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Abstract

Given a compact Kähler manifold X, a quasiplurisubharmonic function is called a Green function with pole at p ∈ X if its
Monge–Ampère measure is supported at p. We study in this paper the existence and properties of such functions, in connection to
their singularity at p. A full characterization is obtained in concrete cases, such as (multi)projective spaces.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Etant donnée une variété compacte kählérienne X, une fonction quasiplurisousharmonique est appelée fonction de Green avec
pôle en p ∈ X si sa mesure de Monge–Ampère est concentrée en p. Nous étudions l’existence et les propriétés de ces fonctions
en relation avec la nature de leur singularité au point p. Nous donnons une caractérisation complète de celles-ci dans certaines
situations concrètes, notamment sur les espaces (multi)projectifs.
© 2009 Elsevier Masson SAS. All rights reserved.
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0. Introduction

Let X be a compact Kähler manifold of complex dimension n. We pursue the study started in [42,31,32,27,22,3]
of the range of the complex Monge–Ampère operator. Given a Kähler class α ∈ H 1,1(X,R) and a positive Radon
measure μ, the problem is to solve the equation T n = μ, where T is a positive closed (1,1)-current in α. When μ

does not charge pluripolar sets, a complete answer was given in [27]. The main purpose of this article is to start and
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study the case when μ charges pluripolar sets by looking at measures μ which are sums of Dirac masses. The equation
now reads:

T n =
k∑

j=1

cj δpj
. (1)

We seek solution(s) T ∈ α whose potentials are locally bounded away from the poles p1, . . . , pk . An obvious
necessary condition in order to solve (1) is that the volume of α,

Vα := Vol(α) = αn,

is equal to the total mass of μ, μ(X) = ∑
cj = Vol(α).

Fix θ a Kähler form representing α and let PSH(X, θ) denote the set of θ -plurisubharmonic (θ -psh) functions:
these are functions ϕ ∈ L1(X,R) which are upper semicontinuous and such that T = θ + ddcϕ is a positive current.
Here d = ∂ + ∂ and dc = 1

2πi
(∂ − ∂). Solving (1) is therefore equivalent to finding a “quasiplurisubharmonic Green

function”:

Definition. A function ϕ ∈ PSH(X, θ) is called a θ -psh Green function with (isolated) poles at p1, . . . , pk ∈ X if it is
locally bounded in X \ {p1, . . . , pk} and

(
θ + ddcϕ

)n = Vα

k∑
j=1

mjδpj
, where mj > 0,

k∑
j=1

mj = 1.

In [10], the domain DMA(X, θ) of the Monge–Ampère operator was defined as the largest set of θ -psh functions
on which the operator is continuous along decreasing sequences of bounded θ -psh functions. Hence one can consider
a more general notion of θ -psh Green function, by only requiring in the above definition that ϕ ∈ DMA(X, θ), instead
of ϕ being locally bounded away from the poles. We will not pursue this here.

Similar objects were considered by several authors in a local context [35,30,12,34,6,8,11], and have found impor-
tant applications (see e.g. [4,28,21]). In our global context their existence depends on the geometry of X and on the
local positivity properties of α at the poles.

We therefore study in Section 1 several indicators of the local positivity properties of α, following Demailly
[13]. Recall that the Lelong number ν(ϕ, x) of a θ -psh function ϕ at x is the largest constant ν for which
ϕ(p) � ν log dist(p, x) + O(1) holds for p near x. If ϕ(p) = ν log dist(p, x) + O(1) for p near x and ν > 0, we
say that ϕ has an isotropic pole at x with Lelong number ν.

We let ν(α, x) (resp. ε(α, x)) denote the maximal (resp. maximal isotropic) logarithmic singularity that a positive
closed current T ∈ α can have at the point x. The indicator ε(α, x), introduced by Demailly [13], is called the Seshadri
constant of α at x and was intensively studied in algebraic geometry. We note in Section 1 that for all x ∈ X,

ν(α, x) � Vol(α)1/n � ε(α, x).

Thus a necessary condition for the existence of a α-Green function with one isotropic pole at x is that
Vol(α)1/n = ε(α, x). This is far from being true in general: we observe for instance in Proposition 3.1 that this is
never the case when X is a multiprojective space. Even if this condition is satisfied, it is not clear whether it is suffi-
cient, nor is it clear that the supremum in the definition of ε is attained. We observe in Section 4.3.2 that the following
properties are equivalent:

• existence of a Green function with 9 isotropic poles in general position in P2;
• existence of a Green function with one isotropic pole in generic position on a degree 1 Del Pezzo surface;
• existence of a positive metric with bounded potentials for c1(Y ), where Y → P2 denotes the blow up of P2 at

9 points in general position,

the last one being a famous open problem [19]. We therefore introduce in Section 1 weaker notions of Green functions.
We show in Theorems 1.4, 1.5 and Proposition 1.6 how to construct these by a balayage procedure. It is a delicate
and interesting problem to determine whether θ -psh Green functions always exist. As already observed, we have to
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consider arbitrary singularities. The balayage procedure depends on the choice of local data (u1, . . . , uk) encoding the
singularities at the poles (p1, . . . , pk). In particular, the problem of constructing θ -psh Green functions is reduced to
finding local data for which the functions g constructed in Theorems 1.4 and 1.5 have isolated singularities at pj .

In Section 2 we give a complete description of all these notions on the complex projective space Pn. In particular,
we characterize in Theorem 2.4 Green functions arising naturally from rational maps f : Pn → Pn−1 with finite
indeterminacy set. We end Section 2 by constructing interesting dynamical Green functions.

In Section 3 we compute similar quantities for multiprojective spaces, focusing on P1 × P1. We show in
Proposition 3.4 that Green functions with one pole correspond to a certain class of Green functions with three poles
on P2. A large class of examples of these can be constructed using Theorem 2.4 (see Example 3.5). However, there is
no Green function with one isotropic pole on P1 × P1 (Corollary 3.2).

In Section 4 we turn our attention to the case of smooth Del Pezzo surfaces, focusing on those of degree 1, i.e.
blow ups X of P2 at 8 points in general position. Let α be the first Chern class of X. We prove in Proposition 4.1 that
ν(α, x) = 1 if x ∈ X \ S, and ν(α, x) = 2 if x ∈ S. Here S is the set of singular points on the singular cubics passing
through the 8 blown up points, and 1 � |S| � 12. The results of Proposition 4.1 allow us to compute, using currents,
the exact value of Tian’s “α-invariant”, and to deduce that X has a Kähler–Einstein metric (Section 4.2). We conclude
the paper with the discussion in Section 4.3 of ω-psh Green functions with one pole x ∈ X, where ω ∈ α is a Kähler
form. Such functions are easy to construct when x ∈ S. For generic points x /∈ S the existence of Green functions with
an isotropic pole at x of maximal Lelong number 1 = ε(α, x) is equivalent to a famous open problem in algebraic
geometry (see Section 4.3.2).

1. Local positivity of (1,1) classes and Green functions

Let P (X) be the set of all positive closed currents of bidegree (1,1) on X. For α ∈ H 1,1(X,R) we let,

P (α) = {
T ∈ P (X): T ∈ α

}
,

be the set of positive closed currents whose cohomology class is α. By definition, a class α is pseudoeffective if
P (α) �= ∅. Let H

1,1
psef (X,R) denote the closed convex cone of all pseudoeffective (1,1) classes.

There are two other interesting cones in H
1,1
psef (X,R) which correspond to stronger notions of positivity. We let

H
1,1
Kaehler(X,R) denote the cone of Kähler classes and H

1,1
nef (X,R) denote its closure. Then H

1,1
Kaehler(X,R) is the

interior of H
1,1
nef (X,R).

Following Demailly [13], we would like to measure the local positivity of a class α. There are two main indicators,
in connection to the various types of positivity. In the sequel we denote by ν(T , x) the Lelong number of T ∈ P (X)

at a point x.

Definition 1.1. Let π : X̃ → X denote the blow up of X at a point x, and let E = π−1(x) denote the exceptional
divisor.

1) For α ∈ H
1,1
psef (X,R) we set:

ν(α, x) := sup
{
ν � 0: π�α − νE ∈ H

1,1
psef (X̃,R)

}
.

2) For α ∈ H
1,1
nef (X,R) we set:

ε(α, x) := sup
{
ε � 0: π�α − εE ∈ H

1,1
nef (X̃,R)

}
.

The indicator ν(α, x) is the maximal Lelong number that a current T ∈ P (α) can have at x. In this case the
supremum is attained, because P (α) is a compact set (in the weak topology of currents).

The indicator ε(α, x) is called the Seshadri constant of α at x. It has been intensively studied since it was introduced
by Demailly. We refer the reader to [33, Chapter 5] for a detailed account of this notion.

By definition we have 0 � ε(α, x) � ν(α, x). It follows from the characterization of the Kähler cone obtained in
[18] that if α ∈ H

1,1
(X,R) and x ∈ X, then
nef
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ε(α, x) = min
V

(
(αdimV · V )

multx V

) 1
dimV

,

where the minimum is taken over all irreducible subvarieties V ⊆ X with dimV � 1, and x ∈ V (see e.g.
Proposition 5.1.9 and Remark 1.5.32 in [33]). With V = X, this yields the estimate (recall that Vα = Vol(α)):

ε(α, x) � V 1/n
α , ∀x ∈ X. (2)

On the other hand, it follows easily from Theorem 1.4 below that if α ∈ H
1,1
Kaehler(X,R),

ν(α, x) � V 1/n
α , ∀x ∈ X.

Both bounds are sharp in the case of Pn.

Remark 1.2. If α ∈ H 2(X,Z) is an integral class, then ν(α, x) � V
1/n
α � 1 for all x ∈ X. Note also that if α is very

ample then ε(α, x) � 1.

An alternate description of the Seshadri constant ε(α, x) can be given in terms the maximal Lelong number of
currents in P (α) whose potentials have an isolated singularity at x [13]. Let α ∈ H

1,1
Kaehler(X,R) and θ be a Kähler

form representing α. It follows as in [13, Theorem 6.4] that for every x ∈ X,

ε(α, x) = sup
{
γ : ∃ϕ ∈ PSH(X, θ),

∥∥ϕ − γ log dist(·, x)
∥∥

L∞(X)
< +∞}

= sup
{
γ : ∃ϕ ∈ PSH(X, θ), ν(ϕ, x) = γ, ϕ ∈ L∞

loc

(
U \ {x})}, (3)

where U is a neighborhood of x depending on ϕ. Recall that PSH(X, θ) is the set of θ -psh functions. The set of
normalized θ -psh functions, for example by the condition maxX ϕ = 0, is isomorphic to P (α) via ϕ → θ + ddcϕ ∈
P (α). The fact that the two supremums are equal is straightforward. Moreover, in this case we have ε(α, x) > 0 for
all x ∈ X.

We now list a few elementary properties of these numerical indicators.

Proposition 1.3.

1) The functions α → ν(α, x), ε(α, x) are homogeneous and superadditive (i.e. ν(α + β,x) � ν(α, x) + ν(β, x)).
2) The function x → ν(α, x) is upper semicontinuous.
3) If α is Kähler the function x → ε(α, x) is lower semicontinuous.

Proof. The upper semicontinuity property of x → ν(α, x) follows since P (α) is compact and from the well known
fact that lim supν(Tj , xj ) � ν(T , x) as positive closed (1,1)-currents Tj → T and xj → x.

To prove (3), let θ ∈ α be a Kähler form, x ∈ X, 0 < ε < 1, and 0 < ν < ε(α,x). We construct for all y near x a
θ -psh function ϕy with ϕy = (1 − ε)ν log dist(·, y) + O(1). Using (3), this shows that lim infy→x ε(α, y) � ε(α, x).

By (3) there exists ϕ ∈ PSH(X, θ) such that ϕ = ν log dist(·, x)+O(1). Let B2 ⊂ Cn be the ball of radius 2 centered
at 0. We can find a coordinate chart f : B2 → U ⊂ X, f (0) = x, and a function ρ ∈ C∞(U) so that ddcρ = θ , and

ν log‖z‖ − C � v(z) := (ρ + ϕ) ◦ f (z) � ν log‖z‖ + C, z ∈ B2,

for some constant C > 0. Fix r > 0 small enough so that

(1 − ε)

(
ν log

r

2
− 2C

)
� ν log r + 2C.

Next, let Tw be an automorphism of the unit ball B1 ⊂ Cn with Tw(w) = 0. There exists δ(r) < r such that
‖Tw(z)‖ � r/2, if ‖z‖ = r and ‖w‖ < δ(r). For such w we define the function vw on B2 by:

vw(z) =
⎧⎨
⎩

v(z) + C, 1 � ‖z‖ < 2,

max{v(z) + C, (1 − ε)(v ◦ Tw(z) − C)}, r < ‖z‖ < 1,
(1 − ε)(v ◦ Tw(z) − C), ‖z‖ � r.
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Note that if ‖z‖ = 1 then v(z) + C � 0 � (1 − ε)(v ◦ Tw(z) − C), while if ‖z‖ = r ,

(1 − ε)
(
v ◦ Tw(z) − C

)
� (1 − ε)

(
ν log

r

2
− 2C

)
� ν log r + 2C � v(z) + C.

Hence vw is psh on B2 and v(z) = (1 − ε)ν log‖z − w‖ + O(1) for z near w.
For y = f (w), where ‖w‖ < δ(r), we finally let:

ϕy =
{

ϕ + C, on X \ f (B1),

vw ◦ f −1 − ρ, on f (B1).

Then ϕy is θ -psh and ϕy = (1 − ε)ν log dist(·, y) + O(1) near y. �
In general, the functions ν(α, ·), ε(α, ·) are not continuous (see e.g. Proposition 4.1 and Section 4.3). Note that in

the special case when X is projective and α is an integral class, it follows from [33, Example 5.1.11] that ε(α, ·) is
constant outside a countable union of proper subvarieties of X.

If θ ∈ α is a Kähler form, we have by (2) and (3) that a necessary condition for the existence of a θ -psh Green
function with an isotropic pole at p is:

ε(α,p) = V 1/n
α .

Since this fails to hold in general (see Proposition 3.1), one has to consider other singularities. Following ideas of
Demailly [16], we will show that local fundamental solutions of the Monge–Ampère operator have θ -psh subexten-
sions to X.

We will consider the slightly more general situation when the class α is represented by a smooth closed (1,1) form
θ � 0 and Vα > 0. Recall that the unbounded locus M(ϕ) of ϕ ∈ PSH(X, θ) is defined as the set of all points p ∈ X

such that ϕ is unbounded in every neighborhood of p. We denote by PSH−(X, θ) the set of θ -psh functions ϕ � 0
on X. For p ∈ X, let Gp(Vα) be the set of germs of functions u at p with the following properties: there exists an open
set U ⊂ X containing p such that u is psh on U and locally bounded on U \ {p}, u(p) = −∞, and (ddcu)n = Vαδp

as measures on U .

Theorem 1.4. Let p ∈ X and u ∈ Gp(Vα). There exists a unique function g = gu,p ∈ PSH−(X, θ) such that

(i) g � u + C holds near p, for some constant C.
(ii) If ϕ ∈ PSH−(X, θ) and lim infq→p ϕ(q)/u(q) � 1 then ϕ � g on X.

In addition, g has the following properties:

(a) (θ + ddcg)n = 0 on the open set X \ (M(g) ∪ {g = 0}).
(b) If p is an isolated point of M(g) then M(g) = {p} and g is a θ -psh Green function on X with pole at p.
(c) The open set Du,p = {g < 0} is connected.

It should be noted that the existence of a global θ -psh function ϕ subextending u (i.e. such that ϕ � u near p) is a
nontrivial matter. We use Yau’s solution in the spirit of [16,18]. Producing the “best subextension” g proceeds using a
classical balayage procedure (see [36] for recent similar local extremal problems).

Proof. The uniqueness of a function with properties (i), (ii) is clear. Fix U ⊂ X an open coordinate ball around p, so
that u is psh on U , locally bounded on U \ {p} and (ddcu)n = Vαδp as measures on U . We divide the proof in three
steps.

Step 1. Using a mass concentration technique of Demailly [16], we construct a function ϕ ∈ PSH(X, θ) so that
ϕ � u near p. Let ω0 be a Kähler form on X.

Let W � W ′ � U be open and connected, with p ∈ W , and let χ be a smooth function on X with compact support
in W ′, such that 0 � χ � 1 and χ = 1 on W . We may assume that u � 0 on ∂W . Let ρ, ρ0 be negative smooth
functions on W ′ with ddcρ = θ , ddcρ0 = ω0.
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Let uj ↘ u be a sequence of smooth psh functions on W ′ and let ωj = θ + j−1ω0. We define measures:

μj = Cjχ
(
ddcuj

)n
,

where the constants Cj > 0 are chosen so that μj (X) = ∫
X

ωn
j . Note that μj has support in W ′, and (ddcuj )

n → Vαδp

in the weak sense of measures on W ′. Hence

lim
j→∞

∫
χ

(
ddcuj

)n = Vαχ(p) = Vα, so lim
j→∞Cj = 1.

Yau’s theorem (see [42], also [31]) implies that there exist continuous functions ϕj ∈ PSH(X,ωj ) such that(
ωj + ddcϕj

)n = μj , max
X

ϕj = 0.

By [26, Proposition 1.7] we may assume after passing to a subsequence that {ϕj } converges in L1(X) to a function
ϕ ∈ PSH(X, θ). Moreover, by [29, Theorem 4.1.8] we have ϕ = (lim supj→∞ ϕj )

� on X.
Choose a sequence aj � 1 so that an

j Cj > 1 and aj → 1. We have:

aj

(
ϕj + ρ + j−1ρ0

)
� 0 � uj on ∂W.

On the other hand,

an
j

(
ddc

(
ϕj + ρ + j−1ρ0

))n = an
j Cjχ

(
ddcuj

)n �
(
ddcuj

)n
,

holds on W , as χ = 1 on W . The minimum principle of Bedford and Taylor [1, Theorem A] implies that
aj (ϕj + ρ + j−1ρ0) � uj on W . Letting j → ∞ we obtain that ϕ + ρ � u holds on W . This concludes Step 1.

Step 2. We construct the function g using an upper envelope method. Consider the family:

F =
{
ϕ ∈ PSH−(X, θ): lim inf

q→p

ϕ(q)

u(q)
� 1

}
.

In the terminology of Rashkovskii, this is the family of negative θ -psh functions whose relative type with respect to u

is at least 1 (see [36]).
By Step 1, F �= ∅. If g = sup{ϕ: ϕ ∈ F }, then the upper semicontinuous regularization g� ∈ PSH−(X, θ). We will

show that g� � u+C holds near p for some constant C. This implies that g = g� ∈ F , so g verifies properties (i), (ii).
We can find M > 0 such that the connected component D of {u < −M} which contains p is relatively compact

in U . Let ρ < 0 be a smooth function on U so that ddcρ = θ . Fix ϕ ∈ F . There exists a sequence of relatively compact
domains Dj ⊂ D, j > 0, with the following properties:

Dj+1 ⊂ Dj,
⋂
j>0

Dj = {p}, ϕ(q) �
(
1 − j−1)u(q) for q ∈ Dj .

We have ρ +ϕ � 0 � (1−j−1)(u+M) on ∂D, and clearly ρ +ϕ � (1−j−1)(u+M) on ∂Dj . Since the psh function
u is maximal on U \ {p}, it follows that the last inequality holds on D \ Dj . As j → ∞ we see that ρ + ϕ � u + M

on D. Since ϕ ∈ F was arbitrary, this implies that g� � u + C on D, where C = M − minD ρ.

Step 3. We prove the remaining properties of g.
(a) Note that M(g) is closed and since g � 0 is upper semicontinuous the set {g = 0} is closed. Let

q ∈ X \ (M(g) ∪ {g = 0}) and let ρ be a smooth function in a neighborhood of q such that ddcρ = θ and ρ(q) = 0.
We can find ε > 0 and a small neighborhood G of q such that G ⊂ X \ (M(g) ∪ {g = 0}) and g < −ε, |ρ| < ε/2 on
G. Let W be a relatively compact open subset of G and v be psh on W so that v� � ρ + g on ∂W . The function,

ϕ = g on X \ W, ϕ = max{ρ + g, v} − ρ on W,

is θ -psh and ϕ � 0 on X. Since ϕ = g in a neighborhood of p, we conclude that ϕ ∈ F , hence v � ρ + g on W . This
shows that the psh function ρ +g is maximal on G. By [2], (θ +ddcg)n = 0 in G, and hence on X \ (M(g)∪{g = 0}).

(b) If p ∈ M(g) is isolated, there exists a closed ball K centered at p so that K ∩M(g) = {p}. Hence g is bounded
below on ∂K . It follows that if C > 0 is large enough the function ϕ defined by ϕ = g on K , ϕ = max{g,−C} on
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X \ K , is θ -psh and ϕ ∈ F . Thus ϕ � g, so M(g) = {p}. By (i) and [15], (θ + ddcg)n({p}) � (ddcu)n({p}) = Vα .
Mass considerations imply that g is a θ -psh Green function.

(c) Suppose that there exists a connected component W of Du,p not containing p. The function ϕ defined by ϕ = g

on X \ W and ϕ = 0 on W , verifies ϕ ∈ F , so ϕ � g. This contradicts our assumption that g < 0 on W , so Du,p is
connected. �

The following theorem produces Green functions with several poles. Its proof is a straightforward adaptation of
the proof of Theorem 1.4.

Theorem 1.5. For 1 � j � k, let pj ∈ X, uj ∈ Gpj
(Vα), and mj > 0 with

∑k
j=1 mj = 1. There exists a unique function

g ∈ PSH−(X, θ) such that

(i) g � m
1/n
j uj + C holds near each pj , for some constant C.

(ii) If ϕ ∈ PSH−(X, θ) and for each j , lim infq→pj
ϕ(q)/uj (q) � m

1/n
j , then ϕ � g on X.

Moreover, we have (θ + ddcg)n = 0 on X \ (M(g) ∪ {g = 0}). If all pj are isolated points of M(g) then g is a
θ -psh Green function with poles at p1, . . . , pk .

It is an intricate problem to decide whether there always exist local models u at p ∈ X such that gu,p is a Green
function. As an alternate approach, we introduce a partial Green function associated to an isotropic singularity.

Proposition 1.6. Let θ ∈ α be a Kähler form, let p ∈ X and 0 < γ < ε(α,p). There exists a unique function
ψγ,p ∈ PSH−(X, θ) so that ν(ψγ,p,p) = γ and with the property that if ϕ ∈ PSH−(X, θ) and ν(ϕ,p) � γ then
ϕ � ψγ,p . Moreover,∥∥ψγ,p − γ log dist(·,p)

∥∥
L∞(X)

< +∞,
(
θ + ddcψγ,p

)n = γ nδp + μγ,p,

where μγ,p is a positive measure supported on the compact {ψγ,p = 0}.

Proof. The uniqueness of ψγ,p is clear. Let us fix a biholomorphic map f : B → U from the unit ball B ⊂ Cn onto a
neighborhood U of p, with f (0) = p. Let ρ < 0 be a smooth function on U with ddcρ = θ .

By (3) there exists ψ ∈ PSH−(X, θ) so that ψ = γ log dist(·,p) + O(1). Let,

ψγ,p(q) = sup
{
ϕ(q): ϕ ∈ PSH−(X, θ), ν(ϕ,p) � γ

}
.

For such ϕ, we have (ρ + ϕ)(f (z)) � γ log‖z‖ on B . This implies ψ�
γ,p ∈ PSH−(X, θ) and ν(ψ�

γ,p,p) � γ .
Thus ψγ,p = ψ�

γ,p . Since ψ � ψγ,p , it follows that ν(ψγ,p,p) = γ and the function ψγ,p −γ log dist(·,p) is bounded
on X.

Arguing as in the proof of Theorem 1.4(a) we show that (θ + ddcψγ,p)n = 0 in {ψγ,p < 0} \ {p}. By [15], (θ +
ddcψγ,p)n({p}) = γ n, and the proof is complete. �

We refer to [36] for similar extremal problems on domains in Cn. In the following sections, we are going to compute
the functions ν, ε and gu,p, ψν,p in a number of interesting cases.

2. Green functions on Pn

Let [z0 : . . . : zn] be homogeneous coordinates on Pn and πn : Cn+1 \ {0} → Pn be the standard projection.
Let αn = {ωn}, where ωn is the Fubini–Study form, so π�

nωn = ddc log‖z‖ and Vol(αn) = 1.

2.1. Maximal Lelong number

Proposition 2.1. We have ν(αn, x) = ε(αn, x) = 1 for all x ∈ Pn. If T ∈ P (αn) and ν(T , x) = 1 then T = ℘�
xS, where

℘x : Pn → Pn−1 is the projection with center x onto a hyperplane Pn−1 /� x and S ∈ P (αn−1). Moreover, the following
are equivalent:
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(i) the potentials of T have isotropic pole at x with Lelong number 1.
(ii) T has locally bounded potentials on Pn \ {x}.

(iii) S has bounded potentials.

Proof. Let π : X → Pn denote the blow up of Pn at x, and let E be the exceptional divisor. The map Φ = ℘x ◦ π :
X → Pn−1 is a holomorphic fibration, whose fibers are the projective lines through x. Moreover, π�αn −E = Φ�αn−1.

If ν(T , x) = 1 then T̃ = π�T − [E] is a positive closed (1,1)-current on X in the cohomology class Φ�αn−1. It
follows that T̃ = Φ�S for some S ∈ P (αn−1), hence T = ℘�

xS. The potentials of T have isotropic pole at x with
Lelong number 1 if and only if T̃ has bounded potentials, hence if and only if S has bounded potentials.

It is well known that currents in P (αn) have Lelong number at most 1 at each point x. The above construction
shows that ν(αn, x) = ε(αn, x) = 1. �

We now explore further the geometry of sublevel sets of high Lelong numbers, in the spirit of [9]. For c > 0 and
T ∈ P (αn) a theorem of Siu [38] states that

Ec(T ) := {
x ∈ Pn: ν(T , x) � c

}
is an algebraic subset of dimension at most n − 1. We also consider the set:

E+
c (T ) := {

x ∈ Pn: ν(T , x) > c
}
.

Proposition 2.2. The set E+
n/(n+1)

(T ) is contained in a hyperplane of Pn.

Proof. Let T = ωn + ddcϕ and set Ec(ϕ) = Ec(T ) and E+
c (ϕ) = E+

c (T ). The proof is by induction on n. If n = 1,
T is a probability measure, ν(T ,p) = T ({p}), so E+

1/2(T ) contains at most one point.
Let cn = n/(n+ 1). If n � 2 we assume for a contradiction that E+

cn
(ϕ) contains the points q,p1, . . . , pn in general

position. Let H be the hyperplane determined by p1, . . . , pn, so q /∈ H . By a theorem of Siu [38], T = c[H ] + R,
where 0 � c � 1 and R ∈ P ((1 − c)αn) has generic Lelong number 0 along H . Thus

cn < ν(ϕ, q) = ν(R,q) � 1 − c, ν(R,pj ) = ν(ϕ,pj ) − c > cn − c, 1 � j � n.

Consider the current S = R/(1 − c) = ωn + ddcψ ∈ P (αn). Since c < 1 − cn,

ν(ψ,pj ) >
cn − c

1 − c
>

2cn − 1

cn

= cn−1, 1 � j � n.

By [14, Proposition 3.7], there exist εk ↘ 0 and currents Sk = (1 + εk)ωn + ddcψk � 0, where ψk have analytic
singularities, such that Sk → S and 0 � ν(ψ,p)− ν(ψk,p) � εk for all p ∈ Pn. Since S does not charge H , it follows
that ψk �≡ −∞ on H ≡ Pn−1. Hence ψk|H ∈ PSH(Pn−1,ωn−1), and

ν(ψk|H ,pj ) � ν(ψk,pj ) > cn−1, 1 � j � n,

for k sufficiently large. This yields a contradiction, since by our induction hypothesis the set E+
(n−1)/n(ψk|H ) is

contained in a hyperplane of Pn−1. �
The value n/(n + 1) in the previous theorem is sharp. Indeed, let S be a set of n + 1 points pj ∈ Pn in

general position, and let [Hj ] be the current of integration along the hyperplane Hj determined by S \ {pj }. If
T = ([H1] + · · · + [Hn+1])/(n + 1) then the set En/(n+1)(T ) = S is not contained in any hyperplane.

We are now in position to make the result of Proposition 2.1 more precise, by giving a characterization of the
currents T for which E1(T ) �= ∅.

Proposition 2.3. If T ∈ P (αn) and E1(T ) �= ∅ then E1(T ) is a k-dimensional linear subspace of Pn for some in-
teger 0 � k � n − 1. Let ℘ denote the projection with center E1(T ) onto a linear subspace L ≡ Pn−k−1 such that
L ∩ E1(T ) = ∅. Then T = ℘�S for a unique current S ∈ P (αn−k−1), and E1(S) = ∅.
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Proof. Let T = ωn + ddcϕ and k � 0 be the largest integer for which there exist k + 1 points p0, . . . , pk ∈ E1(T )

in general position (i.e. not contained in a (k − 1)-dimensional subspace). Proposition 2.2 implies k � n − 1. Using
an automorphism of Pn, we may assume p0 = [1 : 0 : . . . : 0], p1 = [0 : 1 : . . . : 0], and so on. Consider the projection
f0 of Pn with center p0 onto the hyperplane Pn−1 ≡ {z0 = 0}. Proposition 2.1 shows that ϕ = u + h0 ◦ f0, where
h0 ∈ PSH(Pn−1,ωn−1), and

u
([z0 : . . . : zn]

) = 1

2
log

|z1|2 + · · · + |zn|2
|z0|2 + · · · + |zn|2 .

It follows that f0(pj ) ∈ E1(h0), j = 1, . . . , k, and Proposition 2.1 can be applied to h0 and the point f0(p1).
Continuing like this we get:

ϕ
([z0 : . . . : zn]

) = 1

2
log

|zk+1|2 + · · · + |zn|2
|z0|2 + · · · + |zn|2 + h

([zk+1 : . . . : zn]
)
,

with h ∈ PSH(Pn−k−1,ωn−k−1). The definition of k implies E1(h) = ∅, so E1(ϕ) = {zk+1 = · · · = zn = 0}. �
2.2. Green functions

2.2.1. Green functions with one pole
It follows from Proposition 2.1 that if T = ℘�

xS, where S ∈ P (αn−1) has bounded potentials and ℘x : Pn → Pn−1

is the projection from x, then T = ωn + ddcg with g = gS,x ∈ PSH(Pn,ωn) ∩ L∞
loc(P

n \ {x}), g has an isotropic pole
at x with Lelong number 1 and (

ωn + ddcg
)n = δx.

Conversely, any ωn-psh Green function g with pole at x and maximal Lelong number ν(g, x) = 1 is of this form, and
in particular it must have an isotropic pole at x. Observe that the set of such functions is large.

2.2.2. Multipole Green functions
We push further the result of Proposition 2.1 and study multipole Green functions which arise naturally from

rational maps.
Let f : Pn → Pn−1, f = [P1 : . . . : Pn], be a rational map with finite indeterminacy set If , where Pj are

homogeneous polynomials of degree d on Cn+1. Then f determines an ωn-psh Green function,

gf

(
πn(z)

) = d−1 log
∥∥F(z)

∥∥ − log‖z‖, z ∈ Cn+1 \ {0}, (4)

where F : Cn+1 → Cn, F(z) = (P1(z), . . . ,Pn(z)). The function gf is continuous, If = {gf = −∞}, and gf has an
isolated pole at each point of If . Moreover, gf verifies the Monge–Ampère equation:(

ωn + ddcgf

)n =
∑
p∈If

mpδp, where mp > 0, mp ∈ Q,
∑
p∈If

mp = 1.

Our next result shows that this function has an extremal property (see [8] for a similar characterization of classes of
pluricomplex Green functions on Cn):

Theorem 2.4. If ϕ ∈ PSH(Pn,ωn) and ϕ � gf , then there exists a unique function h ∈ PSH(Pn−1,ωn−1) such that
ϕ = gf + d−1h ◦ f . Conversely, any such function ϕ is ωn-psh. We have that ϕ is locally bounded on Pn \ If if and
only if h is bounded. In this case, ϕ satisfies:(

ωn + ddcϕ
)n =

∑
p∈If

mpδp.

Proof. Since the indeterminacy set If is finite, we can find a hyperplane H which does not intersect If . Let L be
a linear polynomial defining H , and let P0 = Ld . The map f̂ = [P0 : P1 : . . . : Pn] : Pn → Pn is holomorphic and
f = ℘ ◦ f̂ , where
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℘ : Pn → Pn−1, ℘
([z0 : z1 : . . . : zn]

) = [z1 : . . . : zn],
is the projection with center [1 : 0 : . . . : 0].

For every p ∈ Pn−1 the fiber Xp := f −1(p) = f̂ −1(℘−1(p)) is one-dimensional and is connected by
[23, Proposition 1], since ℘−1(p) is a line in Pn. This implies in particular the uniqueness of h.

Fix now an arbitrary p ∈ Pn−1, and let us assume p = [a1 : . . . : an−1 : 1]. Then Xp is defined by the equations
Pj = ajPn. Let q = [b0 : . . . : bn] be a point in Xp \ If . We assume that b0 = 1. Then q has a neighborhood where
Pn(1, z1, . . . , zn) �= 0. So, for some constant c, we have log‖F‖ = log |Pn| + c in this neighborhood. It follows that
ϕ − gf is psh in some open set which contains Xp \ If . Since ϕ − gf � 0 and If is a finite set, ϕ − gf extends to
a subharmonic function on Xp . But Xp is compact and connected, so ϕ − gf is constant on Xp . We conclude that
ϕ = gf + (h◦f )/d , for some function h on Pn−1. Since ϕ � gf and gf is continuous, it follows easily that h is upper
semicontinuous.

We now show that h ∈ PSH(Pn−1,ωn−1). By using an automorphisms of Pn we may assume that the hyperplane
H = {z0 = 0} does not intersect If . We claim that the map F ′ : Cn → Cn, F ′(z′) = F(1, z′), is proper. Indeed, if
P d

j (z′) is the homogeneous part of degree d of Pj (1, z′), then P d
j (z′), j = 1, . . . , n, have no common zeros except

at 0. The homogeneity of P d
j yields,

n∑
j=1

∣∣P d
j (z′)

∣∣2 � M‖z′‖2d ,

for some constant M > 0, which implies that F ′ is proper. The function,

u(z′) = ϕ
([1 : z′]) + log

√
1 + ‖z′‖2 = 1

d
log

∥∥F ′(z′)
∥∥ + 1

d
h ◦ πn−1

(
F ′(z′)

)
,

is psh on Cn. Since F ′ is proper, the function,

v(w) = d max
{
u(z′): F ′(z′) = w

} = log‖w‖ + h ◦ πn−1(w),

is psh on Cn. This proves that h ∈ PSH(Pn−1,ωn−1).
For the converse, note that

ωn + ddc
(
gf + (h ◦ f )/d

) = d−1f �
(
ωn−1 + ddch

)
� 0,

so gf + (h ◦ f )/d is ωn-psh.
Finally, it is clear that ϕ ∈ L∞

loc(P
n \ If ) if and only if h is bounded. Then we infer by [15] that

mp = (ωn + ddcgf )n({p}) = (ωn + ddcϕ)n({p}). The conclusion follows since
∑

p∈If
mp = 1. �

Note that Proposition 2.1 follows from Theorem 2.4 applied to rational maps of degree d = 1. We will see in
Section 3.2 that Green functions determined by certain rational maps f : P2 → P1 with three points of indeterminacy
provide rich classes of examples of Green functions with one pole on P1 × P1 (see Example 3.5).

Example 2.5. An important particular case of Theorem 2.4 is the one of rational functions f : P2 → P1, f = [P1 : P2],
where Pj are homogeneous polynomials of degree d whose common zero set If consists of d2 distinct points of P2.
Then gf is a ω2-psh Green function with d2 isotropic poles and Lelong number 1/d at each pole. If d = 2 we observe
that any set of four points in general position is the complete intersection of two conics, hence it can be realized as
the indeterminacy set If for a rational map f of degree d = 2 as described above. It follows that the ω2-psh Green
functions with four isotropic poles are described by Theorem 2.4. However, if d � 3 a set of d2 points of P2 in general
position is not the complete intersection of two curves of degree d (in fact when d � 4, there is no curve of degree d

passing through d2 points in general position). So the Green functions gf with d2 isotropic poles, d � 3, only exist
for very special sets of poles.

2.2.3. Partial Green functions
We compute here in the case of (Pn,ωn) the functions ψν,p constructed in Proposition 1.6. Assume without loss

of generality that p = 0 ∈ Cn. For ν < 1 define Rν , Cν by:
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Rν = [
ν/(1 − ν)

]1/2
, ν logRν + Cν = log

√
1 + R2

ν .

For z ∈ Cn let:

V (z) =
{

ν log‖z‖ + Cν, ‖z‖ � Rν,

log
√

1 + ‖z‖2, ‖z‖ � Rν.

Proposition 2.6. For ν < 1 and z ∈ Cn we have ψν,p(z) = V (z) − log
√

1 + ‖z‖2.

Proof. Note that ψν,p(z) = W(z) − log
√

1 + ‖z‖2, where

W(z) = sup
{
v(z): v ∈ PSH

(
Cn

)
, v � log

√
1 + ‖ · ‖2, ν(v,0) � ν

}
.

Since max‖z‖=r v(z) is a convex increasing function of log r , and since x = logRν is the solution of the equation
d
dx

log
√

1 + e2x = ν, it follows that W = V . �
Letting ν ↗ 1 it follows that ψ1,p(z) = log(‖z‖/√1 + ‖z‖2 ), z ∈ Cn, is the Green function constructed in

Theorem 1.4 for u(z) = log‖z‖.

2.2.4. Dynamical Green functions
We now consider the problem of constructing Green functions on P2 with one pole at p and Lelong number at

p less than 1. Let ω = ω2, let [t : x : y] denote the homogeneous coordinates on P2, and identify z = (x, y) ∈ C2 to
[1 : x : y]. Simple examples can be obtained by considering a smooth curve with a flex at p, i.e. the tangent line at p

does not intersect the curve at any other points. More generally, for integers 1 � k < n, the function,

g
([t : x : y]) = 1

2n
log

(∣∣yktn−k − xn
∣∣2 + ∣∣yn

∣∣2) − 1

2
log

(|t |2 + |x|2 + |y|2),
is ω-psh and smooth away from p = 0 ∈ C2, ν(g,p) = k/n and (ω + ddcg)2 = δp .

We describe next more elaborate constructions using complex dynamics. Let h : C2 → C2 be a polynomial
mapping of algebraic degree λ > 1. Then h extends to a rational self-map of P2, denoted again by h, with finite
indeterminacy set I ⊂ {t = 0}. We call h weakly regular if h maps {t = 0} \ I to a point Z /∈ I (see [25]). Such h is
algebraically stable (deghn = λn). It was shown in [37] that the currents λ−n(hn)�ω converge weakly to an invariant
positive closed current T = Th on P2, T = ω + ddcg. We call T the dynamical Green current and g a dynamical
Green function of h. By [25, Theorem 2.2], g is continuous on P2 \ I , T ∧ T is supported on I , so g is a ω-psh Green
function with poles in I .

If |I | = 1 then T ∧ T = δI . Our goal is to compute the Lelong number ν(T , I ).

Proposition 2.7. Let h be a weakly regular polynomial endomorphism of C2 of degree λ > 1, with |I | = 1, and such
that

dist
(
h(p), I

)
� C dist(p, I )δ, p ∈ P2 \ {I }, (5)

for constants 0 < C < 1, 1 < δ < λ. Then ν(λ−n(hn)�ω, I ) ↗ ν(T , I ) as n ↗ ∞.

Proof. If λ−1h�ω = ω + ddcψ , where ψ � 0 is ω-psh, then by [24, Theorem 2.1],

Tn := λ−n
(
hn

)�
ω = ω + ddcgn, gn =

n−1∑
j=0

λ−jψ ◦ hj ↘ g =
∞∑

j=0

λ−jψ ◦ hj ,

and T = ω + ddcg. Hence {ν(Tn, I )} is increasing and ν(Tn, I ) � ν(T , I ).
It follows from (5) that there is C′ > 0 so that for every n and p ∈ P2 \ {I },

dist
(
hn(p), I

)
�

(
C′ dist(p, I )

)δn

.
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Note that the function ψ is smooth except at I , and ψ � γ log dist(·, I )−M holds on P2 for some constants γ,M > 0.
Writing g = gn + ρn, we deduce that

ρn(p) �
∞∑

j=n

λ−j
(
γ log dist

(
hj (p), I

) − M
)
� γ ′(δ/λ)n log dist(p, I ) − εn,

with some γ ′ > 0 and εn → 0. Thus ν(Tn, I ) � ν(T , I ) � ν(Tn, I ) + γ ′(δ/λ)n. �
Note that (5) holds for Hénon maps h(x, y) = (P (x) + ay, x), degP = λ, with δ = 1, since I = [0 : 0 : 1] is an

attracting fixed point for h−1. However, the map h(x, y) = (xλ − yλ−1, yλ−1) shows that (5) does not hold for δ < λ.

Proposition 2.8. Let h(x, y) = (xλ + yμ, x), where λ > μ � 1 are integers, so I = [0 : 0 : 1]. The Green current T of
h verifies T ∧ T = δI , ν(T , I ) = (λ − μ)/λ.

Proof. We show first that (5) holds with δ = λ − 1. Note that h is weakly regular and in local coordinates (t, x) near
I we have:

h(t, x) =
(

t

x
,
xλ + tλ−μ

xtλ−1

)
.

It is enough to prove (5) for p = (t, x) with 0 < |x|, |t | < 1. If |t | � |x|, or if |xλ + tλ−μ| � |xtλ−1|, then ‖h(t, x)‖ � 1,
and the estimate follows. Otherwise, we have |t | < |x| < 1 and |xλ + tλ−μ| < |xtλ−1|, so |x|λ < 2|t |λ−μ. Therefore∥∥h(t, x)

∥∥ � |t |
|x| � C|x|μ/(λ−μ) � C|x|λ−1 � C′ dist(p, I )λ−1.

Next we compute νn := ν(λ−n(hn)�ω, I ). Let hn([t : x : y]) = [tλn : pn(t, x, y) : qn(t, x, y)], where pn, qn are
homogeneous polynomials of degree λn, and

vn(t, x) = log
(|t |2λn + ∣∣pn(t, x,1)

∣∣2 + ∣∣qn(t, x,1)
∣∣2)1/2

.

It follows by induction that ν(vn,0) = λn − max{degy pn,degy qn} = λn − μλn−1, where degy pn denotes the degree
in y of pn. Hence νn = (λ − μ)/λ = ν(T , I ). �

If h is Hénon map of degree λ a similar argument shows ν(Th, I ) = 1 − λ−1.

3. Green functions on P1 × P1

It is possible to describe the functions ν, ε, g, ψ on a multiprojective space Pn1 ×· · ·×Pnk . For simplicity, we only
consider the case X = P1 × P1 = P1

z × P1
w . Let πz : X → P1

z , πw : X → P1
w , denote the canonical projections and set:

αa,b := aαz + bαw, ωa,b := aωz + bωw, a, b � 0,

where αz = π�
z α1, αw = π�

wα1, ωz = π�
z ω1, ωw = π�

wω1, and ω1 ∈ α1 is the Fubini–Study form on P1. Note that αa,b

is a Kähler class if and only if a, b > 0.
For concrete computations, it will be convenient to use coordinates on X. Let

π : (C2 \ {0}) × (
C2 \ {0}) → X, π(z0, z1,w0,w1) = ([z0 : z1], [w0 : w1]

)
,

and identify (z1,w1) ∈ C2 to π(1, z1,1,w1) ∈ X. The currents T ∈ P (αa,b) can be described using the class Pa,b of
bihomogeneous psh functions ũ on C4 (see [24]):

ũ(λz0, λz1,μw0,μw1) = a log |λ| + b log |μ| + ũ(z0, z1,w0,w1), λ,μ ∈ C.

Then π�T = ddcũ, for some ũ ∈ Pa,b which is unique up to additive constants.
For a point p = (x, y) ∈ X we denote by:

Vx = π−1
z (x) = {z = x}, Hy = π−1

w (y) = {w = y},
the vertical, and respectively horizontal, line through p.
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3.1. Maximal Lelong numbers

Proposition 3.1. For all p = (x, y) ∈ X, we have:

ν(αa,b,p) = a + b, ε(αa,b,p) = min{a, b}.
If T ∈ P (αa,b) and ν(T ,p) = a + b then T = a[Vx] + b[Hy]. Moreover, if T does not charge Vx and Hy then
ν(T ,p) � min{a, b}.

Proof. Let T ∈ P (αa,b). We can assume that p = (0,0) and let m = min{a, b}. The current Ra,b ∈ P (αa,b) defined
by π�Ra,b = ddcũa,b , where ũa,b ∈ Pa,b ,

ũa,b(z0, z1,w0,w1) := m log
√

|z1w0|2 + |w1z0|2 + (a − m) log|z0| + (b − m) log|w0|,
shows that ε(αa,b,p) � m. Moreover, the measure T ∧ R1,1 is well defined, and

ν(T ,p) = T ∧ R1,1
({p}) �

∫
X

T ∧ R1,1 =
∫
X

ωa,b ∧ ω1,1 = a + b.

Assume now that T does not charge the subvarieties Vx and Hy . By [14], there exist εj ↘ 0 and currents
Tj ∈ P (αa,b + εjα1,1) with analytic singularities, so that 0 � ν(T , q) − ν(Tj , q) � εj for every q ∈ X. Since T does
not charge Vx , the measure Tj ∧ [Vx] is well defined. If vj is a psh potential of Tj near p, then

ν(Tj ,p) � ν(vj |Vx
,p) = Tj ∧ [Vx]

({p}) �
∫
X

Tj ∧ [Vx] = b + εj .

We replace Vx by Hy in this argument and let j → +∞ to get ν(T ,p) � m. By (3) it follows that ε(αa,b,p) � m.
Assume finally that ν(T ,p) = a + b. By [38], we can write:

T = a′[Vx] + b′[Hy] + T ′, T ′ ∈ P (αa−a′,b−b′),

where T ′ does not charge Vx and Hy . By what we have already shown,

a + b = ν(T ,p) � a′ + b′ + min{a − a′, b − b′}.
This implies that a′ = a, b′ = b, and T ′ = 0. �

Observe that the functions ν, ε are constant here, as well as in the case of Pn, because α is invariant under a
compact group of automorphisms that acts transitively on X.

Note that Vol(αa,b)
1/2 = √

2ab > min{a, b}, hence the upper bound given in (2) is not sharp in this case. Another
obvious consequence of the previous proposition is the following:

Corollary 3.2. There is no Green function with one isotropic pole on P1 × P1.

We can however compute the partial Green functions with isotropic singularity ψν,p constructed in Proposition 1.6.
Assume that p = (0,0) ∈ C2 ⊂ X, and let a = b = 1, ν = ε(α1,1,p) = 1. A psh potential of ω1,1 on C2 is given by:

ρ(z1,w1) = log
√

1 + |z1|2 + log
√

1 + |w1|2.

Proposition 3.3. We have ψ1,p(z1,w1) = log(|z1| + |w1|) − ρ(z1,w1) if |z1w1| � 1, and ψ1,p(z1,w1) = 0
if |z1w1| � 1.

Proof. We have to obtain upper estimates for psh functions v on C2 which verify v � ρ and ν(v,0) � 1. We do this
first along a complex line z1 = sζ , w1 = tζ . Using the same convexity argument as in the proof of Proposition 2.6,
we obtain:
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v(sζ, tζ ) �
{

log|ζ | + C, |ζ | � R,

ρ(sζ, tζ ), |ζ | � R.

Here R = |st |−1/2, x = logR is the solution of the equation:

d

dx

(
log

√
1 + |s|2e2x + log

√
1 + |t |2e2x

) = 1,

and C = log(|s| + |t |) verifies logR + C = ρ(sR, tR). If s = 1, t = w1/z1, we get:

v(z1,w1) � V (z1,w1) =
{

log(|z1| + |w1|), |z1w1| � 1,

ρ(z1,w1), |z1w1| � 1.

Since log(|z1| + |w1|) � ρ(z1,w1) on C2, with equality when |z1w1| = 1, the function V is psh. It follows that
ψ1,p = V − ρ. �

Note that the (unbounded) hyperconvex domain,

D1,p = {ψ1,p < 0} = {
(z1,w1) ∈ C2: |z1w1| < 1

}
,

does not have a pluricomplex Green function: if v < 0 is psh on D1,p and v(0,0) = −∞ then v = −∞ along the lines
{z1 = 0}, {w1 = 0}.

3.2. Green functions with one pole

It is clear from Proposition 3.1 and Corollary 3.2 that the characterization of Green functions in PSH(X,ωa,b) with
one pole at p ∈ X is more involved. Using a birational map, we will show that they correspond to a certain class of
Green functions with three poles on P2. A rich class of examples of the latter can be constructed using (4) (see also
Theorem 2.4). This will show that the Green functions of X with pole at p have many different types of singularities,
even if one asks that the Lelong number at p is maximal.

We may assume that p = (0,0) ∈ C2 ⊂ X and a = 1 � b. Let ω = ωFS on P2 and consider the rational map
Φ : P2 → X defined by:

Φ
([t0 : t1 : t2]

) = ([t0 : t1], [t0 : t2]
)
.

It is a birational map, with rational inverse:

Φ−1([z0 : z1], [w0 : w1]
) = [z0w0 : z1w0 : w1z0].

Note that Φ is the identity on C2 ≡ {[1 : t1 : t2] ∈ P2} ≡ {([1 : z1], [1 : w1]) ∈ X}, Φ blows up the points A = [0 : 1 : 0],
B = [0 : 0 : 1], to the lines {z0 = 0}, respectively {w0 = 0}, and Φ contracts the line {t0 = 0} to the point q = (∞,∞).

We denote by Sb the set of the currents S ∈ P (α1,b) with locally bounded potentials on X \ {p} and such that
S ∧ S = 2bδp . A potential of S is then a ω1,b-psh Green function on X with pole at p.

Let Rb be the set of currents R ∈ P ((1 + b)ω) on P2 whose potentials are locally bounded on P2 \ {p,A,B}, have
isotropic poles at A,B with Lelong numbers ν(R,A) = b, ν(R,B) = 1, and such that R ∧ R = 0 on P2 \ {p,A,B}.
It follows that a potential v of R is a (1 + b)ω-psh Green function on P2 with poles at p,A,B:

R ∧ R = (
(1 + b)ω + ddcv

)2 = b2δA + δB + 2b δp.

Proposition 3.4. The mapping Φ� : Sb → Rb is well defined and bijective. Its inverse is the mapping:

G : R ∈ Rb �→ (
Φ−1)�

R − b[z0 = 0] − [w0 = 0] ∈ Sb.

Proof. Let S ∈ Sb and ũ ∈ P1,b be a potential of S. Then

ṽ(t0, t1, t2) := ũ(t0, t1, t0, t2), ṽ(λt0, λt1, λt2) = ṽ(t0, t1, t2) + (1 + b) log |λ|,
is a logarithmically homogeneous potential for R = Φ�S, so R ∈ P ((1 + b)ω). In particular, it follows that R has
locally bounded potentials on P2 \ {p,A,B}. Near the point A, assuming without loss of generality that |t0| � |t2| we
have:
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ṽ(t0,1, t2) = ũ(t0,1, t0/t2,1) + b log|t2| = b log
√

|t0|2 + |t2|2 + O(1).

So R has potentials with an isotropic pole at A and ν(R,A) = b. One proves in the same way that R has potentials
with an isotropic pole at B and ν(R,B) = 1. We have R ∧ R = S ∧ S = 0 on C2 \ {0}. Since R has locally bounded
potentials near each point of {t = 0} \ {A,B} we have R ∧ R({t = 0} \ {A,B}) = 0, so R ∈ Rb .

Conversely, let R ∈ Rb with logarithmically homogeneous potential ṽ. Then

ũ(z0, z1,w0,w1) := ṽ(z0w0, z1w0,w1z0) − b log|z0| − log|w0| ∈ P1,b

is a bihomogeneous potential of G(R). We show that G(R) has locally bounded potentials in a neighborhood of any
point at infinity ζ �= q . Suppose without loss of generality ζ ∈ {z0 = 0}. Then for |z0| small enough we have that
[z0 : 1 : z0w1] is near A, so

ũ(z0,1,1,w1) = ṽ(z0,1,w1z0) − b log|z0| = b log
√

1 + |w1|2 + O(1) = O(1).

Next we study the potentials of G(R) in a neighborhood of q . We have:

ũ(z0,1,w0,1) = ṽ(z0w0,w0, z0) − b log|z0| − log|w0|,
where |z0|, |w0| are small. If |w0/z0| is small, then [w0 : w0/z0 : 1] is near B so

ũ(z0,1,w0,1) = ṽ(w0,w0/z0,1) + log|z0| − log|w0| = log
√

|z0|2 + 1 + O(1).

Similarly, ũ(z0,1,w0,1) = O(1) if |z0/w0| is small. If ε � |w0/z0| � M then

ũ(z0,1,w0,1) = ṽ(w0,w0/z0,1) + log
(|z0|/|w0|

) = O(1).

It follows that G(R) has locally bounded potentials in X \ {p}, hence G(R) ∈ Sb .
Since Φ is the identity on C2 and the currents in Rb , resp. Sb , do not charge the line(s) at infinity, we conclude by

the support theorem that Φ� is bijective and G is its inverse. �
Example 3.5. Let 1 � b = m/n ∈ Q and f = [P1 : P2] : P2 → P1, where

P1(t0, t1, t2) = tnk
1 tmk

2 , P2(t0, t1, t2) = tnk
1 tmk

0 + tmk
2 tnk

0 + t1t2Q(t0, t1, t2),

k � 1 is an integer, and Q is a homogenous polynomial of degree (m + n)k − 2 with degt1
Q � nk − 1 and

degt2
Q � mk − 1. Note that the indeterminacy set If = {p,A,B} and the current,

Rf := (1 + b)
(
ω + ddcgf

) ∈ Rb,

where gf , is the Green function associated to f defined in (4). Then Sf = G(Rf ) has bihomogeneous potential
ũf ∈ P1,b given by:

ũf (1, z1,1,w1) = 1

2nk
log

(∣∣znk
1 wmk

1

∣∣2 + ∣∣znk
1 + wmk

1 + z1w1Q(1, z1,w1)
∣∣2)

,

where Q(1, z1,w1) = ∑nk−1
i1=0

∑mk−1
i2=0 ci1i2z

i1
1 w

i2
1 . Depending on the vanishing order of Q(1, ·) at the origin, one sees

that the Lelong number ν(Sf ,p) can take any value of the form j
nk

, 2 � j � nk. It follows that for any rational number
r ∈ (0,1] there exist ω1,b-psh Green functions on X with one pole at p and Lelong number equal to r there, but with
different types of singularities at p.

We finally give an alternate way to construct ω1,1-psh Green functions on X with pole at q = (∞,∞), using
currents on P2 arising from psh functions in the Lelong class L�(C2). This is the class of psh functions v on C2 so
that

lim sup
‖s‖→∞

v(s)/ log‖s‖ = 1.

If R is the trivial extension of ddcv to P2 then R ∈ P (ω).
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Proposition 3.6. Let R ∈ P (ω) be a current with locally bounded potentials in P2 \ {t0 = 0} and near the points A,B .
Then the current S = (Φ−1)�R ∈ P (α1,1), ν(S, q) = 1, and S has locally bounded potentials on X \ {q}. Moreover,
we have:

S ∧ S = 2δq ⇐⇒ R ∧ R = 0 on P2 \ {t0 = 0}.

Proof. By considering (bi)homogeneous potentials as in the proof of Proposition 3.4, it follows that S ∈ P (α1,1) and
S has locally bounded potentials on X \ {q}. So S ∧ S({z0 = 0} ∪ {w0 = 0} \ {q}) = 0, and S ∧ S = 0 on C2 implies
S ∧ S = 2δq .

Let ν := ν(S, q). Since Φ contracts the line {t0 = 0} to q , we have that Φ�S = ν[t0 = 0] + T , where
T ∈ P ((2 − ν)ω) does not charge the line {t0 = 0}. Note that R = T on C2. By the support theorem we conclude
that R = T , so ν = 1. �

Proposition 3.6 shows how Green functions can be constructed on X by using currents R on P2 possessing the
right properties at any two points A, B and outside the line joining them. Indeed, we pull back R by an automorphism
of P2 which maps the points [0 : 1 : 0], [0 : 0 : 1] to A,B , and then apply Proposition 3.6.

Example 3.7. The Green currents T +, T − of a Hénon map h on C2 yield by the preceding considerations Green
functions on X with pole at q . More generally, let h be a weakly regular polynomial endomorphism of C2 with
indeterminacy set I (see Section 2.2.4). Then its Green current T has continuous local potentials on P2 \ I and
T ∧ T = ∑

s∈I msδs . So T yields a Green function on X with pole at q .

4. Del Pezzo surfaces

We evaluate here the functions ν, ε, g when X is a (smooth) Del Pezzo surface, i.e. dimC X = 2 and c1(X) > 0. It
is well known (see e.g. [20]) that such X is biholomorphic to either P1 × P1, P2, or P2 blown up at r points in general
position, 1 � r � 8. Here general position means the following:

– no three points are collinear;
– no six points lie on a conic;
– when r = 8, the points do not lie on a cubic that is singular at one of them.

The cases X = P2, X = P1 ×P1, have already been considered in Sections 2 and 3. We focus here on the case when
X is the blow up of P2 at 8 points in general position, which we consider to be the most interesting one. The other
cases could be handled similarly. Note that the Seshadri constants ε are computed in [5].

4.1. Maximal Lelong numbers

Let π : X → P2 be the blow up of P2 at 8 points p1, . . . , p8 in general position, and let Ej = π−1(pj ) denote the
exceptional divisors. We let,

α := c1(X) = K−1
X = π�O(3) −

8∑
j=1

Ej

denote the (ample) anticanonical class of X. It is well known [20] that 2α is very ample. It follows from Remark 1.2
that

ν(α, x) � 1, ε(α, x) � 1/2, ∀x ∈ X. (6)

We can actually be much more precise. Let V be the pencil of cubics in P2 passing through p1, . . . , p8. It contains
at most 12 singular cubics [20]. We let S ⊂ X denote the set of the corresponding singular points, |S| � 12. These
points do not belong to the exceptional divisors, by the general position assumption.
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Proposition 4.1. We have:

ν(α, x) =
{

1, if x ∈ X \ S,

2, if x ∈ S.

Moreover, if x ∈ S and T ∈ P (α) does not charge the strict transform of the singular cubic in V passing through x

then ν(T , x) � 1/2.

Proof. For x ∈ X there exists a unique cubic Cx ∈ V whose strict transform C′
x contains x. (If x ∈ Ej this is the cubic

whose strict transform intersects Ej at x.) Note that C′
x is irreducible.

Let T ∈ P (α). We assume at first that T does not charge C′
x and let ω be a fixed Kähler form on X. By [14] there ex-

ist εj ↘ 0 and currents Tj ∈ P (α+εjω) with analytic singularities, such that Tj → T and 0 � ν(T , z) − ν(Tj , z) � εj

for all z ∈ X. Since T does not charge C′
x , the measure Tj ∧ [C′

x] is well defined. As Vol(α) = 1 it follows that

1 + O(εj ) =
∫
X

Tj ∧ [
C′

x

]
� Tj ∧ [

C′
x

]({x}) � ν(Tj , x)m
(

C′
x, x

)
,

where m(C′
x, x) denotes the multiplicity of C′

x at x. The last inequality can be seen by using a local normalization at x

for each irreducible component of C′
x and since local psh potentials of Tj are subharmonic along C′

x .
Letting j → +∞, we have shown that ν(T , x) � 1/m(C′

x, x) � 1, if T ∈ P (α) does not charge C′
x . In particular, if

x ∈ S then ν(T , x) � 1/2 since m(C′
x, x) = 2.

In the general case, we can write by [38]:

T = a
[

C′
x

] + (1 − a)R, 0 � a � 1,

where R ∈ P (α) does not charge C′
x . Then

ν(T , x) = am
(

C′
x, x

) + (1 − a)ν(R,x) � a
(
m

(
C′

x, x
) − 1

) + 1 � m
(

C′
x, x

)
,

which concludes the proof. �
4.2. Uniform integrability exponent

We fix ω ∈ α = c1(X) a Kähler form and we denote by PSH0(X,ω) the set of ω-psh functions ϕ normalized by
maxX ϕ = 0. This is a compact subset of L1(X). Set

σ(X) = sup
{
c � 0: e−2cϕ ∈ L1(X), ∀ϕ ∈ PSH0(X,ω)

}
.

This number clearly depends only on α = c1(X), rather than on the particular choice of ω. By the compactness of
PSH0(X,ω) and the semicontinuity of the “complex singularity exponent” [17], σ(X) coincides with the exponent
introduced by Tian in [40] (the so-called “α-invariant of Tian”).

We assume here again that X is the blow up of P2 at 8 points in general position. Since ν(α, x) � 2 for all x ∈ X,
it follows from Skoda’s integrability theorem [39] that σ(X) � 1/2. One can however obtain sharp estimates, thanks
to the full characterization given in Proposition 4.1:

Proposition 4.2. If there is a singular cubic in V with a cusp then σ(X) = 5/6. Otherwise, σ(X) = 1.

Recall that there is no cuspidal cubic in V when the points p1, . . . , p8 are in very general position [20].

Proof of Proposition 4.2. Let s = |S| � 12 and C′
j , 1 � j � s, denote the strict transforms of the singular cubics in V .

We write [C′
j ] = ω + ddcϕj , where ϕj ∈ PSH0(X,ω).

Fix now ϕ ∈ PSH0(X,ω) and let T = ω + ddcϕ ∈ P (α). By [38],

T = a0T0 +
s∑

aj

[
C′

j

]
, where aj � 0,

s∑
aj = 1,
j=1 j=0



D. Coman, V. Guedj / J. Math. Pures Appl. 92 (2009) 456–475 473
and T0 = ω + ddcϕ0 ∈ P (α) does not charge any curve C′
j . Hölder’s inequality shows that e−2cϕ ∈ L1(X) if

e−2cϕj ∈ L1(X) for all j = 0, . . . , s.
For j � 1, a direct computation in local coordinates shows that e−2cϕj ∈ L1(X) for every c < 1 if C′

j is non-singular

or has a simple node, while e−2cϕj ∈ L1(X) for every c < 5/6 if C′
j has a cusp. In the latter case, e−2cϕj /∈ L1(X)

if c = 5/6.
Since T0 does not charge any curve C′

j , it follows from Proposition 4.1 that ν(T0, x) � 1 for all x ∈ X. By [39] we

see that e−2cϕ0 ∈ L1(X) for every c < 1. This completes the proof of the proposition. �
Note that σ(X) is also called the (global) “log-canonical threshold” of X. It has been the subject of intensive studies

in the last decade. The above result has been recently obtained by Cheltsov [7] by more algebraic methods.
The importance of this notion is seen in its connection with the existence of Kähler–Einstein metrics: it was shown

by Tian [40] that a Fano surface admits a Kähler–Einstein metric if σ(X) > 2/3. The exponent σ(X) was previously
estimated by Tian and Yau in [41].

4.3. Green functions

In this section X denotes again the blow up of P2 at 8 points in general position.

4.3.1. Special points
For x ∈ S, let Cx be the cubic in V which is singular at x, and let C′

x be its strict transform.
Counting dimension we see that there exists an irreducible sextic Z ⊂ P2 passing through x and with multiplicity

2 at each point pj . By Bezout we see that Z and Cx intersect only at x and at the points pj and the intersection
numbers (Z · Cx)pj

= (Z · Cx)x = 2. This implies that the strict transform Z′ ⊂ X of Z intersects C′
x only at x with

(Z′ · C′
x)x = 2.

We write (1/2)[Z′] = ω + ddcu, [C′
x] = ω + ddcv, and set

gx := (1/2) log
(
e2u + e2v

) ∈ PSH(X,ω) ∩ C∞(
X \ {x}).

Proposition 4.3. If x ∈ S we have (ω + ddcgx)
2 = δx , and the function gx is a ω-psh Green function with Lelong

number ν(gx, x) = 1/2.

Proof. Since Z′ is smooth at x we have ν(gx, x) = 1/2. Moreover, (Z′ · C′
x)x = 2 implies that (ω+ddcgx)

2({x}) = 1.
We conclude by mass considerations. �

Observe that the singularity of gx at x is not isotropic, since an isotropic pole with Lelong number 1/2 would
produce a Dirac mass at x with coefficient 1/4. However, the existence of a Green function which is locally bounded
away from x has interesting consequences:

Corollary 4.4. If x ∈ S then ε(α, x) = 1/2. Moreover, the supremum is attained in the formula (3) of ε(α, x), i.e.

∃ϕ ∈ PSH(X,ω) ∩ L∞
loc

(
X \ {x}), ∥∥ϕ − (1/2) log dist(·, x)

∥∥
L∞(X)

< +∞.

Proof. It follows from (6) and Proposition 4.1 that ε(α, x) = 1/2. Let gx be the function constructed in
Proposition 4.3. Fix χ ∈ C∞(X) a test function with χ ≡ 1 on U , where U is a small open neighborhood of x.
We define:

ϕ := max
{
gx, (1/2)χ log dist(·, x) − C

}
,

where C is large so that ϕ = gx on X \ U . Since χ log dist(·, x) is psh on U we see that ϕ ∈ PSH(X,ω).
Now ν(gx, x) = 1/2, therefore ϕ − (1/2) log dist(·, x) is bounded on X. �
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4.3.2. Generic points
Assume now that x ∈ X \ S. The bound (6) is not sharp: by [5] we have ε(α, x) = 1.
It is easy to see that the supremum in formula (3) is attained if x is the ninth base point of the pencil of cubics V . In

this case we write [C′
1] = ω + ddcu, [C′

2] = ω + ddcv, where C′
j are the strict transforms of two cubics generating V ,

and we set:

gx := (1/2) log
(
e2u + e2v

) ∈ PSH(X,ω) ∩ C∞(
X \ {x}).

We have that (ω + ddcgx)
2 = δx and gx is a ω-psh Green function with an isotropic pole at x with ν(gx, x) = 1.

However, it is unclear whether this holds at arbitrary points x ∈ X \S. If this was the case, it would imply that K−1
Y

admits a positive metric with bounded potentials, where Y → P2 is the blow up of P2 at 9 points in general position,
which is a famous open problem (see [19]). Observe that the existence of such a metric is equivalent to constructing a
ωFS-psh Green function with isotropic poles of Lelong number 1/3 at 9 points in general position in P2.

More generally, finding a ωFS-psh Green function with isotropic poles of Lelong number 1/
√

s at s points in general
position in P2 is equivalent to the celebrated (strong version of) Nagata’s conjecture (see [33, Remark 5.1.14]).
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