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Invariant Currents and Dynamical Lelong 
Numbers 

B y  Dan Coman and Vincent Guedj 

ABSTRACT. Let f be a polynomial automorphism of  C k of  degree 3., whose rational extension to ~k 

maps the hyperplane at infinity to a single point. Given any positive closed current S on pk of  bidegree (1,1), 

we show that the sequence x -n  ( fn)*  S converges in the sense of  currents on pk to a linear combination 

of  the Green current T+ of  f and the current of  integration along the hyperplane at infinity. We give 

an interpretation of  the coefficients in terms of  generalized Lelong numbers with respect to an invariant 
dynamical current for  f - 1. 

I. Introduction 

Let f = (P1 . . . . .  P/~) : C k ---> C k be a polynomial automorphism of first algebraic degree 
~. = max deg Pj > 2. We still denote by f : ]~k ~ ~k the meromorphic extension of f to the 
complex projective space •k = C k tO (t = 0), where (t = 0) denotes the hyperplane at infinity. 

The mapping f : 1~/~ --+ ~k is not well defined on the indeterminacy locus I +, which is an 
algebraic subset of  (t = 0) of  dimension < k - 2. Set X + = f((t  = 0) \ I+) .  We assume 
throughout this article that X + is reduced to a point which does not belong to I +. In particular, f is 
weakly regular (see [12]) hence, it is algebraically stable: the sequence )~-n(fn)*o9 converges in 
the weak sense of currents to a positive closed current T+ of bidegree ( 1, 1) such that f * T+ = )~ T+ 
(see [15]). Here ~o denotes the Fubini-Study KS_hler form on pk. Given S a positive closed current 
of  bidegree (l, l) on ~k, we set IISII :=  f~k S A ~o k-l .  

We assume in the sequel that )~ > )~2 ( f ) ,  the second dynamical degree of  f .  This allows 
us to construct an invariant positive closed current tr_ of  bidimension (1, 1) which we study in 
Section 2. We show (Theorem 2.2) that any quasiplurisubharmonic function is integrable with 
respect to the trace measure or_/xw. Using this we can define a generalized Lelong number v (., tr_) 
with respect to the dynamical weight tr_ (see Definition 2.3). The dynamical interest of  these 
numbers lies in an invariance property (Proposition 3.1) which we establish when I + is an f - 1 _  
attracting set. This last assumption has interesting dynamical consequences (see Theorem 2.13 
in [12]). 

Let S be a positive closed current of  bidegree (1, 1) and of  unit mass in t? k. Analyzing the 
behavior of  the bounded sequence of  c u r r e n t s  ) ~ - n ( f n ) * s  is a natural problem since it is linked 
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with ergodic properties of  the invariant current T+. This has been studied intensively in the past 
decade, starting with the work of Bedford-Smillie [2] and Forn~ess-Sibony [8] on complex H6non 
mappings (for further references see [15, 10]). In the context described above, our main result is 
the following. 

Theorem 1.1. Let f be a polynomial automorphism of  C k such that X + is a point not in I +. 
Assume that )~ > )~2(f) and that 1 + is an attracting set for f -1. I f  S is a positive closed current 
on ?k of  bidegree (1, 1) with [[SII = 1, then 

1 
( f n ) * s  ~ cs[t = O] + (1 - cs)T+,  )--~ 

in the weak sense o f  currents on I? k, where cs = v(S, a_) ~ [0, 1] is the generalized Lelong 
number of  S with respect to the invariant weight a_. Moreover, v( S, a_ ) > 0 i f  and only i f  the 
Lelong numberv(S,  X +) > O. 

It should be noted that this result is new even in the case when f is a complex H6non mapping 
(k = 2). In this case a_  = T_ is the Green current of  f - l ,  hence v(S, a_) is a generalized 
Lelong number in the sense of Demailly [6]. For H6non mappings, it was shown by Bedford and 
Smillie that ) - n  ( f n ) ,  [C] ~ cT+ in C 2, c > 0, for any algebraic curve C C C 2 (see Theorem 4.7 
in [2]). Our result can be seen as a full generalization of  this, in the sense that it yields global 
convergence on 72 (explaining what happens at infinity) and that it applies to any positive closed 
current S and in any dimension. 

On our way to prove this theorem, we introduce an interesting invariant probability measure 
]/,f = T+/N o'_ (Section 2.3). We prove Theorem 1.1 in Section 3 and we check in Section 4 our 
hypotheses on the families of quadratic polynomial automorphisms of C 3. 

2. Invariant Lelong number 

Let f be a polynomial automorphism of C k which maps (t = 0) \ I + to a point X + ~ I + 
and such that ~. > )~2(f). Here ~-2(f) denotes the second dynamical degree of  f ,  ~-2(f) = 
lim [32 ( fn )  ] 1 / n, where 82 ( fn)  is the second algebraic degree of  fn ,  i.e., the degree of  f - n  (L), L 
a generic linear subspace of  codimension 2 (see [ 15]). Under these assumptions we can construct 
a positive closed current a_  of  bidegree (k - 1, k - 1) and of  unit mass such that ( f - l ) * a _  = ~. 
a_  (see Theorem 3.1 in [12]). 

2.1. Construction of o-_ 

We recall the construction of  a_  since it is crucial for everything that follows. Let | be 
a smooth positive closed form of bidegree (k - 1, k - 1) and of unit mass in pk such that 
Supp | N I + = 0. Then Supp ( f - l ) , |  N (t = 0) = X +, thus ( f - l ) , |  is smooth in IP k \ {X+}. 
Since ( f - l ) , |  has mass L, there exists a current R of  bidegree (k - 2, k - 2) on ]pk, smooth in 
]pk \ {X+}, such that 

1 
( f - l ) * |  = O + ddCR. 

For WO an arbitrarily small neighborhood of  X + we may assume that 0 < R < Cw k-2 in pk \ W0, 
with a constant C depending on Wo. Then 0 < ( f - P ) * R  < C ( f - P ) * w  k-2 holds in IP k \ fP(Wo).  
We infer 

a(n) :=  1 
_ ~.---~ ( f - n ) * |  = | + ddCRn > a_ :=  | + ddCRoo, 
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x-,n- 1 ) - j  where R n = z.~j=0 ( f - J ) * R  converges to R ~  in the weak sense of  currents: indeed, {Rn}  is 

an increasing sequence of  positive currents in/?k \ W0 (because R > 0 in IP k \ W0 and we can 
assume f (Wo)  C W0) with bounded mass as s > )~2(f). We will use over and over the following 
facts: 

R n is smooth in C k and R ~  > 0 in 1~ k \ W0 �9 

Re mark  2.1. Let K -  C C k be the set of  points z with bounded backward orbit { f - n  (Z)}n>0. 
When I + is f - l - a t t r a c t i n g  it was shown in [12] that the current ~r_ is supported in the closure (in 
~k) of K - ,  which intersects (t = 0) only at the point X +. This was used in particular, to show 
that ~r_ has full mass 1 in C ~. We will show here that ~_ has full mass 1 in C k even when I + is 
not f - l - a t t r a c t i n g .  This occurs for certain maps in the classes 4 and 5 from Theorem 4.1. 

Let us recall that a function is quasiplurisubharmonic (qpsh) if  it is locally given as the sum 
of  a plurisubharmonic function and a smooth function. 

Theorem 2.2. Any quasiplurisubharmonic function is & L 1 (~r_ A co). In particular, ~r_ does 
not charge the hyperplane at infinity. 

Proof. Let 99 be a qpsh function and let 99e be a smooth regularization of  qg. Without loss of  
generality we can assume 99, 99e _< O and ddC99, ddC99e > -09. Let/3 be a smooth positive closed 
form of  bidegree (1, 1) on 17 k vanishing in W0 such that o9 = / 3  + ddCx with X -> O on ?k. By 
Stokes theorem, we have 

f( - -99e)~_ A O9 : f A /3 + f A ddC x 

since R ~  A/3 > O, X~r_ > 0 and -ddC99e <_ o9 in I? k. Letting e --+ 0 we get 

since 99 is integrable with respect to any smooth probabili ty measure. In particular, when 99 = 
log It[ - log II [z : t] I1 is a potential of  the current of integration along the hyperplane at infinity, 
this shows that the trace measure cr_ A o9 puts no mass on (t = 0), hence cr_ has full mass in C k. 

[ ]  

2.2. Dynamical Lelong number 

Let S be a positive closed current of  bidegree (1, 1) and unit mass on ~k, so S = o9 + ddC99 
for some qpsh function 99. It follows from Theorem 2.2 that the probabili ty measure S A cr_ :=  
co A or_ + ddC(99 ~_) is well defined. 

Definition 2.3. The generalized Lelong number of  S with respect to the invariant current ~r_ 
is v(S, o_)  :=  S A ~r_({X+}). 

The following convergence result will help to compute generalized Lelong numbers. 



202 

T h e o r e m  2.4. 
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Let S be a positive closed current o f  bidegree (1, 1) on ~k. Then 

S A O  "(n) ---> S A O ' _  

in the weak sense o f  measures on ~k. 

P r o o f  We can assume S has mass 1, hence S = w + ddC~o, where ~o < 0 is qpsh. We are 

going to show that ~0cr(_ n) ~ ~ocr_ in I? k \ X +. 

Observe first that the currents ~oa(__ n) have uniformly bounded mass in l?k: arguing as in the 
proof of  Theorem 2.2, we get 

o <_ f (--~O)'rLn) A w <_ f (--~O)| A /3 + f w ^ Rn A /3 + f w ^ x'r~n) <_ C < + ~  

since Rn increases to Roo in ]?k \ Wo and ~_n) has bounded total mass. 

Let v be a cluster point of  {~0cr(__n)}. Let {~0e} be a sequence of smooth qpsh functions 

decreasing pointwise to ~o. Then ~0cr(__ n) _< ~oEcr(__ n), hence v _< ~o~a_. Letting e ~ 0 yields 
v _< qg~r_. To get equality, it suffices to show that the total mass of  (-~o)a_ dominates that of  - v .  

Recall that cr (n)_ = | + ddCRn, where Rn =/-.,j=0~-'n-1 ~- j  ( f -J )*R,  and R is smooth in ]?k \ {X+}. 

Up to now, we have chosen R > 0 in/?k \ W0. Here it is actually more convenient to choose a 
negative potential. Set T = R - Cw k-z, where C is a positive constant so large that T _< 0 in 

~k \ Wo. Then ~r (n) = | + ddCTn, where Tn = y~n-1 )~-J(f-J)*T is a sequence of negative - j=0 
currents in I? k \ W0 decreasing to Too. Set 

1 
T n : = Z - ~ ( f - J ) * r  < 0 in] l~  \ Wo, 

j>n 

so that ~r_ - ~r(_ ~) = ddC~n. Let/3 be a smooth closed form of bidegree (1, 1) on I? k vanishing in 

Wo and strictly positive in ~k \ WO. Using -7~n A 13 > 0 in I? k, we get 

= f ( - ~ o , ) o L " ) , , / 3 + f d , ~ c ~ , , , ( - i ~ o ) A / 3  

>_ f (--~o,),ri") A /3 - f w A (-- i'n) ^ /3 . 

As e --+ 0 

f (--~)O'_ A ~ >_ f (--~)O'(_n) A ~ -'~- f ~ A ~'n A ~ . 

Now Tn ---> 0 as n --+ +~x~, hence f(-~0)cr_ A/3 >_ f(-v) A/3. This shows that v = ~ocr_ in 
I? k \ Wo, hence in ?k \ X + since W0 is an arbitrarily small neighborhood of X +. 

It follows that S A a_  (n) --+ S A a_  in ?k \ X +. Since these are all probability measures, we 

actually get S A O "(n) --->" S A O'_ on IP k. [ ]  

Example  2.5. I f /zn  = cr (n)_ /x [t = 0] then l imsup/zn({X+}) _< v([t = 0],or_) _< 1 by 

Theorem 2.4. Now /Zn({X+}) = 1 because r (n) clusters at infinity only at X +. Therefore 
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V([t = 0], a_)  = 1, i.e., [t = 0]/X a_  is the Dirac mass at the point X +. At the other end, observe 
that T+ vanishes in a neighborhood of  X + which is an attracting fixed point, so v(T+, a_) = O. 

Regular automorphisms were introduced by Sibony [15] and studied in [15, 12]. These are 
automorphisms such that I + A I -  = 0. In this case f - 1  is algebraically stable, so there is a well 
defined invariant Green current T_ for f - 1  (see [15]). 

Proposition 2.6. Assume f is a regular automorphism. Then a_ = T k - l ,  so v(S, a_) is the 
Demailly number of  S with respect to the weight T_. In this case, 

v (S ,a_ )  > 0 i f a n d o n l y i f  v(S, X +) > O, 

where v(S, X +) denotes the standard Lelong number at the point X +. 

Proof. When f is a regular automorphism as defined in [15], the inverse f - 1  has first 
algebraic degree d_ such that dk_ -1 = )~ (recall that X + is a point), and ~.2(f) = dk- -2  < ~. 
Note also that in this case I + = X -  is an f - l -a t t rac t ing  set. We refer the reader to [15] for the 
construction of  T_ = w+ddCg_, the Green current ofbidegree (1, 1) for f - 1 .  It follows from the 
extension of  the Bedford-Taylor theory of  Monge-Amp~re operators that T_ k-  1 is well defined 

and equals l im)~-n( f -n)*(w k - l )  (see [6, 15]). Thus, T_ ~-1 = lim)~--n(f--n)*| = a_ since 
| = w k-1 + ddCot, where a is a smooth form of bidegree (k - 2, k - 2), hence II ( f-n)*(~ II = 

O(d n(k-2)) = o(~n). Note also that T k is well defined and equals the Dirac mass at the point 
X + = 1- .  This is a situation where the Jensen type formulas of  Demailly simplify and give a 
nice understanding of  the generalized Lelong numbers v (S, T_k-1). 

The potential g_ of  T_ is obtained as g_ = )~n>_od-ndp- o f - n ,  where d S l ( f - 1 ) * w  = 
w + ddC~_. Observe that g_ has positive Lelong number at X + = I - ,  hence g- ( z )  < 

Y1 log dist(z, X +) + C. 

We also have control from below, y2 logdist(z, X +) - C < g- (z ) .  This follows from a 
Lojasiewicz type inequality, since 

2-'  log [Ia0(z)[ 2 + . . .+  I a (z)l 2] + smooth term near X + , r 

where Q j  are polynomials such that [ " )Qf l (0 )  --- X +. It follows from the Nullstellensatz 

that IQ0(z)[ 2 + . . .  + [Qk(z)[ 2 > dist(z, X+) ~ near X + for some exponent ot > 0. As X + is 
an attracting fixed point for f ,  we get d is t ( f (z) ,  X +) < c dist(z, X +) for all z ~ C k, hence 
dis t ( f -n(z ) ,  X +) > c-ndist(z,  X+). Therefore g- ( z )  > y2 logdist(z, X +) - C with Y2 ----- 
2-1otd_/(d_ - 1). 

We conclude by the first comparison theorem of  Demailly [6] that v(S, a_)  > 0 if and only 
if v(S, X +) > O. [] 

R e m a r k  2.7. For regular automorphisms T_ k is the Dirac mass at the point X + = I - ,  thus 
v(T_, tr_) = 1. It is an interesting question to characterize the closed positive currents S "-- co 
such that v(S, a_) = 1. 

Theorem 2.8. Let S be a positive closed current o f  bidegree (1, 1) on ~k. 

1) The sequence o f  currents S A Rn is well defined and convergent in C k. Set S A Roo := 
lim S A Rn in C k. Then 

S A a_ = S A | + ddC(S A Roo) in C k . 
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2) Assume Sn ~ S, where Sn are positive closed currents of bidegree (1, 1) on ? k. Then 
S n A g -  > S A tr_ in Ck. Moreover, when l + is f -l-attracting, then Sn A cr_ > S A g _ o n  

C o r o l l a r y  2.9. I l l  + is f-l-attracting, the mapping S ~ v( S, ~r_) is upper semicontinuous. 

Proo f  LetSn --+ S. ThenSnAcr_ --+ SAtr_onl?k, solimsupSnACr_({X+}) < SAcr_({X+}). 
[ ]  

L e m m a  2.10. LetS be a positive closed current of  bidegree (1, 1) on ~ ~k and let O be a positive 
closed current of  bidimension (1, 1) which is smooth in an open subset f2 o f~  ~. Then 

0 f| s A 0 IIStl. II011 

where IlSII = f~k S A M -1  and  II011 = f~k 0 A o). 

Proo f  Since ]pk is homogeneous (i.e., Aut(]P k) acts transitively on ]?k), we can regularize S in 
the following sense: there exist smooth positive closed currents St of bidegree (1, 1) on pk such 
that II&ll = flail and SE ~ S on ]?k (see [13]). Therefore St A 0 ~ S A 0 in f2, hence 

f f f 
0 < l S A O < l i m i n f  / S t A 0 < l i m i n f /  S t A 0 = I I S I I . I I 0 1 I .  

J a  e~O J~ e~o J~k 
[] 

Pro| o f  Theorem 2.8. Let S be a positive closed current of bidegree (1, 1) on I? k. Recall 
that tr_ = | + ddCR~, where Roo = Rn + Rn = lim Rn, Rn = ~-~7-1)~-J(f-J)*R being 

smooth in C k. Therefore S A Rn is a well-defined current of bidimension (1, 1) which is positive 
in C k \ W0. We estimate its mass in C k \ W0: if Sc is a regularization of  S as in the proof of 
Lemma 2.10, then 

0 < L S A R n A C o < l i m i n f  f S ~ A R n A w  
k\W 0 e-+O JCk\Wo 

n-1 
1 

Se A ( f -J )*o9 k-2 A 09 < CIISII Y~ ~j= < + ~  < C lim inf Z 
e-+0 ~ 7  k -- ' 

j = 0  j > 0  

where C > 0 is a constant depending on the fixed neighborhood W0. This shows that the 
increasing sequence {S A Rn } is convergent in C k \ W0. Observe that the sequence { Rn - Rp }n>_p 
is positive and increasing in C k \ fP(Wo). Thus, S A Rn converges in C k \ fP(Wo), for all p, 
hence in C k, as fP(Wo) ~ X +. Set S A Roo := lim S A Rn in C k. Then 

S A | + ddC(S A Roo) = l im[S  A | + ddC(S A Rn)] = l imS A a_(n) = S A t r _ ,  

by Theorem 2.4. This proves 1). 

Let Sn, S now be positive closed currents of bidegree (1, 1) on pk such that Sn -'+ S. 
Since RN is smooth in C k, we get Sn A RN ~ S A RN for all fixed N. We want to show that 
Sn A Roo -'+ S A Roo. It is sufficient to get an estimate on tl Sn A RN IlckkfN(W0) which is uniform 
in n. This is the following 

O<-~f Ck\fN(WO) SnARNAc~ " -"  ~7 k Z ' 2 ( f J )  ^ ^ < C '  - -  ~ j  ' 

j>_N j>_N 
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where Sn s is a regularization of Sn and the last inequality follows from Lemma 2.10 and the fact 
that the sequence of  norms Ilan~ll = Ilanll is bounded. Therefore, Sn A Roo ~ S A R ~  in C k, 
hence 

Sn A a_ = Sn A O + ddC(Sn A R o o )  -"-> S A cr_ i n C  k . 

When I + is f - l_at t ract ing,  the current tr_ clusters at infinity only at X +. Since Sn Acr_ and 
S Atr_ are positive measures on IP k supported in Suppcr_ and II Sn A or_ II = II Sn II -+ II S Atr_ II, 
we infer in this case that Sn m ~r_ --+ S Acr_ on I? ~. [ ]  

2.3. Invariant measure 

In this section we introduce and study a dynamically interesting probability measure. 

Definition 2.11. We write T+ = o~ + ddCg + and set 

# i  = T+ A a _  := w A a _  +ddC(g+a_) .  

Note that this measure is well defined thanks to Theorem 2.2. It is clearly a probability 
measure since f~k W A (r_ = 1. 

We have T+ = 0 in the basin of  attraction of  X +. If  I + is f - t_a t t rac t ing  then the support of  
a_  intersects (t = 0) only at X + (see Remark 2.1). It follows that in this case / s  has compact 
support in C k and it is invariant, i.e., f ,  l z f  = [if. 

When f is a regular automorphism, we have or_ = T_ k - i ,  so P S H ( C  k) C L1 (/zf),  by the 
Chern-Levine-Nirenberg inequalities. More generally, when there exist partial Green functions 
for f - i ,  one also gets P S H ( C  k) C Ll ( / z f )  (see Section 4.2 in [12]). This requires however 
delicate estimates on the growth of f - 1  near I +. We now establish in the spirit of  [11] the 
following integrability result. 

Theorem 2.12. f f  I + is f -1 -attracting and ~o is a quasiplutisubharmonic function on ~k, then 
E L1 (/z f ) .  

Proof. We can assume without loss of generality that 9 < 0 and ddC~o >_ -09. Let qgs < 0 
be qpsh functions which decrease pointwise to ~o such that ddC~oe > -co. The current T+ = 
~o + ddCg+ has potential g+ < 0 which is continuous in F ~ \ I +. Since I + is an attracting 
set for f - l ,  the  current cr_ vanishes in a neighborhood V0 of I +. If  A = [Ig+llLoo(~k\Vo) then 

(g+ + A)tr_ > 0 on ~k. We get 

f (--~oe) d l z f  = + + A)tr_) 

The conclusion follows by letting e --~ 0 and using Theorem 2.2. [] 

Re mark  2.13. I f  u is a plurisubharmonic (psh) function defined in a neighborhood of  the 
support o f / z f ,  then lul ~ ~ L l ( / z f )  for every a ~ (0, 1/k). Indeed, by Theorem 2.12 psh 
functions of  logarithmic growth are integrable with respect t o / z f .  The claim is straightforward 
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using the following result of  El Mir and Alexander-Taylor (see [1]): If  u < - 1  is psh in a ball 
B(zo, R) C C k and r < R, 0 < E < 1/k, then there exists a psh function v on C k of  logarithmic 
growth such that v <_ - lu l  1/k-~ on B(z0, r). 

3. Equidistribution towards T+ 

The purpose of  this section is to prove Theorem 1.1 stated in the introduction. 

P r o o f  The proof of the theorem is divided into four steps. 

Step 1: Normalization of potentials. By Siu's theorem, we can write 

1 
~---~ ( f n ) * s  =Cn[t = 01 + (1 - cn)Sn, (3.1) 

where Cn ~ [0, 1 ], and Sn are positive closed currents of  bidegree (1, 1) and unit mass which do 
not charge (t = 0). Since f*[t  = 0] = Z[t = 0], the sequence {Cn} is increasing. Let cs denote 
its limit. If  cs ----- 1 the convergence statement of  the theorem is proved, so we assume hereafter 
that cs < 1. 

We write S = o9 + ddCvo, where the potential v0 is uniquely determined up to additive 
constants. Using Theorem 2.12, we can normalize it so that f vo dlz f  = 0. Similarly, we fix 
potentials Sn = o9 + ddCvn, T+ = o9 + ddCg+, [t = 0] = o9 + ddC~o~ such that f Vn dlz f  = 

f g + d l x f =  f ~ o ~ d u f = O .  If~.-n(fn)*og=og+ddCg~+n),f g~) d u f = O ,  theng~+ n) ~ g + i n  
L I ( I ~ )  and ~-n(fn) ,o9 ._+ T+. The desired convergence follows if we show that ~.-nvo o fn  __> 
cs(~oc~ - g+) in L 1 (lPk). 

Pulling back (3.1) (with n = p) by f n  yields 

1 1 
~n+p'(fn+P)*S = C p [ t = O ] + ( 1 - C p ) - ~ ( f n ) * s p  

1 ( 1 )  
= cptt = 0] + (1 -- Ce)- ~ (fn)*o9 + (1 - cp) dd c Vp o i n . 

Using our normalization and the fact that// .f  is invariant, we infer 

1 fn+p _ o . (3.2) ~n+-----~voo =Cp(~O~ g(+n))+(g(+n)--g(+n+P))+(1--cp)lvp fn  

Step 2: Control of  the Lelong numbers. Since f n  is a biholomorphism in C k, it follows 
from (3.1) that for all n ~ N and z ~ C k, 

I 1 1 v(S, fn (z ) )  < - -  , v ( ( 1 - c n ) S n , z )  = ~-~ v ( ( f n )* S , z )  = ~-g ~n 

hence, SUpz~ck v(Sn, Z) < (1 - cS)-I ~. -n -'-> O. 

Pulling back (3.1) by f we get 

1 Cn+l  - Cn [ t  = 0] + 1 - Cn+l Sn+l �9 (3.3) 
-~ f * S n =  l - c n  1-c-----~ 

Since Sn+I does not charge (t = 0), we have for a generic point z e (t = 0) 

v(s. ,x+) c s - c .  = = < ~ - -  
- 1 - cn 1 - cs 



lnvariant Currents and Dynamical Lelong Numbers 207 

I f z  6 (t = 0) \ I +, it follows from [7] and [14] that there is an upper estimate v ( f*Sn ,  z) < 
Cf, zv(Sn, f ( z ) ) ,  where z w-> Cf, z is locally upper bounded. Fix V0 a small neighborhood of I + 
and set Cvo = SUpze(t=o)\v o Cf, z. Using (3.3) again, we get for all z ~ (t = 0) \ V0, 

C S - -  C n 1 CVo i)(Sn, X+ ) < CVo . 1 - Cn+l 1)(Sn+l, Z) < 1)(f*Sn, z) < 
- c .  - - - 7  - - f  Z Ts  

We conclude that SUpz~yk\v 0 V(Sn, Z) ---> 0 as n --+ +c~ .  

Step 3: Volume estimates. We have to prove that 

Wn : :  k-nvo o f n  __..> CS(~Oo ~ _ g+) .  

Observe first that the sequence {Wn} is relatively compact in L 1 (I t ' ) .  Indeed, 

)~-n(fn)* s -~- )~-n( f n )  *o) q- ddC (wn) : co q- ddC (g (n) -[- ton), 

so Wn + g(+n) are qpsh functions whose curvature is uniformly bounded from below by - w .  Since 

g(+n) ---> g+ and Wn < Ck -n,  the sequence {Wn + g(+n)} is uniformly upper bounded on ]I ~ .  
So either this sequence converges uniformly to - o o ,  or it is relatively compact in L 1 (11 ~ )  (see 

Appendix in [10]). The former cannot happen since f ( w n  + g(+n)) d l z f  : 0. Thus, it suffices to 
show that Wn converges in measure to cs(~o~ - g+). It follows from (3.2) that 

Wn+p - cs(r - g+ ) 

= ( C p -  Cs)(~Ooo -- g(n)) _jr CS(g + _ g(n)) q_ (g(n) g(n+p)) _~_ ( 1 -  Cp)~.-nl)pO f n .  

Let s > 0. Choose a small neighborhood V0 of  I + and fix p so large that 

sup v(Sp, z) < e 2 and [Cp cs[[[~o~ g(n) 1 _ -- _ + L (~,) < E 2 ,  V n E N .  
ze~'\Vo 

By Chebyshev's  inequality Vol(l(cp - cs)(~ooo - g(+n))[ > S/3) < 3e. Since g(+n) ---> g+ in 

L I ( I ~ ) ,  we have for n large Vol([cs(g+ - g(+n)) + (g(+n) _ g(n+p))[ > e /3)  < e. Observe that 

Vol ( Iwn+p--cs (~ooo-  g+)l > e) < Vo1 ( ] (Cp- -CS) (~o~-  g(+n))l > e /3)  

+ Vol ([cs(g+ - g(+n)) + (g(+n) _ g~+"+P)) I > s /3 )  + Vol ((1 - cp)lX-nve o fn[ > s / 3 ) .  

Since Vp is bounded above on ]pk, it remains to show that 

Vol ( I z -nvp  o f n  I > el3)  = Vol (k -nvp  o f n  < - e l 3 )  < C e ,  

for all n sufficiently large. 

Since I + is f - l -a t t rac t ing ,  there exist arbitrarily small neighborhoods Vo of  I + such that 

f ( ~  \ Vo) C ]I ~ \ V0. Set 

~'2en := {Z E e \ VO : ~--nl)p O fn ( z )  • --E/3} . 

We have fn(f2~n) C {Z ~ ]?k \ VO : Vp(Z) < - ekn /3} .  It follows from [10] that there exists 
C1 > 0 such that 

Cl~, n 
Vol ( fn  (h,~n)) Z exp Vol (f2n ~) 1 "  



208 Dan Coman and Vincent Guedj 

On the other hand, by Skoda's integrability theorem (see [14]) there exists C~ > 0 such that 

- 3 supz~pk\v 0 v(Sp, z) 

_< Ce exp - . 

Thus, Vol(Q~) _< 4Cle  for all n > N(e). 

We conclude that Wn -'+ cs(~ooo - g+) in measure on I? k \ V0. As V0 was an arbitrarily small 
neighborhood of  I +, the convergence in measure holds on ~t.  

Step 4: Interpretation of cs .  We have shown that s  ---> cs[t = 0] + (1 - cs)T+. 
It follows from [10] that cs > 0 if and only if v(S, X +) > 0. Assume now that I + is f - l _  
attracting. We show below (Proposition 3.1) that v((f~)*S, tr_) = Xnv(S, tr_). It then follows 
from Example 2.5 that 

. ( s , . _ )  = .  (z -o ( s g *  s, = c. + @ n ,  

where Sn = (1 - cn)Sn --+ (1 - cs)T+. Since v(T+, a_)  = 0, we infer from the upper 
semicontinuity property (Corollary 2.9) that v(Sn, cr_) ---> 0, hence cs = v(S, or_). [] 

Proposition 3.1 (Transformation rule) ,  v( f*  S, ~r_ ) = ~.v( S, a_ ). 

Proof. Let Sj be a sequence of smooth closed positive currents of  bidegree (1,1) with smooth 
potentials which decrease pointwise to a potential of  S. Let W be a small neighborhood of  X + 
so that f ( W )  C C  W. Note that f ( W )  = f ( W  n C k) U X +. Since f*Sj  is smooth in W and a_  
does not charge (t = 0) (Theorem 2.2) we have 

By the monotone convergence theorem, one has Sj A cr_ --. S A ~_ and f * S j  A ~_ --~ f *S  A or_. 
We infer fw  f * S  A ~r_ _< ,k f w  S A ~_, hence v( f*S,  ~_) <_ s ~_). 

For the opposite inequality, observe that the restriction of  f - 1  : K -  --> K -  extends 
continuously at infinity by setting f - 1  (X +) = X +. This shows f is an open mapping on K - ,  so 
there is a ball B C W centered at X + such that K -  N B C f ( W ) .  Therefore fw  f * S j  Acr_ > 
~" fB Sj A or_, which yields 

fvf*SA ->__x 
The desired inequality follows by shrinking W ~ X +. [ ]  

Remark3.2 .  Weshowed in thep roofo fTheorem 1.1 tha t i fS  = w+ddCvo then~.-nvoo f n --+ 
cs(dp~ - g+) in L 1 (]?k). Let G+(z, t), (z, t) ~ C TM, be the logarithmically homogeneous Green 
function of  f .  The function h [z : t] = log It[ - G + (z, t) is well defined on I? k and h = ~ b ~ - g +  + c  
for some constant c. Since h o f = )~h and f . l z f  = ].s we have f h dl~f = 0, so q ~  - g+ = h. 

Remark  3.3. The convergence ~.-n(fn)*S ~ cs[t = 0] + (1 - cs)T+ holds without the 
hypotheses s > s  and I + is f - l -a t t ract ing.  A proof can be given in the basin of X + by 
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a similar argument, and on the complement of  this basin one can conclude as in the proof of  
Theorem 2.7 in [10]. However, in this case we do not have an interpretation for cs. As an 
example, our convergence theorem holds for the maps f and f - l ,  where f ( x ,  y, z) = (P(y)  + 
az, Q(y) + bx, y), deg(P)  = deg(Q) = 2, ab ~ O. 

4. Quadratic polynomial automorphisms of C 3 

Let f be a quadratic polynomial automorphism of C 3. Using the classification of Forn~ess 
and Wu [9], we show tha t - -up  to c o n j u g a c y - - f  or f 2  (or f - l )  is weakly regular. Moreover, I + 
(resp. I - )  is f - l_a t t rac t ing  (resp. f-at tracting) except for certain mappings in the classes 4 or 5 
below. Note that )~1 ( f - l )  = )~2 ( f )  since we are working in C 3. Here )x ( f )  is the first dynamical 
degree of f ,  kl ( f )  = lim[81 ( f n ) ] l / n ,  where 81 ( fn)  is the first algebraic degree of f n  (see [15]). 

T h e o r e m  4.1. Let f beaquadraticpolynomialautomorphismofC 3 w i th )q ( f )  5~ )~l ( f -1) .  
Then one of  the following holds: 

1) f is conjugate to a regular automorphism with X -  reduced to a point. In this case 
~ l ( f )  = 2 < 4 = ~ l ( f  -1)  a n d I -  is f-attracting. 

2) f 2  or f - 2  is conjugate to a mapping from 1). 

3) f is conjugate to 

f (x, y, Z) = (y[etx + fly] + cx + dy + az, y2 + x, y) 

whereaet ~ O. In thiscase f - 1  is weakly regular with X -  = [0 : 0 : 1 : 0], ) q ( f  -1)  = 3 > 
2 = )q ( f ) ,  and I -  is f-attracting. 

4) f or f -1 is conjugate to 

g(x, y, z) = (x 2 - xz + c + y, az, bx + c') , 

with ab ~= O. In this case g is weakly regular with X + = [1 : 0 : 0 : 0], ~-1 (g) = 2 > )q ( g - l )  = 
(1 + v ~ ) / 2 ,  and I + is g-1-attracting i f  and only if[bl < 1. 

5) f is conjugate to 

f ( x ,  y, z) = (x[y + etx] + az + c, x 2 q- dx + c' + by, x) 

whereab 7L O. In thiscase f - ~  is weakly regular, X -  = [0 :  0 : 1  : 0], ) q ( f  -1)  = 3 > 2 = 
)q ( f ) ,  and I -  is f -attracting i f  and only iflbl > 1. 

Proof. The quadratic polynomial automorphisms of C 3 are classified into seven classes, up 
to affine conjugacy [9]. The growth of the degree of their forward iterates is studied in [3]. 
Two classes consist of  affine and elementary automorphisms f ,  so )~1 ( f )  = )~1 ( f - l )  = 1. We 
consider the remaining five classes Ht . . . . .  /-/5 [9]. 

The  classes H1 and  H2. By considering the degrees of  forward and backward iterates of  
the maps H in these classes, it is easy to see that ) q ( H )  = ) , l (H  -1)  e {1, 2}. 

The  c lass / /3 .  This class contains maps H of the form 

H(x,  y, z) = (P(x ,  z) + a'y, Q(x) + z, x ) ,  max{deg(P),  deg(Q)} = 2, a '  # 0 .  

We let h = F o H o F -1,  where F(x, y, z) = (x, y - Q(z), z). Then 

h(x, y, Z) (otx 2 -+- ottxz + ot tt-2 = z + ClX + c2z + c3 + a'y, z, x) . (4.1) 
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The inverse map is 

( 1 ( x  OtZ 2 - - u ' y z -  o t " y  2 ClZ c 2 y  - c 3 ) ,  y)  h - 1  x , y , z _  = (  ) z , - -  - - - . 
a t 

Using the change of  variables (x, y, z) ~ (y, x, z) we see that h -1 is conjugated to h, and the 
role of  the coefficients or, or" interchanges. We have the following cases: 

CaseA.  ot ~ 0 ~= or". Then deg(h n) = deg(h -n)  = 2 n, so ~,1 (h) = ~.l(h -1)  = 2. 

CaseB. ot ~ 0, or" = 0, ott ~ 0. Then as before deg(h n) = 2 n and ~.l(h) = 2. The degrees 
of  the backward iterates dn = deg(h -n)  are given by Fibonacci's numbers, dn+2 = dn+l + dn. 
So ~-1 (h -1)  = (1 + ~/5)/2. Using the change of  variables 

F(x ,  y, z) = (otx -t- v, t~aty + s, -ottz + r ) ,  v = czu la ' ,  r = 2v - Cl, S = -ctatr/ot t , 

we see that F o h o F -1 = g, the map from 4). We have l+(g)  = {t = x = 0} t_J {t = x - z = 0} 
and g({t = 0} \ I +) = X + = [1 : 0 : 0 : 0]. I f c  = c r = 0 and a = b 2 the line ~(()  = ((, b(,  ( )  
is g-invariant and g ( r ( ( ) )  = r (b ( ) .  So in this case I + is not g-l-attracting if Ibl _> 1. We show 
in Lemma 4.2 following this proof that I + is always g-l-at tracting if [bl < 1. 

Case C. a ~ 0, or" = ott = 0. Then h E is regular, ~ l (h  2) = 4, ~.l(h -2)  : -  2, and 
X + = [ 1 : 0 : 0 : 0 ] .  

Case D. a "  ~ 0, a = 0, or' ~- 0. This is similar to Case B, with the roles of  h and h -1 
interchanged, )~1 (h) = (1 + ~/5)/2 and ~.1 ( h - l )  = 2. 

Case E. a tt # 0, ot = t~' = 0. As in Case C, h E is regular, 3.1(h 2) = 2, 3.1(h -2) = 4, and 
X -  = [0 : 1 : 0 : 0]. The fact that I -  is attracting for f holds for any regular automorphism f .  

Case E ~ = ot tt = 0, or' # 0. As in Cases B and D, 3.1 (h) = ~q(h -1) = (1 + ~/5)/2. 

Case G. ot = or" = or' = 0. Then h is linear, ~.1 (h) = ~.l(h -1)  = 1. 

The  class H4. The maps H in this class have the form 

H ( x , y , z )  = 

H - l ( x ,  y , z )  = 

(P(x ,  y) q- az, Q(y)  + x,  y), max{deg(P), deg(Q)} = 2, a ~: 0 ,  

y -  Q(z ) , z ,  - + P ( y , z )  , P ( y , z )  = - -  P ( y -  Q( z ) , z )  . 
a a 

We write P(x ,  y) = Cl x2 d- c2xy Jr c3y 2 q- l.d.t., Q(y)  = c4y 2 d- l.d.t.. 

CaseA. c4 ~ 0 ~ c1. H isregular, 3.1(H ) = 2, ~.I(H -1) = 4, X -  = [0 : 0 : 1 : 0]. 

CaseB.  c4 ~ 0, cl = 0, c2 ~: 0. Then H is conjugated to the map f of  3), ~ l ( f )  = 2, 
h i ( f  -1)  = 3, f - 1  is weakly regular, X -  = [0 : 0 : 1 : 0], I -  is f-attracting (see [4]). 

Case C. c4 ~ 0, Cl = c2 = 0. By [5] p. 446, either H E is regular, ~-1 (H E) = 4, ~-1 (H -E) = 
2, X + = [c3 : c4 : 0 : 0], or we have deg(H • = 2 n. 

Case D. c4 = 0. If  F(x ,  y, z) = (x + Q(y),  z, y), F o H o F -1 is the map from (4.1). 

The class/-/5. The maps H in this class have form 

H ( x ,  y , z )  = 

H - l ( x , y , z )  = 

(P(x ,  y) + az, Q(x)  + by, x), max{deg(P), deg(Q)} = 2, a ~: 0 ~ b ,  

( y x ) 1 ( y _  
- - ,  + P ( y , z )  P ( y , z )  = - -  e z, z, b a ' a b 

Let P (x ,  y)  = Cl x2 -~- c2xy q- c3y 2 -b d lx  + d2y + d3, Q(x)  = C4 x2 -~- e lx  d- e2. 
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CaseA. c4 r 0 # c3. H is regular, ~q(H) = 2, ) q ( H  -1) = 4, X -  = [0 : 0 : 1 : 0]. 

Case B. c4 # 0, c3 = 0, cz # 0. Then deg(H n) = 2 n and deg(H -n)  = 3 n. If  

F(x, y, z) = (px + q, c2y q- r, pz + q), p2 --_ c2c4, q = pd2/c2, r = dl - 2qcl /p  , 

then F o  H o F -1 is the map f from5),  I -  = {t = z = 0}, f - l ( { t  = 0} \ I - )  = X -  = [0 : 0 : 
1 : 0]. If  Ibl > 1 it is shown in [12] that I -  is f-attracting. If  Ib[ < 1 and if f fixes the origin, 
then f (0 ,  y, 0) = (0, by, 0), so I -  is not f-attracting. 

Case C. c4 # 0, c3 = c2 --- 0. The inverse map is 

H _ l ( x , y , z ) = ( z , y - - c 4 z 2 - - e l z - - e 2  x_+ yz 2 d2y + L ( z ) )  
b ' a  a ab ' 

where y = (d2c4/b) - Cl and deg(L) _< 1. I f c l  # 0 # y then ~.l(H) = L I ( H  -1) = 2. If  
Cl # 0 and y = 0 then d2 r 0 and H E is regular, )~I(H 2) ----- 4, ) q ( H  -2) ----- 2. I f  Cl = 0 and 
d2 # 0 then H 2 is regular, ~.l(H 2) = 2, ) q ( H  -2) = 4. I f c l  = d2 = 0 then the degrees of  all 
iterates are bounded by 2. 

CaseD. c4 = el  = 0. I f c l  # 0 then ~.I(H) = ~.I(H -1) = 2. I f c l  = 0 then deg(H +n) _< 
n + 1, so )q (H)  = ) q ( H  -1) = 1. 

Case E. c4 -~ 0, e l  ~ 0. W e  have that F o H o F - 1  is  t h e  map h from (4.1), where 

( e 2 e l z y  b )  
F ( x , y , z ) =  e l x + b y + e 2 +  b , b + b ' Y +  " [] 

L e m m a  4.2. I f  g(x, y, z) = ( x  2 - XZ -]- C -~- y, az, bx + c') is the map from Theorem 4.1, 
case 4), and lb] < 1, then I + is g-l-attracting. 

Proof. The inverse of  g has the form 

(~  z ( y  Z ) + L ( y , z ) + x ,  Ya) g- l (x ,  y ,z)  = (xl, yl ,Zl) = Z+c" ' -b  a - - b  ' 

where c" ~ C and deg(L) < 1. Recall that I + = {t = x = 0} U {t = x - z = 0}. We let 
ot = Ibl/(4lal) and define for R > 1 

VR = { ( x , y , z )  e C 3 : m a x { 2 o t l y h  [zl} > max{2R,  R1 /3 lx l ] ] ,  

WR = { ( x , y , z ) ~ C 3 : m a x { a l Y l ,  l x f } > m a x { R ,  R1 /31x - z l } ] .  

Since [bl < 1 we can find e > 0 such that Ibl < (1 - 2e)/(1 + e). The lemma follows if we show 
that for all R sufficiently large we have 

g-l(VR) C V2R k) W2R , g - I ( W R )  C V2R I..J W(l+e)R �9 (4.2) 

We denote in the sequel by Cg all constants which depend only on the coefficients of  g. For 
the first inclusion of  (4.2), let (x, y, z) ~ VR. We have two cases: 

Case A. 2otlyl > Izl, so lYl > R/a, lYl > R1/3fxl/(2t~). 
g- l (x ,  y, z) ~ V2R. If  lYl/lal > 4el/31zl/lbl then 

2R1/31Xll < 2 R 1 / 3 ~  + 2 Ic"l R 1/3 < Iz l l ,  Izll > - -  
IVl 

We show that in this case 

R 
> 4 R .  

odal 
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If  lYl/lal < 4R1/3lzl/lb[, using Izl/lbl < 2ulyl/Ibl = [yl/(21al), we get 

) Cglyl2 { 4 R , 2 R I / 3 I x l l ] .  Izl ( l y l  Izl - Ixl - I t ( y ,  z)l > el~3 > max lYll > ~ \ l a l  Ibl 

Case B. 2otlyl < Izl, so Izl > 2R,  Izl > R1/31x[. If  IXl > 2 R 1 / 3 1 X l -  Zll then 
g - l ( x , y , z )  e WZR, since Ixll >_ Izl/Ib[- Ic"l > 2R.  If  Ixll <__ 2 R 1 / 3 1 X l -  Zll then 
Iz/b - y/a] > Cglz l /R 1/3, so lYl] > Cglzl2/R1/3 and g - l ( x ,  y, z) c= V2R. 

To prove the second inclusion of  (4.2), let (x, y, z) e WR and consider two cases: 

Case A. otlyl >_ Ixl, so lYl > e/ot,  lYl > R 1 / 3 l x -  z[/~ If  Izll > 2R1/31Xll then 
g - l ( x ,  y, z) e V2R, since also IZll = lyl/lal > 4R.  If  Izll _< 2R1/31xll then 

JZ__/I > lYl ]c,,[ > lY___...~I 
Ibl - 2laiR 1/3 - 31aiR 1/3 ' 

It follows that g -1  (x, y, z) ~ V2R, since 

t~lyl 
Izl ~ I z - x l + l x l  ~ ~--x~ +oelYl < 2oelYl �9 

K w J  

[Y] ( lYl  2oelYl~ CglYl e 
[Y1[ >-- 31alR1/~ 3 lal ~ ,] - C g l y [  > R1/3 

Case B. oelYl < Ixl, so Ixl > R, Ixl > gl /3lx  - zl. There exists a large constant M 
depending only on g, such that if [z/b - y /al  > M then g - l ( x ,  y, z) c= WZR. Indeed, if R is 
large we have Ilzl - Ixll < Ixl/100,  so 

~IYlI > f ~ l  a - C g l x l  >_ ~ - , 

provided that M = Mg is sufficiently large. Therefore 

R M  a [ 
ot ly l l>- -B]a l  - > 2 R '  (2R)U3lXl - Zll _ < 2R 1/3 y - -bz < alYll ' 

so g - l ( x ,  y, z) ~- W2R. Finally, we assume that Iz/b - y/a[ < M. For R large we have 
Ilzl - Ixll < elxl, so Ixll >_ Izl/Ibl - Ic"l > (1 - 2e)lxl/Ibl > (1 + e)lxl. Since Ixl > R and 
IXl -- Zl[ _< M + Ic"l, we conclude that in this case  g-1  (x, y, z) ~ W(I+e)R. [] 
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