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Abstract. Let (X, ω) be a compact Kähler manifold. We obtain uniform Hölder regularity for so-
lutions to the complex Monge–Ampère equation on X with Lp right hand side, p > 1. The same
regularity is furthermore proved on the ample locus in any big cohomology class. We also study the
range MAH(X, ω) of the complex Monge–Ampère operator acting on ω-plurisubharmonic Hölder
continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that mea-
sures with Lp-density belong to MAH(X, ω) and proving that MAH(X, ω) has the “Lp-property”,
p > 1. We also describe accurately the symmetric measures it contains.
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1. Introduction

Let (X, ω) be a compact n-dimensional Kähler manifold. Let also2 = {θ} ∈ H 1,1(X,R)
be a given cohomology class onX. In the note we consider two different cases of interest:

(1) 2 is a Kähler class, i.e. there exists a Kähler form which represents 2. In this case
we assume without loss of generality that ω ∈ 2.

(2) 2 is a big cohomology class, which means that there exists a (possibly singular)
closed (1, 1) current T representing 2 such that T is strictly positive, i.e. T ≥ ε0ω

for some constant ε0 > 0.
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The study of complex Monge–Ampère equations on compact Kähler manifolds with a
Kähler background metric has a long history and many spectacular results have appeared
over the years. The big cohomology class setting, on the other hand, was initiated recently
in [BEGZ]. This is the most general setting where a meaningful (and nontrivial) theory
can be developed. Of course it covers the Kähler class setting as a particular case, but since
the latter is more classical and certain technicalities can be avoided, we have decided to
treat the two cases separately.

We deal with the Kähler setting first. We study the range of the (normalized) complex
Monge–Ampère operator

MA(u) :=
1
Vω
(ω + ddcu)n, Vω := Volω(X) =

∫
X

ωn,

acting on ω-plurisubharmonic (ω-psh for short) Hölder continuous functions u. Here, as
usual, d = ∂ + ∂ and dc := 1

2iπ (∂ − ∂), and Vω denotes the volume of the cohomology
class {ω}, so that MA(u) is a probability measure.

This problem is motivated by the study of canonical metrics on mildly singular vari-
eties: their potentials are solutions to degenerate complex Monge–Ampère equations (in
this case though, a more general assumption on the form ω, not covered by our argument,
has to be made). Hölder continuity is the best global regularity one can expect in such
a setting. Furthermore even such weak regularity does imply estimates for the “metric”
ω + ddcu which might be relevant for the study of the limiting behavior of the Kähler–
Ricci flow. We refer the reader to [ST1, ST2, ST3, SW, EGZ1, GKZ, K3, KT, BCHM,
BEGZ, To, TZ, SW] for further geometrical motivations and references.

We let PSH(X, ω) denote the set of ω-psh functions; these are defined as being locally
equal to the sum of a plurisubharmonic and a smooth function and any such function u
additionally satisfies the inequality ω + ddcu ≥ 0 in the weak sense of currents.

We let Hölder(X,R) denote the set of real valued Hölder continuous functions on X.
Our goal is thus to understand the range

MAH(X, ω) := MA(PSH(X, ω) ∩ Hölder(X,R)).

A result of the fifth named author [K3] (see [EGZ1] and [Di] for refinements in par-
ticular cases) asserts that a probability measure µ = fωn which is absolutely continuous
with respect to the Lebesgue measure belongs to MAH(X, ω) if it has density f ∈ Lp for
some p > 1. Note that a Monge–Ampère potential u ∈ PSH(X, ω) such that MA(u) = µ
is unique, up to an additive constant.

The proof in [K3] does not give any information on the Hölder exponent of the
Monge–Ampère potential. We combine here the methods of [K3] and the regularization
techniques of the first named author [D1, D4] to establish the following result:

Theorem A. Let µ = fωn = MA(u) be a probability measure absolutely continuous
with respect to Lebesgue measure, with density f ∈ Lp, p > 1. Then u is Hölder con-
tinuous with exponent α arbitrarily close to 2/(1 + nq), where q denotes the conjugate
exponent of p.
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It is a slightly better exponent than the one obtained in some special cases in [EGZ1]
and [Di]. Whether it is optimal is still unknown, yet in [Pl] and [GKZ] some local counter-
examples, easily adjustable to the compact setting, show that the exponent cannot be
better than 2/(nq). The proof uses a subtle regularization result of [D1, D4], as in [Di]
and [BD]. The extra tool that allows us to remove symmetry/curvature constraints is the
Kiselman minimum principle coupled with Demailly’s method of attenuating singularities
(the Kiselman–Legendre transform) from [D4].

By keeping track of the Hölder constant together with the exponent, one can in fact
obtain uniform estimates provided suitable control on the global geometry is assumed.
More precisely if we assume uniformly bounded geometry (this notion will be explained
in the Preliminaries), the following holds:

Theorem A∗. Let (Xs, ωs) be a family of compact Kähler manifolds with uniformly
bounded geometry. Consider the Monge–Ampère equations

(ωs + dd
cus)

n
= fsω

n
s , sup

Xs

us = 0.

If ‖f ‖Lp(ωns ) ≤ C are uniformly bounded then the solutions us are uniformly Hölder con-
tinuous for any exponent α < 2/(nq+1) and the Hölder constant is uniformly controlled
by C and the constants from the definition of the uniformly bounded geometry.

We furthermore believe that additional technical improvements of our arguments may
lead to analogous statements in the case of classes which are merely semipositive and big
(see [BGZ] for a definition and further developments).

A satisfactory description of MAH(X, ω) is yet to be found. We nevertheless establish
a technically involved characterization (Theorem 4.3) that allows us to derive several
useful consequences, for example we show:

Theorem B. The set MAH(X, ω) has the Lp-property: if µ ∈ MAH(X, ω) and 0 ≤ f ∈
Lp(µ) with p > 1 and

∫
X
f dµ = 1, then fµ ∈ MAH(X, ω). In particular the set

MAH(X, ω) is convex.

It has recently been proved by Dinh–Nguyen–Sibony [DNS] (see also [Ber] for recent
developments) that measures in MAH(X, ω) have the following strong integrability pro-
perty: if µ ∈ MAH(X, ω), then

exp(−ε PSH(X, ω)) ⊂ L1(µ) for some ε > 0. (†)

This is a useful generalization of Skoda’s celebrated integrability theorem (see [Sk, Ze]).
It is natural to wonder whether condition (†) characterizes MAH(X, ω). This is the

case when n = 1 (see [DS] and Subsection 4.1). In this note we show that such a char-
acterization still holds in higher dimensions provided the measures under consideration
have symmetries:

Theorem C. Let µ be a probability measure with finitely many isolated singularities of
radial or toric type. Then µ belongs to MAH(X, ω) if and only if (†) is satisfied.
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Next we turn our attention to the general big cohomology class setting. To this end we
choose a smooth (1, 1)-form θ representing 2. Observe that in general one cannot have
θ ≥ 0. Analogously to the Kähler setting we can nevertheless define PSH(X, θ) as the
set of functions which are defined again as being locally equal to the sum of a plurisub-
harmonic and a smooth function and any such function ϕ should satisfy θ + ddcϕ ≥ 0.
Observe that by assumption such functions exist, although they may all be singular.

It follows from the regularization theorem of the first author [D4] that we can find
a strictly positive closed (1, 1)-current T+ = θ + ddcϕ+ which represents 2 and has
analytic singularities, that is, there exists c > 0 such that locally on X we have

ϕ+ = c log
N∑
j=1

|fj |
2 mod C∞

where f1, . . . , fN are local holomorphic functions. Such a current T+ is then smooth on
a Zariski open subset �, and the ample locus Amp(2) of 2 is defined as the largest such
Zariski open subset (which exists by the Noetherian property of closed analytic subsets).
Therefore any θ -psh function ψ with minimal singularities is locally bounded on the
ample locus. Here having minimal singularity means that given any other θ -psh function
ϕ one has the inequality

ϕ ≤ ψ +O(1).

According to [BEGZ] we can then define the (nonpluripolar) product 〈(θ + ddcϕ)n〉,
and in case ϕ has minimal singularities, the total mass of this measure is independent of
ϕ and equals ∫

X

〈(θ + ddcϕ)n〉 =: Vol(2) > 0.

It is therefore meaningful to study the (normalized) Monge–Ampère equation

MA(ϕ) :=
1

Vol(2)
(θ + ddcϕ)n = µ,

for a given probability measure µ vanishing on pluripolar sets.
When µ = f dV is absolutely continuous with respect to Lebesgue measure with

density f ∈ Lp(X), p > 1, there is a unique solution modulo an additive constant, which
turns out to have minimal singularities [BEGZ]. The solution is known to be globally
continuous on X when the cohomology class 2 is moreover semipositive ([EGZ3]).

In this context we prove the following analogue of Theorem A:

Theorem D. Let µ be a probability measure absolutely continuous with respect to a fixed
smooth volume form, with density f ∈ Lp(X), p > 1. Let ϕ be a weak solution of the
Monge–Ampère equation MA(ϕ) = µ. Then for any 0 < α < 2/(1 + nq), ϕ is Hölder
continuous of exponent α locally in the ample locus Amp(2) of 2 (here q denotes the
conjugate exponent of p).

The note is organized as follows. In Section 2 we recall all the basic facts and introduce the
necessary definitions. Theorems A and A∗ are proved in Section 3. After recalling the one-
dimensional theory in Subsection 4.1, we establish the characterization of MAH(X, ω) in
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Subsection 4.2. This allows us to prove Theorem B (in Subsection 4.3) and derive further
interesting consequences. The case of measures with symmetries is handled in Section 5.
Theorem D is proved in Section 6. In the Appendix we briefly explain how bounds on
the curvature allow one to control the differential of the exponential mapping, a technical
information needed in the proof of Theorem A∗.

2. Preliminaries

2.1. Curvature and regularization

Let X be a compact Kähler manifold equipped with a fundamental Kähler form ω given
in local coordinates by

ω =
i

2

∑
k,j

gkj̄dz
k
∧ dz̄j .

Its bisectional curvature tensor in those local coordinates is defined by

Rij̄ kl̄ := −
∂2gkl̄
∂zi∂z̄j

+

n∑
p,q=1

gpq̄
∂gpl̄

∂z̄j

∂gkq̄

∂zi
,

with gpq̄ denoting the inverse transposed matrix of gpq̄ , i.e.,
∑n
q=1 g

pq̄gsq̄ = δps . It is
a classical fact that in the Kähler case the bisectional curvature tensor coincides with the
Levi-Civita curvature tensor. We say that the bisectional curvature is bounded by A > 0
if for any z ∈ X and any vectors Z, Y ∈ TzX, Z, Y 6= 0, we have the inequality∣∣∣ n∑

i,j,k,l

Rij̄ kl̄(z)ZiZ̄jYkȲl

∣∣∣ ≤ A‖Z‖2ω‖Y‖2ω.
Analogously the bisectional curvature is bounded from below (resp. from above) by A if

n∑
i,j,k,l

Rij̄ kl̄(z)ZiZ̄jYkȲl ≥ A‖Z‖
2
ω‖Y‖

2
ω, (resp. ≤ )

respectively. It is easy to check that the existence of such bounds is independent of the
choice of local coordinates.

Recall that if u is a psh function in a domain in Cn then convolution with a radial
smoothing kernel preserves positivity of ddcu. For nonflat metrics, this may not be the
case any longer. However, an approximation technique due to the first author allows one
to control the “negative part” of the smooth form. It is described in detail in [D1] and
[D4]. Here we shall briefly highlight its main features.

Consider the exponential mapping from the tangent space of a given point z ∈ X,

expz : TzX 3 ζ 7→ expz(ζ ) ∈ X,
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which is defined by expz(ζ ) = γ (1) with γ being the geodesic starting from z with initial
velocity γ ′(0) = ζ . Given any function u ∈ L1(X), we define its δ-regularization ρδu to
be

ρδu(z) =
1
δ2n

∫
ζ∈TzX

u(expz(ζ ))ρ
(
|ζ |2ω

δ2

)
dVω(ζ ), δ > 0, (2.1)

according to [D1]. Here ρ is a smoothing kernel, |ζ |2ω stands for
∑n
i,j=1 gij̄ (z)ζi ζ̄j , and

dVω(ζ ) is the induced measure 1
2nn! (dd

c
|ζ |2ω)

n. This may be formally extended as a func-
tion onX×C by putting U(z,w) := ρδu(z) for w ∈ C with |w| = δ. The introduction of
the variable w is convenient for an application of the Kiselman minimum principle [Ki1,
Ki2] to that function. It should be noticed that in [D4] the Riemannian exponential map
“exp” has been replaced by a “holomorphic counterpart” exph, which is defined as the
holomorphic part of the Taylor expansion of ζ 7→ expz(ζ ) (the reason is that the calcu-
lations then become somewhat simpler, especially in the non-Kähler case, but this is not
technically necessary; thanks to a well known theorem of E. Borel, such a formal expan-
sion can always be achieved by a smooth function exph : TX → X). The function exph
is however not uniquely defined, and this weakens the intrinsic character of the estimates.
Therefore, we stick here to the more usual Riemannian exp function. The estimates ob-
tained in [D1] show that all results of [D4] and [BD] are still valid with the unmodified
definition of ρδu, at least when (X, ω) is Kähler. By Lemma 8.2 of [D1], the exponential
function

exp : TX→ X, TX 3 (z, ζ ) 7→ expz(ζ ) ∈ X, ζ ∈ TzX,

has the following properties:

(1) exp is a C∞-smooth mapping;
(2) ∀z ∈ X, expz(0) = z and dζ exp(0) = IdTzX;
(3) ∀z ∈ X the map ζ 7→ expz ζ has a third order Taylor expansion at ζ = 0 of the form∣∣∣∣expz(ζ )m−zm−ζm−

1
2

∑
j,k,l

Rj k̄lm̄
(
z̄k+

1
3 ζ̄k
)
ζj ζl

∣∣∣∣ ≤ C(|ζ |2(|z|+ |ζ |)2), |ζ | < r,

(2.2)
for small enough r > 0. The expansion is valid in holomorphic normal coordinates
with respect to the Kähler metric.

It is convenient to select a particular smoothing kernel, namely ρ : R+→ R+ defined by
setting

ρ(t) =


η

(1− t)2
exp

(
1

t − 1

)
if 0 ≤ t ≤ 1,

0 if t > 1,

with a suitable constant η, such that∫
Cn
ρ(‖z‖2) dV (z) = 1 (2.3)

(dV denotes the Lebesgue measure in Cn).
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The crucial estimate of the Hessian of U(z,w) given in [D4, Proposition 3.8] (see
also [D1, Proposition 8.5]), coupled with Kiselman’s theorem, provides a lemma stated
in this form in [BD, Lemma 1.12]:

Lemma 2.1. Fix any bounded ω-psh function u on a compact Kähler manifold (X, ω).
Let U(z,w) be its regularization as defined above. Define the Kiselman–Legendre trans-
form at level c by

uc,δ := inf
0≤t≤δ
[U(z, t)+Kt2 −Kδ2

− c log(t/δ)]. (2.4)

Then for some positive constantK depending on the curvature, the functionU(z, t)+Kt2

is increasing in t and one has the following estimate for the complex Hessian:

ω + ddcuc,δ ≥ −(Amin{c, λ(z, δ)} +Kδ2)ω, (2.5)

where A is a lower bound of the negative part of the bisectional curvature of ω, while

λ(z, t) :=
∂

∂ log t
(U(z, t)+Kt2).

2.2. Jensen formula and uniformly bounded geometry

The classical Jensen formula (see for example [BT1]) for a C2 function u defined in a ball
B(z, 2δ) in Cn says that

(ǔδ − u)(z) =
2n

δ2nσ2n−1

∫ δ

0
r2n−1

∫ r

0
t1−2n

∫
|ζ |≤t

1u(z+ ζ ) dV (ζ ) dt dr, (2.6)

where ǔδ is the average of u over B(z, δ) and σ2n−1 denotes the total surface measure
of the unit sphere. Now, if u is defined in a large set, then the integration of the above
formula in z provides an estimate of the integral of δ−2(ǔδ − u) in terms of the integral
of the Laplacian of u. We need such an estimate on compact Kähler manifolds which is
uniform as long as the geometry of manifolds is bounded in a certain sense.

Definition 2.2. Consider a family (Xs, ωs) of compact Kähler manifolds. We shall say
that it has uniformly bounded geometry if

1) the diameter diam(Xs, ωs) is uniformly bounded,
2) the bisectional curvatures are uniformly bounded,
3) the injectivity radius is uniformly bounded from below.

By well-known estimates [HK], it then follows that the total volumes Volωs (Xs) :=∫
Xs
ωns are uniformly bounded above and below by constants C and C−1 independent

of s.
It turns out that such bounds are enough to ensure various interesting geometric and

analytic bounds. Note in particular that they imply a lower bound on the Tian α invariants
for the classes of ωs-psh functions which does not depend on s (see [BEGZ]).
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In potential applications X will usually stay fixed, while the Kähler forms may vary.
Note that all conditions are obviously satisfied if the forms ωs are bounded in C∞ topol-
ogy and uniformly positive; this can be achieved by selecting appropriate representatives
when the cohomology classes [ωs] are given and contained in a fixed relatively compact
region of the Kähler cone of X. Thus an interesting case to treat would be when the
classes [ωs] approach the boundary of this cone. Unfortunately this may in general lead
to a blow-up of the curvature and for this reason our argument cannot be applied to study
the limiting behavior. On the other hand the method works if the forms ωs approximate a
C1,1 form ω in a fixed cohomology class provided that the curvatures of ωs stay bounded.

We can now state a lemma to be used in the next section.

Lemma 2.3. Assume that (Xs, ωs) is a family of compact Kähler manifolds with uni-
formly bounded geometry. Let us be continuous ωs-psh functions normalized by minXs us
= 1, maxXs us ≤ B for some fixed constant B. If ρδus is the regularization of us defined
as in (2.1), then for δ small enough we have∫

Xs

ρδus − us

δ2 ωns ≤ C0,

where C0 only depends on B and the constants involved in the uniform bounds on the
geometry.
Proof. Let us fix s and omit it in the notation for simplicity. By definition

ρδu(z) =

∫
ζ∈TzX

u(expz ζ )ρ
(
|ζ |2ω

δ2

)
dVω(ζ )

δ2n =

∫
x∈X

u(x)ρ

(
|logz x|

2
ω

δ2

)
dVω(logz x)

δ2n

=

∫
x∈X

u(x)Kδ(z, x)

where x 7→ ζ = logz x is the inverse of ζ 7→ x = expz(ζ ). The map (z, x) 7→ (z, logz x)
defines a diffeomorphism from a neighborhood of the diagonal in X × X onto a neigh-
borhood of the zero section of TX by the implicit function theorem. Here

Kδ(z, x) =
1
δ2n ρ

(
|logz x|

2
ω

δ2

)
dVω(logz x)

is the semipositive (n, n)-form on X × X defined as the pull-back of the form
ρ(|ζ |2ω/δ

2) dVω(ζ )/δ
2n by (z, x) 7→ ζ = logz x; it can be viewed as a kernel with

compact support in a neighborhood of the diagonal of X × X. By definition, we have∫
x∈X

Kδ(z, x) = 1 (as is clear by taking u ≡ 1), thus

u(z) =

∫
x∈X

u(z)Kδ(z, x).

Therefore∫
X

(ρδu(z)− u(z))dVω(z) =

∫
(x,z)∈X×X

(u(x)− u(z))Kδ(z, x) ∧ dVω(z)

=

∫
(x,z)∈X×X

u(x)(Kδ(z, x) ∧ dVω(z)−Kδ(x, z) ∧ dVω(x))
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thanks to the change of variable (z, x) 7→ (x, z). In order to finish the proof we need the
following lemma which establishes a pointwise bound for the kernel:

Lemma 2.4. If dω(z, x) ≤ δ, then

|Kδ(z, x) ∧ dVω(z)−Kδ(x, z) ∧ dVω(x)| ≤ Cδ
2−2ndVω(z) ∧ dVω(x)

for some uniform constant C which only depends on the curvature of ω. If dω(z, x) > δ,
then Kδ(z, x) ∧ dVω(z) = Kδ(x, z) ∧ dVω(x) = 0.

Proof. Given the symmetry of |logz(x)|ω = |logx(z)|ω = dω(z, x), it is enough to bound
the (2n, 2n)-form dVω(logz x) ∧ dVω(z) − dVω(logx z) ∧ dVω(x). The last assertion
follows from the fact that ρ(|logz x|

2
ω/δ

2) = ρ(|logx z|
2
ω/δ

2) = 0 if dω(z, x) > δ.
We now establish the first part of the lemma. Set ζ = logz x (i.e. x = expz(ζ )) and

y = expz(
ζ
2 ) = expz(

1
2 logz(x)) (the mid-point of the geodesic joining z and x). Observe

that from the expansion (2.2) applied at y (which is identified with zero in this system of
normal coordinates) we have

ζm = logz(x)m = xm−zm−
1
2

∑
j,k,l

Rj k̄lm̄
(
z̄k+

1
3 (xk−zk)

)
(xj−zj )(xl−zl)+O(‖z−x‖

4).

(2.7)
Now (2.7) yields

dζm = d(logz x)m = dxm − dzm +O(‖z− x‖
2)(dx, dz),

with an O(. . .) term depending only on the curvature. By the choice of the center y we
have zj = 1

2 (zj − xj )+O(‖z − x‖
2), where the O(. . .) term again only depends on the

curvature. Thus the expansion

dVω(ζ ) =
ω(z)n

n!
(ζ ) =

(
1−

∑
j,k,l

Rj k̄ll̄zj z̄k +O(‖z‖
3)
) i

2
dζ1 ∧ dζ 1 ∧ · · · ∧

i

2
dζn ∧ dζ n

at any given point z yields

dVω(logz x) =
n∧
j=1

i

2
(dxj − dzj ) ∧ (dxj − dzj )+O(‖z− x‖

2).

Thus, by taking the product with dVω(z), exchanging x and z, and then subtracting and
dividing by δ2n, we obtain the desired bound

dVω(logz x) ∧ dVω(z)− dVω(logx z) ∧ dVω(x)
δ2n =

O(‖z− x‖2)

δ2n dVω(z) ∧ dVω(x).

The appendix implies that O(. . .) depends only on global bounds for the geometry. ut
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We can now use Fubini’s theorem and the estimates on the kernel to obtain∫
(x,z)∈X×X

u(x)
(
Kδ(z, x) ∧ dVω(z)−Kδ(x, z) ∧ dVω(x)

)
=

∫
x∈X

∫
z∈B(x,δ)

u(x)
(
Kδ(z, x) ∧ dVω(z)−Kδ(x, z) ∧ dVω(x)

)
≤

∫
x∈X

∫
z∈B(x,δ)

|u(x)|Cδ2−2ndVω(z) ∧ dVω(x) ≤

∫
x∈X

BCδ2dVω(x) ≤ C0δ
2,

as claimed. ut

2.3. The H(α) condition and measures uniformly dominated by capacity

A fundamental tool in the study of ω-psh functions is the relative capacity modelled on
the Bedford–Taylor relative capacity ([BT2]).

Definition 2.5. Let (X, ω) be a compact Kähler manifold. Given a Borel subset K of X,
we define its relative capacity with respect to ω by

Capω(K) := sup
{∫

K

(ω + ddcρ)n
∣∣∣∣ ρ ∈ PSH(X, ω), 0 ≤ ρ ≤ 1

}
.

The following classes have been considered in [EGZ1]:

Definition 2.6. Letµ be a probability measure on a compact Kähler manifold (X, ω). We
say that µ belongs to the class H(α), α > 0 (alternatively, that µ has the H(α) property),
if there exists Cα > 0 such that for any compact K ⊂ X,

µ(K) ≤ Cα Capω(K)
1+α

If this holds for any α > 0, we say that µ satisfies H(∞).

It was proved in [K1, K3] that measures of the type µ = fωn with a density f in
Lp for some p > 1 do satisfy H(∞) (see also [Ze]). A slightly stronger notion was
introduced in [DZ]:

Definition 2.7. We say that a probability measure µ is dominated by capacity for Lp

functions if there exist constants α, β > 0 such that for any compactK ⊂ X and nonneg-
ative f ∈ Lp(µ) with p > 1, one has for some constant C independent of K ,

µ(K) ≤ C · Capω(K)
1+α and

∫
K

fµ ≤ C · Capω(K)
1+β .

Both notions are variations on condition (A) introduced in [K1]. These conditions,
which are actually stronger than condition (A), ensure the existence of bounded solutions
u to

MA(u) = fµ
as long as

∫
X
f dµ = 1.

Note that the condition H(∞) is equivalent to domination by capacity for L∞ func-
tions by a simple application of the Hölder inequality.
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2.4. Big cohomology classes

Let X be a compact Kähler manifold of dimension n, and 2 = {θ} ∈ H 1,1(X,C) ∩
H 2(X,R) a big cohomology class with a smooth representative θ .

We introduce the extremal function Vθ defined by

Vθ (x) := sup
{
ϕ(x)

∣∣∣ ϕ ∈ PSH(X, θ), sup
X

ϕ ≤ 0
}
, (2.8)

where PSH(X, θ) is the set of all θ -plurisubharmonic functions on X. The function Vθ is
a θ -psh function with minimal singularities.

Similarly to the Kähler case we define the relative capacity:

Definition 2.8. Let X be a compact Kähler manifold. Given a Borel subset K of X, we
define its relative capacity with respect to θ by

Capθ (K) := sup
{∫

K

(θ + ddcρ)n
∣∣∣∣ ρ ∈ PSH(X, θ), Vθ (x)− 1 ≤ ρ ≤ Vθ (x)

}
.

Observe that in contrast to the Kähler case competitors to maximize the right hand side
have minimal singularities but are in general unbounded. The Monge–Ampère measures
in the definition are only considered outside the polar locus {x ∈ X | Vθ (x) = −∞}.
Observe that the latter depends on the cohomology class {θ} but not on the choice of its
representative θ .

Most definitions from the Kähler setting have their big counterparts; we refer the
readers to [BEGZ] for details and more background regarding big cohomology classes.
In particular we can apply the same convolution procedure to any θ -psh function, as well
as the Kiselman–Legendre transform.

In order to prove Theorem D we shall need a stability estimate proved in [GZ2]:

Proposition 2.9. Assume that µ is a probability measure absolutely continous with re-
spect to a smooth volume form dV , dµ = f dV , where f ∈ Lp(X) with p > 1. Let ϕ,
ψ be θ -plurisubharmonic functions such that MA(ϕ) = µ, −M0 + Vθ ≤ ϕ ≤ Vθ and
ψ ≤ Vθ on X, for some positive constant M0 > 0. Then for any exponent 0 < γ <

1/(nq + 1), there exists a constant B0 = B0(p, γ,M0) > 0 such that

sup
X

(ψ − ϕ)+ ≤ B0‖(ψ − ϕ)+‖
γ

L1(X)
.

3. Proof of Theorems A and A∗

Proof of Theorem A. Fix u ∈ PSH(X, ω) such that MA(u) = µ. Denote by A − 1 =
A′ > 0 a bound for the curvature of (X, ω). By [K1], u is continuous, so assume that
minX u = 1 and denote by B := maxX u the maximum of u. Consider ρδu, the regular-
ization of the ω-psh function u defined in (2.1).

For δ, α > 0, set
E(δ, α) := {(ρδu− u)(z) > δα}. (3.1)

Let 0 < α1 < 2/(qn+ 1). Choose ε > 0, α, α0 such that

α1 < α < α0 < 2− α0q(n+ ε).
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Set θ := e−3AB . Recall (Lemma 2.1) that there exists a constantK which only depends on
the curvature such that the functions ρδu+Kδ2 are increasing in δ. Note that for δ small
enough, θα1δα1 ≥ δα0 +Kδ2(1− θ2). Altogether this implies that E(δ, α0) ⊃ E(θδ, α1).

We want to show that E(θδ, α1) is empty. Recall the definition of the Kiselman–
Legendre transform at level δα (see Lemma 2.1):

Uδ = inf
t∈[0,δ]

(
ρtu+Kt

2
− δα log

t

δ
−Kδ2

)
,

where K is chosen as in (2.4). It follows from [D1] that the same K can be chosen
for a family of manifolds with uniformly bounded geometry. In what follows, δ0 and
δj , cj , j = 1, 2, 3, denote constants which are uniform if the geometry is uniformly
bounded and ‖f ‖p stays bounded.

By Lemma 2.1,

ω + ddcUδ ≥ −[(A− 1)δα +Kδ2
]ω > −Aδαω + 2δα0ω

for 0 < δ < δ0, where δ0 > 0 is small enough. Therefore

uδ :=
1

1+ Aδα
Uδ

is ω-psh on X and satisfies
ω + ddcuδ ≥ δ

α0ω,

provided Aδα < 1, which we can safely assume. From Lemma 2.3 we have∫
X

|ρδu− u|ω
n
≤ c1δ

2 (3.2)

for 0 < δ < δ0. Therefore for E0 = E(δ, α0) = {(ρδu− u)(z) > δα0} we have∫
E0

ωn ≤ c1δ
2−α0 ,

and, by the Hölder inequality, ∫
E0

fωn ≤ c2δ
(2−α0)/q .

Let us modify f setting g = 0 on E0 and g = cf elsewhere, with c such that the total
integrals of f and g are equal. Solve for a continuous ω-psh function v (cf. [K2])

(ω + ddcv)n = gωn, max(u− v) = max(v − u).

Observe that ‖f − g‖L1(X) = 2
∫
E0
fωn ≤ 2c2δ

(2−α0)/q . Then by [DZ] there exists c3
(which depends additionally on ε > 0) such that

‖u− v‖L∞ ≤ c3δ
2−α0
q(n+ε) . (3.3)
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We claim that there exist small enough constants δ1 > δ2 > δ3 > 0 such that for any
0 < δ < δ3 there is a set inclusion

E(θδ, α1) ⊂ {uδ − v > δα} ⊂ E(δ, α0). (3.4)

Indeed, take z in E(θδ, α1). By Lemma 2.1, the function ρtu + Kt2 is increasing in
t ∈ [0, δ]. Thus for t ∈ [θδ, δ],

ρtu(z)−u(z) = ρtu(z)−ρθδu+ρθδu−u(z) ≥ K(θδ)
2
−Kt2+(θδ)α1 ≥ (θδ)α1−Kδ2,

and for t < θδ, since θ = e−3AB , we have

−δα log(t/δ) ≥ 3ABδα.

Therefore

(Uδ − u)(z) ≥ min
(
(e−3ABδ)α1 −Kδ2, 3ABδα

)
= 3ABδα

for 0 < δ < δ1, where δ1 > 0 is small enough (we can safely assume that δ1 < δ0).
Hence, by (3.3),

(Uδ − v)(z) ≥ 3ABδα − c3δ
2−α0
q(n+ε) > 2ABδα

for δ < δ2, where 0 < δ2 < δ1 is small enough. Observe that

Uδ − uδ ≤ ABδ
α.

Since AB ≥ 1, it follows that uδ(z) − v(z) > ABδα > δα for δ < δ2, which proves the
first inclusion E(θδ, α1) ⊂ {uδ − v > δα} in (3.4).

To prove the second inclusion, take z /∈ E(δ, α0). Since, under our assumptions,

uδ < Uδ ≤ ρδu,

we get, applying (3.3),

(uδ − v)(z) ≤ (ρδu− u)(z)+ c3δ
2−α0
q(n+ε) ≤ δα0 + c3δ

2−α0
q(n+ε) < δα

for 0 < δ < δ3, where 0 < δ3 < δ2 is small enough. This proves our second inclusion

{uδ − v > δα} ⊂ E(δ, α0)

for 0 < δ < δ3 and completes the proof of (3.4).
Now we want to apply the comparison principle to deduce from (3.4) that the set

E(θδ, α1) is empty for δ > 0 small enough. Let us fix 0 < δ < δ3 and recall that
E0 = E(δ, α0). From (3.4) and the comparison principle [K2], it follows that∫
{uδ>v+δα}

(ddcuδ + ω)
n
≤

∫
{uδ>v+δα}

(ddcv + ω)n ≤

∫
E0

(ddcv + ω)n =

∫
E0

gωn = 0.

Since uδ is ω-psh and (ω + ddcuδ)n ≥ δnα0ωn, it follows that the volume of the set
{uδ > v + δα} is zero. Hence it is empty, since uδ and v are ω-psh functions. Therefore
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from (3.4), it follows that the set E(θδ, α1) is also empty. Setting η = θδ = δe−3AB , we
obtain

ρηu− u ≤ e
3α1ABηα1

for 0 < η < η0 = e
−3αABδ3.

Note that the above inequality means that locally the η-convolution of u is no more
than u plus some constant of order ηα1 . However, the Harnack inequality for plurisubhar-
monic functions (see [GKZ] for details) implies that the η-convolution and the supremum
of u in a coordinate ball of radius η/2 are equivalent, hence the latter is also controlled by
u(z) and a constant of order ηα1 . This proves that u is Hölder continuous of exponent α1.

ut

Remark. Actually the continuity of u and v are not needed in the proof (see the discus-
sion in [DZ]). One just has to exploit their boundedness result and use a supremum/infi-
mum instead of a maximum/minimum in the argument. This actually yields yet another
proof of the continuity of u.

Note that in the proof above we could choose the same δ1, δ2 and δ3 for uniform αj , cj .
Thus, following the lines of this proof, one can obtain an analogous result for families of
manifolds with uniformly bounded geometry.

Theorem 3.1 (Theorem A∗). Let (Xs, ωs) be a family of n-dimensional compact Kähler
manifolds with uniformly bounded geometry. Consider the Monge–Ampère equations

(ωs + dd
cus)

n
= fsω

n
s , sup

Xs

us = 0,

where
∫
Xs
fsω

n
s =

∫
Xs
ωns .

If ‖f ‖Lp(ωns ) ≤ C are uniformly bounded then the solutions us are uniformly Hölder
continuous for any exponent α < 2/(nq + 1) and the Hölder constant is uniformly con-
trolled by C and the constants from the definition of uniformly bounded geometry.

As a direct application of Theorem A∗ one has the following corollary:

Corollary 3.2. Suppose X is a compact Kähler manifold and ω is a C1,1 smooth closed
positive form on X. Suppose moreover that ω can be approximated in C1,1 norm by
smooth closed forms with curvatures bounded by a fixed constant. Let also f be any non-
negative function such that f ∈ Lp(ωn) and

∫
X
fωn =

∫
X
ωn. Then the Monge–Ampère

equation
(ω + ddcu)n = fωn, sup

X

u = 0,

has an α-Hölder continuous solution u for any α < 2/(nq + 1), where q is the conjugate
to p.

Finally we remark that in [DZ] the stability result holds not only for measures absolutely
continuous with respect to the Lebesgue measure, but also for any measure dominated
by capacity for Lp functions. Observe that in the proof the sole place where we used the
assumption that µ is a measure with density was the application of the Jensen formula in
(3.2). Therefore by repeating the above proof one can get the following generalization:
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Proposition 3.3. Let u ∈ PSH(X, ω) solve the equation MA(u) = µ for µ a probability
measure on a compact Kähler manifold (X, ω). Assume that µ satisfies the following
additional assumptions:

(i) µ satisfies H(∞);
(ii) ‖ρδφ − φ‖L1(µ) = O(δ

b) for some b > 0.

Then u is Hölder continuous with exponent depending only on n and b.

Examples of such singular measures have been considered in [Hi].

4. Some properties of MAH(X, ω)

4.1. The one-dimensional case

In this section we recall for the reader’s convenience the classical one dimensional theory
of Hölder continuous potentials. We refer to [DS] for more details. It is worth recalling
that the problem on Riemann surfaces is linear and hence much easier: analogous state-
ments in the case of planar domains are classical in potential theory.

Proposition 4.1. Let (X, ω) be a compact Riemann surface. Let also µ = ω + ddcφ be
a probability measure on X, where φ ∈ PSH(X, ω), and B(a, r) be the ball (with respect
to the metric induced by ω) centered at a with radius r . The following properties are
equivalent:

(i) φ is Hölder continuous;
(ii) there exist constants α,C > 0 such that µ(B(a, r)) ≤ Crα for all a ∈ X and

0 < r < 1;
(iii) there exists ε > 0 such that exp(−ε PSH(X, ω)) ⊂ L1(µ).

Remark 4.2. As the Laplacian is a linear operator, Proposition 4.1 is actually a local
result. It further holds for higher dimensional subharmonic functions. We let the reader
check that if u is a subharmonic function in some domain � ⊂ Rn which contains the
origin, and 0 < α < 1, then the following are equivalent:

(1) supB(δ) u− u(0) ≤ C1δ
α for some C1 > 0 and 0 < δ � 1;

(2) 1
vol(B(δ))

∫
B(δ) u(z) dV (z)− u(0) ≤ C1δ

α for some C1 > 0 and 0 < δ � 1;
(3)

∫
B(δ)1u ≤ C3δ

α+n−2 for some C3 > 0 and 0 < δ � 1.

It classically follows from this observation that any subharmonic function is α-Hölder
continuous (respectively C1,α) outside a set of arbitrarily small (n − 2 + α)-Hausdorff
(respectively (n− 1+ α)-Hausdorff) content.

4.2. Characterization of MAH(X, ω)

Let � be a bounded domain in Cn. Analogously to the formula (2.6), for each u ∈
PSH(�) and δ > 0 we set

ǔδ(z) =
1

v2nδ2n

∫
Bδ
u(z+ w) dV (w) and uδ(z) = sup

w∈Bδ
u(z+ w),
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for z ∈ �δ = {z ∈ � | d(z, ∂�) > δ}. Here

Bδ = {z ∈ Cn | ‖z‖ = (|z1|
2
+ · · · + |zn|

2)1/2 < δ}

and v2n is the volume of the unit ball B1.

Theorem 4.3. Let (X, ω) be a compact Kähler manifold, and µ a positive Borel measure
on X so that µ(X) =

∫
X
ωn. The following are equivalent:

(i) there exists a Hölder continuous ω-psh ϕ such that µ = (ω + ddcϕ)n;
(ii) for every z ∈ X, there exists a neighborhood D of z and a Hölder continuous psh v

on D such that µ|D ≤ (ddcv)n;
(iii) µ ∈ H(∞) and there exist C, α > 0 such that

∫
K
[ǔδ − u] dµ ≤ C

∫
D̄
1u δα for all

u ∈ PSH ∩ L∞(�) and K ⊂⊂ D ⊂⊂ �, where � is a local chart.

A positive measure µ thus belongs to MAH(X, ω) if and only if it is locally the Monge–
Ampère measure of a Hölder continuous psh function.

Proof. The implication (i)⇒(ii) is immediate. The implication (iii)⇒(i) was observed to
hold in Proposition 3.3.

We now consider the implication (ii)⇒(iii). It is enough to prove the inequality∫
K

[ǔδ − u](dd
v)n ≤ C

∫
D

1u δα

for all u ∈ PSH∩L∞(�), K ⊂⊂ D ⊂⊂ � and for any local chart �.
We can assume without loss of generality that K = B1 is the unit ball in Cn, D = B2

and −2 ≤ v ≤ −1, |v(z) − v(w)| ≤ ‖z − w‖s for all z,w ∈ B2. This implies that
h(z) := ‖z‖2 − 4 < v on B1, while v < h on B2 r Br0 for some 1 < r0 < 2.

Replacing v by max(v, h) we can assume that v = h on B2 r Br0 . Fix ρ ∈ C∞0 (C
n)

such that ρ ≥ 0, ρ(z) = ρ(‖z‖), supp ρ ⊂ B1 and
∫
Cn ρ(z) dV (z) = 1. Set

v̂δ(z) =

∫
B1

v(z− δw)ρ(w) dV (w) =
1
δ2n

∫
B(z,δ)

v(w)ρ

(
z− w

δ

)
dV (w).

Observe that

v̂δ(z)− v(z) =

∫
B1

[v(z− δw)− v(z)]ρ(w) dV (w) ≤ δs, (4.1)∣∣∣∣ ∂2v̂δ

∂zj∂zk
(z)

∣∣∣∣ ≤ C‖v‖L∞(�)δ2 , (ddcv̂δ)
n
≤
C dV

δ2n . (4.2)

Choose now φ ∈ C∞0 (C
n) such that 0 ≤ φ ≤ 1, φ = 1 on Br1 and suppφ ⊂ Br2 ,

where r0 < r1 < r2 < 2. Set

vδ(z) =

∫
B1

v(z− δφ(z)w)ρ(w) dV (w).
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Observe that

vδ(z)− v(z) =

∫
B1

[v(z− δφ(z)w)− v(z)]ρ(w) dV (w) ≤ δs, (4.3)

vδ(z) = v̂δ(z) on Br1 , vδ(z) = v(z) on B2 r Br2 . (4.4)

Fix now any z ∈ B2 r Br0 . Since v = h there, we have for any δ < δ0,

∂2vδ

∂zj∂zk
(z) =

∫
B1

[
∂2h

∂zj∂zk

(
z− δφ(z)w

)
+ δO(1)

]
ρ(w) dV (w)

=

∫
B1

[δjk + δO(1)]ρ(w) dV (w) = δjk + δO(1).

Therefore vδ ∈ PSH(B2 r Br0) for all δ < δ0, hence vδ is actually plurisubharmonic in
all of B2 (if δ is small enough), as follows from (4.4). Set

T :=

n−1∑
j=0

(ddcv)j ∧ (ddcvδε )
n−1−j .

From (4.3), (4.4) and the Stokes formula we get∫
K

[ǔδ − u](dd
cv)n ≤

∫
B2

[ǔδ − u](dd
cv)n

=

∫
B2

[ǔδ − u][(dd
cv)n − (ddcv̄δε )

n
] +

∫
B2

[ǔδ − u](dd
cv̄δε )

n

≤

∫
B2

[ǔδ − u]dd
c(v − v̄δε ) ∧ T +

C

δ2nε

∫
B2

[ǔδ − u] dV

≤

∫
B2

[v̄δε − v]dd
c(u− ǔδ) ∧ T +

C
∫
B2
1u δ2

δ2nε

≤

∫
B2

[v̄δε − v]dd
cu ∧ T + C

∫
B2

1u δ2(1−nε)

≤ δεs
∫
Br2
ddcu ∧ T + Cδ2(1−nε)

∫
B2

1u

≤ C

[
δεs‖v‖n−1

L∞(�)

∫
B2

1u+ δ2(1−nε)
∫
B2

1u

]
≤ C

∫
B2

1u δα,

where ε = 2
s+2n and α = 2s

s+2n . ut

4.3. Proof of Theorem B

Below we derive several simple consequences of this characterization. First, the range of
the complex Monge–Ampère operator has the “Lp-property”:
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Corollary 4.4. Let ψ ∈ PSH(X, ω) be a Hölder continuous function. Consider a density
0 ≤ f ∈ Lp((ω + ddcψ)n) with p > 1 and

∫
X
f (ω + ddcψ)n =

∫
X
ωn. Then there

exists a Hölder continuous ω-plurisubharmonic function ϕ such that

(ω + ddcϕ)n = f (ω + ddcψ)n.

In particular MAH(X, ω) is a convex set.

Proof. By the Hölder inequality we have∫
K

fωnψ ≤ ‖f ‖Lp(ωnψ )
[ωnψ (K)]

1−1/p,

for any Borel subset K of X. This implies that fωnψ ∈ H(∞). On the other hand, by the
Hölder inequality we have∫

K

[ǔδ − u]fω
n
ψ ≤ ‖f ‖Lp(ωnψ )

[∫
K

[ǔδ − u]ω
n
ψ

]1−1/p

≤ Cδα

for all u ∈ PSH∩L∞(�),K ⊂⊂ D ⊂⊂ � and local chart�. Therefore by Theorem 2.1
there exists a Hölder continuous ω-psh function ϕ such that ωnϕ = fω

n
ψ .

Fix µ1 = MA(φ1), µ2 = MA(φ2) ∈ MAH(X, ω) and set µ = (µ1+µ2)/2. Observe
that ψ := (φ1 + φ2)/2 ∈ PSH(X, ω) ∩ Hölder(X, ω) satisfies

(ω + ddcψ)n ≥
1
2n
(µ1 + µ2),

hence µ = f (ω + ddcψ)n with bounded density 0 ≤ f ≤ 2n−1. It therefore follows
from the first part of the corollary that µ also belongs to MAH(X, ω), hence the latter is
convex. ut

We also note that the range of the complex Monge–Ampère operator has the product
property.

Corollary 4.5. Let (X1, ω1), (X2, ω2) be two compact Kähler manifolds of dimension
n1, n2, normalized so that

∫
X1
ω
n1
1 =

∫
X2
ω
n2
2 = 1. Fix two probability measures µ1, µ2

on X1, X2. The following are equivalent:

(i) µ1 ∈ MAH(X1, ω1) and µ2 ∈ MAH(X2, ω2);
(ii) µ = µ1 × µ2 ∈ MAH(X1 ×X2, ω), where

ω =

(
n1 + n2

n1

)−1/(n1+n2)

[ω1 + ω2].

Here µ = µ1 × µ2 denotes the product (probability) measure on X1 × X2, and we still
denote by ω1, ω2 the semipositive forms on X1 ×X2 obtained by pulling back ω1, ω2 on
each factor.
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Proof. (i)⇒(ii) Assume that µ1 = (ω1 + dd
cu1)

n1 and µ2 = (ω2 + dd
cu2)

n2 where
u1, u2 are Hölder continuous ωi-psh functions on X1, X2. Pulling back these forms and
functions on X = X1 ×X2 and observing that (ωi + ddcui)1+ni ≡ 0, one obtains

µ = µ1 × µ2 = (ω + dd
cu)n1+n2 with u =

[u1 + u2](
n1+n2
n1

)1/(n1+n2)

so that µ ∈ MAH(X, ω).
(ii)⇒(i) Since µ satisfies (iii) in Theorem 4.3 we infer that µ1, µ2 have the same

property. Using Theorem 4.3 again thus yields µ1 ∈ MAH(X1, ω1), µ2 ∈ MAH(X2, ω2).
ut

5. Measures with symmetries

Generalizing Skoda’s celebrated result [Sk], Dinh–Nguyen–Sibony [DNS] have recently
observed that if µ is the Monge–Ampère measure of a Hölder continuous quasi-psh func-
tion, then

exp(−ε PSH(X, ω)) ⊂ L1(µ)

for ε > 0 small enough. We show here that the converse holds when µ moreover has
radial or toric singularities. The general case is open; see however [Hi] for some partial
results.

5.1. Exponential integrability, Lelong numbers and symmetries—basic results

Note for later use that if exp(−ε PSH(X, ω)) ⊂ L1(µ), then for all x ∈ X and 0 < r � 1,

µ(B(x, r)) ≤ Crε

and µ(K) ≤ CT (K)ε for all Borel sets K , where T denotes the Alexander–Taylor ca-
pacity (see [GZ1]). This implies that for all A > 1, there exists CA > 0 such that

µ(K) ≤ CA Capω(K)
A for all Borel sets K,

where Capω denotes the Monge–Ampère capacity. In other words, µ is very well domi-
nated by the Monge–Ampère capacity (it satisfies the condition H(∞)).

Let u be a psh function defined near the origin in Cn, with a radial singularity, i.e.
such that u(z) = u(‖z‖) for all z. It is then standard that u can be written as u(z) =
χ ◦ L(z) where L(z) = log ‖z‖ and χ is a convex increasing function defined in a neigh-
borhood of −∞. Note that

• the function u is bounded if and only if χ(−∞) > −∞;
• the Lelong number ν(u, 0) is nonzero if and only if χ(t) ∼ ν(u, 0)t near −∞, which

is the maximal growth that χ can have at −∞. Alternatively, ν(u, 0) = 0 if and only if
χ ′(−∞) = 0.

The following elementary computation is left to the reader:
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Lemma 5.1. Let u = χ ◦ L be a radial plurisubharmonic function defined in a ball
B 3 0. Assume that χ is C2 smooth. Then u belongs to the domain of definition of the
Monge–Ampère operator and

(ddcu)n = ν(u, 0)nδ0 + cn(χ
′
◦ L)n−1χ ′′ ◦ L

dV

‖z‖2n
.

Here δ0 denotes the Dirac mass at the origin. Note in particular that if ν(u, 0) = 0 then
the Monge–Ampère measure (ddcu)n is absolutely continuous with respect to Lebesgue
measure.

A similar formula can be derived for Monge–Ampère measures with toric symmetries,
but we will not use it; we will handle the toric case by using Theorem 4.3, whereas the
radial case will be treated directly, using Lemma 5.1 (the direct method yields better
exponents).

5.2. The radial case

We obtain here a complete description of those radial measures which belong to
MAH(X, ω).

Proposition 5.2. Let µ be a probability measure on X which is smooth except at finitely
many points where it has a radial singularity. The following are equivalent:

(i) exp(−ε PSH(X, ω)) ⊂ L1(µ) for all 0 < ε < ε0;
(ii) ‖z− a‖−ε ∈ L1(µ) for all 0 < ε < ε0 and a ∈ X;

(iii) µ(B(a, r)) ≤ Crε for all 0 < ε < ε0 and a ∈ X;
(iv) µ = (ω + ddcφ)n, where φ ∈ PSH(X, ω) is Hölder continuous with exponent α

arbitrarily close to ε0/n.

Proof. The implication (i)⇒(ii) is obvious. The equivalence (ii)⇔(iii) is immediate. The
implication (iv)⇒(iii) is classical (successive integration by parts against a cut-off func-
tion with support in a corona of radii jr, (j + 1)r) and holds for general (nonradial)
measures. The implication (iv)⇒(i) was obtained in [DNS], also for general measures. In
what follows we thus focus on the remaining implication (ii)⇒(iv).

Let a ∈ X be one of the finitely many singular points. We fix a local chart near a such
that a = 0 is the origin and locally µ = (ddcu)n with u = χ ◦ L, L(z) = log ‖z‖ and χ
convex increasing. Observe that u is bounded and χ ′(−∞) = 0. By Theorem 4.3 it is
enough to check that u is Hölder continuous at point a, which is equivalent to showing
that

0 ≤ χ(t)− χ(−∞) ≤ C exp(δt) as t →−∞,
for some positive constants C, δ > 0.

By assumption there exists ε > 0 such that ‖z‖−ε ∈ L1(µ). We infer from Lemma
5.1 that ∫

0

1
‖z‖ε

dµ = c

∫
0
(χ ′ ◦ L)n−1χ ′′ ◦ L

dV (z)

‖z‖2n+ε

= c′
∫
−∞

(χ ′(t))n−1χ ′′(t)e−εt dt <∞.
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We now integrate by parts, in finite time, to obtain

ε

∫
−A

(χ ′)n exp(−εt) dt = (χ ′)n(−A) exp(+εA)+O(1).

We claim that
∫
−∞

(χ ′)n exp(−εt) dt is finite. So is the limsup of the right hand side,
hence χ ′(t) ≤ C exp(εt/n), which yields

χ(t)− χ(−∞) ≤ C′ exp(εt/n).

Therefore u(z)− u(0) ≤ C′‖z‖ε/n, i.e. u is Hölder continuous.
It remains to prove the claim. Indeed, if we had

∫
−∞

(χ ′)n exp(−εt) dt = ∞, then
(χ ′)n(−A) exp(+εA)→∞ as A→∞. Set

h(t) = (χ ′)n(t) exp(−εt) and H(x) =

∫ 0

x

h(t) dt.

Thus H(x)→∞ as x →−∞ and

εH(x) = H ′(x)+O(1).

We let the reader check that this implies H(x) = λ exp(−εx) +O(1) for some constant
λ ≥ 0. Now χ ′(t) → 0 as t → −∞ so h(t) = o(exp(−εt)) and H(t) = o(exp(−εt)).
This forces λ = 0, hence H(t) = O(1). ut

5.3. The toric case

We now consider the case of probability measures µ which are smooth except at finitely
many points where they have “toric singularities”: the origin 0 ∈ Cn is called a toric
singularity for the measure µ = (ddcu)n, u psh and bounded, if u is (S1)n-invariant, i.e.

u(z1, . . . , zn) = u(|z1|, . . . , |zn|), ∀z = (z1, . . . , zn) ∈ 1
n.

We will call these measures toric measures for short.

Proposition 5.3. Let µ be a toric measure in the unit polydisk1n ⊂ Cn. Assume that for
all 0 < r < 1/2 and j = 1, . . . , n,

µ(1× · · · ×1j (r)× · · · ×1) ≤ Cr
α, where C, α > 0.

Then there exists β, 0 < β < 1, such that∫
1n(t)

[ǔδ(z)− u(z)] dµ ≤ C(t)δ
β

for all 0 < t < 1 and u ∈ PSH ∩ L∞(1n) with 0 ≤ u ≤ 1.
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Proof. Set T u(z) = (2π)−n
∫
[0,2π ]n u(e

iθ1 |z1|, . . . , e
iθn |zn|) dθ1 . . . dθn.Note that T u(z)

= T u(|z1|, . . . , |zn|) is increasing and logarithmically convex. This implies that

|T u(|z1| + δ1, . . . , |zn| + δn)− T u(|z1|, . . . , |zn|)| ≤ C

n∑
j=1

log(1+ δj/|zj |)

for all z ∈ 1n(1/2). It follows from the Fubini theorem that

T ǔδ(z) =
1

(2π)n

∫
[0,2π ]n

ǔδ(e
iθ1 |z1|, . . . , e

iθn |zn|) dθ1 . . . dθn

=
1

(2π)n

∫
[0,2π ]n

1
cnδn

∫
Bδ
u(eiθ1 |z1|+w1, . . . , e

iθn |zn|+wn) dV (w) dθ1 . . . dθn

=
1

(2π)n

∫
[0,2π ]n

1
cnδn

∫
Bδ(|z1|,...,|zn|)

u(eiθ1ξ1, . . . , e
iθnξn) dV (ξ) dθ1 . . . dθn

=
1
cnδn

∫
Bδ(|z1|,...,|zn|)

T u(ξ) dV (ξ) ≤ T u(|z1|+δ, . . . , |zn|+δ).

Since µ is toric,∫
1n(1/2)

[ǔδ(z)− u(z)] dµ =

∫
1n(1/2)

[T ǔδ(z)− T u(z)] dµ,

thus ∫
1n(1/2)

[ǔδ(z)− u(z)] dµ ≤ C

n∑
j=1

∫
1n(1/2)

log(1+ δ/|zj |) dµ

≤ nC

∫ 1/2

0

δtα

t2 + δt
dt ≤ C′δβ

with β = α/(α + 2), as can be checked by decomposing the integral into
∫ δγ

0 +
∫ 1/2
δγ

,
where γ = 1/(α + 2). ut

Corollary 5.4. A toric probability measure µ belongs to MAH(X, ω) if and only if
exp(−ε PSH(X, ω)) ⊂ L1(µ) for some ε > 0.

Proof. If µ belongs to MAH(X, ω), then exp(−ε PSH(X, ω)) ⊂ L1(µ) for some ε > 0,
as follows from [DNS]. Conversely, assume that exp(−ε PSH(X, ω)) ⊂ L1(µ) for some
ε > 0. As explained earlier, this implies that µ is very well dominated by the Monge–
Ampère capacity, in particular µ ∈ H(∞). Moreover in a local chart the plurisubhar-
monicity of the functions log |zj |, j = 1, . . . , n, easily implies that the assumptions in
Proposition 5.3 are satisfied. Coupling these we find that item (iii) of Theorem 4.3 ap-
plies, hence µ ∈ MAH(X, ω). ut

In view of the above proofs, one may wonder whether all probability measures satisfying
condition H(∞) belong to MAH(X, ω). The following example shows this is far from
being the case.
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Example 5.5. We assume here (X, ω) = (P1, ωFS) is the Riemann sphere equipped with
the Fubini–Study form. We let φ ∈ PSH(X, ω) be a function that is smooth in P1 except
at one point which we choose as the origin 0 in some affine chart C and so that

φ(z) = exp
(
−
√
− log |z|

)
−

1
2

log[1+ |z|2]

near the origin. The reader will easily check, following the arguments in Example 4.2
in [BGZ], that µ = ω + ddcφ is very well dominated by the logarithmic capacity, in
particular satisfies H(∞), although φ is not Hölder continuous.

6. The case of big cohomology classes

Proof of Theorem D. In order to deal with the general case of big cohomology classes,
we use again the regularization techniques of the first author, coupled now with Proposi-
tion 2.9.

We let ϕ be a θ -psh function solution of (θ + ddcϕ)n = µ, where the density f ≥ 0
of µ with respect to a smooth volume form belongs to Lp for some p > 1. The solution
is unique up to an additive constant, it is θ -psh with minimal singularities (see [BEGZ]).
We can thus assume, without loss of generality, that −C0 + Vθ ≤ ϕ ≤ Vθ . We let

ϕ 7→ ρδϕ

again denote the regularization operator defined in (2.1). As in the Kähler case, t 7→
ρtϕ +Kt

2 is increasing for 0 ≤ t ≤ δ0 and some constant K .
We consider the Kiselman–Legendre transform,

ψc,δ(z) := inf
t∈]0,δ]

{ρtϕ(z)+Kt
2
− c log(t/δ)},

where 0 ≤ δ ≤ δ0 and c > 0 will be carefully chosen below. Observe that

ϕ ≤ ψc,δ ≤ ρδϕ +Kδ
2.

The fundamental curvature estimate is now

θ + ddcψc,δ ≥ −(Ac +Kδ
2)ω

for some constant A > 0. Since the coholomogy class2 = {θ} is big, there exists a θ -psh
functionψ0 onX such that θ+ddcψ0 ≥ ε0ω for some small constant ε0 > 0. Subtracting
a large constant, we can always assume that ψ0 ≤ 0, hence ψ0 ≤ Vθ .

It follows that the function

ϕc,δ :=
Ac +Kδ2

ε0
ψ0 +

(
1−

Ac +Kδ2

ε0

)
ψc,δ

is θ -plurisubharmonic on X. Fix 0 < δ < δ0 and choose c > 0 such that

Ac +Kδ2
= ε0δ

α, where α := 2γ,
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and observe that c = ε0A
−1δα −KA−1δ2

= O(δα). Set

ϕδ := ϕc,δ.

Since ψ0 ≤ Vθ ≤ ϕ + C0, we see from the definition that on the ample locus,

ϕδ − ϕ = δ
α(ψ0 − ϕ)+ (1− δα)(ψc,δ − ϕ)

≤ C0δ
α
+ (1− δα)(ρδϕ − ϕ +Kδ2).

Furthermore, since ϕ ≤ Vθ ≤ 0, we get %δϕ ≤ 0, thus ψc,δ ≤ Kδ2
≤ C0δ

α if δ ≤ δ0 is
small enough, and so ϕδ ≤ C0δ

α . This implies ψ := ϕδ−C0δ
α
≤ Vθ . By Proposition 2.9,

it follows that

sup
X

(ϕδ − ϕ) ≤ B0‖max(ϕδ − ϕ − C0δ
α, 0)‖γ

L1(X)
+ C0δ

α

≤ B0‖ρδϕ +Kδ
2
− ϕ‖

γ

L1(X)
+ C0δ

α

for some constant B0 > 0 which depends only on γ and the uniform norm of ϕ − Vθ .
By Lemma 2.3, the last estimate yields

sup
X

(ϕδ − ϕ) ≤ C1δ
α,

where C1 := B0Cω +K
γ
+ C0 and Cω is the constant in Lemma 2.3.

This inequality ϕδ ≤ ϕ+C1δ
α yields a uniform lower bound on the parameter t = t (z)

which realizes the infimum in the definition of ϕδ(z) for a fixed z ∈ �. Namely the last
inequality gives

ϕδ(z)− ϕ(z) = δ
α(ψ0(z)−ϕ(z))+ (1−δα)

(
ρtϕ(z)+Kt

2
−ϕ(z)−c log(t/δ)

)
≤ C1δ

α.

Since Vθ − ϕ ≥ 0 and ρtϕ(z)+Kt2 − ϕ(z) ≥ 0, it follows that

c(1− δα) log[t (z)/δ] ≥ δα(ψ0(z)− Vθ (z)− C1).

Since c = ε0A
−1δα − KA−1δ2, the choice δ ≤ δ1 := min{δ0, (ε0/2K)1/(2−α)} yields

c ≥ 1
2ε0A

−1δα and therefore
t (z) ≥ δκ(z),

where

κ(z) := exp(C2(ψ0(z)− Vθ (z)− C1)), (6.1)

C2 :=
2A

ε0(1− δα0 )
. (6.2)

We are now in a position to conclude. Fix z ∈ Amp(2). Since t (z) ≥ κ(z)δ and
t 7→ ρtϕ +Kt

2 is increasing, we get

ρκ(z)δϕ(z)− ϕ(z) ≤ ρt (z)ϕ(z)+Kt(z)
2
− ϕ(z)

= ψc,δ(z)− ϕ(z) =
1

1− δα
(ϕδ(z)− δ

αψ0(z)),
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and by the above and the assumption ϕ ≤ Vθ ≤ 0 we find

ϕδ − δ
αψ0 ≤ ϕ + C1δ

α
− δαψ0 ≤ C1δ

α
+ δα(Vθ − ψ0),

ρκ(z)δϕ(z)− ϕ(z) ≤ (1− δα0 )
−1δα(C1 + Vθ (z)− ψ0(z)).

Replacing δ by κ(z)−1δ and using (6.1), we obtain for δ ≤ δ0κ(z),

ρδϕ(z)− ϕ(z) ≤ (1− δα0 )
−1δα(C1 + Vθ (z)− ψ0(z)) · exp(αC2(C1 + Vθ (z)− ψ0(z)))

≤ C3 exp(2αC2(C1 + Vθ (z)− ψ0(z))),

where
C3 := (αC2)

−1(1− δα0 )
−1.

This finishes the proof of Theorem D, since ψ0(z)−Vθ (z) is locally bounded from below
on Amp(2), as also is κ(z) given by (6.1). ut

7. Appendix

We briefly explain below how bounds on the curvature may be used to control the differ-
ential of the exponential mapping. This is essentially a variation on the theme of Jacobi
vector fields.

Estimates for the differential of the exponential

For accurate computations with the exponential we need to control its differential in terms
of the curvature. To this end we determine the Jacobi equations which calculate the vari-
ation of geodesics.

Let namely u 7→ u + v be a small perturbation of the geodesic t 7→ u(t) with initial
velocity ζ . Its linearization satisfies

d2vm

dt2
=

∑
j,k,l

Rj k̄lm̄v̄k
duj

dt

dul

dt
+O(|u(t)|).

Moreover if D denotes the Levi-Civita connection with respect to ω then along the
geodesic u(t) one can compute(

Dζ

dt

)
m

=
dζm

dt
−

∑
j,k,l

Rj k̄lm̄
duj

dt
ζl +O(|u(t)|

2)ζ,

(
D2ζ(t)

dt2

)
m

=
d2ζm

dt2
−

∑
j,k,l

Rj k̄lm̄
dūk

dt

duj

dt
ζl +O(|u(t)|)ζ.

Let us now put ζ = v. Then the Jacobi equation takes the intrinsic form(
D2v(t)

dt2

)
m

=

∑
j,k,l

Rj k̄lm̄v̄k
duj

dt

dul

dt
−

∑
j,k,l

Rj k̄lm̄
dūk

dt

duj

dt
vl .
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In particular the formula holds at ζ := u′(0). Thus if the curvature is bounded by the
constant R2

0 (the square being taken for the ease of notation), then

|(Dv(t)Dv(t))| ≤ 2R2
0 |ζ |

2
|v|.

This is a vector analogue of the scalar equation y′′ = 2py. By Gronwall’s lemma the
solution to the corresponding Cauchy problem with data v(0) = v0, Dv(0) = v1 is
estimated by

|v(t)| ≤ |v0| cosh(
√

2R0|ζ |t)+
|v1|

√
2R0|ζ |

sinh(
√

2R0|ζ |t).

Let us denote by τz,ζ (t) : TZX → Texpz(tζ )X the parallel translation along the
geodesic. Let also ṽ(t) := τz,ζ (t)

−1v(t) ∈ TzX. Then ṽ satisfies the analogous equa-
tion with curvature transported back to TzX. Thus

|ṽ(t)−v0−v1t | ≤ |v0| cosh(
√

2R0|ζ |t)+
|v1|

√
2R0|ζ |

sinh(
√

2R0|ζ |t)−|v0|−|v1|t. (7.1)

The differential of the ordinary exponential mapping evaluated at (h, η) ∈ T (T X)(z,ξ)
' TzX ⊗ TzX is precisely v(1) for the solution of the Cauchy problem v(0) = h,
Dv(0) = η. Thus (7.1) gives us the bound

|τz,ζ (1)−1d expz(ζ )(h, η)− (h+ η)|

≤ h cosh(
√

2R0|ζ |)+
η

√
2R0|ζ |

sinh(
√

2R0|ζ |)− h− η.

If |ζ | is small (|ζ | ≤ ε/(2R0), say), then an elementary Taylor expansion gives us the
bound

|τz,ζ (1)−1d expz(ζ )(h, η)− (h+ η)| ≤ (1+O(ε))(c1ε
2
|h| + c2ε

2
|η|).

Thus there exists some uniform ε0 such that, in the balls |ζ | ≤ ε/(
√

2R0), for any ε ≤ ε0,
the differential is a diffeomorphism and is even O(ε2) close to the identity.

Remark 7.1. Similar estimates can be obtained in the Hermitian case, geodesics being
defined by the Chern connection rather than the Levi-Civita connection. One then has
to assume additionally a uniform bound on |∂ω|ω and |D(∂ω)|ω to accommodate the
presence of torsion. However, replacing exp by exph as was done in [D4] and [BD] would
be a challenge, because we would then need an “effective” version of E. Borel’s theorem
to show that exph can be chosen to satisfy the same estimates as exp, and this is certainly
nontrivial.
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[Pl] Pliś, S.: A counterexample to the regularity of the degenerate complex Monge–Ampère
equation. Ann. Polon. Math. 86, 171–175 (2005) Zbl 1136.32306 MR 2181020

[Sk] Skoda, H.: Sous-ensembles analytiques d’ordre fini ou infini dans Cn. Bull. Soc. Math.
France 100, 353–408 (1972) Zbl 0246.32009 MR 0352517

[ST1] Song, J., Tian, G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension.
Invent. Math. 170, 609–653 (2007) Zbl 1134.53040 MR 2357504

[ST2] Song, J., Tian, G.: Canonical measures and Kähler–Ricci flow. J. Amer. Math. Soc. 25,
303–353 (2012) Zbl 1239.53086 MR 2869020

[ST3] Song, J., Tian, G.: The Kähler–Ricci flow through singularities. arXiv:0909.4898v1.
[SW] Song, J., Weinkove, B.: Contracting exceptional divisors by the Kähler–Ricci flow. Duke

Math. J. 162, 367–415 (2013) Zbl 1266.53063 MR 3018957

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1094.32005&format=complete
http://www.ams.org/mathscinet-getitem?mr=2208805
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1215.32017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2505296
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1162.32020&format=complete
http://www.ams.org/mathscinet-getitem?mr=2413673
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1227.32042&format=complete
http://www.ams.org/mathscinet-getitem?mr=2839271
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0562.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0737190
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1157.32033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2471956
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1215.32017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2203165
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1273.32040&format=complete
http://www.ams.org/mathscinet-getitem?mr=3039828
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0416.53027&format=complete
http://www.ams.org/mathscinet-getitem?mr=0533065
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1208.32033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2766232
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0378.32010&format=complete
http://www.ams.org/mathscinet-getitem?mr=0511187
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0827.32016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1301603
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0913.35043&format=complete
http://www.ams.org/mathscinet-getitem?mr=1618325
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1039.32050&format=complete
http://www.ams.org/mathscinet-getitem?mr=1986892
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1149.32018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2425147
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1159.32022&format=complete
http://www.ams.org/mathscinet-getitem?mr=2443763
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1136.32306&format=complete
http://www.ams.org/mathscinet-getitem?mr=2181020
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0246.32009&format=complete
http://www.ams.org/mathscinet-getitem?mr=0352517
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1134.53040&format=complete
http://www.ams.org/mathscinet-getitem?mr=2357504
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1239.53086&format=complete
http://www.ams.org/mathscinet-getitem?mr=2869020
http://arxiv.org/abs/0909.4898v1
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1266.53063&format=complete
http://www.ams.org/mathscinet-getitem?mr=3018957


Hölder continuous solutions to Monge–Ampère equations 647

[TZ] Tian, G., Zhang, Z.: On the Kähler–Ricci flow on projective manifolds of general type.
Chinese Ann. Math. B 27, 179–192 (2006) Zbl 1102.53047 MR 2243679

[To] Tosatti, V.: Limits of Calabi–Yau metrics when the Kähler class degenerates. J. Eur. Math.
Soc. 11, 755–776 (2009) Zbl 1177.32015 MR 2538503

[Ze] Zeriahi, A.: Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic
functions. Indiana Univ. Math. J. 50, 671–703 (2001) Zbl 1138.31302 MR 1857051

[Z] Zhang, Z.: On degenerate Monge–Ampère equations over closed Kähler manifolds. Int.
Math. Res. Notices 2006, no. 11, art. ID 63640, 18 pp. Zbl 1112.32021 MR 2233716

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1102.53047&format=complete
http://www.ams.org/mathscinet-getitem?mr=2243679
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1177.32015&format=complete
http://www.ams.org/mathscinet-getitem?mr=2538503
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1138.31302&format=complete
http://www.ams.org/mathscinet-getitem?mr=1857051
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1112.32021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2233716

	Introduction
	Preliminaries
	Proof of Theorems A and A*
	Some properties of `3́9`42`"̇613A``45`47`"603AMAH(X,)
	Measures with symmetries
	The case of big cohomology classes
	Appendix
	References

