inequality.
To prove (3.2), we write ω = ωφ − ddcφ and integrate by parts to obtain,∫
d(φ− ψ) ∧ dc(φ− ψ) ∧ ωn−1

=

∫
d(φ− ψ) ∧ dc(φ− ψ) ∧ ωφ ∧ ωn−2 −

∫
d(φ− ψ) ∧ dc(φ− ψ) ∧ ddcφ ∧ ωn−2

=

∫
d(φ− ψ) ∧ dc(φ− ψ) ∧ ωφ1 ∧ ωn−2 +

∫
d(φ− ψ) ∧ dcφ ∧ (ωφ − ωψ) ∧ ωn−2

We take care of the last term by using Cauchy-Schwarz inequality, which yields∫
d(φ− ψ) ∧ dcφ ∧ ωφ ∧ ωn−2 ≤ A

(∫
d(φ− ψ) ∧ dc(φ− ψ) ∧ ωφ ∧ ωn−2

)1/2

,

where

A2 =

∫
dφ ∧ dcφ ∧ ωφ ∧ ωn−2

is uniformly bounded from above, since φ is uniformly bounded in terms of
∥f∥L2(X) by the work of Kolodziej [Ko l98]. Similarly

−
∫
d(φ−ψ)∧dcφ∧ωψ ∧ωn−2 ≤ B

(∫
d(φ− ψ) ∧ dc(φ− ψ) ∧ ωψ ∧ ωn−2

)1/2

,

where

B2 =

∫
dφ ∧ dcφ ∧ ωψ ∧ ωn−2
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is uniformly bounded from above. Note that both terms can be further bounded
from above by the same quantity by bounding from above ωφ (resp. ωψ) by
ωφ + ωψ.

Going on this way by induction, replacing at each step ω by ωφ + ωψ, we end
up with a control from above of

∫
d(φ−ψ)∧dc(φ−ψ)∧ωn−1 by a quantity that

is bounded from above by CI(φ,ψ)2
−(n−1)

(there are (n− 1)-induction steps), for
some uniform constant C > 0. This finishes the proof of the first step.

The second step consists in showing that

∥φ− ψ∥L∞(X) ≤ C2∥φ− ψ∥γ
L2(X)

for some constants C2, γ > 0. We are not going to dwell on this second step here,
as it would take us too far. It relies on the comparison techniques between the
volume and the Monge-Ampère capacity, as used in [Ko l98]. �

3.4.3. Conclusion. We are now in position to conclude the proof of Theorem 3.1
(at least in case F (s, x) = −G(s) + h(x), with G convex). Let ψ0 ∈ PSH(X,ω)
be a continuous solution to

(ω + ddcψ0)
n = e−F (ψ0,x)ωn.

Fix uj ∈ C∞(X) arbitrary smooth functions which uniformly converge to ψ0

and let ψj ∈ PSH(X,ω) ∩ C∞(X) be the unique smooth solutions of

(ω + ddcψj)
n = cje

−F (uj ,x)ωn,

normalized by
∫
X(ψj − ψ0)ω

n = 0. Here cj ∈ R are normalizing constants wich
converge to 1 as j → +∞, such that

cj

∫
X
e−F (uj ,x)ωn =

∫
X
ωn,

and the existence (and uniqueness) of the ψj ’s is provided by Yau’s celebrated
result [Yau78]. It follows from the stability estimate (Theorem 3.8) that

∥ψj − ψ0∥L∞(X) −→ 0 as j → +∞,

hence

∥ψj − uj∥L∞(X) −→ 0 as j → +∞.

Consider the complex Monge-Ampère flows

∂φt,j
∂t

= log

[
(ω + ddcφt,j)

n

ωn

]
+ F (φt,j , x) − log cj ,

with initial data φ0,j := ψj . It follows from Lemma 3.2 that

∥φt,j − φt,k∥L∞(X×[0,T ]) ≤ eλT ∥ψj − ψk∥L∞(X) + |log cj − log ck| ,

thus (φt,j)j is a Cauchy sequence in the Banach space C0(X × [0, T ]). We set

φt := lim
j→+∞

φt,j ∈ C0(X × [0, T ]).

Note that φt ∈ PSH(X,ω) for each t ∈ [0, T ] fixed and φ0 = ψ0 = limφ0,j by
continuity. Proposition 3.7 shows moreover that (φt,j)j is a Cauchy sequence in
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the Fréchet space C∞(X×]0, T ]), hence (x, t) 7→ φt(x) ∈ C∞(X×]0, T ]). Observe
that

∥φ̇0,j∥L∞(X) = ∥F (ψj , x) − F (uj , x)∥L∞(X) ≤ C∥ψj − uj∥L∞(X) → 0.

Lemma 3.4 therefore yields for all t > 0,

∥φ̇t∥L∞(X) = lim
j→+∞

∥φ̇t,j∥L∞(X) ≤ C lim
j→+∞

∥φ̇0,j∥L∞(X) = 0.

This shows that t 7→ φt is constant on ]0, T ], hence constant on [0, T ] by
continuity. Therefore ψ0 ≡ φt is smooth, as claimed.

4. A priori estimates for parabolic Monge-Ampère equations

In this section (X,ω) denotes a compact Kähler manifold endowed with a
reference Kähler form with volume form dV . Let (ωt)t∈[0,T ] be a smooth path of
Kähler forms, a smooth positive volume form µ = fdV . Our goal is to provide a
priori estimates on a solution φ ∈ C∞(X × [0, T ]) to

∂

∂t
φ = log

[
(ωt + ddcφt)

n

µ

]
. (4.1)

that only depend on

• the C0-norm of φ0;
• a given semipositive and big (1, 1)-form θ such that ωt ≥ θ for t ∈ [0, T ];
• the Lp-norm and certain Hessian bounds for the density f of µ.

4.1. C0-bound.

Lemma 4.1. Let θ be a semipositive and big (1, 1)-form and C > 0, p > 1 such
that

(i) 0 ≤ θ ≤ ωt ≤ Cω for t ∈ [0, T ].
(ii) C−1 ≤

∫
µ and

∫
fpdV ≤ C.

(iii) supX |φ0| ≤ C.

Then there exists A > 0 only depending on θ, T , p and C such that

sup
X×[0,T ]

|φ| ≤ A.

Proof. During the proof we shall say that a constant is under control if it only
depends on the desired quantities.
Step 0: an auxiliary construction. The following construction will also be
used in the proof of Lemma 4.3 below. For ε ∈]0, 1] we introduce the Kähler form

ηε := (1 − ε)θ + ε2ω

and set cε := log
∫
ηnε∫
µ

. Since ωt is a continuous family of Kähler forms, we can

fix 0 < ε ≪ 1 such that ωt ≥ εω for all t ∈ [0, T ]. Note that cε is under control
(even though ε itself is not!). Observe that ωt ≥ (1 − ε)θ + εωt, hence

ωt ≥ ηε for t ∈ [0, T ]. (4.2)

By [Yau78] there exists a unique smooth ηε-psh function ρε such that

(ηε + ddcρε)
n = ecεµ (4.3)
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and normalized by supX ρε = 0. The Lp-norm of the right-hand side is under
control and 1/2θ ≤ ηε ≤ (C + 1)ω, so that the uniform version of Kolodziej’s
L∞-estimates [EGZ09] shows that supX |ρε| is under control.

Step 1: Bounding φt from above. By non-negativity of the relative entropy
of the probability measure µ/

∫
µ with respect to (ωt + ddcφt)

n/
∫
ωnt we have∫ (

−φ̇t + log

(∫
ωnt∫
µ

))
µ ≥ 0.

It follows that d
dt

(∫
φtµ

)
≤ A1 with A1 under control, hence

∫
φtµ ≤ A2 since

supX |φ0| is under control. On the other hand there exists δ > 0 and B1 > 0 such
that

∫
e−δψωn ≤ B1 for all normalized θ-psh functions φ, by Skoda’s uniform

integrability theorem [Zer01]. By Hölder’s inequality it follows that
∫
e−δ

′φµ ≤
B2 where δ′ := δ/q with q the conjugate exponent of p, and we get a uniform
mean value inequality

sup
X
φ ≤

∫
φµ∫
µ

+B3

for all θ-psh functions φ. Applying this to φ = φt yields the desired upper bound
on φt.

Step 2: Bounding φt from below. Consider ηε and ρε as in Step 0, and set
Ht := φt − ρε − cεt. By (4.3) and (4.2) we get

∂

∂t
Ht = log

(ωt + ddcρε + ddcHt)
n

(ηε + ddcρε)n
≥ log

(ωt + ddcρε + ddcHt)
n

(ωt + ddcρε)n

onX×[0, T ], hence infX Ht ≥ infX H0 by Proposition 2.1. Since cε and supX |ρε| ≤
M are under control, this concludes the proof of Lemma 4.1. �

Remark 4.2. Let us stress, as a pedagogical note to the non expert reader, that
this parabolic C0-estimate thus follows from

• the elementary maximum principle (Proposition 2.1 )
• Skoda’s uniform integrability theorem
• Kolodziej’s uniform elliptic estimate [Ko l98, EGZ09]

4.2. Bounding the time derivative.

Lemma 4.3. With the notation and assumptions of Lemma 4.1, assume further-
more that ωt is an affine path, so that ω̇t = χ is independent of t. Then there
exists A > 0 only depending on θ, C p and T such that

sup
X
φ̇t ≤ At−1 for t ∈]0, T ].

For each T ′ < T there exists A′ only depending on θ, C, p and T ′ such that

inf
X
φ̇t ≥ −A′t−1 for t ∈]0, T ′].
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Proof. We have ωt = ω0 + tχ. Set ω′
t := ωt + ddcφt and let ∆′

t = trω′
t
ddc be the

Laplacian with respect to ω′
t. We trivially have

∆′
tφt = n− trω′

t
(ωt), (4.4)

while applying ∂
∂t to φ̇t = log(ω′n

t /µ) yields(
∂

∂t
− ∆′

t

)
φ̇t = trω′

t
χ. (4.5)

Step 1: bounding φ̇t from above. Set Ht := tφ̇t − φt − nt. Then(
∂

∂t
− ∆′

t

)
Ht = trω′

t
(tχ− ωt) = trω′

t
(−ω0) ≤ 0

on X × [0, T ]. Proposition 2.1 yields supX Ht ≤ supX H0 for 0 ≤ t ≤ T , hence
the desired upper bound on tφ̇t since supX |φt| is under control by Lemma 4.1.

Step 2: bounding φ̇t from below. Recall ηε, ρε from Step 0 of the proof of
Lemma 4.1. Consider

Ht := tφ̇t +Aφt − ρε +Bt

where A,B > 0 will be specified afterwards. Using (4.4) and (4.5) we get(
∂

∂t
− ∆t

)
Ht = trωt(tχ+Aωt + ddcρε) + (1 +A)φ̇t −An+B.

We now fix A ≫ 1 under control such that (A + 1)T ′/A < T . We then have for
t ∈ [0, T ′]

Aωt + tχ = Aω(A+1)t/A ≥ Aηε ≥ ηε

by (4.2), hence(
∂

∂t
− ∆′

t

)
Ht ≥ trω′

t
(ηε + ddcρε) + (A+ 1)φ̇t −An+B

≥ nencε
(
µ

ω′n
t

)n
+ (A+ 1) log

(
ω′n
t

µ

)
−An+B

using (4.3) and the arithmetico-geometric inequality. Since

nencεx1/n − (A+ 1) log x ≥ −C
is bounded below by a constant under control for x ∈]0,+∞[, we may now choose
B > 0 under control such that

(
∂
∂t − ∆t

)
Ht ≥ 0 on X × [0, T ′]. Proposition 2.1

therefore yields infX Ht ≥ infX H0 for t ∈ [0, T ′], which concludes the proof of
Lemma 4.3 since supX |ρε| and supX |φt| are under control. �

4.3. Bounding the Laplacian on the ample locus.

Lemma 4.4. With the notation and assumptions of Lemma 4.1, assume that
ω̇t ≤ Cω. Assume also that the volume form µ is written as

µ = eψ
+−ψ−

ωn (4.6)

where ψ± ∈ C∞(X) satisfy

(i) ddcψ+ ≥ −C ω and −C ≤ supX ψ
+ ≤ C.
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(ii) ddcψ− ≥ −C ω, supX ψ
− ≤ C, and ∥e−ψ−∥Lp ≤ C for a given p > 1.

Let also K be a compact subset of the ample locus of the big class [θ] and 0 <
T ′ < T . Then there exists A > 0 only depending on θ, C, p, T ′ and K such that

sup
K

|∆φt|eψ
− ≤ eAt

−1
for t ∈]0, T ′].

Proof. We first observe that the estimate (ii) of Lemma 4.1 in fact follows from
(i) and (ii). Indeed the upper bound follows from Hölder’s inequality. To get the
lower bound, it is enough to show by Jensen’s inequality that

∫
ψ+ωn is under

control, which follows from the mean value inequality for Cω-psh functions.
From now on we work on the ample locus Ω ⊂ X of [θ]. We may choose a

θ-psh function ψθ ≤ 0 such that ψθ → −∞ near ∂Ω and

ω̃ := (θ + ddcψθ)|Ω
extends to a Kähler form on a compactification X̃ of Ω dominating X. The latter
condition implies that there exists C1 > 0 under control such that ω ≤ C1ω̃
and the holomorphic bisectional curvature of ω̃ is bounded below by −C1. By
Proposition 2.2 we thus have

−∆′
t log trω̃(ω′

t) ≤
trω̃ Ric(ω′

t)

trω̃(ω′
t)

+ C1 trω′
t
(ω̃). (4.7)

Now ω′n
t = eφ̇tµ implies Ric(ω′

t) = Ric(µ) − ddcφ̇t. Combining this with

∂

∂t
log trω̃(ω′

t) =
trω̃(ω̇t + ddcφ̇t)

trω̃(ω′
t)

,

we get (
∂

∂t
− ∆′

t

)
log trω̃(ω′

t) ≤
trω̃ (Ric(µ) + ω̇t)

trω̃(ω′
t)

+ C1 trω′
t
(ω̃).

Now Ric(µ) = −ddcψ+ + ddcψ− + Ric(ω) ≤ C2ω̃+ ddcψ− for some C2 > 0 under
control, and ω̇t ≤ Cω by assumption, hence(

∂

∂t
− ∆′

t

)
log trω̃(ω′

t) ≤
C3 + ∆ω̃ψ

−

trω̃(ω′
t)

+ C1 trω′
t
(ω̃).

In order to absorb ψ− in the left-hand side, write

0 ≤ Cω + ddcψ− ≤ CC1ω̃ + ddcψ− ≤ trω′
t
(CC1ω̃ + ddcψ−)ω′

t,

which yields

0 ≤ nCC1 + ∆ω̃ψ
−

trω̃(ω′
t)

≤ CC1 trω′
t
(ω̃) + ∆tψ

−.

Using the trivial inequality trω̃(ω′
t) trω′

t
(ω̃) ≥ n we arrive at(

∂

∂t
− ∆′

t

)
(log trω̃(ω′

t) + ψ−) ≤ C4 trω′
t
(ω̃) (4.8)

with C4 > 0 under control.
Now set

Ht := t(log trω̃(ω′
t) + ψ−) +A(ψθ − φt).
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with A := 2 + C4T . Since

ω̃ + ddc(φt − ψθ) = θ + ddcφt ≤ ωt + ddcφt = ω′
t

we have

∆′
t(φt − ψθ) ≤ n− trω′

t
(ω̃),

which combines with (4.8) to yield(
∂

∂t
− ∆′

t

)
Ht ≤ log trω̃(ω′

t) + ψ− − 2 trωt(ω̃) −Aφ̇t +An

≤ log trω̃(ω′
t) + ψ− − 2 trωt(ω̃) + C5t

−1

since supX |tφ̇t| is under control. By (i) of Proposition 2.2 we get

log trω̃(ω′
t) + ψ− ≤ (n− 1) log trω′

t
(ω̃) + C6t

−1 (4.9)

using ψ+ ≤ 0 and the bound on |tφ̇t|, and we get(
∂

∂t
− ∆′

t

)
Ht ≤ − trω′

t
(ω̃) + C7t

−1

since (n− 1) log x− 2x ≤ −x+O(1) for x ∈]0,+∞[.
We now follow the proof of the minimum principle; since ψθ → −∞ near ∂Ω,

there exists (x0, t0) ∈ Ω × [0, T ] such that Ht0(x0) = sup(x,t)∈X×[0,T ′]Ht(x) for

some t0 ∈]0, T ′]. If t0 > 0 then
(
∂
∂t − ∆t

)
Ht ≥ 0 at (x0, t0), hence trωt(ω̃) ≤

C7t
−1 at (x0, t0), and we get

t(log trω̃(ω′
t) + ψ−) ≤ C8

at (x0, t0) thanks to (4.9). Since ψθ ≤ 0 and |φt| is under control, we infer
Ht(x) ≤ C9 at (x0, t0), hence for all (x, t) ∈ X × [0, T ′]. As a conclusion we
obtain A,B > 0 under control such that

trω̃(ω′
t) ≤ Be−ψ

−−At−1ψθ

for t ∈ [0, T ′], which concludes the proof of Lemma 4.4. �

4.4. A stability estimate. We next prove the following Lipschitz continuity
property of solutions to (4.1).

Lemma 4.5. Let ωit, φ
i
t, i = 1, 2 satisfy the assumptions of Lemma 4.4 (with the

same measure µ and semipositive and big form θ). Then for each K b Amp (θ)
such that infK ψ

− ≥ −C there exists AK > 0 under control such that for all
t ∈ [0, T ]

sup
K

∣∣φ1
t − φ2

t

∣∣ ≤ AK

(
sup
X

∣∣φ1
0 − φ2

0

∣∣+ sup
t∈[0,T ]

∥ω1
t − ω2

t ∥

)
where we have set for each real (1, 1)-form α

∥α∥ = inf {s ≥ 0 | ±α ≤ sω} .
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Proof. We write

N := sup
X

|φ1
0 − φ2

0|, M = sup
t∈[0,T ]

∥ω1
t − ω2

t ∥.

If M = 0 then ω1
t = ω2

t for t ∈ [0, T ], and Proposition 2.1 easily yields the desired
inequality with AK = 1. We thus assume that M > 0 and set for λ ∈ [0,M ]

ωλt :=
(
1 − λ

M

)
ω1
t + λ

M ω
2
t .

Since ωλt is a Kähler form for t ∈ [0, T ], Theorem 2.3 yields a unique solution
φλ ∈ C∞(X × [0, T ]) to the parabolic Monge-Ampère equation

∂

∂t
φλ = log

[(
ωλt + ddcφλt

)n
µ

]
φλ0 =

(
1 − λ

M

)
φ1
0 + λ

Mφ
2
0

(4.10)

and φλ futhermore depends smoothly on λ. We also note that supX |φλt | is uni-
formly under control for t ∈ [0, T ] and λ ∈ [0,M ], thanks to Lemma 4.1. Setting
ω′λ
t := ωλt + ddcφλt we have(

∂

∂t
− ∆λ

t

)(
∂

∂λ
φλt

)
= M−1 trω′λ

t

(
ω′
t − ωt

)
≤ trω′λ

t
(ω) (4.11)

where ∆λ
t denotes the Laplacian with respect to ω′λ

t and the right-hand inequality
follows from the definition of M . Now introduce

Ht = e−At
(
∂

∂λ
φλt

)
−A2φλt +A2ψθ +Aψ−,

where A > 0 will be specified below. Recalling (4.6) we compute(
∂

∂t
− ∆λ

t

)
Ht = −AHt −A3φλt +A3ψθ +A2ψ+ −A2 log

(ω′λ
t )n

ωn

+e−At
(
∂

∂t
− ∆λ

t

)(
∂

∂λ
φλt

)
+ trω′λ

t

(
−A2(ωλt + ddcψθ) −Addcψ−

)
+A2n

≤ −AHt +A2n log trω′λ
t

(ω) + trω′λ
t

(
e−Atω −A2(ωλt + ddcψθ) −Addcψ−

)
+B1,

using ψθ, ψ
+ ≤ 0, the arithmetico-geometric inequality and the fact that supX |φλt |

is under control. Using the lower bound ddcψ− ≥ −Cω we get

e−Atω −A2(ωλt + ddcψθ) −Addcψ− ≤ (AC + 1)ω −A2(θ + ddcψθ) ≤ −cA2ω

for c > 0 under control and all A large enough. It follows that

trω′λ
t

(
e−Atω −A2(ωλt + ddcψθ) −Addcψ−

)
+A2n log trω′λ

t
(ω)

≤ A2
(
−c trω′λ

t
(ω) + n log trω′λ

t
(ω)
)
≤ A2B2.

We conclude that
(
∂
∂t − ∆λ

t

)
Ht ≤ −AHt+B3 with A,B3 > 0 under control. Now

H0 = M−1
(
φ2
0 − φ1

0

)
−A2φλ0 +A2ψθ +Aψ−,
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hence supX H0 ≤ M−1N + B4, and the maximum principle yields supX Ht ≤
M−1N +B5. It follows that

sup
K

∂

∂λ
φλt ≤ B6M

−1N +B7,

which integrates to

sup
K

(
φ2
t − φ1

t

)
≤ B6N +B7M,

and the result follows by symmetry. �

5. Proof of Theorem 1.10

Let (X,ω) be a compact Kähler manifold endowed with a reference Kähler
form. We assume given the following data:

• An affine path θt = θ0 + tχ, t ∈ [0, T [, of closed (1, 1)-forms such that the
cohomology class of θt is semipositive and big for t ∈ [0, T [.

• A positive measure µ of the form

µ = eψ
+−ψ−

dV

where ψ± are quasi-psh functions that are smooth on a Zariski open subset

Ω of the ample locus of [θ0] and such that e−ψ
− ∈ Lp for some p > 1.

• A function φ0 ∈ C0(X) ∩ PSH(X, θ0).

Our goal is to show the existence of a unique family φt of functions on X which
satisfy the following properties:

(i) φt is θt-plurisubharmonic and bounded, uniformly with respect to t ∈
]0, T ′[ for each T ′ < T .

(ii) on Ω×]0, T [ φt is smooth and satisfies there

∂

∂t
φ = log

[
(θt + ddcφt)

n

µ

]
. (5.1)

(iii) φt → φ0 uniformly on compact subsets of Ω as t→ 0.

As a first remark, we may assume that there exists a semipositive and big form
θ with θt ≥ θ for t ∈ [0, T ]. Indeed, by assumption there exists u0, uT ∈ C∞(X)
such that θ0 + ddcu0 and θT + ddcuT are both semipositive and big. If we set

ut :=
(
1 − t

T

)
u0 + t

T uT

then each 0 < ε≪ 1 we then have

θt + ddcut =
(
1 − t

T

)
(θ0 + ddcu0) + t

T (θT + ddcvT ).

≥ ε
T (θ0 + ddcu0) =: θ

for t ∈ [0, T − ε]. The reduction is now achieved by replacing T with T − ε, θ0
with θ0 + ddcu0, χ with χ+ T−1ddc(uT − u0), and ψ+ with ψ+ + T−1(uT − u0).
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5.1. Existence. We regularize the data. By [Dem92], there exist two sequences
ψ±
k ∈ C∞(X) such that

• ψ±
k decreases pointwise to ψ±, and the convergence is in C∞(Ω);

• ddcψ±
k ≥ −Cω for some fixed C > 0.

By Richberg’s theorem we similarly get a decreasing sequence φj0 ∈ C∞(X) such

that δj := supX

∣∣∣φj0 − φ0

∣∣∣→ 0 and θ0 + ddcφj0 > −εjω with εj → 0. We then set

• θj0 := θ0 + εjω, θjt = θj0 + tχ.

• µk,l = eψ
+
k −ψ−

l ωn.

Since θjt is a Kähler form for t ∈ [0, T ] and θj0 + ddcφj0 > 0, Theorem 2.3 yields a
unique solution φj,k,l ∈ C∞ (X × [0, T ]) to

∂

∂t
φj,k,lt = log


(
θjt + ddcφj,k,l

)n
µk,l


φj,k,l0 = φj0

(5.2)

Lemma 5.1. The sequence (φj,k,l)j,k,l is bounded in the Fréchet space C∞ (Ω×]0, T [),

and there exists C > 0 such that supX×[0,T ]

∣∣φj,k,l∣∣ ≤ C for all j, k, l.

Proof. The C0-bound on X × [0, T ] follows from Lemma 4.1. By Lemma 4.3 and
4.4, for each compact set L b Ω×]0, T [ there exists a uniform constant CL > 0
such that

sup
L

∣∣∣φj,k,l∣∣∣+ sup
L

∣∣∣∣ ∂∂tφj,k,l
∣∣∣∣+ sup

L

∣∣∣∆φj,k,l∣∣∣ ≤ CL (5.3)

for all j, k, l. The boundedness in C∞-topology on Ω×]0, T [ follows by the para-
bolic version of the Evans-Krylov a priori estimates and parabolic boot-strapping
(see e.g. [Gill11]). �

Lemma 5.2. For each j fixed the sequence φj,k,l is increasing (resp. decreasing)
with respect to k (resp. l). For each K b Ω there exists AK > 0 such that

sup
K×[0,T ]

∣∣∣φi,k,l − φj,k,l
∣∣∣ ≤ AK (δi + δj + εi + εj) (5.4)

for all i, j, k, l.

Proof. The monotonicity with respect to k and l follows immediately from Propo-
sition 2.1, while the last assertion is a consequence of Lemma 4.5. �

Using Lemma 5.1 and 5.2 we get the existence of

φj,k = lim
l→∞

φj,k,l, φj = lim
k→∞

φj,k

in C∞ (Ω×]0, T [) by monotonicity. By Lemma 5.2 the sequence φj is Cauchy
with respect to the sup-norm, hence the existence of

φ = lim
j→∞

φj
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in C∞(Ω×]0, T [) using again Lemma 5.1. By (5.2), φ satisfies

∂

∂t
φ = log

[
(θt + ddcφt)

n

µ

]
on Ω×]0, T [. Lemma 5.2 also shows that φ is bounded on Ω × [0, T ] and yields
for each K b Ω a constant AK > 0 such that

sup
K×]0,T ]

∣∣∣φj,k,l − φ
∣∣∣ ≤ AK(δj + εj)

for all j, k, l. Since for each j, k, l fixed we have limt→0 φ
j,k,l
t = φj0 it follows that

φt → φ0 uniformly on compact subsets of Ω, so that φ satisfies (5.1).

5.2. Uniqueness. Let φ′ ∈ C∞(Ω×]0, T [) be another solution to (i), (ii) and (iii)
above. Our goal is to prove φ′ = φ by the maximum principle. Fix ψ ∈ C∞(Ω)
such that θ + ddcψ ≥ 0, ψ ≤ 0 and ψ → −∞ near ∂Ω. We also fix 0 < c ≪ 1
with cθ ≤ ω, so that ω + c ddcψ ≥ 0.

Let us first prove φ ≥ φ′. For a given index j set Ht := φjt − φ′
t − cεjψ. On

Ω×]0, T ] we have

∂

∂t
H = log

(θt + ddcφ′
t + ddcHt + εj(ω + c ddcψ))n

(θt + ddcφ′
t)
n

≥ log
(θt + ddcφ′

t + ddcHt)
n

(θt + ddcφ′
t)
n

hence infΩHs ≥ infΩHt for s ≥ t > 0 by Proposition 2.1. Since φjt and φ′
t are

bounded on Ω independently of t and ψ → −∞ at ∂Ω, there exists Kj b Ω
independent of t ∈]0, T [ such that infΩHt = infKj Ht. Using the boundary

conditions limt→0 φ
j
t = φj0 and limt→0 φ

′
t = φ0 uniformly on compact sets of Ω,

it follows that

lim
t→0

inf
Kj

Ht = inf
Kj

(
φj0 − φ0 − cεjψ

)
≥ 0

since φj0 ≥ φ0 and ψ ≤ 0. We have thus shown that φj ≥ φ′ + cεjψ on Ω×]0, T [,
hence φ ≥ φ′ by letting j → ∞.

In order to prove the converse inequality, we need to introduce yet another
parameter in the construction of φ, in order to allow more flexibility. Fix T ′ < T
and choose 0 < δ0 ≪ 1 such that T ′ ≤ (1 − δ0)T . For δ ∈ [0, δ0] and t ∈ [0, T ′]

set θδt := (1 − δ)θ0 + tχ and θδ,jt := θδt + εjω, and note that

θδ,jt ≥ (1 − δ0)θ.

Since

(1 − δ)θ0 + εjω + (1 − δ)ddcφj0 > 0,
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Theorem 2.3 yields a unique solution φδ,j,k,l ∈ C∞(X × [0, T ′]) to
∂

∂t
φδ,j,k,lt = log


(
θδ,jt + ddcφδ,j,k,l

)n
µk,l


φδ,j,k,l0 = (1 − δ)φj0

(5.5)

Just as in Lemma 5.1 and 5.2, φj,k,l is monotonic with respect to k and l, uni-
formly bounded onX×[0, T ′], the sequence (φj,k,l)j,k,l is bounded in C∞ (Ω×]0, T ′]),
and for each K b Ω we have an estimate

sup
K×[0,T ′]

∣∣∣φδ,i,k,l − φδ,j,k,l
∣∣∣ ≤ AK(εi + εj + δi + δj)

independent of δ ∈ [0, δ0], i, j, k and l. We may thus consider

φδ,j,k = lim
l→∞

φδ,j,k,l, φδ,j = lim
k→∞

φδ,j,k, φδ = lim
j
φδ,j

in C∞ (Ω×]0, T [).
Since

sup
X

∣∣∣φj,k,l0 − φδ,j,k,l0

∣∣∣ = δ sup
X

∣∣∣φj0∣∣∣
and ∥θj0 − θδ,j0 ∥ = δ∥θ∥ are uniformly bounded, Lemma 4.5 shows that

sup
K×[0,T ′]

∣∣∣φδ,j,k,l − φj,k,l
∣∣∣ ≤ CKδ

for each K b Ω, with CK > 0 independent of δ, j, k, l, and hence

sup
K

∣∣∣φδ − φ
∣∣∣ ≤ CKδ (5.6)

for all δ ∈ [0, δ0].
Now we introduce for a given δ ∈]0, δ0] Ht := φ′

t − φδt − δψ ∈ C∞(Ω×]0, T ′[).
We have

∂

∂t
H = log

(
θδt + ddcφδt + δ(θ0 + ddcψ) + ddcHt

)n(
θδt + ddcφδt

)n
≥ log

(
θδt + ddcφδt + ddcHt

)n(
θδt + ddcφδt

)n
hence infΩHs ≥ infΩHt for s ≥ t > 0 by Proposition 2.1. Since φδ and φ are
bounded, there exists Kδ b Ω such that infΩHt = infKδ

(φ′
t − φδt − δψ), hence

limt→0 infΩHt = infKδ
(−δφ0 − δψ) ≥ −δ supX |φ0|. We have thus shown that

φ′ ≥ φδ + δψ − δ supX |φ0| on Ω×]0, T ′], and we obtain φ′ ≥ φ on Ω by letting
δ → 0 thanks to (5.6).

Remark 5.3. Since φ̇t is uniformly bounded for t in a compact set of ]0, T [,
[EGZ11] implies that φt ∈ C0(X) for each t ∈]0, T [ and supX |φt − φs| ≤ C|t −
s| for t, s in a compact set of ]0, T [. It follows that φ ∈ C0(X×]0, T [). Is it
continuous on the whole X × [0, T [ ?
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