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Kahler—Einstein fillings

Vincent Guedj, Boris Kolev and Nader Yeganefar

ABSTRACT

We show that on an open bounded smooth strongly pseudoconvex subset of C", there exists a
Kéhler—Einstein metric with positive Einstein constant, such that the metric restricted to the
Levi distribution of the boundary is conformal to the Levi form. To achieve this, we solve an
associated complex Monge—Ampere equation with Dirichlet boundary condition. We also prove
uniqueness of the solution subject to additional restrictions.

1. Introduction

The study of Einstein metrics is an important and classical subject in Riemannian geometry;
see [10]. The most popular framework is that of complete manifolds, either compact (without
boundary) or noncompact. However, Einstein metrics on compact manifolds with boundary
have also been investigated more recently, mainly in two directions which we now describe.

The first direction is that of conformally compact manifolds. Here, one starts with a compact
manifold M with boundary M. A complete Einstein metric on (the interior of) M is called
conformally compact if after a suitable conformal transformation, it can be extended smoothly
up to the boundary (think of the ball model of real hyperbolic space, or look at [11] for the
precise definition). This extension is not unique, but different extensions are easily seen to
induce Riemannian metrics on the boundary which are in the same conformal class, called
the conformal infinity of the conformally compact metric. One of the basic questions is then,
a conformal class being fixed on the boundary, is it possible to find a conformally compact
Einstein metric on M whose conformal infinity is the given conformal class? One then hopes
to get links between the geometric properties of the inner metric and the conformal properties
of the boundary; for more on this very active research area, the reader may consult, for
example, [3, 11].

We now come to the second direction, which has been explored far less than the first one
and is more closely related to our present work. One starts again with a compact manifold M
with boundary, and fixes some geometric structure on the boundary (for example, a metric).
The problem is then to find an Einstein metric on M which is smooth up to the boundary,
and which induces the given geometric structure on OM. Assume, for example, that there is an
FEinstein metric on M with pinched negative curvature such that the boundary is convex and
umbilical and let hg be the induced metric on M. If h is a metric on M which is sufficiently
close to hg, then it has been shown in [32] that there is an Einstein metric on M with negative
Einstein constant such that the induced metric on OM is h. One of the interesting questions,
which has not been fully clarified yet, is to know what ‘right’ geometric structure has to be fixed
on the boundary. Anderson [2] considers the Dirichlet problem as in [32] (given a metric h on
OM, can one find an Einstein metric on M inducing h on 9M?), studies the structure of the
space of solutions and observes that this Dirichlet problem is not a well-posed elliptic boundary
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value problem. On the other hand, if one prescribes the metric and the second fundamental
form of 9M, then any Einstein metric on M is essentially unique by Anderson and Herzlich [3].

The main purpose of this article is to investigate similar questions in the context of
compact Kéhler manifolds with boundary. Let M be a compact Kahler manifold with strongly
pseudoconvex boundary M. The latter is a CR manifold whose geometric properties are
encoded by the (conformal class of its) Levi form, a positive-definite Hermitian form defined
on the Levi distribution Tc(OM) (the family of maximal complex subspaces within the real
tangent bundle). The question we address is the following problem.

PROBLEM. Can one find a Kéhler—Einstein metric w on M such that its restriction to the
Levi distribution is conformal to the Levi form on T¢(0M)?

To simplify, we restrict ourselves in the sequel to studying the case of a strongly pseudoconvex
bounded open subset €2 of C™. One can then always make a conformal change of the Levi form
so that the pseudo-Hermitian Ricci tensor (introduced by Webster) is a scalar multiple of the
Levi form, that is, 0 is pseudo-Einstein (see [25]). Our problem is thus intimately related to
the Riemannian questions recalled above.

It is well known that finding a K&hler—Einstein metric is equivalent to solving a complex
Monge-Ampere equation. More specifically, letting p denote the Lebesgue measure in C”
normalized such that u(Q) = 1, we will be interested in the following Dirichlet problem: find
a smooth strictly plurisubharmonic function ¢ on € which vanishes on the boundary 992 and
satisfies

e ¥

Jq e
where € € {0,+1} is a fixed constant. If ¢ is a solution of this problem, then it is easy to see
that dd®p is a Kahler—Einstein metric with the sign of the Einstein constant given by e, and
moreover its restriction to the Levi distribution is conformal to the Levi form on T (09) (see
Section 2 for more details on this). Actually, if e = 0,—1, then the Monge-Ampere equation
above always has a solution by Caffarelli, Kohn, Nirenberg and Spruck [14, Theorem 1.1}, so
that we will only consider the positive curvature case corresponding to ¢ = 1. Our main result
is the following theorem.

(ddp)" in €,

THEOREM 1. Let 2 C C™ be a bounded smooth strongly pseudoconvex domain. Then the
complex Monge—-Ampére problem
(MA)  (dd°9)" = — P O and 0
P)'=——7 inQ and ¢po =
Jo e#du |

has a strictly plurisubharmonic solution which is smooth up to the boundary.

By the considerations of Section 2, a consequence of this theorem is that our geometrical
problem has a solution.

COROLLARY 2. Let Q C C™ be a bounded smooth strongly pseudoconvex domain. Then
there is a smooth (up to the boundary) Kéhler-Einstein metric on €0 with positive Einstein
constant such that the restriction of the metric to the Levi distribution of OS2 is conformal to
the Levi form.

REMARK 3. It should be noted that if f is an automorphism of the domain Q and w is
a Kéhler-Einstein metric on € with positive Einstein constant whose restriction to the Levi
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distribution is conformal to the Levi form, then the same is true for f*w. Therefore, uniqueness
can only be expected up to automorphisms [20]. The geometrical problem is actually equivalent
to solving a family of Monge—-Ampéré equations

(dd°p)* = e ?ep in Q and vla0 =0,

where h is pluriharmonic in . This invariance property of our geometrical problem under
the action of f € Aut(Q) is equivalent, at the level of (MA), to replacing the pluriharmonic
function h by ho f + log|Jac(f)|?. In the sequel, we shall treat for simplicity the case when h
is constant, but our analysis applies to the general case.

Let us now say a few words about the proof of our main theorem. We will use a Ricci inverse
iteration procedure, as described first in the compact Kéahler setting by Berman, Boucksom,
Eyssidieux, Guedj and Zeriahi [7], Keller [23] and Rubinstein [31], whereas related results
have recently been obtained in [6, 16] by other interesting approaches. More precisely, fix any
smooth strictly plurisubharmonic function ¢y on Q which vanishes on the boundary, and for
j €N, let p;41 be the unique strictly plurisubharmonic solution of the Dirichlet problem

_ e~ ¥i 7
Jq e#dp
whose existence is guaranteed by Caffarelli, Kohn, Nirenberg and Spruck [14]. We will then

show that (¢,) is bounded in C*(€), so that a subsequence converges in C*(£) to a smooth
function which is seen to be a solution of (MA). To prove this boundedness in C'*°, we proceed in
several steps. First, there is a well-known functional F, defined on the space of plurisubharmonic
functions, such that a function ¢ solves (MA) if and only if ¢ is a critical point of F (see
Subsection 3.2).

A key result is that this functional is proper in the strong (coercivity) sense of Proposition 11.
This properness result is in turn a consequence of a local Moser—Trudinger inequality
(Theorem 9, see also the recent independent results of [6, 16]).

Next, we show that the sequence (F(g;)) is bounded, so that by properness, the sequence
(¢;) has to live in some compact set. Here, compactness is for the L'-topology in the class
of plurisubharmonic functions with finite energy introduced in [5]. Standard results from
pluripotential theory then show that (¢;) is uniformly bounded. To get boundedness in C*°,
we will finally prove higher-order a priori estimates along the lines of [14].

(dd°pjq1)" inQ and @ji150 =0,

REMARK 4. On a closed Fano manifold, the existence of Kdhler—Einstein metrics is known
to be a difficult problem, and there are in fact closed (Fano) manifolds which do not admit
Kahler—Einstein metrics. In contrast, Corollary 2 shows that in the case of domains, there
are always Kéhler-Einstein metrics with positive Einstein constant (and prescribed behavior
at the boundary). The difference lies in the sharp form of the Moser—Trudinger inequality
which does not always hold in the compact setting, contrary to Theorem 9. To explain this
phenomenon, note that in the local setting, we deal with plurisubharmonic functions which
vanish on the boundary and thus have confined singularities. Our result therefore illustrates
that the obstruction to the existence of Kéhler-Einstein metrics on Fano manifolds is of a
global nature.

Now, let us deal with the uniqueness problem. For this, we impose some restrictions on 2.
First, we assume that ) contains the origin and is circled; this means that €2 is invariant by the
natural (diagonal) S'-action on C". Next, if ¢ is an S'-invariant solution of the Monge-Ampere
equation with Dirichlet boundary condition, then we will say that € is (strictly) ¢-convex if
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Q is (strictly) convex in the Riemannian sense for the metric ddp. Note that being p-convex
has a priori nothing to do with being convex in the usual Euclidean sense in C”. We will prove
the following theorem.

THEOREM 5. Let Q C C" be a bounded smooth strongly pseudoconvex domain which is
circled. Let ¢ be a smooth S'-invariant strictly plurisubharmonic solution of the complex
Monge-Ampére problem (MA). If Q is strictly p-convex, then ¢ is the unique S!-invariant
solution of (MA).

Observe that an S'-invariant solution always exists, as follows from the proof of Theorem 1:
it suffices to start with an initial datum ¢y which is S'-invariant, the approximants ¢; will
also be S'-invariant (by the uniqueness part of [14]), hence so is any cluster value.

REMARK 6. In the proof of this theorem, we will see that we can replace the ¢-convexity
hypothesis by a spectral assumption. Namely, if the first eigenvalue of the Laplace operator (of
the metric w? = dd°p) with Dirichlet boundary condition is strictly bigger than 1, then (MA)
has a unique solution. By Guedj, Kolev and Yeganefar [21, Corollary 1.2], the condition on the
Ricci curvature of w? and the strict p-convexity imply this desired spectral estimate. However,
[21, Proposition 4.1] shows that this estimate may fail if Q is merely strongly pseudoconvex.

To prove Theorem 5, we follow the approach proposed by Donaldson in the compact (without
boundary) setting (see [8, 20]). The heuristic point of view is the following. The space of all
plurisubharmonic functions on €2 which vanish on the boundary may be seen as an infinite-
dimensional manifold with a natural Riemannian structure. In the S'-invariant case, we may
use a convexity result of Berndtsson [9] to show that the functional F is concave along geodesics
of this space. As a consequence, we show that S'-invariant solutions of (MA) coincide with
Sl-invariant maximizers of the functional F. Now, if ¢ and 9 are two S'-invariant solutions of
(MA), then there exists a geodesic (®;)o<i<1, joining ¢ to ¢, in the space of Kéhler potentials on
Q) vanishing on the boundary. Therefore, the function ¢ — F(®,), being concave and attaining
its maximum at ¢ = 0 and ¢ = 1, must be constant. In particular, its derivative vanishes, which
implies that ®, has to satisfy a partial differential equation (PDE) involving the Laplacian
of the metric dd°p (see equation (5.1)). If € is @-convex, or more generally if the spectral
hypothesis alluded to above is satisfied, then the only solution of this PDE is zero, so that b,
vanishes identically. From this, we may deduce that (®;) is a constant geodesic, hence ¢ = 1.
Note that in the above argument, we have implicitly assumed that (®;) is smooth, which may
not be the case. For general continuous geodesics, the proof needs some modifications which
will be given in Section 6.

This uniqueness result has the following application. In [6, Conjecture 7.5], it is conjectured
that if B is a ball in C", then any solution of (MA) has to be radial. Theorem 5 shows that
this is the case among S'-invariant solutions if the radius of the ball is not too large. Indeed,
let B C C™ be the ball of radius R > 0 centered at 0. Consider the radial function

n+1
p=——llog 1+ |2|]* ~log v1+R?.

In an affine chart, ¢ is the potential of the Fubini-Study metric on complex projective space
P™(C), normalized to satisfy (MA) on B. Note that B may also be considered as a ball in
P™(C), whose radius Rps with respect to the Fubini-Study metric is

/ 1
Rps = nt arctan R.
T
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The diameter of P"(C) is then
Dps = \/m(n+1)/2.

If Rps < Drs/2, then B is strictly convex in P™(C), that is, B is strictly p-convex (this is a
well-known result; see, for example, the proof of [21, Proposition 4.1]). By Theorem 5, ¢ is
the unique S'-invariant solution of (MA), so that all such solutions are radial. We have thus
proved the following corollary.

COROLLARY 7. Let B be a ball in C" of radius 0 < R < 1. Then there is a unique
Sl-invariant solution to (MA) on B, and this solution is radial.

The plan of the paper is as follows. In Section 2, we gather some well-known facts on the
geometry of pseudoconvex domains and show how our geometrical problem is related to the
analytical problem of solving a complex Monge-Ampere equation with Dirichlet boundary
condition. In Section 3, we prove a local Moser—Trudinger inequality and use it to prove a
properness result for the functional F. In Section 4, we deal with the regularity problem
of solutions of (MA), by getting higher-order a priori estimates. This will allow us to prove
Theorem 1 in Subsection 4.4. In Section 5, we obtain a variational characterization of solutions
of (MA) in the S'-invariant case. Indeed, we show that S'-invariant solutions of (MA) are not
only critical points of the functional F, but are exactly maximizers of F. Then we proceed
to prove Theorem 5. In Section 6, we comment on the difficulty of solving (MA) by the usual
continuity method, and finally discuss the optimality of constants in the Moser—Trudinger
inequality.

2. Geometric context

2.1. The conformal class of the Levi form

Let Q € C" be a bounded domain with smooth boundary. Fix a defining function p : C* — R
for the boundary 9€2, that is, p is a smooth function satisfying
Q={p<0}, 90Q={p=0}

and dp does not vanish on 0€2. Such a function p is not unique, but if p is another defining
function for the boundary, then there is a smooth positive function u such that p = up.

Let now x € 02 be a fixed point, and denote by H, the maximal complex subspace of the
tangent space T,,09). If J denotes the complex structure on C™ (which is just multiplication by
v/—1), then we have

H, ={veT,00; JveT, 00}

The subspace H, has real dimension 2n — 2, and as x varies, we get a distribution H C T'012,
called the Levi distribution. If (z1, ..., z,) are the coordinates on C", then it is easy to see that

H, = {v(vl,...,vn) eC™; Zgj (m)viO}. (2.1)
i=1

The Levi form is the Hermitian form defined for v,w € H, by
n 82p

L,(v,w) =

J

It is clear from this expression that the Levi form actually depends on p, so talking about the
Levi form is a slight abuse. However, if p = up is another defining function for the boundary
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(with u a smooth positive function), then we have

0%p 0%p Oou 0p ~ Ou dp 0%u
— =1U — — t 77— +p —.
82182’] 3218,2] 821 azj 82] 82’1 8218zj
Moreover, by using the characterization (2.1) of H and the fact that p = 0 on 02, we infer,
denoting by L the Levi form corresponding to p, that

L =uL.
In other words, the Levi forms corresponding to different defining functions for the boundary
differ only by a conformal factor. Thus, the geometrically interesting object on the boundary
is the conformal class of the Levi form.

We say that ) is strongly pseudoconvex if the Levi form is a positive-definite Hermitian
form at each point of 9. Our previous discussion shows that this notion does not depend on
the choice of a defining function for the boundary. Note also that by changing p to e® — 1,
where ¢ > 0 is a large enough positive constant, we may assume the defining function p to be
plurisubharmonic near the boundary, and not only on the Levi distribution.

2.2. Kahler metrics

We give here a brief review of Kahler metrics, mainly to set up some notation and conventions.
For more details and proofs, the reader may consult, for example, [27]. Although we will be
dealing with domains in C™ in the sequel, we consider a general complex manifold X of complex
dimension n, and denote by J its complex structure.

2.2.1. Kaéhler form. A Riemannian metric g on X is called Hermitian if it is J-invariant,
that is, g(J-,J-) = g(+,+). The C-bilinear extension of g to the complexified tangent bundle
TX ® C will also be denoted by the same symbol g. The fundamental form associated to g is
the real (1,1)-form w defined by

w('a ) = g(J'v )
The metric g is called a Kédhler metric if w is a closed differential form; w is then referred to

as the Kahler form of g. It can be shown that g being a K&hler metric is equivalent to the
complex structure J being parallel with respect to the Levi-Civita connection of g.

Let (21,...,2,) be local complex coordinates, and let
Z1 =1+ Vilyla"'azn:xn“i’ Vilyn
be the decomposition giving the corresponding real coordinates. As usual, for i =1,...,n,
we set
0 1/ 0 0 0 1/ 0 0
=V ), =5 V1),
821‘ 2 <8Iz 8y1) 821' 2 (31‘, + 8yz>

dz; = dv; + V=1dy;, dz = dz; —v~1dy;,

and fori,j =1,...,n,
(2 9
ng*g 822,623 .

Then the Kahler form is given locally by
w=+v-1 Z 9ij dzi N\ dz;j.
i,j=1

Note that on C", we have g;; = d;;/2 for the canonical Euclidean metric.
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2.2.2. Ricci curvature form. We denote by 7 the Ricci tensor of X as a Riemannian
manifold. The Ricci form of X, to be denoted by Ric (w) or simply Ric, is the (1, 1)-form
associated to r, that is,

Ric (w)(,) = 7(J--).
In local holomorphic coordinates, it can be shown that
Ric (w) = —v—180 log det g;;.

It follows that the Ricci form is a closed form. Moreover, its cohomology class is equal to
2meq (X)), where ¢ (X) is the first Chern class of X. A Kéhler metric w on X is called Kéhler—
Einstein if for some constant A € R we have

Ric (w) = lw.

2.2.3. Normalization of d°. We set

1 _
d°= ———(0—
o ﬁ_l(a 9),

so that
V=190 = 7 dd°.

This normalization is in common use in complex analytic geometry, having the following
advantages: the positive current T = dd®log||z|| then has Lelong number 1 at the origin in C™;
moreover, the Fubini-Study form wgg, in some affine chart C™, is written

wrs = ddlog /1 + ||z]]2.

Its cohomology class thus coincides with that of a hyperplane (as it should), having total

volume
| s =] (arog VIFTERY = 1.
P Cn

Note finally that Ric (wps) = (n + 1)mwrs.
Likewise, the Laplacian A associated to a Kéhler metric w is defined as

A = tr(dd®),
where tr denotes the trace with respect to w. Hence, we have

A= Lo,
T

2.3. Kaéhler—Einstein metrics on strongly pseudoconvex domains

Fix Q € C" a bounded strongly pseudoconvex domain.

2.3.1. Associated complex Monge-Ampére equations. In this section, we show that finding
Kéhler-Einstein metrics is equivalent to solving a complex Monge-Ampere equation.

We assume first that 2 is endowed with a Kahler metric w which is smooth up to the
boundary, and which satisfies the following normalized Einstein condition:

Ric (w) = enw,

where € € {0, £1} (the somewhat unusual 7 factor is due to our normalization convention for
the d¢ operator). We choose a smooth potential ¢ for w, so that

w = ddp.



744 VINCENT GUEDJ, BORIS KOLEV AND NADER YEGANEFAR

Such a potential is unique up to the addition of a pluriharmonic function on 2. We are going to
see that ¢ satisfies a complex Monge-Ampere equation. As recalled in the previous section, if
we denote by (g;7) the components of the metric in coordinates, then the Ricci form is given by

Ric (w) = —m dd°log (det g;5).

Letting V{) be the canonical volume form on C", it is easily checked that w™ is equal to
det (g;7)Vo, up to a multiplicative constant. Therefore, we have the following intrinsic formula

for the Ricci form:
n

w
Ric (w) = —7 dd®log —.
(w) LhT

The Einstein condition on w can then be written

Il
e

dd® |1og L949"
Vo

Thus, there is a pluriharmonic function A such that

(ddp)™
Vo

which we may write as a complex Monge—Ampere equation

(ddp)"™ = e~%% eV} (2.2)

log +ep =h,

Conversely, if ¢ is a smooth function satisfying the previous equation for some given
pluriharmonic function h, and if w = dd®p is positive definite, then we let the reader verify
that w is a Kdhler—Einstein metric with Einstein constant er.

2.3.2. Boundary conditions. Let p be a boundary-defining function for €2, as described in
Subsection 2.1. Recall that L is the Levi form associated to p. The (1,1)-form associated to
L, that is L(J-,-), is equal to 7dd°p;y with our normalization conventions. Let now ¢ be a
smooth real-valued function defined on 2. On a collar neighborhood [—¢, 0] x 9§ of 9§ (where
0 > 0 is fixed), we can write the expansion of ¢ in powers of p as follows: for all N € N,

@ =0+ pp1+p o2+ 4 pN o +o(pV). (2.3)

Here, the functions ¢; are initially defined on {0} x 992 ~ 99, but we can view them as
functions defined on the collar neighborhood [—4,0] x 9Q by setting, with obvious notation,
vi(p,x) = i(0,x). Thus, we have, for example, o = 0 if p|gq = 0. From the expansion (2.3),
we get

dd®p = ddpo + o1 dd°p + dp N d°p1 + (dp1 + 22 dp) Ad°p + O(p).

Using the fact that dpjy = d°pjy =0 (see the characterization (2.1) of H), the previous
expansion implies

dd“ply = dd°po|n + 1 ddp.

In particular, if ¢y =0, or more generally if dd®py =0, then dd®p|y is conformal to the
Levi form.

Consider now the following geometrical problem: find a Kiahler-Einstein metric w on
such that its restriction to the Levi distribution is conformal to the Levi form. Our previous
discussion shows that in order to solve this problem, it is enough to solve the following analytical
problem: find a function ¢ such that the following conditions hold:

(1) dd°y is positive definite;
(2) ¢ satisfies the Monge—Ampere equation (2.2);
(3) ¢ satisfies the Dirichlet boundary condition on 9€2, that is, ¢|aq = 0.
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Indeed, the form w = dd®p is then a solution to the geometrical problem. Note that in the
case of nonpositive Ricci curvature, which corresponds to ¢ =0 or —1 in equation (2.2), the
geometrical problem always has a solution by Caffarelli, Kohn, Nirenberg and Spruck [14,
Theorem 1.1]. We will therefore consider only the positive curvature case (¢ = 1).

2.4. The strategy

In the sequel, we let = {p < 0} C C" be a bounded strongly pseudoconvex domain and
denote the Euclidean Lebesgue volume form in C™, normalized so that

n(§2) = 1.
We consider the following Dirichlet problem:

) e u
MA dd°p)t = ————— in Q with =0,
(MA) (dd“p) J‘Q —vdp WIth @90
where ¢ is strictly plurisubharmonic and C*°-smooth up to the boundary of 2.
Following [7] (where such a technique is used in a compact setting), we are going to solve

(MA) by an iterative process, solving for each j € N the Dirichlet problem
evip
g ePidu
where g = p (we could actually start from any smooth plurisubharmonic initial data ¢ with
zero boundary values).

It follows from the work of Cafarelli-Kohn—Nirenberg—Spruck [14] that the Dirichlet problem
(MA); admits a unique plurisubharmonic solution ¢;;, which is smooth up to the boundary.
We are going to show that a subsequence of the sequence (¢;) converges in C*°(Q) toward a
solution ¢ of (MA).

In a compact setting, this approach coincides with the time-one discretization of the Kahler—
Ricci flow and was first considered by Keller [23] and Rubinstein [31] (see also [7]).

(MA);  (ddp;1)" in Q with ;11,50 =0,

REMARK 8. As the proof will show, our result actually holds for any (normalized) volume
form p and with more general boundary values.

3. Energy estimates

We now move on to showing that the sequence (¢;) is relatively compact in C°°($2). The proof
reduces to establishing a priori estimates. We first show that one has a uniform a priori control
on the energy of the solutions.

3.1. Local Moser—Trudinger inequality

The following local Moser-Trudinger-type inequality is of independent interest. (While we
were finishing the writing of this paper, two preprints appeared [6, 16] which propose similar
inequalities with different and interesting proofs.)

THEOREM 9. There exist 0 < (8, < 1 and C' > 0 such that for all smooth plurisubharmonic
functions ¢ in ) with pjpq = 0,

JQ e ?dp < Cexp(BnlE(0)]),

where E(p) = (1/(n+ 1)) fﬂ p(ddép)™.
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We refer the reader to [19, 28-30, 35, 36| for related results both in a local and global
context. The proof we propose is new and relies on pluripotential techniques, as developed in
[4, 5, 15, 22, 24, 38].

Proof. Recall that the Monge-Ampere capacity was introduced by Bedford and Taylor [4].
By definition, the capacity of a compact subset K C Q is

Cap(K) := sup {J (dd“u)™; u plurisubharmonic in € with 0 < u < 1} .
K

We will use the following useful inequalities: for any v < 2, there exists C, > 0 such that for
all K C Q,

m(K) < Cyexp {Cap(PYK)l/"] (3.1)

(see, for example, [38]). For all smooth plurisubharmonic functions ¢ in  with zero boundary
values, for all t > 0,

(n+ DIE(Y)]
Cap(p < —t) < TSI
where
1
E(p) = ddp)".
(#) n+1L2<P( ¢)
For the latter inequality, we refer the reader to [1, Lemma 2.2]. We infer
+oo +oo
J e ¥du=-1 —l—J elu(p < —t)dt < C’J exp(t — A1 TY™) at,
Q 0 0

where
Y

T (n+ L)n[E(p)|

We let the reader check that the function h(t) =t — At'*/" attains its maximum value at
point t. = A7 (1 + 1/n)~™. Moreover, h(t) < —t for ¢t > 4™t.. This shows

+oo “+oo
J exp(t — MY dt < 4™t exp(h(te)) +J exp(—t) dt (3.2)
0 4t
t
< 4", Z 1. :
exp<n+1>+ (3.3)

Using the definition of A and the formula defining t., we arrive at

+oo
J exp(t — M) dt < e |E(0)| exp(BLIEW)]) + 1.
0

where
g1
"
We can fix, for example, v =1 so that 3/, < 1 for all n > 1. Moreover, the desired inequality
is obtained by choosing (3, so that 3/, < 3, < 1 and enlarging the constant C. ]

REMARK 10. Note for later use that the same proof yields an inequality

jQ 4% dy < Caexp(BalE()]), (3.4)

where
An-‘,— 1

ST ERYAL
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is smaller than 1 only if A = A,, is not too large. When n = 1, the critical value is A = 2. This
is related to a theorem of Bishop as we shall see in Subsection 4.4.

It follows from the recent work [1] that the optimal exponent + is actually 2n, improving the
bound 2 obtained in [38], hence also enlarging the allowed constant A,, above, when n > 1.

3.2. Properness

We let

1

E(p) = 1 LZ p(ddp)"

denote the energy of a plurisubharmonic function ¢ and set

F(0) = E(o) + log { Jﬂevdu] |

Recall that the energy functional is a primitive of the complex Monge—-Ampere operator,
namely if ¢ is a curve of plurisubharmonic functions with zero boundary values, then

dé‘(q/}s) 3l c n

) = | s

as follows from Stokes theorem. A similar computation shows that a function ¢ solves (MA) if
and only if it is a critical point of the functional F (in other words (MA) is the Euler-Lagrange
equation for F).

Inspired by techniques from the calculus of variations, it is thus natural to try and maximize
the functional F so as to build a critical point. This usually requires the functional to be proper
in order to be able to restrict to compact subsets of the space of functions involved. It follows
from the Moser—Trudinger inequality (Theorem 9) that the functional F is indeed proper, in
the following strong sense.

PROPOSITION 11. There exist a > 0, b € R such that for all smooth plurisubharmonic
functions v in §2, with zero boundary values,

F(¢) < a&(y) + 0.

Proof. This is an immediate consequence of Theorem 9 with a =1 — (3, and b =logC. [J

3.3. Ricci inverse iteration

We let PSH () denote the set of plurisubharmonic functions in Q. Given ¢ € PSH(Q) N C>=(Q)
with zero boundary values, it follows from the work of Cafarelli, Kohn, Nirenberg and
Spruck [14] that there exists a unique function 1 € PSH(Q)NC>(Q) with zero boundary
values such that

e~ u

=——— inQ.
Jo em#du .

(dd4)"

We let

T :={p € PSH(Q) NC=(Q) | pjon = 0}
denote the space of test functions and
T:oeT—ypeT

denote the operator such that ¥ = T'(¢) is the unique solution of (). Observe that solving
(MA) is equivalent to finding a fixed point of T'.
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The key to the dynamical construction of solutions to (MA) lies in the following monotonicity
property.

PROPOSITION 12. Forallp € T,
F(Te) = F(o),
with strict inequality unless T'p = .

Proof. Fix ¢ € T and set 1) := T'p. Recall that

Flp) = E(p) + log Uﬂ e ? du]
and
1 S c. 1 \J c, \n—j
EW) — E9) = — ;jﬂw — Q) dd ) A (dd ).

It follows from Stokes theorem that for all j,
= eraivy n@irer= = @ - odaeor + [dw - o) naw - o) 15,
where S is a positive closed form of bidegree (n — 1,n — 1). Thus,
£W) - &(0) > | w-g)arv).
We now set
¢ :=p+log U e ¥ du} . =1 +log U e ¥ du}

and

Note that the latter are probability measures in Q with (dd°y¥)" = .
It follows from the definition of F and our last inequality that

F) - Flg) > Lw — B)dp, = j Flog F duy,

where F' = 615*95, hence the latter quantity denotes the relative entropy of the probability
measures fi,, [ty- 1t follows from the convexity of —log and Jensen’s inequality (note that
Fdpy, = dp,, is a probability measure) that

J —log[F~ 1] Fduy > —log U F_leﬂw] =0.

Q Q

Since —log(z) is a strict convex function for x > 0, it follows that equality holds only when
F =1 almost everywhere, that is, ¢ = 1.

Observe finally that since ) and ¢ both have zero boundary values, the equality ¢ = 1[) can
only occur when ¢ = v, that is, when ¢ = T'p is a fixed point of T, as claimed. ]

We infer that the energies £(p;) of the solutions ¢; of (MA);_ are uniformly bounded.

COROLLARY 13. The sequence (F(T?py)); is bounded, hence so is (€£(T7¢y));.
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Proof. Fix pg € T (for example, o = p) and set p; = T7pg. Observe that £(¢;) < 0 since
¢; <0, hence it suffices to establish a bound from below. The previous proposition ensures
that the sequence (F(T7¢y)); is increasing. It follows from Proposition 11 that

Flpo) < F(T7 o) < a&(T? ) +b < b,
so that the energies £(T7pg) are uniformly bounded. O

4. Higher-order estimates

4.1. Uniform a priori estimates

Recall that ¢, is a smooth plurisubharmonic solution of (MA),_;. Its Monge-Ampére measure
thus satisfies

e ¥Pi-1 n

J'Q e*‘Pj—ldﬂ ’
It follows from the previous section that the gpg-s have uniformly bounded energy. Thus, they
form a relatively compact family (for the L!-topology) in the class £!(Q) of plurisubharmonic
functions with finite energy (see [5]). When the complex dimension is n = 1, the latter is the
class of negative plurisubharmonic functions with zero boundary values and whose gradient is
in L?; since (normalized) plurisubharmonic functions are uniformly L2, the family (p;) is thus
included in a finite ball of the Sobolev space W12, In higher dimensions, the class £1() is a
convenient substitute for the Sobolev spaces; we refer the reader to [5] for more details.

We simply recall here that functions in £1(2) have zero Lelong numbers. For such a function
1, Skoda’s integrability theorem [34] ensures that e~% is in L? for all ¢ > 1. Since the family
(p4) is, moreover, relatively compact, Skoda’s uniform integrability theorem [38] ensures that
the densities f; satisfy

(dd°p;)" = fip  with f; =

J fdp<c,
Q

for some uniform constant C' > 0. This can also be seen as a consequence of Theorem 9.

Recall now the following fundamental result due to Kolodziej [24] (see also [17] for the case
of L? densities): if 1 is a smooth plurisubharmonic function in  with zero boundary values
and such that

(dd)" = f dp,
where f € L?(p), then
[l 2= ) < Cf,

where the constant C; only depends on Q and || f||z2. Applying this to ¢ = ¢, yields the
following lemma.

LEMMA 14. For all j € N,

for some uniform constant Cy > 0.

4.2. C? a priori estimates

The goal of this section is to establish the following a priori estimates on the Laplacian of the
solutions to (MA);_;.
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THEOREM 15. There exists C' > 0 such that for all j € N,
sup |Ag;| < C.
Q

These estimates are ‘almost’ contained in [14], however, hypothesis (1.3) on p. 213 is not
satisfied, hence neither [14, Theorem 1.1] nor [14, Theorem 1.2] can be applied to our situation.

We nevertheless follow their proof as organized by Boucksom [12], explaining some of the
necessary adjustments. It will be a consequence of the following series of lemmas.

LEMMA 16. There exists C'y > 0 such that

sup |[Vp;| < Ch.
90

Proof. Tt follows from the order-zero uniform estimates (4.1) that
(dd®p;)™ < e“p in Q.
Let u denote the unique smooth plurisubharmonic function in Q such that
(dd°u)™ = e“°p in Q@ with U0 = 0.

The latter exists by Caffarelli, Kohn, Nirenberg and Spruck [14, Theorem 1.1]. It follows from
the comparison principle that

u<p; <0 in Q.
This yields the desired control of Vi, on 0€). |

LEMMA 17. There exists Cy > 0 such that

sup [Ap;| < Co(1 + sup [Apy]).
Q o0

Proof. We let A; denote the Laplace operator with respect to the Kahler form w; = dd“yp;,
while A denotes the Euclidean Laplace operator. We claim that for all j > 1,

Aj{log Apj +pj-1} > 0. (4.2)

Assuming this for the moment, we show how to derive the desired control on Ag;. Let z; € 0

be a point which realizes the maximum of the function
hj = @j + @j-1 +log Ap;.
It follows from (4.2) that z; € 09, otherwise Ajh;(z;) < 0 contradicting
Ajh; = Ajp; > 0.
We infer from Lemma 14 that for all w € €,
log Ap;(w) < 2Cy + hj(z;) < 2Cy + log sglé) Agp;,

which yields the desired upper bound.

It remains to establish (4.2). We shall need the following local differential inequality which
goes back to the works of Aubin and Yau: if w is an arbitrary Kihler form and 3 = dd®||z||?
denotes the Euclidean Kéahler form, then

_ trg(Ricw)

A, logt >
ogtry(w) > ~¢

(4.3)
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We apply this inequality to w = w; = dd°p;. Observe that Ric(w;) = w;_1 since
(ddp;)" = e %=1 e%dV.
Observe that
tra(w;1) _ Aplpj-1)
trs(w;) trs(w;)
Combined with (4.3), this yields
Ajlogtrg(w;) = —A;(pj-1),
whence (4.2). O

< Aj(%‘—l)-

LEMMA 18. There exists C's > 0 such that
sup |D2<pj\ < C3(1 +sup |V<pj\2).
o0 Q

Proof. This follows from a long series of estimates which are the same as those of [14], up
to minor modifications. We only sketch these out, following the proof of [12, Lemma 7.17]. To
fit in with the notation of [12], we set ¢ = ¢; — p and n = dd®p so that 1) is a n-psh function
(still) with zero boundary values on 052 such that

(0 + dd°y)" = ™ e,
where F' is some smooth density. Our problem is thus equivalent to showing an a priori estimate

sup | D*)| < C3(1 + sup [Vo[?),
o0 Q

where C3 is under control.
Fix p € . It is classical that one can choose complex coordinates (z;)1<j<n S0 that p =0
and

p=—x,+R Zajkzjzk +0(12),
k=1

where z; = x; + 1y,. For convenience, we set

t1 =w1, to =21, .., lon—1 = Yn, lon = Ton.

Let (Dj;) be the dual basis of dtq,...,dtan—1, —dp so that for j < 2n,
0 0 1 0

Dj=—— Pty 9 and Do, = ——— —.

8tj Pz, 8xn Pz, al‘n

Step 0: Bounding the tangent-tangent derivatives. Observe that the D;’s commute and are
tangent to 0S) for j < 2n; we thus have a trivial control on the tangent—tangent derivatives at
p =0,

D;Dj)(0) =0 forl<i,j<2n.

Step 1: Bounding the normal-tangent derivatives. Set K = supyq, |V¢|. We claim that for

all 1 < i < 2n,

for some uniform constant C' > 0.
Let A be the smooth function in € with zero boundary values such that
ddh A npn—1
Aph = ikl R o}
77”
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The proof requires the construction of a barrier b = 1 + eh — pup? such that

dd°b N ddey)n 1 1
0<b and Ayb:=n (77(1 ;ii_dcd))lf) < —3 try(n) in B,
where B is a half ball centered at p = 0 of positive radius and €, u > 0 are under control. This
can be done exactly as in [12, Lemma 7.17, Step 1] since the only information needed is that
(n + dd®)™ is uniformly bounded from above by Cn™, which follows here from our C%-estimate.
One then shows the existence of uniform constants pi1, 2 > 0 such that the functions vy =
K (1 + p2]2|?) + D2 both satisty

0<vy onB and Ayvy <0 in B.

It follows then from the maximum principle that vy > 0 in B so that Da,v4(0) > 0 since
v+(0) = 0. Thus,

as claimed.

Step 2: Bounding the normal-normal derivatives. This is somehow the most delicate estimate.
Set again K = supyg, |V¢)|. We want to show | D3,,4(0)| < C(1 + K?) for some uniform constant
C > 0. Using previous estimates on D;D;1(0), it suffices to show

(2,2, (0)] < C(1 + K?).
Recall that
det(pz,z;(0) + 12,2, (0))1<ij<n = e~ V(O+F(0)
is bounded from above, and for i < n,
922, (0)] < C(1 + K).

Expanding the determinant with respect to the last row thus yields the expected upper bound,
provided we can bound from below the (n — 1,7 — 1)-minor

det(pz,z;(0) + 12,2, (0)1<i j<n—1-

A (by now) classical barrier argument shows ddp = 1 + dd® is uniformly bounded from below
by en on the complex tangent space to 9 (see [12, Lemma 7.16] which can be used since ¢,
is uniformly bounded). O

The following blowup argument was used by Chen [18] for constructing geodesics in the
space of Kéahler metrics.

LEMMA 19. There exists Cy > 0 such that

Slglzp [V, < Cy.

Proof. 1t follows from previous estimates that

sup Ap; < C(1+ sup |Ve,|?).
Q Q

Assume that supg |Vy;| is unbounded. Up to extracting and relabeling, this means that

M := [Vpj(2;)] = sup [Vips| — +o0,
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where z; € Q) converges to a € Q. We set
¥;(2) = pj(x; + M '2).
This is a sequence of uniformly bounded plurisubharmonic functions which are well defined

(at least) in a half ball B around zero and satisfy

[VY;(0)] =1 and supAy; <C.
B

We infer that the sequence (1;) is relatively compact in C', hence we can assume (up to
relabeling) ¢; — ¢ € C'(B), where 1 is plurisubharmonic and satisfies Vi)(0) = 1.

If a € 092, then it follows from the proof of Lemma 16 that 1) = 0, contradicting Vi (0) = 1.
Therefore, a € €2, so we can actually assume that B is a ball of arbitrary size, hence 1 can be
extended as a plurisubharmonic function on the whole of C". Since ¢; is uniformly bounded,
so are ¢; and 1. Thus, ¢ has to be constant, contradicting V(0) = 1. O

4.3. Evans-Krylov theory

It follows from Schauder’s theory for linear elliptic equations with variable coefficients that it
suffices to obtain a priori estimates

@ill2.0 < C, (4.4)
for some positive exponent o > 0, in order to obtain a priori estimates
[llk+2,0 < Ch, (4.5)

at all orders k € N. Here

k
_ D¥h(z) — D*h
Il e = ZSUP|DJM L sup | (2) (w)]
Q

Z,WER, zFwWw |Z - w|a

j=0
denotes the norm associated to the Holder space of functions ko which are k-times differentiable

on Q with Holder-continuous of exponent a > 0 kth-derivative.
The a priori estimates (4.4) follow from Theorem 15, as is shown in [14, Theorem 1].

4.4. Conclusion

It follows from the previous sections that the sequence (p;) is relatively compact in C>°(12).
We let I denote the set of its cluster values. We infer from Proposition 12 that the functional
F is constant on K: for all ¢ € KC,

F@)= lim  F(Tpo).

J—+oo

Now K is clearly T-invariant, hence F(Ty) = F(3)) for all ¢y € K. Thus, Proposition 12 again
ensures that T = 9, that is, ¢ is a solution of (MA).

As explained earlier, this is equivalent to saying that there exists a Kdhler—Einstein metric
w = dd°p with Ric(w) = mw and prescribed values on the boundary of €, hence we have solved
our geometrical problem.

5. Uniqueness

Recall that (MA) is the Euler-Lagrange equation of the functional

F(¢) i= E(¢) +log { Jgewﬂ] |
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If a smooth strictly plurisubharmonic function ¢ with zero boundary values maximizes F,
then it is a critical point of F, hence ¢ is a solution of (MA). Indeed for any smooth function v,

Jove#du

d e\
£‘7:(80 +t0)4=0 = JQ v(ddp) [ oo dp =0,

thus (dd°¢)" = e?u/([, e~ % dp).
Our purpose here is to show that the converse holds true when 2 satisfies an additional
symmetry property.

5.1. Continuous geodesics

In the setting of compact Kéahler manifolds, Mabuchi [26], Semmes [33] and Donaldson [20]
have shown that the set of all Kéhler metrics in a fixed cohomology class has the structure of
an infinite Riemannian manifold with nonnegative curvature. The notion of a geodesic joining
two Kéhler metrics plays an important role there and we refer the reader to [18] for more
information on this.

Our purpose here is to consider similar objects for pseudoconvex domains in order to study
the uniqueness of solutions to (MA). Let A denote the annulus A = {{ € C/1 < |¢| < e} and
fix two functions ¢q, ¢1 which are plurisubharmonic in €2, continuous up to the boundary, with
zero boundary values. We let G denote the set of all plurisubharmonic functions ¥ on Q x A
which are continuous on € x A and such that

Yisaxa =0 and Yig.9a < ¢,
where ¢(z,() = ¢o(z) for |(| =1 and ¢(z,() = ¢1(z) for || = e. We set
D(2,C) = sup{W(z,0)/¥ € G).

PROPOSITION 20. The function ® is plurisubharmonic in Q x A, continuous on Q x A and
satisfies the following conditions:

(i) ®(z, e¢) = ®(z,() for all (2,(,0) € A x AxR,;
(ii) ®(z,1) = ¢o(z) and ®(z,¢e) = ¢1(z) for all z € Q;
(iff) (dds (®)™+1 =0 in Q x A.

Proof. The invariance by rotations (i) follows from the corresponding invariance property
of the family G. The continuity and boundary properties (ii) follow standard arguments which
go back to Bremermann [13] and Walsh [37].

The maximality property (iii) is a consequence of Bedford-Taylor’s solution to the homoge-
neous complex Monge-Ampere equation on balls, through a balayage procedure: by Choquet’s
lemma, the sup can be achieved along an increasing sequence which is maximal on an
arbitrary ball B C €2 x A; one then concludes by using the continuity property of the complex
Monge-Ampere operator along increasing sequences [4]. O

DEFINITION 21. Set ®;(z) = ®(z, €'). The continuous family (P:)o<i<1 is called the
geodesic joining ¢g to ¢q.

Recall that

1

E(p) = i JQ p(ddp)"

denotes the energy of a plurisubharmonic function ¢.
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LEMMA 22. Let (®;)o<i<1 be a continuous geodesic. Then t — E(®,) is affine.

Proof. We let the reader verify that if (z,() — ®(z,() is a continuous plurisubharmonic
function in 2 x A, then

ddi€ o ® = m.((ddS )" t1),
where 7 : X A — A denotes the projection onto the second factor.

It thus follows from Proposition 20 that { € A — & o ®({) € R is harmonic in ¢. The same
proposition ensures that it is also invariant by rotation, hence it is affine in ¢t = log|(]. |

5.2. Variational characterization

We now make an additional hypothesis of S!-invariance in order to use an important result by
Berndtsson [9]. Namely, we assume here below that Q is circled, that is,

Q) contains the origin and is invariant under the rotations z — 'z

and
bo, 1 are Sl-invariant, that is, ¢;(e2) = ¢;(2).

Under this assumption, it follows from [9, Theorem 1.2] that

t — —log <J e du)
Q

is a convex function of ¢ if (®,) is a continuous geodesic.

PROPOSITION 23. Assume that ( is circled and let ¢ be an S'-invariant solution of (MA).
Then

Fle) = F)

for all S!-invariant plurisubharmonic functions 1 in Q which are continuous up to the boundary,
with zero boundary values.

Proof. Let (®;)o<i<1 denote the geodesic joining ¢g := ¢ to ¢1 := 1. It follows from the
above-mentioned work of Berndtsson [9] that

t — —log (J'e_q)t du)

is convex, while we have just observed that

is affine, thus
t — F(P,) is concave.
It therefore suffices to show that the derivative of F(®;) at ¢ = 0 is nonpositive to conclude

F(p) = F(®g) = F(P,) for all ¢, in particular at ¢ = 1 where it yields F(¢) > F(¢p). When
t — ®; is smooth, a direct computation yields, for ¢t = 0,

d

GFE@) = | @

e*‘pfu

e ] ="

since @y = ¢ is a solution of (MA). For the general case, one can argue as in the proof of
[8, Theorem 6.6]. O

(dd°®,)" —
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COROLLARY 24. A smooth S'-invariant plurisubharmonic function ¢ : Q — R with zero

boundary values is a solution of (MA), that is, satisfies
e u

dd°p)" = ————
) Jo e7%du

if and only if it maximizes the functional F.

in Q,

5.3. Uniqueness of solutions

The purpose of this section is to establish a uniqueness result for (MA). Recall that if ¢ is
a solution of (MA), then we say that Q is strictly ¢-convex if  is strictly convex for the
metric ddyp.

THEOREM 25. Assume that ) is circled and strictly ¢-convex, where ¢ is an S*-invariant
solution of (MA). Then ¢ is the only S'-invariant solution to (MA).

Proof. Assume that we are given ¢, 1), which are two S'-invariant solutions of (MA). Let
(®y)o<i<1 denote the continuous geodesic joining ¢o = ¢ to ¢1 = . Since the functional F is
concave along this geodesic and attains its maximum both at ¢y and ¢1, it is actually constant,
hence each ®; is an S'-invariant solution to (MA) by Corollary 24, so that

e*q”u
Joe P du

Assume that the mapping (z,t) € Q x A — ®;(z) € R is smooth. Taking derivatives with
respect to t, we infer

(dd°®,)" = in Q.

ndd°®; A (dd°®,)" ' = {qit +J @t(ddcqn)”} (dd°®,)",
Q

so that 1 is an eigenvalue with eigenvector b, — IQ @t(ddc(bt)" for the Laplacian A; associated
to the Kéahler form dd°®;. Without the regularity assumption, we can take derivatives in the
sense of distributions to ensure that at ¢t = 0,

ndd°®y A (dd°®y)" "t = [—qio +J qio(dd%o)"} (dd°®¢)",
Q

as in the proof of [8, Theorem 6.8]. Note that @y = ¢ is smooth. In particular, ®y is a solution of
— Ay =1 —c(yp) in Q with ¢pq =0, (5.1)
where

ow) = | vl

We are going to show that any solution of equation (5.1) has to vanish identically if ©
is strictly ¢-convex. Namely, assume first that c(¢)) > 0. Write ¢ = ¢+ — 4™, where ¢+ =
max {1, 0} and ¢~ = max {—1, 0}. Multiplying equation (5.1) by 1™ and integrating by parts,
we get

|| tdwt ey = | @hRaae - ew) | ot ey
Q Q Q
<| oo
Q

By the variational characterization of the first eigenvalue of the Laplacian, if ¢y does not
vanish identically, then the last inequality means that the first eigenvalue of A with Dirichlet
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boundary condition is at most 1. However, by Guedj, Kolev and Yeganefar [21, Corollary 1.2],
we know that this eigenvalue is strictly bigger than 1 because of the strict convexity condition.
(Due to our normalization convention for d¢, there is a 7 factor difference between the definition
of A in our present work and the one in [21].) This shows ¥ = 0 and therefore 1) = 0 because
c(y) = 0. If ¢(vp) < 0, then the reasoning is similar and ¢ = 0 as well.

As a conclusion, we see that ®; = 0 on Q. Therefore, since the energy

is affine along the geodesic, and its derivative at t = 0 vanishes, it is constant on the interval
[0,1]. Now, along the geodesic, the derivative of F vanishes and since

F(®;) = E(Dy) + log (J e d,u> ,
we obtain finally that
J"Iit e Pt du =0.

But ®; > 0 since t — ®, is convex (by subharmonicity and S!-invariance) and therefore B, =0
almost everywhere. This leads to &g = ®;. |

6. Concluding remarks

6.1. The continuity method

A classical strategy to solve (MA) is to use the continuity method, looking at a continuous

family of similar Dirichlet problems,

_ eittptﬂ
Joemterdp

where the parameter ¢ runs from 0 to 1. One sets

I:={t€[0,1]/(MA); admits a (smooth plurisubharmonic) solution}

(MA) (dd®pe)" in Q  with @450 =0,

and then tries to show that I is nonempty, open and closed, so that I = [0, 1]. Observe that
1 € I is equivalent to solving the Dirichlet problem (MA) = (MA);.

It follows from the work of Cafarelli-Kohn—Nirenberg—Spruck [14] that 0 € I, hence the
latter is nonempty (see the discussion in Paragraph 2.3.2).

The a priori estimates derived in Section 4 can be adapted to show that I is closed. This
is in general the most difficult part of the method. However, it turns out here that proving
the openness is a delicate issue. Indeed, to do so, we need to show that the linearized (MA);
equation has a trivial kernel. More precisely, we have to prove that if ; is a solution of (MA),,
then every solution of

— A —tp+te(vp) =0 in Q  with Yoo =0, (6.1)
where

() i= [wlddp)",
must vanish. Here and in the following, covariant derivative, Ricci tensor and Laplacian refer
to the metric defined by ¢;. Let us introduce the differential operator
D : C*®(A%'Q) — C®(A%'Q ® A%1Q),
defined by
Do = V%la.
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We have then a Bochner formula (up to an inessential multiplicative m factor which we omit
for brevity)

— Aa = D*Da + Ric(a), a € C™®(A"Q). (6.2)
Here and in the following computation, A is the d-Laplacian. Applying (6.2) to d¢, where 9
is a solution of (6.1), we get
—A\OY = to) = D* Do + to),
because A and 0 commute and Ric(a) = ta. Therefore,
D*Doy = 0. (6.3)

Then, taking the L? inner product of D*Ddy and 0v¢ and integrating by parts, without
neglecting boundary terms (see [21] for details) and using the fact that on the boundary
we have

Ay = te(y),
we obtain
= 1
|DOY||3. = —3 J (n-¥)?[tr L, + Hess p(Jn, Jn)]o, (6.4)
o0
where p is a boundary-defining function for 0€2, n is the outward unit normal vector field on
0 and L, is the Levi form corresponding to p (see Subsection 2.1).

If Q is a strictly pseudoconvex domain, then tr L, is positive at each point of 02, however,
we do not have a priori any control on Hess p(Jn, Jn). So, contrary to what happens on a
closed manifold where we do not have to deal with this disturbing boundary term, we cannot
conclude here.

REMARK 26. In the same spirit, we have shown in [21] that a ball of sufficiently large
radius in complex projective space provides an example of a strongly pseudoconvex domain
which is not convex, and for which the Lichnerowicz estimate fails.

6.2. Optimal constants

It is natural to wonder whether it is possible to solve
ety
J o € "Prdp
for bigger values of ¢ > 1. As noted in Remark 10, our Moser—Trudinger inequality allows us
to get control for slightly larger values of ¢, with a maximal value depending on n, namely
t < (2n)FY7(1 4 1/n)HYm),

It should be noted that one cannot expect to solve (MA); for big values of ¢, as follows from
Bishop’s volume comparison theorem. Indeed, let B denote the unit ball in C™. If we can find a
solution ¢ of (MA); on B, then this means that we can find a Kédhler—Einstein metric w = dd®p
on B satisfying Ric (w) = t7w. Moreover, the volume V of this metric is

v JB (ddp)m 1

(MA)t (ddc@t)n in Q with QOHBQ = 0,

nl onl
But by the Bishop volume comparison theorem, the volume has to be less than or equal to the
volume of the 2n-real-dimensional sphere endowed with a metric of constant curvature k, with
k = (tm)/(2n — 1). This implies
1 (dm)"™(n—-1)
— < e
n! k" (2n — 1)!
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so that
(n—mmq”"

t<4@n—D[Cm1ﬂ

The interested reader will find in [6] further motivation and references for (MA); for large
(critical) values of ¢.
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