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Introduction

The goal of this lecture is to study the geometric properties of maximal plurisubharmonic
functions. A plurisubharmonic function u defined in a domain Ω ⊂ Cn is maximal if for all
plurisubharmonic function v defined in U ⊂⊂ Ω, the following holds:

v ≤ u on ∂U =⇒ v ≤ u in U.

In dimension n = 1, a maximal psh function u is harmonic. In higher dimension n ≥ 2,
maximality is characterized by the non linear PDE (ddcu)n = 0, as explained in Zeriahi’s
lecture [?].

We seek here for a geometric understanding of the maximality property of a given psh
function u. If one can fill out a small neighborhood of any point x ∈ Ω by holomorphic disks
along which u is harmonic, then u is certainly maximal. When u is regular enough, this
situation actually always happen, and follows from the Frobenius Integrability Theorem as we
explain in section 1. In lower regularity, this is not anymore the case as shown by a striking
construction due to the first author (see section 4). It seems that the critical regularity should
be C1,1, as we will try to explain. In order to simplify the exposition, we restrict ourselves
throughout this note to the two dimensional situation n = 2.

Nota Bene. These notes are written by Romain Dujardin and Vincent Guedj and grew up
from a lecture delivered by Romain Dujardin in Marseille in march 2009. Most results are
standard, except for the last section which briefly explains a recent result of the first author
[?]. As the audience consisted of non specialists, we have tried to make these lecture notes
accessible with only few prerequisites.

1. Monge-Ampère foliations

1.1. Preliminaries on currents. For this paragraph the reader is referred to Demailly’s
book [?]. Recall that a current of bidimension (p, q) in a domain Ω ⊂ Cn is a continuous
linear form on the space of smooth differential forms with compact support (test forms) of
bidegree (p, q). It can be canonically identified with a differential form of bidegree (n−p, n−q)
with distribution coefficients. Since we are primarily interested in this case, from now on we
make the assumption that p = q = 1 and n = 2, that is, we work with currents of bidegree
(1, 1) in a domain of C2.

Such a current T is closed if 〈T, dη〉 = 0 for every test form of degree 1. The current
T is positive if 〈T, θ〉 ≥ 0 for every positive test form of bidegree (1, 1). A test form is
positive if it belongs to the closed convex set generated by forms of the type χω where χ is a
positive test function and ω is a Kähler form. Thus, by continuity, checking the positivity of
a current T amounts to verify that 〈T, χω〉 ≥ 0, for all χ ≥ 0 and ω > 0. A smooth current
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T =
∑
Tpqidzp∧dzq is positive if and only if (Tpq) is a non negative hermitian matrix at every

point.

Any positive closed current of bidegree (1, 1) is locally given as T = ddcu, where u is a
plurisubharmonic function, d = ∂+∂, dc = 1

2iπ (∂−∂) and the derivatives are taken in a weak
sense.

Here are two fundamental examples of such currents:

Example 1.1. If V is a (closed) complex curve in a domain Ω ⊂ C2, let us denote by [V ] the
current of integration along V , defined by

〈[V ], θ〉 :=
∫
V
θ.

It is immediate to check that this is a well defined positive closed (1, 1)-current in Ω.
A classical result of Lelong asserts that when V is merely an analytic subset of (complex)

dimension one, it is still possible to consider [V ] by integrating along the regular points Reg(V)
of V . This requires to show that the current of integration along Reg(V) has locally finite
mass near Sing(V) and that the resulting current (extended by zero through Sing(V)) is still
closed.

An important result of Siu asserts that these currents are extremal points of the convex
cone of all positive closed (1, 1)-currents. More precisely, any positive closed (1, 1)-current
supported on an irreducible complex curve V is a (positive) multiple of [V ].

Example 1.2. Let ω be a Kähler form in Ω, e.g. ω = ddcρ where ρ is a smooth strictly
plurisubharmonic function in Ω. Then ω defines a positive closed current of bidegree (1, 1) by
setting

〈ω, θ〉 :=
∫

Ω
θ ∧ ω.

Both families are dense in the cone of positive closed currents of bidegree (1, 1): one can
regularize psh functions (using standard convolutions), add ε||z||2 and hence approximate any
positive closed current by Kähler forms. Likewise, any plurisubharmonic function u is the
limit in L1

loc of rational multiples of log |fj |, fj holomorphic functions, as follows for instance
from Hörmander’s L2-estimates. Thus, the current T = ddcu is the weak limit of (rational
multiples of) the currents of integration along the analytic sets {fj = 0}.

One important aspect of (1, 1)-positive closed currents is that it is often possible to wedge
them. Our primary interest here is on self-intersections. If u is a psh function s.t. ∇u ∈ L2

loc,
then (ddcu)2 is a well-defined positive measure. Indeed du∧dcu is well defined by assumption,
hence so is uddcu (integrate by parts). One thus defines (ddcu)2 := ddc(u ddcu). Blocki
[?] has shown that the Monge-Ampère measure (ddcu)2 cannot be reasonably defined when
∇u /∈ L2

loc.
Abusing terminology, we say that a (1, 1)-positive closed current T = ddcu in C2, with

∇u ∈ L2
loc, is maximal when T ∧ T = (ddcu)2 = 0. Of course this notion does not depend on

the choice of the potential u.

1.2. Foliated cycles. Recall that a Ck foliation of a domain Ω ⊂ C2 by complex leaves is
given by a covering (Ωα) by coherent foliated charts (or flow boxes), that is, each Ωα is provided
with a Ck-diffeomorphism

φα : Dz ×Dw −→ Ωα
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which is holomorphic in the z coordinate. Coherence here means that the transition maps
between charts preserve the “plaques”

{
w = Cst

}
. By definition, a connected immersed sub-

manifold L is a leaf if for each α, L ∩ Ωα is a union of plaques. A transversal to the foliation
is a piece of submanifold which is transverse to the leaves.

All the problems we consider in these notes are local, so most often we restrict to a single
foliated chart. We denote by L = {Lα}α∈D the corresponding family of leaves. Abusing
slightly, the notation L will also denote the foliation itself.

In this section we assume that k ≥ 1 (while in the next section we focus on the case k = 0),
in which case an alternative definition is that L is defined as the integral curves of the kernel
of the differential form φ∗(dw ∧ dw̄).

Given µ a probability measure on Dw, let us consider the current

Tµ :=
∫

[Lα]dµ(α).

This is a geometric current of bidegree (1, 1) which is positive and closed: it acts on a smooth
form θ of bidegree (1, 1) by integrating along each leaf and averaging against µ,

〈T, θ〉 =
∫ (∫

Lα
θ

)
dµ(α),

the result being nonnegative if θ is positive and zero if θ is exact.
We want to define a foliated cycle on a foliation as a positive closed current which is “locally

of the above form”. Passing from local to global here requires a little bit of care. An invariant
transverse measure is the data of a locally finite measure on each transversal, which is invariant
under holonomy (that is, transport along the leaves). We see that in a given coordinate chart
Dz ×Dw, it is determined by its value µ on Dw, and gives rise to a well-defined current Tµ
as above.

Definition 1.3. A positive closed current of bidegree (1, 1) in a domain Ω ⊂ C2 is called a
foliated cycle if there exists a foliation of Ω by complex curves and an invariant transverse
measure whose T is the associated current.

This concept was introduced by Sullivan [?] and has proved to be of fundamental importance
in the theory of foliations.

Observe that foliated cycles interpolate between smooth differential forms and currents of
integration: if L is the foliation by horizontal lines {w = cst} and µ is the Dirac mass at the
origin, then Tµ = [w = 0] is the current of integration along the complex line (w = 0), while
if µ is the Lebesgue measure then Tµ = cidw ∧ dw is smooth.

It is an easy fact that foliated cycles are maximal currents:

Proposition 1.4. If T is a C1-smooth foliated cycle, then T ∧ T = 0.

Proof. Working in a foliated chart, we can assume that Lα = {w = α}. The current of
integration along Lα can be formally written as [Lα] = δαidw ∧ dw so that Tµ = χidw ∧ dw
for some C1-smooth function χ. Elementary calculus on differential forms then shows that
T ∧ T = 0. �

It turns out that the converse is also true, as follows from the Frobenius Integrability
Theorem.



4 ROMAIN DUJARDIN AND VINCENT GUEDJ

Theorem 1.5. Let T be a C1-smooth positive closed differential form of bidegree (1, 1), satis-
fying the equation T ∧ T = 0. Then there exists a foliation by complex curves on the interior
of supp (T ) and T is a foliation cycle associated to this foliation.

The foliation by complex curves induced by T in the interior of its support is called aMonge-
Ampère foliation. The reader is referred to [?] for a thorough discussion on the connections
between Monge-Ampère equations and foliations.

Proof. Since T is a positive differential form of bidegree (1, 1), it can be decomposed as

T =
2∑

p,q=1

Tpq
i

2
dzp ∧ dzq,

where (Tpq) is a nonnegative hermitian matrix at every point. Now

T ∧ T = c det(Tpq)(idz1 ∧ dz1) ∧ (idz2 ∧ dz2) = 0

hence (Tpq) has complex rank ≤ 1 in general and exactly 1 at interior points of the support of
T . This shows that kerT defines a C1 distribution of complex lines on the interior of supp (T ).
Notice that, having continuous coefficients, T gives zero mass to the boundary of its support.

Let Ω be an open subset of the support of T . We would like to show that the complex lines
defined by kerT are tangent to a C1-foliation in Ω. By the Frobenius theorem, we need to
check that the distribution kerT is involutive, i.e. for every pair of smooth vector fields X, Y
belonging to kerT , then [X,Y ] ∈ kerT . Let Z be any vector field. By standard calculus on
differential forms (see e.g. [?, p.44]), and using the fact that T is closed we get that

0 = dT (X,Y, Z)

= X(T (Y,Z))− Y (T (X,Z)) + Z(T (X,Y ))− T ([X,Y ], Z)− T (Y, [X,Z]) + T (X, [Y,Z]),

whence T ([X,Y ], Z) = 0, so [X,Y ] ∈ kerT , which is the desired result.
The leaves are then automatically complex curves because their tangent space is complex

at every point. Let us denote these curves by Lα.
Let us now show that T is an average of currents of integration along the complex curves

Lα. We provide a proof which is not the most simple, but carries over to a wider context (see
e.g. [?]).

Working in a single flow box again, the space of leaves is compact for the topology of
currents. By the Choquet Integral Representation Theorem, it is enough to prove that T
belongs to the closed convex cone generated by the Lα’s.

Assume this is not the case. It then follows from the Hahn-Banach theorem that there
exists a test form θ such that 〈T, θ〉 > 0 while 〈Lα, θ〉 ≤ −1 for all α.

Fix a transversal τ to the foliation and let {χi} be a partition of unity subordinate to an
open covering of τ by open sets of diameter ≤ 1/2. We extend the functions χi to Ω by making
them constant along each leaf. Since T =

∑
χiT , there exists i0 such that 〈χi0T, θ〉 > 0. Set

T1 := χi0T/||χi0T ||.
Observe that if χ is any function which is constant along the leaves, then χT is closed.

Indeed there are C1 real coordinates1 (x1, x2, x3, x4) in which the leaves are defined by the
equations {x3 = a3, x4 = a4}, and T is a multiple of dx3 ∧ dx4. It is then clear that if χ
depends only on (x3, x4), dχ ∧ T = 0. In particular T1 is closed.

1Caution is in order here because that positivity makes no sense in these coordinates.
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Now we repeat the above procedure, that is we consider a covering of supp (χi0) by open
sets of diameter ≤ 1/4 and an associated partition of unity, and build a current T2 =
χ1,i1T1/||χ1,i1T1|| of mass 1 such that

〈T2, θ〉 > 0 and 〈Lα, θ〉 < 0 for all α.

We thus inductively obtain a sequence of positive closed currents Tn of bidegree (1, 1) and mass
1 whose support is contained in an arbitrarily small neighborhood of a leaf Lαn , and satisfying
〈Tn, θ〉 > 0 . Any cluster point σ of (Tn) is supported on a leaf Lα0 hence coincides with the
current of integration along Lα0 . By definition of θ, 〈σ, θ〉 ≤ −1, which is a contradiction. �

1.3. Geometric maximality. Our main interest in these series of lectures is the understand-
ing of various Dirichlet problems for complex Monge-Ampère operators. Recall from [?] that a
continuous psh function u is maximal in a domain Ω ⊂ C2 if and only if it satisfies (ddcu)2 = 0.
In dimension 1, maximal functions are harmonic hence very regular. This is not necessarily the
case in higher dimension, however the expectation is that they should be somehow harmonic
along a foliation by complex curves. We can reformulate Theorem ?? in this spirit:

Theorem 1.6. Let u be a maximal plurisubharmonic function in some domain Ω ⊂ C2. If
u ∈ C3(Ω) then T = ddcu is a foliated cycle in the interior of Supp T and u is harmonic along
the leaves of the Monge-Ampère foliation.

A natural question is therefore to understand what happens when u is less regular. This
will be the subject of the remaining sections. Notice that this type of question was already
raised at the very beginnings of pluripotential theory (see e.g. [?]).

2. Laminations and laminar currents

It is natural to expect that a result similar to Theorem ?? should hold under weaker
regularity assumptions on u. This leads to the concepts of uniformly laminar and laminar
currents. Although it is not clear how to extend the Frobenius Theorem to weaker regularity,
it is still interesting to explore the properties of these objects, which have recently played an
important role in the context of complex dynamics.

2.1. Laminations and holomorphic motions. An embedded lamination by complex curves
is given by a covering of a closed subset X ⊂ Ω by a coherent system of flow boxes

φα : Dz ×K −→ Ωα

which are holomorphic along the leaves (i.e. in the z coordinate) and only continuous in the
transverse direction (the w coordinate). Here K denotes a compact subset of Dw.

It follows from a celebrated result of Mane-Sad-Sullivan [?] that the assumption that K is
closed is superfluous, and that φα is automatically Hölder continuous.

Proposition 2.1. Fix K ⊂ D an arbitrary subset and let {Lα}α∈K be a bounded family of
disjoint graphs over K, Lα := {(z, w) ∈ D2 /w = fα(z)}, where fα is a holomorphic function
in D with fα(0) = α. Then

1) {Lα}α∈K extends uniquely to a family of disjoint graphs parameterized by K;
2) the collection L = {Lα}α∈K form a lamination, in the sense that the holonomy map

{0} ×D→ {z} ×D is automatically continuous.

Laminations by graphs over the unit disk are often called holomorphic motions
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Proof. Assume without loss of generality that |fα| < 1 Then for α 6= β, the function h =
hα,β := − log(|fα(z) − fβ(z)|/2) is harmonic and positive in the unit disk D. It therefore
follows from the Harnack inequality that

1− |z|
1 + |z|

h(0) ≤ h(z), for all z ∈ D.

Since fα(0) = α, we infer that

(1) |fα(z)− fβ(z)| ≤ 2
(
|α− β|

2

) 1−|z|
1+|z|

.

This shows that the holonomy map {0}×D→ {z}×D is locally uniformly Hölder continuous.
Since the family (fα) is bounded, it thus uniquely extends to K. For α ∈ K we simply set

fα = lim fαn , where αn is any sequence converging to α (by the previous Hölder estimate,
the limiting map fα is independent of the choice both of the cluster point of fαn and of the
sequence (αn)). Note finally that by Rouché’s Theorem, the extended family is still a family
of disjoint graphs. �

Remark 2.2. Concluding of long series of previous works, Słodkowski [?] proved that any
holomorphic motion of a compact subset K ⊂ C can be extended to a holomorphic motion of
C. By [?] the holonomy is then quasiconformal. Conversely any such quasiconformal map can
be realized as the holonomy map (at time t = 1) of a lamination by disjoint graphs. To find
such a holomorphic motion, one simply takes the Beltrami coefficient of this quasiconformal
map and multiplies it by the complex parameter t. The interested reader will find more
information on the topic in [?].

2.2. Uniformly laminar currents. Uniformly laminar current are the natural generalization
of foliated cycles to laminations:

Definition 2.3. A positive closed (1, 1)-current T in a domain Ω ⊂ C2 is called uniformly
laminar if there exists an embedded lamination L in Ω such that in any flow box {Lα}α∈K , T
has the form

T =
∫
α∈K

[Lα] dµ(α).

for some probability measure µ on K.

We say that T is subordinate to the lamination L. Globally speaking, a uniformly laminar
current induces an invariant transverse measure on the lamination to which it is subordinate.
The following result of Demailly [?] provides an interesting class of uniformly laminar currents.

Proposition 2.4. Let T be a positive closed current supported on a C1 Levi-flat hypersurface
in Ω ⊂ C2. Then T is uniformly laminar.

Recall that in C2 a Levi flat hypersurface is a real hypersurface which can be defined as
<(z) = 0 in some holomorphic system of coordinates (z, w). It is naturally foliated by the
curves {z = iy, y ∈ R}. If a Levi-flat hypersurface carries a positive closed current, then its
underlying foliation posseses an invariant transverse measure.

Proof. We work locally and assume that the hypersurface has the form <(z) = 0. Write
z = x + iy. Then since x = 0 on supp (T ) and T has measure coefficients, we infer that
xT = 0. Since T is ∂ and ∂ closed, we infer that ∂(xT ) = dz∧T = 0 and ∂(xT ) = dz∧T = 0.
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Now if χ is a test function which is constant along the leaves, that is, which depends only on
z along supp (T ), we infer that χT is closed. We conclude as in Theorem ??. �

We now prove that the potentials of uniformly laminar currents are maximal.

Exercise 2.5. Let L = {Lα}α∈K ⊂ Ω be a lamination by disjoint graphs, Lα = {(z, w) ∈
D × C /w = fα(z)}. Fix a probability measure µ on K ⊂ C and consider T = Tµ the
corresponding uniformly laminar current. Check that T = ddcu, where

u(z, w) =
∫
α∈K

log |w − fα(z)|dµ(α).

Proposition 2.6. If T = ddcu is a uniformly laminar current such that ∇u ∈ L2
loc then

T ∧ T = (ddcu)2 = 0.

Proof. We work in a flow box. With notation as in ??, fix β ∈ K. Note that µ has no atom
since ∇u ∈ L2

loc thus

u(z, w) =
∫
α∈K\{β}

log |w − fα(z)|dµ(α)

is harmonic on Lβ as an average of harmonic functions, or identically −∞. Since u is locally
integrable with respect to ddcu, u|Lβ is harmonic on µ-almost every leaf. We infer that
T ∧ [Lβ] = 0, whence

T ∧ T =
∫
β∈K

T ∧ [Lβ] dµ(β) = 0.

�

Laminar currents which are made up of graphs over the unit disk have the following impor-
tant compactness property (this precise version is taken from [?]).

Proposition 2.7. Let Tn be a sequence of uniformly laminar currents in D2, respectively
subordinate to a sequence of laminations Ln by graphs over the unit disk. Assume that Tn
converges to T . Then (Ln) converges to a limit lamination L and T is subordinate to L.

What we mean by convergence for the sequence of laminations L is the following. Fix the
transversal {0}×D, and denote by Ln,α the leaf of Ln through (0, α). LetKn = Ln∩({0}×D).
We say that Ln converges to L if for every α ∈ lim supKn there exists a unique graph Lα
through (0, α) such that if αn ∈ Kn is any sequence converging to α, Ln,α converges to Lα.

Proof. Of course the family of graphs with norm at most 1 over the unit disk is compact for
the compact-open topology. Write

Tn =
∫

[Ln,α]dµn(α),

with µn a positive measure supported in {0} × D. Likewise, denote by µn(z) the measure
induced by holonomy on {z} ×D. It can also be expressed as µn = Tn ∧ [{z} ×D]. Since
the currents Tn have locally uniformly bounded mass, so do the µn. Restricting µn to {0} ×
D(0, 1− ε) if necessary, we can always assume that its mass is uniformly bounded, say by 1.

Since Tn → T it is a basic consequence of Slicing Theory that for Lebesgue a.e. z, µn(z)
converges to some µ(z). Now for every test function ϕ(w), by the Hölder continuity property
(??) the family

∫
ϕdµn(z) is equicontinuous in z so we get that µn(z) converges for all z, in

particular at z = 0.
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It remains to prove that the laminations Ln converge in the previous sense to some lami-
nation L. It will then be clear that the Tn converge to T =

∫
[Lα]dµ(α)

Let L be the set of graphs over D which are cluster values of Lnj ,αj for some subsequence
(nj). We need to show that the graphs of L do not intersect. Then by Proposition ??, they will
form a lamination. Notice that this is more subtle than just applying the Hurwitz Theorem
because the leaves of different Ln can intersect. We use the convergence of currents instead.

It suffices to show the following fact : “if a sequence Lnj ,αj satisfies αj → α ∈ supp (µ) then
the sequence converges”. Suppose this is not the case: then there exists two subsequences
Lnij ,αij → L

i
α, i = 1, 2, and L1

α 6= L2
α. If α is not an atom of µ, we can assume that L1

α and
L2
α are transverse at (0, α) : if not we can move the Ln1

j ,α
1
j
slightly so that they will converge

to a L1
β close to L1

α and disjoint from it, by the Hurwitz Theorem. Then L1
β and L2

α intersect
transversely (see [?, Lemma 6.4]).

Now all the graphs near Lnij ,αij have slope close to that of the limiting graph Liα. Since
α ∈ supp (µ) and L1

α and L2
α are transverse at (0, α), this contradicts the convergence of

currents.
The case where µ has an atom at α is similar and we leave it to the reader. �

2.3. Laminar currents. Laminar currents are a generalization of uniformly laminar currents,
suitable for dynamical applications, which were introduced by Bedford, Lyubich and Smillie
[?].

Definition 2.8. A positive closed (1, 1)-current T in a domain Ω ⊂ C2 is called laminar if
for every ε > 0 there exists a locally uniformly laminar current Tε in a subdomain Ωε ⊂ Ω
such that 0 ≤ Tε ≤ T and ||T − Tε|| ≤ ε.

It may not seem obvious at first glance why this definition should be so different from
Definition ??. The following example is very illustrative.

Example 2.9. Let T = ddc log max(|z| , |w| , 1) in C2. The structure of this current was studied
thoroughly in [?] where it was proved to be the first example of extremal positive closed current
not supported on an irreducible subvariety. This was a negative answer to a conjecture of
Lelong’s [?]. We claim that T is laminar but not uniformly laminar.

We first show that T is laminar. The support of T can be decomposed as

supp (T ) = Σ1 ∪ Σ2 ∪ Σ3 ∪ T
= {|z| < 1, |w| = 1} ∪ {|w| < 1, |z| = 1} ∪ {|z| = |w| > 1} ∪ {|z| = |w| = 1}

Each of the Σi is Levi-flat, so we infer that T is uniformly laminar outside the unit torus
T = {|z| = |w| = 1}. Furthermore, Demailly proves that T gives zero mass to T (this is a
variation on Proposition ??). So we conclude that T is laminar, even in a very strong form,
since it is uniformly laminar outside a fixed closed subset. Of course it is clear that T is not
locally uniformly laminar near any point of T.

On the other hand it is easy to prove that T ∧ T is, up to normalization, the Lebesgue
measure on T, in particular it is not zero. Hence this example shows that the potentials of
laminar currents are not maximal in general.

Example 2.10. Complex dynamics is a source of interesting examples of maximal psh functions.
For instance, the invariant currents of polynomial automorphisms of C2 are laminar currents
with continuous potentials and T ∧ T = 0, but in general they are not uniformly laminar
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(examples are provided e.g. by mappings with indifferent periodic points). This shows that it
is too much to expect for a continuous maximal psh function u that ddcu is uniformly laminar.
On the other hand it is unclear at this point whether ddcu should be expected to be laminar
in general. We give an answer to this problem in section ?? below.

2.4. C2 maximal psh functions. In view of the results of §?? it is natural to ask:

Question 2.11. Assume u ∈ PSH ∩ C2(Ω) is maximal. Is T = ddcu uniformly laminar?

The assumption that u is C2 is natural for ddcu then determines a continuous field of
complex lines in the tangent bundle, which we can hope could be integrated into a lamination.
A positive answer to this question has been given by Kruzhilin [?] when u has rotational
symmetry in z, i.e. u(z, w) = u(|z| , w), using some properties of solutions to real Monge
Ampère equations. The general case remains open.

3. Polynomial hulls

The notion of polynomial hull is a central concept in analysis in several complex variables.
We briefly recall its definition and the connection made by Bremermann with the Dirichlet
problem for the complex Monge-Ampère operator. We then indicate a construction due to
Stolzenberg [?] and Wermer [?] of a polynomial hull without complex structure (i.e. containing
no holomorphic disk). A variation of this construction will be used in section 4 to exhibit
maximal currents without complex structure.

3.1. The Bremermann construction.

Definition 3.1. Let K ⊂ Cn be a compact subset. The polynomial hull K̂ of K is the set

K̂ :=
{
z ∈ Cn / |P (z)| ≤ sup

K
|P | for all polynomials P on Cn

}
.

In dimension n = 1, the hull K̂ is easy to understand by using the maximum principle: K̂ is
the union of K and the bounded connected components of C \K. This is a much more subtle
notion in higher dimension which is not invariant by biholomorphic change of coordinates.
The reader will easily convince himself that the following tori have very different polynomial
hulls,

K1 := {(eiθ, 0) ∈ C2 / θ ∈ R} and K2 := {(eiθ, e−iθ) ∈ C2 / θ ∈ R}.
Indeed K2 is polynomially convex (that is K̂2 = K2) while K̂1 = D× {0}.

The latter examples are very particular. It is in general very difficult (if not impossible) to
determine the polynomial hull of a given compact set. As any plurisubharmonic function in
Cn can be (well) approximated by rational multiples of log |P |, P polynomial, an alternative
definition of the polynomial hull is

K̂ := {z ∈ Cn /ϕ(z) ≤ sup
K
ϕ for all ϕ ∈ PSH(Cn)}.

Bremermann made in [?] an interesting connection between the construction of certain
polynomial hulls and the Dirichlet problem for the complex Monge-Ampère operator. Let
Ω = {ρ < 0} ⊂ Cn be a smoothly bounded strictly pseudoconvex domain and Φ be a smooth
function on ∂Ω. We let

u(z) := sup{v(z) / v ∈ PSH(Ω) with lim sup v ≤ Φ on ∂Ω}
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denote the Perron-Bremermann envelope (which Bremermann introduced for this purpose).
This is a maximal plurisubharmonic function in Ω which is continuous up to the boundary,
with boundary values u|∂Ω = Φ. We refer the reader to [?] for an up-to-date discussion of
such envelopes. Consider

K := {(z, w) ∈ ∂Ω×C / |w| ≤ exp(−Φ(z))}.
Proposition 3.2. The polynomial hull of K is

K̂ = {(z, w) ∈ Ω×C / |w| ≤ exp(−u(z))}.
Proof. Set F := {(z, w) ∈ Ω×C / |w| ≤ exp(−u(z))}. Note that ρ admits a plurisubharmonic
extension to Cn (see e.g. the proof of Lemma ?? below) so that K̂ ⊂ Ω × C easily follows
from the second definition we gave above. We can also extend u as a psh function in Cn and
use the function ψ(z, w) := u(z) + log |w| ∈ PSH(Cn+1) to check that K̂ ⊂ F .

We now prove the reverse inclusion. By Lemma ?? below, it suffices to consider psh func-
tions of the type ϕ(z, w) = log |w|+v(z), v ∈ PSH(Cn) to compute K̂. Fix (z0, w0) ∈ Ω×C\K̂
and v ∈ PSH(Cn) such that

log |w0|+ v(z0) > 0 = sup
(z,w)∈K

[log |w|+ v(z)] .

We need to show that (z0, w0) /∈ F , i.e. |w0| > exp(−u(z0)). Observe that v ≤ Φ on ∂Ω, as
follows from the condition sup(z,w)∈K [log |w|+ v(z)] = 0. Therefore

|w0| > exp(−v(z0)) ≥ exp(−u(z0)),

as desired. �

Lemma 3.3. Let K ⊂ Cn × C be a compact subset that is invariant by rotation in the last
coordinate, (z, eiθw) ∈ K whenever (z, w) ∈ K and θ ∈ R. Then

K̂ =
{

(z, w) ∈ Cn ×C / |A(z, w)| ≤ sup
K
|A|, for all polynomials A(z, w) = P (z)wj

}
.

Proof. Let Ǩ denote the hull on the right hand side, i.e. the polynomial hull restricted to
special polynomials of the form A(z, w) = P (z)wj . By definition K̂ ⊂ Ǩ.

Assume (z0, w0) ∈ Ǩ. Fix 0 < t < 1. We are going to show that (z0, tw0) ∈ K̂. Since K̂
is closed, we thus infer that (z0, w0) ∈ K̂ by letting t increase to 1. It is an exercise to show
that for all c ≥ 1,

K̂ = K̂c :=
{

(z, w) ∈ Cn ×C / |P (z, w)| ≤ c sup
K
|P |, for all polynomials P

}
.

It is therefore sufficient to show that (z0, tw0) ∈ K̂c where c = 1/(1− t).
Let P (z, w) =

∑
j Pj(z)w

j be the decomposition of a polynomial P (z, w). Note that
1

2π

∫ 2π
0 P (z, eiθw)e−ijθ dθ = Pj(z)wj , thus the invariance property of K yields

sup
K
|Pj(z)wj | ≤ sup

K
|P |

Since (z0, w0) ∈ Ǩ we infer

|P (z0, tw0)| ≤
∑
j

tj |Pj(z0)wj0| ≤
1

1− t
sup
K
|P |.

Therefore (z0, tw0) ∈ K̂, hence (z0, w0) ∈ K̂. �
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It is a particular feature of this construction that K̂ \K is filled in with holomorphic disks.
This is not the case in general, as we now explain.

3.2. Stolzenberg and Wermer examples. Let K ⊂ Cn be a compact subset. It is an
immediate consequence of the maximum principle that if a complex submanifold V of the unit
ball B has boundary in K, ∂V ⊂ K ∩ ∂B, then V ⊂ K̂. This suggests that K̂ \K may be
filled in with complex subvarieties whose boundary lies in K.

This is actually far from being true in general. Stolzenberg has produced in [?] an example
of a compact set K ⊂ ∂B such that K̂ \K is non empty and does not contain any germ of
holomorphic disk.

It is a general principle that the hulls of subsets of ∂D×D are better behaved than those
of general compact sets. Thus, one may guess that for compact subsets K ⊂ ∂D ×D, these
complex subvarieties exist. This is equally wrong and Wermer has produced [?] an example
of a compact set K ⊂ ∂D ×D with non trivial polynomial hull and such that K̂ \ K does
not contain any germ of holomorphic disk. More generally, we define a Wermer example as a
closed horizontal subset of the unit bidisk, which contains no holomorphic disk, and which is
the polynomial hull of X ∩ (∂D×D). Recall that a subset of D2 is said to be horizontal if it
is contained in D×D(0, 1− ε) for some ε > 0.

We now present a construction of Wermer examples, following a slight modification of the
original Wermer construction due to Duval and Sibony [?].

Let (an) be a dense sequence in D, and (rn) a sequence of positive real numbers, decreasing
to zero. We construct (Pn) and (δn) by induction as follows. Set P0 = w and δ0 = 1/2 so that
X0 is the cylinder D× {|w| < 1/2}.

Define P1 by P1(z, w) = w2−ε1(z−a1). Choose ε1 small enough so that {P1 = 0} ⊂ X0. If
δ1 is small enough, X1 := {|P1| < δ1} is contained in X0 and neither contain any continuous
section (relative to the first coordinate) over D(a1, r1), nor any vertical disk of size r1.

Repeat the same process by induction, by setting

Pn+1(z, w) = P 2
n(z, w)− εn+1(z − an+1)2,

and choosing the constants δn+1 and εn+1 so small that
• Xn+1 ⊂ Xn where we define Xn as Xn = {|Pn| < δn};
• Xn+1 neither contains any graph over D(an+1, rn+1), nor any vertical disk of size rn+1

It is now clear that X =
⋂
Xn contains no germ of holomorphic disk. Furthemore it is easily

shown that X = K̂ \K, where K = X ∩ (∂D×D). Thus X is a Wermer example.

It is obvious that X supports positive closed currents: consider indeed any cluster value T
of the sequence 1

2n [Pn = 0]. This mere observation provides a second proof of the fact that
there exist extremal closed positive currents which are not supported on analytic varieties:
this is the case for the currents appearing in the Choquet decomposition of this current T .

There is no reason for these currents to have well-defined self intersection –especially if the
δn are too small, in which case X tends to become pluripolar. In §?? below we address this
problem and find examples of Wermer examples supporting regular maximal currents T .

4. Maximality with no holomorphic disk

4.1. The Sibony construction. Using Stolzenberg-like examples, Sibony exhibited exam-
ples of positive closed (1, 1) currents T in the unit ball B of C2 with C1,1 potential, and which
are not uniformly laminar (see [?, ?]). Let us explain this construction.
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LetX ⊂ ∂B be a Stolzenberg example, i.e. a compact subset of ∂B such that the polynomial
hull X̂ is non trivial but does not contain any holomorphic disk D. Fix Φ ∈ C∞(∂B) a non-
negative function such that X = {Φ = 0}. By Bedford-Taylor’s result [?], there exists a
unique u ∈ PSH(B) ∩ Lip(B) ∩ C1,1(B) such that

(ddcu)2 = 0 in B and u|∂B = Φ.

This is actually the Perron-Bremermann envelope,

u(z) := sup{v(z) / v ∈ PSH(Ω) with lim sup v ≤ Φ on ∂Ω}.

The main step is the following.

Proposition 4.1. The current T = ddcu is not uniformly laminar.

Proof. Let us assume for the moment that X̂ = {u = 0}. Let p ∈ X̂ ∩ B, and let us show
that T is not uniformly laminar near p. Otherwise there would exist a holomorphic disk ∆
through p such that u|∆ is harmonic. Observe that u ≥ 0 in B since Φ ≥ 0. Therefore since
u vanishes at p, it has to be identically zero on D by the maximum principle so that D ⊂ X̂,
a contradiction. �

It remains to establish the following result:

Lemma 4.2. X̂ = {u = 0}.

Proof. Observe that u admits a plurisubharmonic extension to C2. Indeed consider first Φ1

a smooth extension of Φ with compact support in C2 and add a large multiple of log[1 +
||z||2] − log 2 to obtain an extension Φ2 of Φ which is moreover plurisubharmonic. By its
upper envelope nature, the function u dominates Φ2 in B and coincides with it on ∂B, thus
we can extend u by setting u(z) = Φ2(z) in C2 \B.

It readily follows from the definition of X̂ via psh functions that X̂ ⊂ {u = 0}.

For the reverse inclusion, note that u > 0 in C2 \ (B ∪ X) so that X̂ ⊂ B ∪ X. What
remains to be proved is thus that u(p) > 0 whenever p ∈ B \ X̂. Let p ∈ B \ X̂. There exists
a psh function on C2 such that v < 0 on X and v(p) > 0. Fix δ such that v < 0 on Φ ≤ δ,
and M such that v ≤ M on ∂B. If 0 < ε < δ/M , we infer that εv ≤ Φ on ∂B. From the
definition of u as an upper envelope, we deduce that u ≥ εv on B. In particular u(p) > 0 �

This interesting example shows that the answer to Question ?? is “no” in the C1,1 setting.
Regularity C1,1 is important in pluripotential theory for it is the regularity of solutions to the
homogeneous Monge-Ampère equation with smooth boundary data. On the other hand it can
be shown (see [?, Prop. 4.1]) that for these examples, the Stolzenberg example X̂ has zero
trace measure, that is, we are proving non-laminarity on a negligible set for T . This raises the
following natural question:

Question 4.3. Is the above current T laminar ?

We don’t know the answer to this question. What we explain in the next paragraph is that,
at the expense of a small loss of regularity, we can ensure non-laminarity everywhere on the
support of T .
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4.2. No holomorphic disk at all. We finish these notes by explaining the main ideas of the
proof of the following recent result of the first author [?]:

Theorem 4.4. There exists a plurisubharmonic function u in the unit polydisk D2 such that
(1) u is of class C1,α for all 0 < α < 1;
(2) u is maximal (i.e. (ddcu)2 = 0);
(3) the support of ddcu does not contain any holomorphic disk.

The basic idea of the proof is to reconsider the Wermer construction of [?], as presented in
§?? and make explicit estimates of the quantities δn, εn in terms of rn. Then we take a cluster
value T of the sequence Tn := 1

2n [Pn = 0] (which will actually be convergent), and arrange
the parameters so that T has continuous potential u. It turns out that such T are always
maximal. An unfortunate fact is that in this construction the potential is never more regular
than merely continuous (and even never Hölder continuous!). So to achieve C1,α regularity we
will need to find a way of “thickening” the Wermer example.

Let us be more specific. We work in D2. Let (an) be a dense sequence in D and (rn) a
sequence of real numbers decreasing to zero. We define by induction a sequence of polynomials
by the formula Pn+1 = P 2

n − εn+1(z − an+1) and a sequence of horizontal subsets Xn =
{|Pn| < δn} so that

(i) Xn+1 ⊂ Xn;
(ii) Xn does not contain any holomorphic graph over D(an, rn).

This imposes some explicit conditions on the parameters, respectively
(i) δn+1 + εn+1 < δ2

n;
(ii) δn < εnrn.

An essentially optimal choice for this is (our goal is to get estimates from below for δn):

εn+1 =
δ2
n

2
and δn+1 =

δ2
nrn+1

2
(say that rn ≤ 1/10). Note that, declaring that δ0 = 1/2 as above, (δn) depends only on (rn).

Now introduce the potential un = 1
2n max(log |Pn| , log δn) of Tn. Using the definition of

Pn+1 in terms of Pn it may be shown that |un+1 − un| = O
(

1
2n |log rn|

)
. In particular if

the series
∑ 1

2n |log rn| converges, we infer that un converges uniformly to some continuous
function u. In particular the sequence Tn converges to a current T with continuous potential,
supported on X.

It is an easy fact that (ddcun)2 = 0 so by uniform convergence we infer that (ddcu)2 = 0.

With our definition of Pn, we are actually only certain thatX does not contain any holomor-
phic graph, but we cannot rule out the possibility of vertical disks. For this, we slightly modify
the inductive step by introducing an oblique projection: we assume that (a2n) and (a2n+1)
are dense and define Pn+1 = P 2

n − εn+1(z − an+1) if n is even, and P 2
n − εn+1(z + w

100 − an+1)
if n is odd.

At this point we have constructed a maximal current with continuous potential, whose
support does not contain any holomorphic disk. We want to understand more precisely the
regularity of its potential.

For this we analyze the vertical slice measures of T . Keeping the same construction, we
enlarge the bidisk and look at the curves [Pn = 0] and the sets Xn = {|Pn| < δn} in 3D×C.
Over the annulus 3D \ 2D the curves {Pn = s}, |s| < δn have no ramifications (relative to the
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vertical projection), so the intersection of each of these curves with a vertical fiber consists
of exactly 2n points. Thus in those vertical fibers2, Xn is the union of 2n disjoint topological
disks, and each component of Xn contains two components of Xn+1. These disks are actually
essentially “round” (in the sense of distortion theory of conformal mappings), and we can
estimate their size. Up to exponential terms, the size is of the order of magnitude of

∏n
1 rk

(which is superexponentially small). To say it differently, each component of Xn+1 has relative
size ≈ rn+1 times the size of the component of Xn in which it sits. In particular the fibers of
X have zero Hausdorff dimension.

On the other hand, the slice measure of T (which is the same as the Laplacian of u restricted
to the vertical fiber) is the “balanced” measure on the Cantor set X, so that each component
of Xn has mass 2−n. This prevents u from being Hölder continuous. Indeed, the Laplacian of
a Hölder continuous plane subharmonic function gives mass O(rα) to a disk of radius r (α is
the Hölder exponent).

Another way to say this is that a measure with Hölder continuous potential cannot charge
sets of Hausdorff dimension 0.

Therefore, to upgrade the regularity of our examples, we need to modify the construction
in order to “thicken” the set X. To understand this modification, let us first imagine a model
situation. Suppose that we have a process which at time n replaces a disk D of radius r in the
plane by two smaller disks Di ⊂ D, of relative size rn and with mutual distance r/2. Start
with the unit disk, and apply this process repeatedly. Then at time n we have 2n disjoint
disks of size

∏n
1 rk. Taking their union we get a nested sequence of subsets, and the result is

a Cantor set of Hausdorff dimension zero.
To increase dimension we do as follows. We now consider a process in two steps. Given a

disk D of radius r, we first replace it by ≈ N2 evenly spaced small disks of radius r/N , and
then we apply the previous doubling process to each of the small disks. Then if at each step,
N is sufficiently large with respect to rn, the limiting Cantor set will have dimension 2.

To implement this strategy for our Wermer examples, before the ramification process
Pn 7→ P 2

n − εn+1(z − an+1), we replace {|Pn| < δn} by a large number of smaller subsets{
|Pn − s| < δn

N

}
, filling out most of {|Pn| < δn} (s ranges over a finite set Sn). Then we apply

the ramification process to each Pn − s and get a family of polynomials Pn+1,s. Let then
Xn :=

⋃
s {|Pn+1,s| < δn+1} for well chosen δn+1 and X =

⋂
Xn. It can be shown that the

vertical slices of Xn over 3D \ 2D indeed “look like” the model situation described above, in
the sense of plane conformal geometry. In particular we can ensure Hausdorff dimension 2 for
the vertical fibers of X.

Let further un be defined by

un =
1

2n#Sn

∑
s∈Sn

log max (|Pn+1,s| , δn+1) .

As before, (un) converges to a maximal continuous psh function u, such that supp (ddcu) is
contained in X, thus contains no holomorphic disk.

By standard estimates in potential theory, if at each step N is chosen to be sufficiently
large, u will be of class C1,α for all α < 1 in (3D \ 2D) × C. Then by regularity theory for
solutions of Monge-Ampère equations, this regularity propagates to 3D × C. The reader is
referred to [?] for details.

2We use the same notation for Xn (resp. X) and its vertical fibers
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