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Introduction

We are interested in the approximation of positive closed currents of bidegree
(1, 1) on a complex manifolX by rational divisors, i.e. currents of the type

N%,[Hj], whereN; is an integer angld;] denotes the current of integration

along a complex hypersurfadé; of X.

When X is a pseudoconvex open set@f s.t. H2(X,R) = 0, Lelong
proved [Le 72] that one can always find such an approximation in the weak
sense of currents. Demailly [De 82] generalized this result to the case where
X is a Stein or a projective algebraic manifold, modulo some cohomological
assumptions: for example one can weakly approximate a positive closed
currentT of bidegree(1, 1) if it has integer class (i.67] € H?(X,7Z)).

Using rational convexity properties of the complement of the support of
a positive closed currefit of bidegreg1, 1) in C™, Duval and Sibony [D-S
95] showed that one can approximdtdoy rational divisors whose support
converges t&upp T in the Hausdorff metric.

The purpose of this work is an attempt to generalize this result to the
case of projective algebraic and Stein manifolds.

We first consider the case of homogeneous manifalds fomogeneous
if its group of biholomorphisms AgfX') acts transitively onX). There is
in this situation a useful regularization process for positive metrics of holo-
morphic line bundles which we recall in an Appendix. Our main theorem
1.6 shows that:
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Theorem 0.1 Every positive closed currefit of bidegreg1, 1) on the pro-
jective spac@™(C) (resp. the Grassmann manifalé, ,,,(C) of k—planes
of C™, resp. the hyperquadri@,,(C) for m > 4) can be weakly approxi-
mated by rational divisors whose support convergeSdpp 7.

We give an example (1.3) of a current on an abelian torus for which such an
approximation does not hold.

In paragraph 2 we define and study the notion of (strong)rational convex-
ity on acomplex manifoldl: acompact sk is said to be (strongly)rationally
convex if X \ K is a union of positive divisors. Our main theorem is a gen-
eralization of a result of [D-S 95]:

Theorem 0.2 Let S be a smooth compact totally real submanifold of a
projective algebraic manifold. ThenS is rationally convexiffitis isotropic
for some Hodge form, i.ess = 0 for some Khler formw on X s.t.

[w] € H3(X,Z).

There is no intrinsic definition of polynomial convexity on complex
manifolds generalizing the usual notionG#". However we define a notion
of polynomial convexity relative to a positive closed currégnof bidegree
(1,1):

Definition 0.3 TheT—polynomial hull of a compact subsat of X is
KT .= {x € X/ flx)<supf,VfeClpr(X)stddf > —T} ,
K

whereCr(X) denotes the set of functioffse L'(X) s.t.exp(f + ) is
continous whenevep is a local potential ofl’. The compack is said to
be T'—polynomially convex wheR ” = K.

In many casesX \ SuppT satisfies a convexity property (the “condition
(C): VK cC X \ SuppT, KT cc X \ SuppT) which turns out to be
intermediate between being “rationally convex” and being Runge. An inter-
esting observation on the Levi problem (theorem 3.7) yields the following:

Theorem 0.4 Let T' be a positive closed current of bidegrék 1) on a
compact Khler manifoldX. If T is cohomologous to a &hler form and
satisfies conditiofiC'), thenX \ Supp T is Stein.

This generalizes the standard situation wheisea holomorphic section of
some positive holomorphic line bundle oh and7 = [{s = 0}] is the
current of integration along the positive divispr = 0}.

Ourmain approximation result gives an approximation of certain positive
closed currents by rational divisors with a control of the supports and the
Lelong numbers of the approximants:
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Theorem 0.5 Let T' be a positive closed current of bidegrég 1) on a
projective algebraic manifold(. Assume there i5 > 0 s.t.[A\T] = ¢1(L)
for some holomorphic line bundle which we assume is positive. Assume
T = [H] + R, whereH = 3%_, \;[Z;] (¥4, ); is a positive constant and
Zjis anirreducible algebraic hypersurface &f) and R is a positive closed
current of bidegred1,1) on X s.t. the level sets of Lelong numbersiyf
E.(R) = {z € X /v(R,z) > c}, are of codimension greater or equal
than2. Assume moreover thdt satisfies conditioriC').
Then there existd/; € Nands; € I'(X, L") s.t.

) T; = Nij[{sj = 0}] — T in the weak sense of currents;

ii) {s; =0} — SuppT in the Hausdorff metric;
i) Ve € X, v(Tj,x2) — v(T, ).

It can be seen as a combination of a result of Demailly [De 93] and the
approximation result of Duval and Sibony [D-S 95].

Finally we take up our main results in paragraph 5 considering the case
of Stein manifolds.

We now set some notations and recall a few definitions from complex
analytic geometry for the reader’s convenience.

Let L be a holomorphic line bundle on a complex manifald We al-
ways implicitly fix a locally finite open coveringif, } of X s.t. Ly, is
trivial and both thé/,’s and theA, 3 := U, NUz are connected and simply
connected. The line bundle is then uniquely determined by its transition
functionsg.s € O*(U,p). We denote by?ic(X) the Picard group of holo-
morphic line bundles ofX and we use a multiplicative notation for the
group law; I'(X, L) denotes the set of holomorphic sectionslobn X,
ie.s € I'(X,L) is a set{s,} of functionss, € O(U,) satisfying the
compatibility conditions, = gagsg iN Uags.

A positive (singular-)metric of. is a setp = {¢,, } of plurisubharmonic
functions (psh for short)y, € PSH(Uy), S.t.0a = @5 +10g |gas| INUag.

Note that the curvature current of the metric defined#® := dd°p,, inU,,
(whered = 9+ 0 andd® = 5 (9 —0)) is globally well defined orX, since

log |gag| is pluriharmonic irt4,; it is a positive closed current of bidegree
(1,1) on X but not necessarily a smooth form since we allow singularities.
Observe also that the difference of two metricé @ a globally well defined
function f € LY(X). If h = {ha} € I'(X, L), thenlog |h| := {log |hal}
defines a positive singular metric &fon X. We denote byP(X, L) the

set of positive metrics of. on X; if ¢ = {p,} € P(X,L) andh =
{ha} € I'(X, L), then the norm of. in the metricy is defined in eact(,

by ||, := [hale™?e.

When X is compact Khler, it follows from the Hodge decomposition
theorem that if a positive closed curr@nof bidegreg1, 1) on X has integer
class (i.e[T] € H?(X,Z)), then[T] is equal to the first Chern class of some
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holomorphic line bundld. on X . Therefore there exists a positive metric
of L on X which is a potential fofl’ (i.e.T" = dd‘yp,, in U, and we write
thenT = dd°p).

Aline bundleL € Pic(X) is said to be pseudoeffective if there exists a
singular positive metrigp of L on X andL is positive (resp. semi-positive)
if it admits a smooth positive metrig on X s.t. the curvature forrid®y is
a Kahler form onX (resp. a semi-positivel, 1)—form).

We refer to [De 90] for further details and we finally recall a particular
version of the solution to th@—problem with L2 —estimates on projective
algebraic and Stein manifolds that we use intensively in the present work:

Theorem 0.6 Let X be a projective algebraic or a Stein manifold of dimen-
sionm and fixw a K&hler form onX. Let L be a holomorphic line bundle on
X and suppose there exists a singular mefraf L s.t.dd“0 > ew for some
positive constant. Then for every smooth—closed(m, 1)—form v with
valuesinL, s.t. [ [v]2e=2dV,, < +oo, there exists a smoothn, 0)—form

u with values inL s.t.0u = v and

1
/ lul?e=2%aV,, < / lv|?e=2dv,,
X €Jx

wheredV,, = %wm denotes the Khler volume element.

Acknowledgementd. would like to express my heartfelt thanks to N.Sibony for suggesting
this work and helping me through it. Part of it was done while i was visiting Chalmers
University of Technology under the support of the Swedish Royal Academy of Sciences. |
am particularly grateful to B.Berndtsson for very stimulating discussions.

1 Approximation of currents on homogeneous manifolds
1.1 A modification procedure

In this section we set up a general construction of holomorphic sections
with prescribed bounded norm on the set where a metric of a line bundle is
pluriharmonic (proposition 1.1). This is an important technical step in the
approximation theorem of the next section and we use it as well to establish
rational convexity properties of the complement of the support of positive
closed currents on homogeneous manifolds (theorem 2.5).

Proposition 1.1 Let X be a projective algebraic homogeneous manifold.
LetT be a positive closed current of bidegrge 1) on X s.t.[T] = ¢1(L)

for some holomorphic line bundle that we assume is positive.

Assuméd’ admits a continuous potential, i.e. there exists a continuous pos-
itive metricy of L s.t.dd“p =T.



Approximation of currents on complex manifolds 441

Fore > Owe setK, = {m € X /d(m,SuppT) > e} CcC X \ SuppT,
whered is a pseudo-distance function defined in the Appendix.
LetV be an open subset &f s.t. K. C V CcC X \ SuppT and fixd > 0.
Thenwe canfind an integdf and constructa continuous positive metric
v of LM and a holomorphic sectioh of LM in V s.t.
) K. C{m eV /|hlp(m)>1} ={m eV /|h|ly(m)=1} CcCV
i) || 47 = @l poo(x) < 6
iii) v is C°>°—smooth andid“y > 0 in a neighborhood ofupp T

We first prove three lemmas.

Lemma 1.2 Under the above assumptiods \ Supp T is Stein and we
can find large relatively compact Stein open sub$gtef X \ Supp T and
positive integers: s.t. L’“|W is trivial.

Proof. Itis an easy consequence of the Kontiatssatz thak \ Supp T

is locally pseudoconvex iX (see [Ce 78]). Sinc& is homogeneous it

is infinitesimally homogeneous (i.e. the global holomorphic vector fields
generate the tangent spacedft every point ofX, see [Hi 75]). It follows
then from a result of Hirschowitz [Hi 75] thaX \ SuppT is Stein iff it
admits no “interior integral curve” (a holomorphic mgp: C — X \
SuppT with relatively compact image whose tangent vectors belong to
some holomorphic vector field o). If such a curve exists, we can construct
by a standard argument (see lemma 1.3 below) a non trivial positive closed
currentS of bidimension(1, 1) with compact support iX \ Supp T. Now

T is cohomologous to a#&hler formw (L is positive), henc& = w — dd° f

for somef € L'(X) which is smooth outsid§upp T (see [G-H 78] p149);
thus Stokes theorem gives

HS” = fX WwAS = fX\SuppT dd°f NS
= f \SuppT d°f ndS

ThereforeX \ Supp T contains no interior integral curve hence it is Stein
(see also theorem 3.8).

Let o be a smooth strictly p.s.h. exhaustion function?6f\ Supp T
By Sard’s lemma we can fin&k € R as big as we like so thdl’ =
{z € X\ SuppT /o(z) < R} is a smooth relatively compact Stein open
subset ofX \ Supp T'. Therefore the cohnomology ¥ is finite dimensional
andH'(W,R) = HY(W,Z) @ R.

SincelV is Stein, it follows from Cartan’s theorem B that the Picard
group Pic(W) = H*(W, O*) is isomorphic toH 2(W, Z).

Now L admits a flat metric it/ sincedd®p = 0in W hence the image
ofthe first Chern class divia H*(W, Z) — H*(W,R) ~ H3,(W,R)is 0.
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In terms ofCech cohomology this means that a finite number of equations
in a finite number of unknowns with coefficientsZradmits a solution ifR.
Therefore it must have some solution@ and multiplying the equations
by some large integet gives a solution ir¥ to the corresponding system,
i.e.c1(L*) = 0in H2(W, Z). Sincec; is an isomorphism betwedric(W)

and H?(W, Z), this shows thaL* y is trivial. Q.E.D.

Lemma 1.3 Let {2 be an open subset of a compleitter manifold X
and lety : C — (2 be a non constant holomorphic map with relatively
compact image if2. Then there exists a non trivial positive closed current
of bidimension(1, 1) with support iny(C).

Proof. Fix w a Kahler form onX and letSy be the current of integration
over the analytic disg(A(R)), whereA(R) denotes the disc of radius
centered ab in C. We normalizeSy, in the following way:

1
< Spf>= / 0,
Lyamy @ Jramy)

wheref is any test form of bidegrefd, 1) on X. ThereforeSy are positive
currents of bidimensiofil, 1) and of masd on X. We want to extract a

weak limit that is closed; it will have compact supportjifC).
We claim there exists a sequence of rddji— +oo s.t.

1/2 1/2
Rj [faA(Rj) |’Y/|¢2u}

fA(Rj) V12

Assume the contrary. Then there exists 0 s.t.VR > 0,

1/2
RY/? [faA(R) ’7/|gz]
fA(R) V12
Setf(t) = [aw [V'I2- This is a well defined function of € R which
is smooth, positive, and s.f/(t) = €' [, 1) 175 = 0. We thus have

f(t .. .
fg((t)) > ¢ > 0. This implies

—0

>c>0.

I
£Q0) ~ f(#)

> c*t, Vit > 0,
£(0)
a contradiction.

Fix such a sequenck;. Since||Sg,|| = 1, there exists a subsequence
(Sr,, ) which converges in the weak sense of currents towards a positive
currentS of bidimension(1, 1). Again||S|| = 1andS hasrelatively compact
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support inf2. We claim thatS is closed. Indeed |Iétbe a test form of degree

1. Then
[faA(Rjk) 7*0]

<dS,0 >=— < 5,df >=— lim .
S 7

k—4o00

Now there exist&' > 0s.t.|v*0| < C|y/|., and Cauchy-Schwarz inequality

gives
1/2
/ !'Y'If,] :
OA(R;,)

Jran,
OA(R;,)

On the other hand*w = |y/|2 hence by definition ofz;,

SC/ 'l < CR}?
DA(R;,)

| faA(Rjk) 70
fA(Rjk) V13
hences is closed. Q.E.D.

Let PH (W) be the real vector space of pluriharmonic function$iin
Let{U, } be an open covering & s.t. both thé{,'s and thé/, 3 = U, NUp
are connected and simply connected.

Letp € PH(W). We can writep = R(h,) in U, Whereh, € O(U,)
and we set,g = - [ha — hg). This is a holomorphic function it s
which has imaginary part equal to zero hengg is constant. Moreover
Vag + Vgy + Vya = 01N Uy, thus{v,s} is a realCechl—cocycle and
defines a clas@,s(¢)] € H (W, R).

— 0,

Lemma 1.4 The map

®: PHW)—  HYW,R)
@ — [vag(p)] = D(p)

is a morphism of real vector spaces &dr & = R(O(W)).

Giveny € PH(W), there existdl € O*(W) s.t.¢ = log |H| in W iff
®(p) € HY(W,Z) Cc HY(W,R).

If moreoverlV is Stein, ther® is surjective.

Proof. The first assertion is clear.

Letp € PH(W)andassume@(y) = [vag] € HY(W,Z) C HY(W,R).
Then there exists,3 € Z andw, € R, s.t.v,3 = cog + wa — wg. Thus
we have

ha + 2iTwe = hg + 2imwg + 2imcap

and we can define a global holomorphic function by setfihg: /e +27wa
inU,. Clearlylog |H| = ¢ in W.



444 V. Guedi

Conversely assume there exigfse O*(W) s.t.log |[H| = ¢ in W. We
fix a determinatiorh,, = log H of the complex logarithm off in ,,. Two
such determinations only differ by an integer multiple2of hence

1
Vo = ﬂ [ha — hg] = CaB € 7.

This shows thafv,g) € HY(W,Z) C HY(W,R).

Assume now thalV’ is Stein and lefv,s] € H' (W, R). It also defines
a class inH'(W,0) = {0}. Thus there existd, € OUy,) S.t.vo5 =
ﬁ [ha — hgl. Hencef = Rh, is a globally well defined pluriharmonic
function onW s.t.&(f) = [vags]- Q.E.D.
Remark 1.5 This can be seen as a reformulation in term<eich coho-
mology of lemma 1.3 in [D-S 95].

Proof of proposition 1.1 et ° be the regularized metric gfdefined in the
Appendix. It is a smooth metric for the same line bundléhat decreases
uniformly towardsy whene decreases towards O since we assumisacon-
tinuous. We can therefore assume that — o[ .~ (x) < 5.9/8 (otherwise,
replaces by some smaller constant)

Moreoverp® = g on K., andy® > ¢ in X \ K., hence we can also assume
thatp® > ¢ + 44’ /8 ondV (with 0 < §' < ).

Let W be a smooth Stein open subsetof, Supp T s.t.V CcC W CC
X\ Supp T andH' (W, R) is equal taH } (W, Z) @R and of finite dimension,
ande|W is trivial for some positive integek (see lemma 1.2).

Thereforeky is a continuous metric df* on X which defines a plurihar-
monic function inl. Since® : PH(W) — H'(W, R) is surjective, we can
find f1,..., f, in PH(W) s.t.(®(f;)) is aZ—basis of H (W, R). We can
thus choose\ = (A1, ..., A,) € R? so small that = ke + 327, ;. f;
(which is a continuous metric df* in 1) satisfiesp(6,) € H'(W,Q) =
H'(W,Z) © Qand|| 305 — ¢l oo 1) < 8'/8
Fix M, € N s.t.®d(M;.0)) € HY(W,Z). By lemma 1.4 we can find a
holomorphic sectio of LM in W (M = kM;) which has constant norm
equal to 1 in the metrid/, 0, (i.e. |hle 0 = 1).

Sincel is positive, we can find a smooth metéitof L s.t.dd°G > 0in
X. Considerf, =n.G + (1 —n) [¢* —2§'/8] (0 < n < 1). Itis a smooth
metric of L s.t.dd® f;, > 0in X if n > 0 and| f;, — (¢° —20"/8) || (x) =
NG — (¢° — 28" /8)| e (x) < ¢'/8 if we choosep small enough.

We define
» = My Sup(k‘fn, 9)\) inV
O\ M. fy inX\V

It is a well defined continuous positive metric b in X since the maxi-
mum of two continuous positive metrics of a holomorphic line bundle is a
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continuous positive metric of the same line bundle and

1
fn < (906_25//8)+5//8:(,0—5I/8 < EQ)\ on K,

whereas

1
fn = (" —20"/8)—0'/8>p+6"/8 > 0 ondv.

We havedd®y = M.dd° f,, > Mndd°G > 0in X \ V and

/M — ll < max {1y = @loy; 10/% — @l e } <0
since

1o = @l xy < I1fn = (¢ — 20"/8)[| Lo (x) + 26" /8 + [[0e — ¢l Lo (x)
< 368 /8456/8 < 6.

Finally, ¢» = M;.0, = log|h| in a neighborhood of. hence
K. C {meV/|h\e—¢ > 1} - {mGV/yh|e—¢:1} ccv,

and the proof is complete. Q.E.D.

1.2 Approximation of1, 1)—positive closed currents

Theorem 1.6 Let X be a projective algebraic homogeneous manifold and
T a positive closed current of bidegrég 1) on X. Assume thafi\ € R**+
s.t. [\T] € H?*(X,Z), hence[\T] = c;(L) for some holomorphic line
bundle which, we assume, is positive.

Then there exist§H ;) algebraic hypersurfaces of and(NN;) integers
S.t.

and

%Nj [H;] — T in the weak sense of currents
H; — SuppT in the Hausdorff metric.

Remark 1.7 The cohomological and the positivity assumptions on the co-
homology class ¢f are always satisfied i/ '} (X) = C. This the case ik

is the complex projective spa&&*(C), the Grassmann manifoldy, ,,, (C)

of complex k-planes @™ or the hyperquadri@),,(C) (m > 4).

Proof of the theoremiVe can assume thdtis smooth since, on a homoge-
neous manifold, we can regulariZein such a way thaltr*] = [T'] andT*
tends tal’ in the sense of the theorem (see Appendix).
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We can also assume= 1 and we denote by = {p, € PSH(U,)} a
smooth positive metric of, s.t.dd°¢ = T (two such metrics only differ by
a constant).

Let K, = {m € X /d(m,SuppT) > 1}, andé, > 0 a sequence
converging towards 0. We fix ne|ghborhooht§ CC X\ SuppT of K,.

By proposition 1.1, we can find integeld,,, continuous positive metrics
1, of LM» and holomorphic sectiorts, of LM» in V,, with the prescribed
properties.

Fix (a;),en @ sequence of points denseSdnpp T'.We are going to con-

struct for each, an integerNV,, and a global holomorphic sectidf), of
LNnMn gt

|S,|eNn¥n < 1TonX
1
S, |e Nn¥n > zon {ai,...,an} UK,
Thus we get by ii) of proposition 1.1.:

1
log |.S,| < on 0NX
N L, 0g |Sn| < ¢ + 0y,
1 log 2
Nn.MnIOg’Sn’ZSD_(Sn_ ]\jn on {ai,...,an}

|Sp| > 00nK,.

The first two inequalities show the convergenceLApP log [Sy| in Ly,
towardsy (c.f.lemma15.1.7.in[H 85]) and the Lelong -Poincare equation
then givesthe convergenceﬁf— = 0}]towards T inthe weak sense
of currents, while the last mequallty shows tHat, = 0} € X \ K,,, and
since K,, exhaustsX \ Supp T, this gives the convergence ¢f,, = 0}
towardsSupp T in the Hausdorff metric.

We construct now the sectiodg. From now onp is fixed and we might
not mention the subscript. We fix an open covedbg, } of X which is fine
enough s.tyl <i < n, Jla; € U,, andL|U is trivial.

Since is smooth in a nelghborhood cﬂ‘uppT andddy > 0 on
Supp T, there are holomorphic polynomial3 s.t.¢,, (z) — R(F;)(x) >
cidgud(a,-,x), in a neighborhoodV; of a;, W; C U,,, for some strictly
positive constants;. We choose théV;’s small enough so thal; N Ug =
0, VB # a.

Let x; € Cg°(W;) with 0 < x; < 1, andy; = 1 in a neighborhood
of a;. We define smooth sections of LM by f& = 0 if o # «; and
fi = x;elVFi (IV is an integer to be chosen later).

Let x be a test function in a neighborhood &f = {|hle™¥ > 1}

(0 < x < 1andy = linaneighborhood ok’), s.tSupp x is disjoint from
the supports of thg;’s.
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Setu = x.hY + >, f;. This is a smooth global section @f¥
on X, hencedu is a smooth—closed(0, 1)—form with values inLV
i.e. a smootld—closed(m, 1)—form with values inLV" @ K% (m is the
dimension ofX).

We setN = N; + N, where we fixVy € Ns.tLV2-M K% is positive
and N, will be chosen later. Fixo a Kahler metric onX, ¢ > 0 andG a
smooth metric o.V2M @ K% s.tdd°G > e.w. We solvedv = du on X
with L? estimates associated to the metrie N;.¢) + G and get

1 _
/ lv|?e=2dV, < / |Ou|?e=2adv,.
X €JX

SinceSupp dx C {\h|e_¢ < 1}, andSupp dy; C {|eMPi|e_¢ < 1}, we
can fixa < 1 s.t.|0u|?e2V% < C1a*™ with C; independent ofV;. Thus

/ lv|?e=2dV, < Coa®M.
X

We estimate now on X. It is standard (see lemma 15.1.8 indIi85]) that

lo(z)? < Cy <?”2 Sap |Ov]® + szHUH%z(B(x,r))>

< 0462Nw(x)62N177 [(sup ‘gu‘Qe—QN) + HUHg]

< 05(677a)2N1 eQsz(x)’

with C5 independent ofV; and wherey is the uniform oscillation of)
on the ballsB(z, r). Here B(x, r) implicitly stands for the pull back of an
euclidean ball via a coordinate chart. We choos®e thate”a < 1 andV;

so thatCs(e"a)* < & and setS,, = 3(u — v). ThensS,, is a holomorphic
(m, 0)—form with values inLY™ ® K%, i.e. itis a holomorphic section of
LNM on X and it satisfies all our requirements. Q.E.D.

Remark 1.8 It follows from the Borel-Weil theorem (see e.g. [Ak 95]) that
a semi-positive holomorphic line bundleon a projective algebraic ho-
mogeneous manifol& is either positive, or the pull-back* L’ under a
morphismp : X — Y, whereY is a projective algebraic homogeneous
manifold of lower dimension, of a positive holomorphic line bundlen

Y. A positive closed currefft of bidegreg1,1) on X s.t.[T] = ¢1(L) thus
satisfiesI" = p*T” for some positive closed curreht of bidegree(1, 1) on

Y with [T'] = ¢;(L’), and the approximation df reduces to that of” on

Y.
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1.3 On a counterexample of Grauert

We explain here an example due to Grauert ([Na 63]) of a pseudoconvex
domain in a complex torus which is not holomorphically convex hence not
Stein. We show that there is in fact no complex hypersurface of the torus
contained in this pseudoconvex domain, whereas it contains the support of
a(1,1)—positive closed current. Finally we give an explicit example in the
2-dimensional case of this situation, where the parameters are chosen so
that the torus is algebraic. This provides a counterexample to the approxi-
mation theorem of the previous section if we omit the cohomological and
the positivity assumption.

Let A be the lattice ofC™ generated by

AL = (1,0, - ,0) and)\j = (iaj,ajg, - ,ajm) = (iaj,)\;-), 2<3<2m

where (\)1<j<om is aR—free family in C™ ~ R?™, and (a;)2<j<2m
are real constants sdy andas are Z—independent. We denote by the
corresponding complex torus and: C™ — X = C™/A the canonical
projection.

Considerl/, = {z € C™ /0 < R(z1) < 1}, andD, = 7(U,), where
a > 1. Setp(z) = 17045}%(21) + §R(1Zl). An easy computation shows that
 is plurisubharmonic i/, and it is moreover &°°—smooth exhaustion
functionforlU,. Now sincep is invariant by any element € As.t.A 4+ U,N
U, # 0, ¢ also defines a smooth-psh exhaustion functioifer henceD,,
is pseudoconvex.

Proposition 1.9 There is no compact analytic subset.®fof dimension
m — 1 contained in the domai®,,.

Proof. Assume the contrary and let A be such a set which, we can assume,
is connectedf(z) = R(z1) is a well defined pluriharmonic function on
D,. If Aiscompactf attains its maximum orl thus is constant od and

A C w({R(=1) = t}) for some real constant This necessarily means that

A C m({z1 = ¢}), with equality if A is of dimensionn — 1. But sinceas
andas areZ—independenty ({z; = c}) is dense int({Rz; = Rc}), hence

it cannot be closed. A contradiction. Q.E.D.

On the other handl" = dd°(maz(R(z1) — 5=,0)) is a well defined
positive closed current of bidegrég, 1) on X s.t. SuppT = w({R(z1) =
%}) CC D,. This current is not approximable in the sense of our theo-
rem, sinceD,, is a neighborhood obupp T which does not contain any
hypersurface o¥.

Note that there is na > 0 s.t. [\T] € H?(X,Z) sinceas andag are
Z—independent]’ is moreover not cohomologous to @aKler form (it is
cohomologous t@.gdzl A dzp) and in particulatX \ Supp T is not Stein
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since it admits non trivial 1, 1)—positive closed currents with compact
support (anyld®(max(R(z1) — ¢,0)), for t # 5-).

We exhibit now an explicit algebraic example:

Recallthatatoru€™ / Ais algebraiciffthere existd € GL,,(C)apositive
definite hermitian matrix s.t5H (A, A) C Z (see [G-H 78] p303). Letl be
the lattice inC? generated by

A = (1,0) Do = (i,O) ;
A3 = (iV2,1); Ay = (0,iV2);

i = <z 12 2_4%\/\%)

H is a hermitian matrix which satisfies

and define

tr H=3++v2>0anddet H = V2 > 0,

hence it is positive definite. Of cours@ H(\,\) = 0, VA € A, and we
easily check that:

H()\l, )\2) = —1 andH()\l, )\3) =0 andH()\l, )\4) =2
H()\Q, )\3) =0 andH()\g, )\4) =21 andH()\g, )\4) = -2

henceSH (A, A) C Z and the complex toru¥ = C2/A is algebraic.

2 Rational convexity on compact complex manifolds

Recall that the rational hull of a compact d6tof C™ is defined as the
complement of the union of hypersurfaces@f that do not interseck .
Duval and Sibony show in [D-S 95] that one can replace the hypersurfaces
in the definition by positive closed currents of bidegfégl ) in C™ whose
support does not intersest.

Therefore there are several natural generalizations of this notion to com-
plex manifolds whether one considers the hull with respect to effective di-
visors (resp. positive divisors) or positive closed currents of bidedreg
(with or without cohomological restrictions). Although these notions might
coincide (e.g. o™ (C)), most of the time they differ considerably (e.g. on
abelian tori). We are going to consider the strongest notion of rational con-
vexity (see definition 2.1 below) because it allows the us&’eftechniques
and itis the proper notion to consider for the generalization of the main the-
orem in [D-S 95] (see theorem 2.9 below), which was our main motivation
for the study of rational convexity.
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Definition 2.1 LetK be acompact subset of a projective algebraic manifold
X. We define the rational hull d&& by

r(K) := {m € X /VH positive divisor ofX, m € H = HN K # ()},

and K is said to be rationally convex whetK) = K.

Lemma 2.2

r(K)={me X/ ‘g(m)‘ < supg ‘g’ , VL € Pic(X) positive and
Vige N(X,L)st{g=0}NK =0
andm ¢ {f = 0} N {g = 0}}

thereforer(K') is compact and(r(K)) = r(K).

Proof. Letm ¢ r(K); since positive divisors coincide (modulo linear
equivalence) with positive line bundles on a projective algebraic manifold,
we can find a holomorphic sectierof a positive line bundlé, s.t.s(m) = 0
and{s = 0} N K = (. SinceL is positive, we can findc > 1 and a
holomorphic sectiorf of L* s.t. f(m) # 0. Setg = s*; we thus have
|L(m)| = +oo whereasupy |£| < +oo, hencemn ¢ +/(K), wherer'(K)
dgenotes the right hand side in the lemma.

Fix nowm ¢ r/(K) and f, g holomorphic sections of a positive holo-
morphic line bundlel s.t.|£(m)| > supy |£|. Eitherg(m) = 0 and we

are done, ogy(m) # 0 and we may consides = f — g(m).g: itis a
holomorphic section of s.t.s(m) =0and{s=0}NK =0. Q.E.D.

Example 2.3 i) WhenX = P™(C) and K cc C™ c P™(C), this coin-
cides with the usual notion of rational convexity.

it) P™(R) = {[20,...,2m] € P"(C)/ 7t € Rwhenever; # 0} is
a smooth compact totally real submanifold®f (C) which is rationally
convex and intersects every hyperplan®8fC). Indeed lefz| € P™(C) \
P™(R); we can assumey = 1 andz; ¢ R (otherwise rotate coordinates).
Consider the homogeneous polynomial of degreB.2;) = 27 — 222 +
glz3 4+ ...+ 22, — (23 + ... + 22))23]; clearly P-(z) = 0, but fore > 0
small enoughP™(R) N {P. = 0} = () sincex? ¢ R*.

iii) LetT be a non trivial positive closed current of bidegrgle 1) on
X, then its support intersects every positive divisor, hetiGepp 1) = X.
Indeed assumeis the current of integration along a positive divisor which
does not intersect the support Bf sincef is cohomologous to a&hler
formw, we have|T|| = [ wAT = [, 6 AT = 0, a contradiction.
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2.1 A fundamental lemma

Lemma 2.4 LetX be aprojective algebraic manifold of dimensianLet L
be a positive holomorphic line bundle éhand lety be a positive continuous
metric of L on X. Lets be a holomorphic section df defined on an open
subset/ of X and assumé& = {a € V /||s(a)]|, = |s(a)|e ¥ > 1} is
compact.

ThenK is rationally convex.

Proof. More preciselyg € X \ K being fixed, we are going to construct a
global holomorphic sectiof of LM (M a large integer to be chosen later)
s.t.S(a) =0and{S =0} N K = 0.

Let x € C3°(V) be sit.0 < x < 1andy = 1 in a neighborhood
of K, anda ¢ Suppy. We considen = d(xsM) = dx.sM. This is a
smooth)—closed 0, 1)—form with values inL* or else a smootA—closed
(m, 1)—form with values inL™ @ K%.

SincelL is positive, there existd&/; € N and global holomorphic sections
hi, ..., hy of LM which form a local coordinate system@atMore pre-
cisely, we can find thé;’s s.t.h;(a) = 0 and(;_,{h; = 0} = {a}. Thus
Gy = 3 log[>_7L, |hy]*] is & singular metric of. ™" which is smooth in
X \ {a} and admits a logarithmic singularity of coefficientat the point a.

Fix w a Kahler metric onX. SincelL is positive, there existd/, € N
s.t. LM @ K% is positive. TakingM, large enough, we can even assume
the existence of a smooth mettie of L2 @ K% s.tO¢, (LM @ K%) :=
dd°Gy > w.

We now solve)u = v on X with L?—estimates associated to the metric
Y = G1 + G2 + Mzp of LM @ K% (M = mM; + M + Ms), which
satisfiesld®y > w. We obtain therefore a smooth sectioof LY st:

/]u|26_2dew§/ lv|%e~2YadV,,
X X

wheredV,, denotes the Khler volume elemenn%wm.

Sincex = 0 in a neighborhood of, which is the only singularity of
the metricy, the integral on the right hand-side is obviously convergent.
Moreover,y = 1 hencedy = 0 in a neighborhood of¢, thus we can fix
a €]0,1[s.t.|s|e™¥ < a < 1 on Supp dx. Hence

/ |u]2672dew < Cya?Ms,
X

where( is a constant independent bfs.
Sincey has a logarithmic singularity of coefficient = dim¢ X at the
pointa, we necessarily have(a) = 0.
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Fixn > 0s.tae” < 1. Fixr > 0s.t.xy = 1 onthe pseudo-ballB(y, 2r)
(which are the pull-back of euclidean balls via a coordinate chawt) K,
and the oscillation of) (which is uniformly continuous on any compact
neighborhood ofK” which avoidsa) is smaller than;. Observe that, is
holomorphic hencéu|? is subharmonic on the pseudo-baligy, r) y € K,
So:

)P <Gy / ul?dV,,
B(y,r)

< 0262M3(so(y)+77) / \u|2e_2M3‘Pde
B(y,r)

< Cye20®) 2Man / uf2e24qV,
B(y,r)
< 42 W) (e)?Ms,

whereC, = C;.C5 is a constant independent bfs.

Fix & > 0 s.t. |s|MitMee=(G11+G2) > § > 0 on K and fix M3 large
enough so thatule ¥ < 3.

Now we setS = x.s™ — w. This is a global holomorphic section 6
s.tS(a) = 0and|Sle™ > & > 0onK, hence{S =0} N K =0 (¥ is
smooth onk) and we are done. Q.E.D.

Theorem 2.5 Let T' be a positive closed current of bidegrég 1) on a
projective algebraic homogeneous manifdds.t [T] = ¢;(L) for some
positive holomorphic line bundlg. Then for every > 0, the compact set
K. ={m e X /d(m,SuppT) > £} is rationally convex.

Proof. Fixe > 0 anda € X \ K.. Using proposition 1.1, we can fix a
neighborhood’” of K. which does not contaia, a sufficiently big integer
M, a global continuous metrig¢ of L* and a local holomorphic sectidgn
of LM defined onV stK. € F = {m € V /|h(m)[e %™ > 1} cc V.
But F' is rationally convex by the previous lemma and V' hence we can
construct a global holomorphic sectidrof some power of s.t.S(a) = 0
and{S=0}NK.Cc{S=0}nF=0. Q.E.D.

Remark 2.6 If T = dd°max(Rz1,c) in the example 1.3X \ SuppT
cannot be exhausted by rationally convex compact sets, since it contains non
trivial positive closed currents with compact support (see example 2.3.iii).

2.2 Rational convexity of totally real submanifolds

Proposition 2.7 Let X be a projective algebraic manifold equipped with a
Kahler metricw. Let K be a compact subset af.
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i) Foreverya ¢ r(K), there exists a positive closed currdnof bidegree
(1,1) on X which admits a continuous potential and §'tis smooth and
strictly positive ata, 7' vanishes in a neighborhood of K') and moreover
[T] € H*(X,Z).

ii) For everyes > 0 and every fixed neighborhodd of »(K'), we can
find a smootHh1, 1)—formw. which satisfies the following properties:

a)w: >win X\ V
b) w. = 0 in a neighborhood of (K)
Jwe > —ewinV

d) [we] € H*(X,Z).

)

Proof. i)Leta € X\r(K). There exists aglobal holomorphic sectiwfa
positive holomorphicline bundleon X s.t.s(a) = 0and{s = 0}NK = 0,
hence{s = 0} Nr(K) = 0 sincer(r(K)) = r(K). Let G be a smooth
metric of L on X s.t.dd°G > 0. Changings in \.s for some large real
positive constant\ if necessary, we can assumge ¢ > 1 on r(K).
Considery = max(log|s|, G). This is a well defined continuous positive
metric of L on X s.t.4) = G in a neighborhood of andy = log|s| in a
neighborhood of (K'). Thereforel' = dd: satisfies all our requirements
since moreovefT| = [dd“] = c1(L) € H*(X, 7).

ii) Since X \ V' is compact, we can find a finite number of poiajss.t.
T =3 T, isa(l,1)—positive closed current which is strictly positive in
X \ V, vanishes in a neighborhood ofK’) and has integer class. Since
moreoverT’ admits a continuous potential, we can use a regularization the-
orem due to Richberg [Ri 68] to approximateoy smooth forms with small
negative part to obtain what we need. Q.E.D.

Recall that a submanifold of X is totally real if vz € S, the real
tangent spacé@X(S) of S atx contains no complex line. We show now
that a compact totally real submanifold &f is rationally convex iff it is
isotropic for some Hodge form (i.e. alkler form whose cohomology class
belongs toH?(X, Z)). More precisely, we have the following

Theorem 2.8 Let S be a smooth compact totally real submanifold of a
projective algebraic manifold. The following are equivalent:

i) S is rationally convex.
i1) There exists a smooth Hodge foérfor X s.t. ;%0 = 0,

wherej : S — X denotes the inclusion map.

Proof. i) = ii) : SinceS is smooth and totally real, there exists a positive
functionp which is smooth and strictly plurisubharmonic in a neighborhood
of S and s.t.5 = p~1(0) andVp = 0 on S. IndeedS can be defined as
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the zero set of a finite number of smooth globally defined funtignthen
p =Y g? will be strictly psh in a neighborhood ¢f since S is totally real.
SetSs = {m € X / p(m) < ¢} and fixé > 0 small enough.

Fix x € C§°(S2s) with 0 < x < 1 andx = 1 in a neighborhood of
Ss and defineu; = dd®(x.p). Fix a Kahler metricw on X and a positive
integerd s.t.w; > —A.w on X andw; > %w on S;.

We can use proposition 2.7 with = S5, ¢ = ﬁ and the fact that
r(S) = S to construct a smootfi, 1)—form w, which satisfies:

a)ws > win X \ Ss
b) wy = 0 in a neighborhood of S
)

1

d) [ws] € HQ(X,Z).

)

Consider now = w; +2Aw,. Thisis a smooth strictly positivd , 1)—form
on X s.t.j*0 = j*w; = j*(dd°p) = d(5*d°p) = 0 since the gradient gf
vanishes orf. Furthermordf] € H?(X,Z) since[w;] = 0, henced is the
desired Hodge form.

i) = i) :
There exists a positive holomorphic line bundlen X s.t.c;(L) = [4].
We need the following

Lemma 2.9 There exists a Stein neighborhoBf S and an integek s.t.
L¥)y is trivial.

We show how the lemma implies the theorem.
We can assumk = 1, therefore positive metrics df define psh functions
on V. We only need to follow the corresponding proof in [D-S 95], where
the psh functions are replaced by positive metrics of the line burddles
which can be viewed as functions dh

Starting with a smooth strictly positive metriocof L with j*(ddp) = 0
we define a small perturbatign = <p+2§-’:1 €41, which is again a strictly
positive metric ofL with ¢; smooth functions with compact supportlif
and such that/ ¢, has periods i2zZ onS. The latter allows us to construct
a smooth functiork on S with values inR that we extend locally iV in
a functionh, (which is equivalently a smooth section 6/ abovel)
satisfying

a) Ohs = 0 to order s onS
b) M. — log |hs| vanishes to order 2 ¢h

Using lemma 3.3 in [D-S 95] we can modifif o, locally in V' and obtain
a new strictly positive smooth metrig of L™ which, together withh,



Approximation of currents on complex manifolds 455

fulfils the hypotheses of lemma 3.2 in [D-S 95]. As the construction of
the holomorphic sectioh of LM on V only requires the solution of the
O—equation on a Stein neighborhosg of S, and asL is trivial there, we
can again use the same construction as in [D-S 95] and then apply our lemma
2.4 to conclude that is rationally convex.

There remains to prove lemma 2.9.

Proof of lemma 2.9Let V' = S; be a tubular neighborhood df; then
H?(V,Z) ~ H*(S,Z). SinceV is Stein,Pic(V) ~ H*(V,Z). Bute, (Lys)

= [j*dd°¢] = [0], henceci (L)) = [0], i.e. the image of the first Chern
classofLin HC%R(V, R) viathe morphisminduced by the canonical inclusion
Z — Ris trivial. As we have already explained in the proof of lemma 1.2,

this implies thatL"“v is trivial for some integek. Q.E.D.

3 T-polynomial convexity

There is no intrinsic definition of polynomial convexity on complex man-
ifolds extending the usual notion i6™. Indeed, K = {[1,e",e7] ¢
P(C?%) /0 < 6 < 27} is polynomially convex when viewed as a subset of
C? = P?(C) \ {20 = 0}, but it is not polynomially convex as a subset of
the other charP?(C) \ {z; = 0} ~ C2.

However we define a notion of polynomial convexity relative to a fixed
positive closed currerif’ of bidegree(1, 1) on a complex manifoldX . It
is an interesting tool to describe the convexity propertieXof Supp T’
(see 3.1) and there is an analogue of the classical Oka principle Wigen
the current of integration along a positive divisor of a projective algebraic
manifold X (see 3.3). The case of Stein manifold will be considered in 5.1.

Definition 3.1 Let 7" be a positive closed current of bidegrée 1) on a
complex manifoldX, and letK be a compact subset &f.
We define th& —polynomial hull of K by

KT .= {x € X/ flx)<supf,VfeClpr(X)stdd'f > —T},
K

whereCr(X) denotes the set of functioffse L'(X) s.t.exp(f + ) is
continous whenevesy is a local potential ofl". Note in particular that any
finCr(X) is lower semi-continuous.

The compacK is said to beI'—polynomially convex wheR” = K.

We list a few elementary properties of these hulls:
T

) KT is closed and:(T = KT,
iy VA > 0, K = KT,
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i) If T'= T, + T is a sum of two positive closed current of bidegree
(1,1) thenkKT c KT 0 K.

iv) WhenX = P™(C), T = [{20 = 0}] and K is a compact subset of
C™ =P™(C)\{z0 = 0}, thenK 7 is the usual polynomial hull ok in C™.
Indeed, a functiorf € Cr(X) defines a psh log-homogeneous function in
C™*+viap(2) = f([2]) + log |z0] hencep|,=1y = ficm € PSH(C™)
and is s.t.f(¢) < log™ |¢| + C; conversely any functio € PSH(C™)
with log-growth defines a log-homogeneous psh functiorCift! set-
ting ¢(z) = ¥(z1/20,---,2m/20) + log|zo| if 20 # 0 and(0,¢) =
limsup,_,g,¢, 2020 ¥(2). The functiony corresponds to a functiofi €
Cr(X) via f([z]) = ¢(z) — log |2|. Thus K7 equals the hull of with
respect to the psh functions of log-growth@fi*, and it is standard that this
hull is exactly the polynomial hull of< (see also the second assertion of
proposition 3.2 below).

Proposition 3.2 Let X be a complex manifold.
When[T'] is equal to the first Chern class (L) of a holomorphic line
bundleL on X, then

RT - {x € X /(¥ = ¢)(x) < sup(w — ), Vb € PelX, L)} 7

whereP.(X, L) denotes the set of positive metrigof L on X s.t.e? is
continuous, ane is a positive metric of. on X s.t.dd‘¢p =T.
Moreover if we define

pr(K) = {x € X / |hly, (z) <suplhly,, Vk €N, Vh € F(X,Lk)},
K

then KT ¢ pr(K), with equality if L is positive andX is a projective
algebraic homogeneous manifold (resp. a Stein manifold).

Proof. Fix U, an open covering akX trivializing L. If [T'] = ¢;(L), then
there exists a positive metric = {¢,} of L on X s.t.dd“p = T, and two
such metrics (with respect to this covering) only differ by a pluriharmonic
function which is globally well defined oX , thus the definition of the right
hand side is independent of the choice of the poteat@IT. Lety) = {¢,}
be a positive metric of, s.t.e¥ is continuous, therf = ¢ — ¢ is a globally
well defined function onX which lies inCr(X) and s.tddf > —dd‘yp =
—T.

Conversely, iff € Cr(X)iss.t.dd®f > —T,theny = {f + ¢, }is a
positive metric ofL on X s.t.e¥ is continuous; the first assertion follows.

Letk € Nandh € I'(X, L"), theny = 1 log|h| defines a positive
metric of L on X s.t.e¥ is continuous, henc&” C pr(K).
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Conversely let, ¢ X\ K7 there exists) € P.(X, L) s.t.(1y — ) (a) >
supg (1 — ¢). If X is homogeneous we can assuis smooth (otherwise
replacey by its regularized metrig® for ¢ > 0 small enough). If moreover
L is positive, we can assumge has strictly positive curvature, replacing
if necessaryy) by (1 — n)y + nG, whereG is a smooth metric of s.t.
dd°G > 0 andn > 0 is small enough.

Sincedd“y(a) > 0, there exists a holomorphic polynomi&l and a
positive constant s.t.¢), () — R(P)(z) > cd(x, a)? in a neighborhood of
a € U,. Let x be a positive test function defined in this neighborhood, s.t.
x = 1in a smaller neighborhood af and0 < y < 1. If X is projective
algebraic we can sol@v = d(xeN ) with L?—estimates associated to the
weight N¢ and construct, in the same vein as what has been done in the
proof of theorem 1.6, a holomorphic sectioof LY on X s.t.|hle V¥ < 1
on X and|h(a)le~N¥(®) > 1/2. Thus for a choice ofV large enough, we
get
1
(N
hencex € X \ pr(K). The Stein case will be considered in proposition 5.4.
Q.E.D.

1
log [h| — ¥)(a) > Sup(ﬁ log [h| — ),
K

3.1 Steinness of \ Supp T
Definition 3.3 T is said to satisfy conditiofC') if
VK cC X\ SuppT, KT ccx \ SuppT.

Example 3.4 i) WhenX is homogeneous, the regularization process in-
sures that every positive closed current of bidegred ) s.t. [T] = ¢ (L)
satisfies conditiofC'). IndeedT” = dd“y for some positive metric af,
and the regularized metricg® of ¢ (see Appendix) satisty — o = 0 in
a neighborhood of< if ¢ > 0 is small enough whereas® — ¢ > 0in a
neighborhood obupp T

i) WhenT = [{s = 0}] wheres € I'(X, L) and L is semi-positive, then
T satisfies conditioriC'). IndeedL admits a positive continuous metrjc
on X, hencey is locally bounded orbupp T whereaslog |s| = —oo on
SuppT.

i) If 7 : X — X is the blow-up at a poinp of a compact complex
manifold X (dimc(X) > 2), and if T' is the current of integration along
the exceptional divisoE = 7! (p), thenVK cC X \ SuppT, KT = X,

since every functiofi € Cr(X)s.t.ddf > —T defines a plurisubharmonic
function inX \ E ~ X \ {p}, hence is constant; thuf = [E] does not

satisfy conditionC').
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Lemma 3.5 If K = KT, then for any open neighborhodd of K, there
exists anon negative functignc L'(X) s.t.f 4 is upper semi-continuous
whenevery is a local potential ofl’ and moreoverid®f > —T on X with
f=0onKandf>0inX\V.

Proof. Leta € X \ K = X \ K7, then there exist§, € Cp(X) s.t.
dd°f, > =T andf,(a) > 0 > supy f,. Sincef is lower semi-continuous
ata, f > 0inasmall ballB(a, ).

We can consideyf;” = max(f,,0). Thenf;f = 0onK andf; + ¢
is upper semi-continuous (u.s.c.) as a maximum of two u.s.c. functions.
Moreoverf,” = max(f, + o, ¢) — ¢ hencedd“f,;t > —T on X.

Now we can covetX \ V by a finite number of ball$3(a;,c,,) and
considerf = % P, [ to conclude. Q.E.D.

Corollary 3.6 If T satisfies conditioriC'), thenX \ Supp T admits a psh
exhaustion function.

Proof. By hypothesis, we can exhaukt\ Supp T by an increasing se-
quence of compact seis; that satisfyf{\jT = K;andK; C (Kjq1)°.

By the previous lemma, we can find for eagha non negative function
fj which is psh inX \ Supp T, identically0 on K; and positive outside
(Kj+1)°. Multiplying by some large constant, we can even assfijme 2/
on Ko\ (Kj4+1)°. Thereforef = .., f; is a psh exhaustion function
for X \ Supp T (the sum is finite on each compact set). Q.E.D.

Theorem 3.7 Let {2 be a complex manifold which admits a psh exhaustion
function. Then(? is Stein iff there is no non trivial positivéd“—closed
current of bidimensioril1, 1) with compact support ifi2.

Proof. If {2 is Stein, it admits a smooth strictly psh exhaustion function
v. Let S be a positive current of bidimensidm, 1, ) with compact support

in 2 and s.tdd“S = 0. Thendd“p A S is a well defined positive measure
which measures the mass®f Stokes theorem gives

/ dd°p NS = / pdd®S = 0,
0 Q
henceS = 0.

Conversely, letf be a psh exhaustion function 6f, and definef?; =
{r e/ f(z)<j} Weset

H = {S current of bidimensior1, 1) on 2 s.t.dd°S = 0},
and

IC; = {S positive current of bidim(1,1) on2 s.t.||S|| =1
andSupp S C ﬁ]} .
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Then? is a hyperplane of the s, ;)(2) of currents of bidimensiofil, 1)
on (2 and/C; is a convex compact subsetff 1)(£2).

We assume thatj € N, 4 N K; = (; the theorem of Hahn-Banach
insures the existence of a linear functiodglon 7, 1)(2) s.t.&;(H) = 0
and®;(IC;) > ¢; > 0. This functional is defined by a smooth, 1)-form
wj, .t.2;(S) = [y S Awj. Since it belongs t@{+ = {dd°g}, we can write
wj = lim dd°gy; thus fork; large enoughy; = gy, is @ smooth function
onX st [, S Add°o; > 0foreveryS e K;, sincek; is compact, hence
¢ is strictly psh in a neighborhood 6%;.

Without loss of generality we can assume < ¢; < —3 on (2;
(otherwise replace; by A;¢; + B; for some properly chosen constants
Aj; andB;). Consider now

®j ?n Qj—l
Yy = < max(p;, f—7) in£2;\ £2;_4
f=J in $2\ £2;

Thisis clearly a psh function if? which is strictly pshin2;_; and moreover
Y; > —2in 2 andy; < 0in £2;.

We set finallyy) = f + 3~ 277¢;. Theny is an exhaustion function
for £2 which is strictly psh; it follows from a result of Fornaess-Narasimhan
([F-N 80]) that(? is Stein. Q.E.D.

Theorem 3.8 Let T' be a positive closed current of bidegrég 1) on a
compact Khler manifoldX. Assuméd’ is cohomologous to a&bler form
and satisfies conditiof'), thenX \ Supp T is Stein.

Proof. Letw be a Kahler form cohomologous t6. SinceT’ is real andX
is Kahler,T' — w is in factdd®—exact; there exists a distributighon X s.t.
T = w—dd°f. Note thatf is a smooth strictly psh function i \ Supp T

Let S be a positiveld®—closed current of bidimensign, 1) with com-
pact support inX \ Supp T. Stokes theorem gives

/ WAS = WAS = dd°fAS = Fdd°S =0,
X X\SuppT X\SuppT X\SuppT

henceS = 0.

Now T satisfies conditioiC') thus X \ Supp T' admits a psh exhaustion
function (corollary 3.6); therefor& \ SuppT is Stein by the previous
theorem. Q.E.D.

Remark 3.9 This can be seen as a generalization of the standard result:
X \ {s = 0} is Stein, whers is a holomorphic section of some positive
holomorphic line bundle orX .
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3.2 Oka principle

In this section we want to investigate the case wtiéns the current of
integration along a positive divisor of a projective algebraic manifold

Let L be a positive holomorphic line bundle on, s € I'(X, L) and
T = [{s = 0}]. By the Kodaira embedding theorem, there existsN and
abasigsy = s*,s1,...,sy) of I'(X, L¥) s.t. the map

d: X - PN(C)
x = [so(x),...,sn(z)]

defines a holomorphic embeddingXfonto a subvariety” of PV (C) with
L =&*(O(1)y). If K is acompact subset of \ SuppT, ®(K) thus is a
compact subset df \ {z, = 0} c C¥ and one easily checks that

&~ Y(@(K)) = pr(K) cC X \ SuppT,

whereal?) denotes the usual polynomial hull #f(K) in CV. Indeed
every holomorphic section df? defines a holomorphic section 6X(p) y/
that extends to a holomorphic section®@fp) onP™¥ (C) and conversely.

If fis a function holomorphic in a neighborhoodf(K) thenF' =

f o @1 is a function holomorphic in a neighborhood #fK) in V' that
extends to a function holomorphic in a neighborhoo@ (k') in CV. The

classical theorem of Oka-Weil asserts thais a uniform limit on®(K') of
polynomials inz; /29, 1 < i < N. Therefore we have the following

Theorem 3.10 (Oka-Weil) LetT = [{s = 0}] with s € I'(X, L), L posi-
tive. LetK be a compact subsetaf\ Supp T'. Then every function holomor-
phicin aneighborhood gf7(K') is a uniform limit orp (K) of polynomials
in s;/s" wheres; € I'(X, L) (andk is an integer s.tL* is very ample), i.e.
of meromorphic functions of the typgs? whereh € I'(X, LP).

Definition 3.11 Let L € Pic(X). We say thai{ H;):>, is a continuous
L—family of algebraic hypersurfaces if the following holds:

i) Vt > to, there existsl; € Nands; € I'(X, L%) s.tHy; = {s; = 0};

i) t — d; is bounded on each compact set;

iii) (t,z) — s¢(x) is continuous orfity, +oo[x X .
Moreover the family is said to joim to H, avoiding a compact sek’ if

|) x e Hto andVt > to, HNK = @,

i) sup,ep, d(z, Hy) — 0 ast — +-o0.

Definition 3.12 Let K be a compact subset of \ {s = 0}, wheres €
I'(X, L), L positive, and sel’ = [{s = 0}]. The Oka-hullOr(K) of K
relative to7" is defined by saying that a pointe X lies in X \ Op(K) iff
there exists a continuous—family of algebraic hypersurfacé$i,) joining
xt0 Hy = {s = 0} avoiding K.
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Theorem 3.13 (Oka principle) Let s € I'(X,L%), whith L € Pic(X)
positive and seT” = [{s = 0}]. Then

VK cC X\ SuppT, pr(K)=Or(K).

Proof. Letz € X \ pr(K); there exists: € N andh € I'(X, L*) s.t.
h/s*(z) = 1 > supg |h/s*|. Therefore(H; = {h — ts* = 0});>1 is
a continuousL —family of algebraic hypersurfaces which joinsto H,
avoiding K, hencer ¢ Or(K).

Conversely, letr € pr(K) and assume there exists a continudus
family of algebraic hypersurfaced?; = {s; = 0});>; that joinsz to
H., = {s =0} avoiding K.

Sincepr(K) is compact, there exists> 1 s.t. H, Npp(K) # 0 and
Vit >r, HNpp(K) = 0.

Since(H;) avoidsK, the function(¢, x) — f(z) = %(az) is bounded
on[r,r+1] x K. t

Now lety € pr(K) N H,; |fr(y)| = +oo hence by continuity off,,
|ft(y)] — 400 ast — rT. Thus there exists > r s.t.|fi(y)| > supx | fi|-
SinceH;Npr(K) = 0, f;is holomorphicin a neighborhood pf (K') hence
we can approximate it uniformly op(K) by functions of the typé/s?
with b € I'(X, LP), thusy cannot lie inpr(K), a contradiction.  Q.E.D.

4 Approximation of currents on projective algebraic manifolds

In this section we wish to extend theorem 1.6 to the case of non homoge-
neous projective algebraic manifolds. We need to make an extra assump-
tion (T" satisfies conditior{C')) which is always satisfied in the homoge-
neous case; on the other hand we obtain a control on the Lelong num-
bers of the approximants (such a control was obtained by Demailly in [De
93]) and this gives a refinement of theorem 1.6 in the homogeneous case
(see corollary 4.3). Recall that by a theorem of Siu [Siu 74], the level sets
E.(T) ={x € X /v(T,z) > ¢} of Lelong numbers of a positive closed
currentT on X are proper closed analytic subsets¥for eache > 0.

Theorem 4.1 Let T' be a positive closed current of bidegrég 1) on a
projective algebraic manifold. AssumeAT’| = ¢; (L) for some holomor-
phic line bundleL which we assume is positive. Assuie= [H] + R,
where H = 370, A\;[Z;] (4, A; is a positive constant and; is an ir-
reducible algebraic hypersurface df) and R is a positive closed cur-
rent of bidegreg(1,1) on X s.t. the level sets of Lelong numbersif
E.(R) = {z € X /v(R,z) > c}, are of codimension greater or equal
than2. Assume moreover thdt satisfies conditiofiC').

Then there exist®/; € Nands; € I'(X, LYi) s.t.
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)T = Nij[{sj = 0}] — T in the weak sense of currents;

ii) {s; =0} — SuppT in the Hausdorff metric;
i)y Ve € X, v(Tj,2) — v(T, ).

We first need a proposition:

Proposition 4.2 Under the hypotheses of the theorem (with= 1), let ¢
be a positive metric of, which is a potential forT', let K be a compact
subset ofX \ SuppT s.t. K = KT and fixw a Kahler form onX.

Then for every opensets.t. K ¢ V cC X\ SuppT and every > 0,
we can findM € N and construct a positive metri¢ of LM on X and a
sectionh € I'(V, LM) s.t.

VKc{meV/|hly>1}={meV/|hly =1} CcCV,

i) [|o0/M = @l ooy < 6 @Nd||¢0/m — ol 1 (x) <6,

iil) sup,ex [v(¢/M,z) —v(p,z)| <,

iv) dd® > e.w in a neighborhood obupp T' for some constant > 0,

V) v is continuous inX \ SuppT and smooth on a dense subset of
X\ E,,(T) for somecy > 0.

Proof. Following Demailly, we setp, = %sup1<j<N[log\fjH where
(f1,--., fn) is an orthonormal basis of sections bf X, L*) with finite
L?—norm [ || f||2,dV.,. Itis proved in [De 93] (proposition 9.1) that:

a) [lps — ¢llpi(x) — 0 ass — +oo and the convergence is uniform
on compact subsets of \ {x € X /¢ is not continuous at}, hence in
particular on compact subsets®f\ Supp T’

b)yv(T,z) —m/s < v(Ts,z) <v(T,z),Vr € X, wherem = dimc X
and7 = ddps.

Clearly E*(Ty) := {x € X /v(Ts,xz) > 0} is equal toFE, /,(Ts) =
{r € X /v(Ts,x) > 1/s} C Ey,(T) andys is smooth on a dense subset
of X \ B (Ty).

LetU be arelatively compact open neighborhood®fin X \ Supp T
st.K = KT cc V\U. Letz € U. There exista), € P.(X,L) and
dp > 0st. (Y —p)(x) > 6 > 0 > =, > supg(¢z — ). Since
(v — ¢) is lower semi-continuous (I.s.c.) at (¢, — ¢) > J, in a small
ball B(x,e,). We can covelU by a finite number of balls3(x;, ;) and
considen)y, . .., 1, the corresponding metrics.

We setd’ = min(d,01/8,...,0,/8) and we fixs large enough so that
los = @l poommy < 0" @ndllos — @llpix) < &' ThusVi = 1,...p,
(V; — ps) > 46" > 0in B(x;,e;) andsupg (v; — ps) < —48 < 0.
Therefore

p
fs = lzmax(wz - 90570)
p i—1
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is a non negative function ih! (X) s.t. f, + ¢, is u.s.c. and which satisfies
dd°f, > —T,on X with f, =0onK = KT andf, > 48’ > 0in U.

SinceT is cohomologous to a &ler form (. is positive) and satisfies
condition(C), X \ SuppT is Stein by theorem 3.8. We can therefore find,
as in the proof of proposition 1.1, a relatively compact Stein open siiiset
of X \ Supp T that containd/, and construct integedsand M7, a small
perturbatiord, of kp in W and a holomorphic functioh in W s.t.

a) L|kW is trivial;

b) [| 565 — Ol ooy < 0"

C) M6y = log |h’

Now let G be a smooth metric at s.t.dd°G > 0 on X and consider

. {max(Ml.HA;M[(l—n)(f5+cps)+nG—25’]) in v
M[(l_n)(fs+90s)+nG_26/] onX\V,

whereM = k.M. Then for a choice ofy > 0 small enough and large
enoughy) is a positive metric of.™ which satisfies all our requirements.
Q.E.D.

Proof of theorem 4.1ReplacingZ’ by 7'/); if necessary, wherg\;) is
a sequence of positive rational numbers converging,tave can assume
A = 1. Let K,, be a sequence of compact subsetsXof, Supp T that

exhaustsX \ SuppT and s.t.l?nT = K,. We fix §, > 0 a sequence
converging towards 0 and open neighborhobgef K,, that are relatively
compact subsets of \ Supp T'. Using proposition 4.2, we construct integers
M,,, positive metrics),, of L™~ on X and holomorphic sectioris, of L~

in V,, with the prescribed properties.

Fix (a;) a dense sequence of pointsSapp T', s.t.Vn € N, a1, ..., a,
belong toSupp T\ E., (T') where(c,) is a sequence of positive numbers
converging ta s.t. 4, is smooth andid“y,, > 0 at the pointsiy, ..., a,

(see iv) and v) of proposition 4.2).

Let (F,,) be an increasing sequence of compact subsets oft ™ (T)
stUUF,=X\EYT)andK, U{ay,...,a,} C F,, cC X\ E,,(T).
We are going to construct for eachan integer/V,, and a sectiorb,, €
(X, LNvMn) st

|Sp|e~Nn¥n < 1 onFk,
|Sp|e~Nnvn > 1/2 onK,U{ai,...,a,}
v(x-log|Sul, )
> (1 — 1/vV/Np)v(ddn, x) — 1/Ny, Vo € E,, (dd°y,)
[x [Snle=¥ndV, < C,

where(C'is a positive constant independentoin the last inequality.
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The first two inequalities, together with Lelong-Poireaguation and ii)
of proposition 4.2, imply thal,, = ddC(Nn.an log|Sy,|) converges weakly
towards?' in X \ E7(T). SinceT = [H| + R with codimcE.(R) > 2,

Ve > 0, the Hausdorff dimension df* (R) = E*(T) \ U,_, Z; is less or
equal tharm — 4 henceT,, actually converges towardson X \ U?lej
(see e.g. [F-S 95)).

One easily checks that: € X \UZ;, limsup v(T},, z) < v(T, x) since
T, — Tinthe weak sense of currents. Therefore the third inequality together
with iii) of proposition 4.2 insures thatz € ET(T) \ UZ;, v(T,,z) —
v(T,z)hencev/z € X\UZ;, v(T,,z) — v(T,x). Now(||T,]) is bounded
by the last inequality and ii) of proposition 4.2, th(i§,) admits a subse-
guence that converges weakly towards a positive closed curfaitbide-
gree(1,1) on X. ClearlyT” = T on X \ UZ; andT” > T onUZ; by
the third inequality, thereford” = T on X since X is compact Khler
and[T'] = [T] = e1(L); thusT,, converges weakly towards on X and
v(Th,x) = v(T,x), Vo € X.

Finally sinceS,,| > 0onK,, andT,, — T, {S,, = 0} converges towards
Supp T in the Hausdorff metric.

From now onp is fixed, and we will not mention the subscript. We pro-
ceed as in the proof of theorem 1.6 and construct, using i),iv),v) of proposi-
tion 4.2, a smootltm, 0)—formu = y.hY + 3" | x;e™-Fi with values in
INM @ K% st |ule ™% =1onK U{ay,...,a,} andjule V¥ < 1 out-
side a neighborhood of this set. We solue= du on X with L?—estimates
associated to a weighit= N1¢y + G and get an estimate

1 _
/ |U\26_29de < / |8u\26_29de < Cra®Nr,
X €Jx

We use now the fact that is continuous onX \ E., (T") hence uniformly
continuous on a compact neighborhood-ofvhich is relatively compact in

X\ E., (T). We obtain in the same vein as what has been done in the proof
of theorem 1.6 a uniform estimate for

lo(z)[?> < Cy(ea)?Me2NV@) vy e F,

whereea < 1 and(Cj is a constant independent 8f,. We chooseV,
large enough so that|e =" < 1 on F and we se§ = 3(u — v). ThusS
satisfies the first two inequalities.

To get the third one, observe that= 0 in a neighborhood of any
x € E, (dd“y). Thuswv is holomorphic there and the convergence of
Ix lv|2e=2%dV, forcesw to vanish atr at an order greater or equal than
Nyv(dd“y, x) — 1. Therefore

1 1

1 N 1
v(5log|8]2) > Fw(dd . x) — = > (1 = )w(ddd,x) -+,

2
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for a choice ofN; large enough, sinc& = N; + N, whereN is a fixed
integer.
Finally we observe thaf,, [v|?e2?dV,, < C; hence

/ |v\26_2N¢de < (Cy;
X
since [ |u|?e ?NVdV,, < C3 we obtain
/ 1Sle=NvdV, < 04/ |52~ 2NYqV, < C5 |
X X

where all the constants involved are independenY of Q.E.D.

Let T be a positive closed current of bidegréle 1) on a projective
algebraic manifoldX. By a theorem of Siu [Siu 74], we can decomp@se
as

T=> \NlZ]+R,
j>1
where eacl¥; is an irreducible analytic subset &f of pure codimension,
the \;’s are positive constants artlis a positive closed current of bidegree
(I,1) on X s.t.Ve > 0, E.(R) = {z € X /v(R,z) > c} is a closed
analytic subset oK of codimension greater or equal than
When X is homogeneous we can approximatby currents

n —+00
To=3_ MIZ]+R+ Y \w;".= [Ha + Ry
j=1 j=n+1

wherew: denotes the regularization @f;] and we choose a sequenge—
0. Sincew; is cohomologous tf7;], T;, is conomologous t@’; sinceA; — 0
asj — +oo,T,, — T inthe weak sense of currents with convergence of the
Lelong numbers and convergence of the supports in the Hausdorff metric
(Suppwj" — Zj asn — +00). Thus it is sufficient to approximate each
T, in the sense of theorem 4.1 to get a similar approximatioffor

Now sinceX is homogeneous eadh, satisfies conditioiC') and since
w;™ is smooth, codimE.(R,) = codimcE.(R) > 2; therefore we have
the following refinement of theorem 1.6:

Corollary 4.3 Let X be a projective algebraic homogeneous manifold and
letT" be a positive closed current of bidegrge 1) on X s.t.[T'] = ¢; (L) for
some positive holomorphic line bundleon X. Then there existd/; € N
ands; € I'(X, LYi) s.t.

)T = N%[{sj = 0}] — T in the weak sense of currents;

i) {s; = 0} — Supp T in the Hausdorff metric;

i) Vo € X, v(T},z) — v(T, ).
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When does a positive closed current of bidedreé ) satisfy conditionC')

? Whenr : X — X is the blow up at a poini of a compact manifold(, we
have seen previously (Example 3.4.iii) that the current of integration along
the exceptional divisor does not satisfy condit{@ry. One might hope that

a stronger positivity assumption on the line bundle will imply thatatisfies
condition(C'). However in [D-P-S 94], the authors give an example of a line
bundleL on aruled surfac& that is numerically effective (i...C > 0, for
every curveC of X) and which only admits one positive (singular) metric
© (up to additive constants); thds= dd“p does not satisfy conditiofC).

We briefly recall their construction:

Example 4.4 Letr € Cs.t.3(7) > 0, and consider the manifold defined
as the quotient of x P! by the equivalence relation

(', [w']) ~ (2, [w]) iff I(a,b) € Z*st. 2/ =z2+a+br &
[w'] = [wo, w1 + bwo]

We denote byt the canonical projection of x P! onto X and byp, the
canonical projection of onto the elliptic curvew = C/Z[r]. The mapping

p: X — C/Z[7]
(2, [w]) — pi(2)

expresseX as a ruled surface ovel. We denote by the elliptic curve
atinfinity 7({(z,[0,1])) e Cx P! /2 € C}) ~ E.

It can be shown (see [D-P-S 94]) that the line bundlg corresponding
to the divisorE . is nef and only admits one positive metric (up to additive
constants), hencg,, = [E+| does not satisfy conditiof”') sinceVK CC
X\ Supp T, KT~ = X. Moreover(2,, = X \ Supp T is Stein since
the functionf (2, [w]) = (Sw)? + (Rw — Iz/37)? is smooth, well defined
in £2., and easily seen to be a strictly psh exhaustion function(gy;
therefore conditionC') is not necessary foX \ SuppT to admits a psh
exhaustion function.

Question 4.5 LetT be a positive closed current of bidegrge 1) on a pro-
jective algebraic manifol s.t.[T] = ¢; (L) for some positive holomorphic
line bundleL on X. DoesT satisfy conditionC) ?

5 Stein manifolds

The proofs of our main results show, with very slight modifications, that
they also hold on Stein manifolds (essentially the uniform estimates have to
be performed on compact subsets of the manifold).

However, as there are some considerable simplifications on these man-
ifolds to technical problems we came across when working on algebraic



Approximation of currents on complex manifolds 467

manifolds, we therefore reformulate in this section some of the main results
after recalling a few well-known facts about Stein manifolds.

Fact 5.1 If X is Stein, then every holomorphic line bundle¥ns positive
and Pic(X) ~ H?(X,Z) ~ Div(X) (modulo linear equivalence).

A theorem of Docquier and Grauert [D-G 60] asserts that every locally
pseudoconvex open subset of a Stein manifold is Stein. Thus we have:

Fact 5.2 Let T" be a positive closed current of bidegrée 1) on a Stein
manifold X thenX \ SuppT is Stein.

5.1 Approximation of currents

TheT —polynomially convex hulk7 of a compact subsédt of a complex
manifold X is a closed subset df defined in 3.1. Notice that it is compact
if X is Stein, sinceX admits a smooth psh exhaustion function.

Proposition 5.3 LetT" be a positive closed current of bidegréle 1) on a
Stein manifoldX s.t.[T] = ¢;(L) for someL € Pic(X). ThenT satisfies
condition(C') and for every compact subsktof X, we have

KT = pp(K) = {x € X /Vh € O(X), |h|(z)e ™) < sup \h|e_“’} ,
K

wherey is a metric ofL which is a potential foff".

Proof. We can assumg is a closed complex submanifold 6f¥ (for N
large enough). By a theorem of Docquier-Grauert [D-G 60], there exists a
holomorphic retractionr : V' — X defined in a neighborhood of X in
CN.

Let {/,} be an open covering of trivializing L. Let go3 € O*(Uyp)
be the associated transition functions/oénd letp = {p, € PSH (U, )}
be a positive metric of. which is a potential fo". Considering a finer open
covering, we can assume thg’s are defined in some slightly bigger open
subset/{/, sothatB(z,e)NX C U, foreveryz € U, N B(0,2R) ande > 0
small enough, wher& is a positive constant to be chosen later.

Now 7* L is a positive holomorphic line bundle dhandGz := gag ©

m € O*(Uy,p) are its transition functions associated to the trivializing open
covering {U,} = {7 *(Us)}. Thusp = {@a} = {@a o 7} satisfies

Pa = Pp + log|Gugl inUss = U, NUs, i.e.$ is a positive metric ofr* L

on V. A straightforward computation shows thate Supp dd®(¢)) <=
(m(z) € Supp ddy).
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We can regularize this metric A N B(0, 2R) in the following way; we
set

Fale) = [ @alwhns(z = warw).

wherey. is a smooth non-negative function @V, invariant by rotation,
with compact support equal 8(0, ) and s.t.fCN Xe = 1. Thus fore > 0
small enoughg:, is a psh function i/, N B(0, 2R) and one easily checks
that:

i) @5, = @5 + log|Gagpl in Uz N B(0,2R);

i) @5(2) = @alz) if d(z, Suppdd®p) > ¢ and@f (z) > @ (z) other-
wise (hered stands for the euclidean distancedn).

Letdr be anon negative test functionGi’ s.t.0z = 1inaneighborhood
of B(0,R) = {z € CV /|2| < R} andf = 0 outsideB(0,2R) N V. Let f
be a smooth positive metric df on X and consider

° = 0p.¢° + (1 — Op)f o + Amax(|z]? — R?,0).

Then for a choice off > 0 large enoughy© defines a continuous positive
metric of 7*L onV s.t.¢° = ¢ onV N B(0, R).

Now let K be acompact subset &M\ Supp T and fixR > 0large enough
sothatk” cc X N B(0, R). Then fors > 0 small enough, the continuous
positive metric)® := ¢ of L on X satisfiednfg, 50, r) (¢ —¢) >

0 = supg (¥° — ), henceK” cc X \ Supp T andT satisfies condition
(©).

The equalityf(T = pr(K) follows from a standard application of the
techniques of.?—estimates on Stein manifold (seed188] and the proof
of proposition 3.2) noticing that we can regularize any positive metric of a
holomorphic line bundle on compact subsets of a Stein manifold and add a
small smooth strictly psh function as well. Q.E.D.

Remark 5.4 Note thatX \ SuppT is usually not a Runge domain, i£.
does not necessarily satisfies conditi@if) obtained by replacingd®f >
—~T bydd°f > 0inthe definition of” (take e.gX = C?andT = [{z; =
0}])-

Theorem 5.5 Let T' be a positive closed current of bidegrék 1) on a
Stein manifoldX. AssumdT| € H?*(X,Z), i.e.[T] = c;(L) for some
holomorphic line bundlel. on X. Then there exist&V; € N ands; €
I'(X,LY)onX s.t.

i) T = Nij[{sj = 0}] — T in the weak sense of currents;

ii) {s; =0} = SuppT in the Hausdorff metric;

i) Vo € X, v(Tj,x) = v(T, x).
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Proof. By Siu's theorem we can decompdB@sT' = 3~ Aj[Z;] + R.
We can weakly approximate each currgfif] by positive smootlfl, 1)-
formsw; s.t. moreoveSuppw; — Z; ase — 0 (for this we can regularize
[Z;] on a compact subsets af and add a smooth strictly psh function that
vanishes on a large compact subsekoés it has been done in the proof of
proposition 5.3). We can therefore weakly approxiniétey currents

m —+00
T =Y MNIZ]+R+ D Awi™ =[Hp] + Rm,
j=1 j=m+1

with convergence of the supports in the Hausdorff metric and convergence
of the Lelong numbers since — 0 asj — +oo.

Now [AT,| = [AT] = e1(L) sincew;™ is cohomologous ti7;], Ty, sat-
isfies conditior{C') by proposition 5.3, and codifE.(R,,) = codimc E.(R) >
2; thus we can use an analogue of theorem 4.1 in the Stein case to get an
approximation off;,, by rational divisors which yields the desired approxi-
mation forT". Q.E.D.

5.2 Rational convexity

Since every divisor is positive on a Stein manifold, the analogue of definition
2.1in this case is the natural generalization of the standard d@i®in

Definition 5.6 Let K be a compact subset of a Stein maniféigithe ra-
tional hull of K is defined by

r(K)={me X /VH complex hypersurface of,
me H=HNK =0},

and K is said to be rationally convex whetK) = K.

As in the algebraic case(K) is a compact subset of andr(r(K)) =
r(K). Since every positive closed current of bidegféel) with integer
class satisfies conditiofC') on a Stein manifold, we have the following
analogue of theorem 2.6:

Theorem 5.7 LetT be a positive closed current of bidegrge 1) on a Stein
manifold X s.t.[T] € H?(X,Z).
ThenX \ Supp T can be exhausted by rationally convex compact sets.

Finally a very similar proof to that of theorem 2.8 gives

Theorem 5.8 LetS be a smooth compact totally real submanifold of a Stein
manifold X'; the following are equivalent:

i) S is rationally convex.

il) There exists a smooth Hodge fomrfor X s.t. j*6 = 0, wherej :
S — X denotes the inclusion map.
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A Regularization process

It is in general not possible to approximate positive currents by positive
smooth forms on complex manifolds. However this can be done on homo-
geneous manifolds (i.e. complex manifolds with a transitive group of auto-
morphisms) where there is a natural regularization procedure. We explain
here how to regularize the positive singular metrics of a holomorphic line
bundle on a compact homogeneous manifold. The case of positive currents
was considered by Richthofer (see [Hu 94]).

Let X be a compact complex homogeneous manifoldzlbe the connected
component of the identity aflut(X) and letH = {g € G/ g(x0) = zo}

be the isotropy group of a poinfy € X; thenX is naturally isomorphic

to G/H. Let T be a(l,1)—positive closed current oX = G/H and

let x € C5°(G) a non negative function with compact supportGn s.t.
x(id) > 0 and [ x(g9)dg = 1, whereid stands for the identity element in

G. We define

T, = /G x(9) 1 (T)dg,

wheredg is the Haar measure ai and/, will stand for the multiplication
on the left byg both inG and inX = {¢.H }, according to the context. It
is clear from the definition that, defines a smootfi, 1)—positive closed
current onX . Furthermore,

Theorem A.1 i) T, is cohomologous t@'.

i) If T is strictly positive at a point, thenT), is strictly positive on
U.xo = {g9(x0) € X /g € U}, whereU is the interior of the support of
(in particular, T, is strictly positive atry).

We refer to [Hu 94] for a detailed proof.

We now define the regularized metrigs of a given metricp of a pseu-
doeffective holomorphic line bundIe on X. We first construct a pseudo-
distance function otk that will tell us exactly wherp* is equal top.

Let @ be a biholomorphic map from a relatively compact open neigh-
borhoodU of zero inCY onto a relatively compact open neighborhdéd
of the identity inG which map9) to id; we write hereX in the Klein form
G/H. We can assume that is included in the unit ball o€V (I is the
complex dimension ofy). We define a positive function of? via

—1/ -1 e
D<g,f>_{’1@ (g Dlifglfev

otherwise

where||¢|| stands for the euclidean norm@in CV. This is a (a priori) non
symmetrical non-negative function @& which is bounded byl, upper
semi continuous and obviously satisfi@sg, f) = 0 iff g = f. WhenF'is
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a closed subset @, we defineDr(g) = infrcp D(g, f). If F isinvariant
by multiplication on the left by the elements éf, i.e. h.F' = F, then
V(g,h) € G x H, Dp(g) = Dp(h.g) sinceD(h.g,h.f) = D(g, f) for
anyf € F. This allows us to define a similar function éf1 if K is a closed
subset ofX, we setd (x) = Dw—l(K)(ZQ;) wherer : G - X = G/H is
the canonical projection ang is any element inr—*({z}). The definition
is independent of the choice of the preimagehanks to the invariance of
71(K), and we have:

1)0<dg(x) <1,Vxe X
2)dg(x) =0z K
3) dx is upper semi continuous

The setsK, = {z € X /dg(x) =d(z,K) >} (¢ > 0) are therefore
compact subsets of which exhausX \ K whene decreases towards

Letd. be ausual approximation of the identity for the convolution product
in CV andy. the related approximation i, that is:

0. € Cg°(CV) is invariant by rotation
0 >0and [ v 0. =1
Supp 0. = B(0,¢)

and we then defing. onG by x.(g)dg = (#71)*(6-(¢)d¢) so thaty. is a
positive test function oG with fG Xe = 1 and the support of. converges

to {id} ase decreases towards

Let now ¢ be a singular positive metric of a pseudoeffective holomorphic
line bundleL. That isyp is a given set of plurisubharmonic functiops in

U, Wwhere{lU, } is an appropriate open covering &f. The line bundle is
trivial in each open subseét, and is described by the transition functions
gap € O*(Uap). Theyl,s satisfy the relationg, = ¢g +10g |gag| IN Unp.
Considering a finer open covering we can assume (and we will in the sequel)
that all the functions,, (resp.g.s) are defined in some slightly bigger open
subsets thal¥,, (resp.,z).

Sincedd®(pa) = dd°(pg) in Uas, the curvature form of the metric is
globally well defined and its suppaftupp dd“p as well.

The line bundler*L is well defined and holomorphic off, and we
denote byG',g = gap o 7 its transition functions associated to the covering
7~ 1(U,). We define a positive metrig of 7*L by ¢ = p o 7.

Similarly to the case of currents, we set

{ v (@) = Jox=(9)l: 1 (pa(2))dy,
Ve(2) = ¢* om(2) = [ Xe(9)¥alg™" 2)dyg.
These are smooth functions that are well definetiinresp.7 (U, ) if

e > 0is small enough, since, (resp.i,) is defined in a slightly bigger
open subset thai,, (resp.m 1 (Us,)).
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Proposition A.2 The functionsp® = {5} (resp.v® = {5 }) define a
smooth positive metric df (resp.7* L) which is strictly positive at a point
x whenevelrp is strictly positive atc.

©° (resp.®) decreases towardg (resp.)) whenes decreases towards
0" and Supp dd°e° (resp. Supp dd°) converges taSupp dd°p (resp.
Supp dd) in the Hausdorff metric.

More precisely, foe small enough we have

0 () = () if dg(z) = d(x, Suppddp) > e
0¥ () > (x) if 0 < dg(z) <e

whereK denotes the support dfip.

Proof. Fromu, = 15 + log |Gags| in 771 (Uss) we deduce

Vi =05+ [ xelo)log|Gasla™2)ldg
=5+ [ 0:0)108]Gan(@(O) )l

Now the function : ¢ — log |Gas(®(¢)1.2)| is pluriharmonic inU and
therefore the last integral is equal/if0) = log |G 3(2)| since®(0) = id.
Thusy, = ¢5+log |G o] andy® is a smooth metric of * L. Of course this
also gives the corresponding result {gr. The positivity assertions directly
follow from the fact thatld“p® = T, . with the notation of theorem A.1.

Fixing a andz we denote byH the plurisubharmonic function defined
in a neighborhood of in CY by H(¢) = v5(®(¢)~t.2). Thus

/0 ¢)d¢ = /0 5(d§>/0 H(E'Q), ife > ¢,

sincef is invariant by rotation andf is plurisubharmonic. Thereforg is
decreasing ang* as well. It is now enough to prove the last assertion to
obtain the whole proposition.
It is absolutely equivalent to prove the similar resultsdoi.e.
Ve (2) = (z) If Dp(2) = D(z, Suppdd®) > ¢
PE(z) > (2)if 0 < Dp(z) <e
whereF = Suppvy = 7 !(K). Of course this implicitly means that for

eacha and each € 7—1(U4,) the inequalities between, andqZ, hold, but
we don’t write the subscript anymore. Setting = ®(g), we have

() = /V xe(9)d(g" 2)dg
- /U Xe(@(O)B(B(C)12) [ Jac(O)[2dc

- / 0.(0)1(Q)dC,
U
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where¢ — f(¢) = ¥(®(¢)~!.2) is a plurisubharmonic function (in fact a
set of plurisubharmonic funtions, but we omit to mention it from now on)
since® is holomorphic and the group operations+ ¢! andg — g.z as
well. Therefore

{1/16(2) = f(0) = ¥(2) if deuer(0, Suppdd©f) > e
V() > f(0) = v(z) otherwise

A straightforward computation shows that the Levi formfoét the point
¢ applied tow satisfiesL;(¢).w = Ly(®(¢)1.2).(J(¢).w), whereJ(¢)
denotes the jacobian matrix of the map+ @(¢)~*.z which is biholomor-
phic.

HenceSupp dd° f = &~ ([Supp dd®y]~'.2) and ife < 1,

deuet (0, Suppdd®f) > e & nf |87 (/7 2)] = €
€
& Dp(z)>e¢

Q.E.D.

As an application we have the following:

Corollary A.3 If L is a holomorphic line bundle on a compact complex ho-
mogeneous &hler manifold, it is equivalent to say thatis pseudoeffective
or nef or semi-positive: given a singular positive metgion L, ¢° is a
smooth positive metric df.

Moreover, if there exists a singular metrjc of L s.t. dd“yp is strictly
positive at one point, theh is positive.

Proof. The equivalence between the three notions of weak positivity di-
rectly comes fronidd®y] = [dd°¢®] since [, x(g)dg = 1(cfi) in theorem
A.l).

Let now ¢ be a singular metric of a holomorphic line bundlevhich
is strictly positive at some point € X. Fix ¢ > 0 small enough, then
T = dd® is a smooth positive current which is strictly positive cat
ThusT), is a smooth positive current cohomologous/tavhich is strictly
positive inU.a by theorem A.1, wherg is any positive test function o
with fGX = 1 andU is the interior of the support of. Since the action
of GG is transitive onX, we can coverX by a finite number ol/;.a (we
don't necessarily assume that <€ U; here) and obtain that way a current
S = %ijl T, which is smooth, strictly positive and cohomologous to
T,i.e.Sis aKahler form onX s.t.[T] = [S].

It is now a standard consequence of Hodge theory on compiueK
manifold that there exists € C*°(X) s.t.5 = T + dd“v. ThereforeG,, =
¢5, + v defines a smooth metric @f s.tdd“G = S is Kahler. Q.E.D.
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