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Abstract. We study the dynamics of polynomial automorphisms of
Ck. To an algebraically stable automorphism we associate positive
closed currents which are invariant under f , considering f as a ratio-
nal map on Pk. These currents give information on the dynamics and
allow us to construct a canonical invariant measure which is shown to
be mixing.
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Introduction

The dynamics of polynomial automorphisms of C2 has been studied quite
intensively in the past decade. We refer to the survey articles by Bedford
and Smillie [B-Sm 99] and the second author [S 99] which contain a quite
extensive bibliography. We recall few basic facts.

The algebraic structure of the group Aut(Ck) of polynomial automor-
phisms of Ck is well understood when k = 2. Any polynomial automorphism
is conjugate either to an elementary automorphism

e(z, w) = (αz + P (w), βw + γ),

where P is a polynomial, or to a finite composition of Hénon maps hj defined
as follows

hj(z, w) = (Pj(z)− ajw, z),
where Pj are holomorphic polynomials of degree dj ≥ 2. We denote by H
the semigroup generated by Hénon maps (see [F-M 89]).

It is clear that only the elements of H are dynamically interesting. If
h ∈ H is of degree d, then hn = h ◦ · · · ◦ h is of degree dn. One can define
the Green function

G+(z, w) = lim
n→+∞

1
dn

log+ ||hn(z, w)||,

and the associated current T+ = ddcG+, where dc = i(∂− ∂)/2π. There are
similar objects G−, T− associated to the inverse map h−1 and one can define
a probability measure µ := T+ ∧ T−. Here are some important properties of
these objects:
• The function G+ satisfies the invariance property G+ ◦ f = d · G+. It

is Hölder continuous and (G+ = 0) = K+ := {p / (hn(p))n≥0 is bounded}.
• The support of T+ cöıncides with the boundary ofK+, which also equals

the Julia set of h (i.e. the complement of the largest open set on which the
family (hn) is equicontinuous).
• The current T+ is extremal among positive closed currents in C2 and is

-up to multiplicative constant- the unique positive closed current supported
on K+ [F-S 94].
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• The measure µ is invariant and has support in the compact set ∂K,
where K = {p ∈ C2 / (hn(p))n∈Z is bounded}.

This type of properties has interesting dynamical consequences: connect-
edness of ∂K+ [B-Sm 91], density of stable manifolds in ∂K+ [B-Sm 91],
mixing of µ [B-Sm 92].

The measure µ has been studied by Bedford-Smillie-Lyubich [B-Sm 92]
and [B-L-S 93]. They show in particular that µ maximise entropy and is
well approximated by Dirac masses at saddle points.

Much less is known in the study of the dynamics of polynomial automor-
phisms of Ck, k ≥ 3. Indeed the algebraic structure of Aut(Ck), k ≥ 3 is
poorly understood.

Bedford and Pambuccian [B-P 98] have introduced the class of shift-like
maps in Ck. A shift like automorphism of type ν ∈ {1, . . . , k − 1} has the
form

f(z1, . . . , zk) = (z2, . . . , zk, P (zk−ν+1)− az1).
They introduced the corresponding currents T+ and T− and constructed the
invariant measure µ = T ν+ ∧ T k−ν− .

Coman and Fornaess [C-F 99] have studied the Green function of inter-
esting classes of polynomial automorphisms of degree 2 in C3. They study
in particular the rate of escape at infinity of orbits.

In this paper we consider polynomial automorphisms of Ck as rational
maps on Pk. The behaviour under iteration of the hyperplane at infinity
plays a central role. Before describing the results we obtain, we first recall
few notions. For more details, we refer to [S 99].

Let f = (f1, . . . , fk) be a polynomial map in Ck. Let d = deg f :=
max(deg fj) ≥ 2. We denote by End(Ck) the space of maps of generic rank k.
We denote by z = (z1, . . . , zk) the coordinates in Ck and [z1 : · · · : zk : t] the
homogeneous coordinates in Pk. So the hyperplane at infinity is identified
with (t = 0).

We consider the extension f of f to Pk as rational map. In homogeneous
coordinates

f [z : t] = [F1(z, t) : · · · : Fk(z, t) : td],

where Fj(z, 1) = fj(z). The mapping f has an indeterminacy set I which is
an analytic subset of codimension ≥ 2 contained in (t = 0). Let In denote
the indeterminacy set of fn. When f is an automorphism we denote it’s
indeterminacy set by I+, and I− denotes the indeterminacy set of f−1.
Similarly d+ = deg f and d− = deg f−1.

We will say that f is algebraically stable iff for all n > 0, fn((t = 0)\In)
is not contained in I. This is equivalent to the fact that deg fn = (deg f)n.

Elements of H are algebraically stable. When f is algebraically stable,
one can associate to f a Green function

G(z) = lim
n→+∞

1
dn

log+ ||fn(z)||.

If we define T = ddcG, one can show that T is a non zero positive closed
current. More precisely if ω denotes the standard Fubini-Study Kähler form
on Pk, then T = lim(fn)∗ω/dn is a positive closed current on Pk of mass one
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which gives zero mass to the hyperplane (t = 0) (theorem 1.8.1 [S 99]). So
T = T |Ck has mass one in Ck.

From now on we identify f and f . If f ∈ End(Ck) is algebraically ”stable
we define inductively the analytic sets Xj by

X1 = f((t = 0) \ I), Xj+1 = f(Xj \ I).

The sequence is decreasing, Xj is non empty because f is algebraically
stable. Hence it is stationary. Let X be the corresponding limit set (when
f ∈ Aut(Ck), we denote this set by X+). Replacing f by an appropriate
iterate, we can always assume thatX = f((t = 0) \ I). In the automorphism
case, the notation is X+ if f is algebraically stable and X− when f−1 is
algebraically stable. Observe that X is always contained in the hyperplane
at infinity.

For an algebraically stable endomorphism of Ck, we define U the basin of
attraction of X, i.e.

U = {z ∈ Ck / lim
n→+∞

fn(z) ∈ X} and K := Ck \ U.

In the first paragraph we explore the first properties of algebraically stable
endomorphism of Ck. We show that one can define a Green function G and
prove that (G > 0) ⊂ U . In particular U is of infinite Lebesgue measure
and has nonempty fine interior (theorem 1.7).

In general the function G is not continuous (example 1.11) and K ⊂ (G =
0) is different from the set K+ of points with bounded forward orbit.

We say that an endomorphism is weakly regular if X ∩ I = ∅. This
is the case of the elements of H in C2. We show (theorem 2.2) that for
a weakly regular endomorphism (G = 0) = K, ∂K ∩ (t = 0) = I and
dim I + dimX = k− 2. The proof uses heavily the theory of positive closed
currents.

The rest of the paper concerns algebraically stable automorphisms. When
f is such an automorphism, we define U± = {z / limn→+∞ f±n(z) ∈ X±},
K± = Ck \ U± and

K± = {z ∈ Ck / (f±n(z))n≥0 is bounded}.

In general K+ is not closed and could be empty (example 1.5). We always
have X+ ⊂ I− and X− ⊂ I+. Chapter 2 of [S 99] is devoted to the study of
regular automorphisms, i.e. automorphisms such that I+ ∩ I− = ∅. Here
we study more general cases and find results that are new even for regular
automorphisms. Let T+ = lim 1

dn
+

(fn)∗ω, T− = lim 1
dn
−

(f−n)∗ω. Set

r = dimX+ + 1, respectively s = dimX− + 1,

when f (resp. f−1) is algebraically stable.
Assuming that f−1 is weakly regular (I− ∩ X− = ∅) and that I− is

attracting for f , we show (theorem 2.13) that K+ is the complement of the
basin of attraction of I−, that K = K+ ∩ K− is compact and W s(K) =
K+, W u(K) = K−, where W s/u denote the stable and unstable sets. In
particular when f and f−1 are both weakly regular without beeing regular
and I− is f -attracting, then the basin B(I+ ∩ I−) of I+ ∩ I− is not empty.
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When f is an algebraically stable automorphism, the current T+ is ex-
tremal in the cone of positive closed currents of bidegree (1, 1) on Pk (the-
orem 3.6). This property is crucial to establish dynamical properties of f .
When dimX+ = 0 and f is weakly regular, then the support of T+ is equal
to ∂K+ and any positive closed current supported on K+ is proportional to
T+ (theorem 2.4). This implies in particular that ∂K+ is connected. When
dimX+ = r − 1, the current T r+ is supported on ∂K+.

In section 3 we construct a dynamically interesting positive closed current
supported on K+. More precisely if f−1 is weakly regular and I− is f -
attracting then the sequence

1
dns−

(fn)∗(ωk−s) ,dimX− = s− 1,

converges to a positive closed current σs supported on K+ (theorem 3.1).
Moreover σs satisfies f∗σs = ds−σs. This allows to construct an interesting
invariant probability measure µ = σs∧T s−. When f is regular then s+r = k,
ds− = dr+ and σs = T r+ [S 99].

We show that when s = 1 (i.e. dimX− = 0), then any stable manifold
of dimension 1 is dense in the support of σ1 (corollary 3.8). We show in
paragraph 4 that the measure µ is mixing (theorem 4.1). We also give an-
other construction of σs using partial Green function (theorem 4.5). Under
appropriate assumptions, there is a function h on the support of T r+ defined
by

h(z) = lim
1
δn

log+ ||fn(z)||, δ = ds−/d
r
+ > 1.

The function h satisfies the functional equation

h ◦ f(z) = δ · h(z)
and describes the rate of escape to infinity in B(I+ ∩ I−). The measure µ
can be constructed using the function h in that case (theorem 4.6).

In section 5 we give examples where the non trivial hypotheses we make
are satisfied: when is I− f -attracting (section 5.2), estimates on the growth
of f on K+ ∩ K− (section 5.3).

It is clear that we are concerned with the first steps of the dynamics
of polynomial automorphisms in Ck, k ≥ 3 and that the subject will be
developed in the future.

We end up this introduction with a list of the most frequently used
NOTATIONS:

z: = (z1, . . . , zk)=canonical coordinates in Ck

[z:t]: = [z1 : · · · : zk : t]=homogeneous coordinates in Pk
(t=0): =hyperplane at infinity in Pk
End(Ck): =set of polynomial endomorphisms f = (f1, . . . , fk) of Ck

Aut(Ck): =set of polynomial automorphisms of Ck

deg(f): =degree of f=max1≤j≤k deg(fj) when f ∈ End(Ck)
d+: =deg(f) when f ∈ Aut(Ck) and d− = deg(f−1)
algebraically stable: see definition 1.1
weakly regular: see definition 2.1
q-regular: see definition 2.6
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G+(z): =Green function of f ∈ Aut(Ck)= lim 1
dn
+

log+ ||fn(z)||

G̃+(z, t): =homogeneous Green function (G̃+(z, t) = G+(z/t)+ log |t|)
T+: =Green current of f (satisfies T+ = ddcG+ in Ck)
σs: =f∗-invariant current supported on K+ (see theorem 3.1)
µ: =σs ∧ T s−=invariant measure (section 4)
I+: =indeterminacy set of f={p ∈ (t = 0) / f is not holomorphic at p}
X+: =limit set of f at infinity=fk((t = 0) \ Ifk)
U+: =basin of attraction of X+= {p ∈ Ck / limn→+∞ fn(p) ∈ X+}
K+: =Ck \ U+

K+: ={z ∈ Ck / (fn(z))n≥0 is bounded } ⊂ K+

K: ={z ∈ Ck / (fn(z))n∈Z is bounded } ⊂ K+

r: = dimX+ + 1
s: = dimX− + 1
l′: = dim I+ + 1
l: = dim I− + 1
q: = dim(I+ ∩ I−) + 1

1. Algebraically stable endomorphisms

Let f ∈ End(Ck). We still denote by f the rational extension of f to Pk,
in homogeneous coordinates F = (F1(z, t), . . . , Fk(z, t), td) in Ck+1. Let I
denote the indeterminacy set of f at infinity, this is the set of points [z : 0]
in (t = 0) such that F1(z, 0) = · · · = Fk(z, 0) = 0. Let In denote the
indeterminacy set of fn.

Definition 1.1. We say that f is algebraically stable iff ∀n > 0, fn((t =
0) \ In) is not contained in I.

Let f be an algebraically stable endomorphism of Ck of degree d ≥ 2. We
define G(z) = lim d−n log+ ||fn(z)||. The existence of the log-homogeneous
Green function G̃(z, t) = lim d−n log ||Fn(z, t)|| was shown in [S 99]. It
satisfies G̃(z, 1) = G(z), G̃ ◦ F (z, t) = dG̃(z, t) and is not identically −∞.
The current T = ddcG is well defined on Pk and satisfies f∗T = d · T .

Remark 1.2. One should observe that the notion of algebraically stable is
not invariant under conjugacy. It also might happen that f is not alge-
braically stable but f2 is (see example 1.4.6.2 in [S 99]). But clearly the
dynamical consequences that can be deduced from the study of T are invari-
ant under conjugacy. When a power of f is algebraically stable, we only
consider iterates of that power. This does not change much the dynamical
behavior.

In this section we show that the set (G > 0) of orbits converging to infinity
with maximal speed is rather big (proposition 1.3) and consists of orbits
attracted by the limit set X of f at infinity (theorem 1.7). In contrast with
the two-dimensional situation, the set K+ of points with bounded forward
orbit is not necessarily closed (example 1.5) and the Green function G+ is
not necessarily continuous (example 1.11).
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Proposition 1.3. Let f ∈ End(Ck) be an algebraically stable endomor-
phism. Let G denote the Green function associated to f . Then

lim sup
|z|→∞

G(z)
log |z|

= 1.

Moreover the set (G > 0) is an Fσ set, connected and of infinite mea-
sure on any complex line where G is not identically zero. Therefore the set
{z / lim fn(z) = ∞} is of infinite measure.

Proof. The Green current T associated to f does not have mass on the
hyperplane at infinity (t = 0) (theorem I.8.1 p.22 [S 99]). Assume there is
ε > 0, C > 0 such that

G(z) ≤ (1− ε) log+ |z|+ C.

Then the plurisubharmonic log-homogeneous Green function will satisfy

G̃(z, t) = log |t|+G(z/t) ≤ (1− ε) max(log |z|, log |t|) + ε log |t|+ C.

Thus T will have mass at least ε on the hyperplane (t = 0), a contradiction.
We also know [S 99] that G ≤ log+ |z|+O(1), so we only have to prove that
the lim sup cannot be strictly less than 1.

Assume, for simplicity, that G is not identically zero on the line L =
{(ζ, 0, . . . , 0) / ζ ∈ C} and G(0) = 1. Let m(r) denote the Lebesgue measure
of the set {eiθ /G(reiθ, 0, . . . , 0) > 0}. By submean value property,

1 = G(0) ≤ 1
2π

∫ 2π

0
G(reiθ, 0, . . . , 0)dθ ≤ 1

2π
(log+ r + C)m(r).

So the measure of {ζ /G(ζ, 0, . . . , 0) > 0} is infinite. It is crucial in this
argument that G is of slow growth. The claim of connectedness of (G > 0)
follows easily from similar statement for subharmonic functions in C not
growing too rapidly, see [H 59]. �

Proposition 1.4. Let f ∈ End(Ck). Define

K+ =
{
z ∈ Ck / (fn(z))n≥0 bounded

}
.

The set K+ is an Fσ set (not necessarily closed). If f ∈ Aut(Ck) and
a = |Jac f | 6= 1 then K+ is of zero or infinite measure, both cases occur.

Proof. For M > 0 define K+
M = {z / |fn(z)| ≤ M, n ≥ 0}. Then K+ =

∪M>0K
+
M so K+ is an Fσ and an increasing union of polynomially convex

sets. The set K+ is clearly invariant under f .
When f ∈ Aut(Ck), we let λ(K+) denote the Lebesgue measure of K+.

We have λ(K+) = |a|2kλ(K+). If |a| 6= 1, this implies that λ(K+) is zero or
infinite. �

Example 1.5. There are algebraically stable biholomorphisms of C3 with
one of the following properties:

1) K+ is empty.
2) K+ is non-empty and non-closed with K+ = C3 \U+, where U+ is the

basin of attraction of an attractive fixed point at infinity.
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We consider an algebraically stable biholomorphism of C3 constructed
from a Hénon map in C2. Define for d ≥ 2, h(x, y) = (xd+ay, x). Consider

f(x, y, z) = (xd + ay, x,A(x) + y + z),

where A is a polynomial of degree d. We have I+ = {[0 : y : z : 0]},
X+ = f((t = 0) \ I+) = [1 : 0 : α : 0], α 6= 0, thus X+ ∩ I+ = ∅, hence f is
algebraically stable. Similarly

f−1(x, y, z) = (y,
1
a
(x− yd), z −A(y)− 1

a
(x− yd)),

thus I− = {[x : 0 : z : 0]}, X− = f−1((t = 0) \ I−) = [0 : 1 : aα+ 1 : 0] and
f−1 is also algebraically stable. If (xn, yn) denotes the orbit of (x, y) under
h in C2, then

fn(x, y, z) = (xn, yn, z +
n−1∑
j=0

(A(xj) + xj−1)).

Let K+
h = {(x, y) ∈ C2 / (xn)n≥0 bounded}. It is easy to check that X+ is

an attractive fixed point for f . Let U+ denote the basin of attraction of X+.
Then C3 \ U+ := K+ = K+

h × C. It is known [Fr-M 89] that the orbits
of points in K+

h cluster on Kh = K+
h ∩ K−

h which is compact in C2. If
<A ≥ c � 1 on Kh then clearly K+ is empty and in particular f has no
periodic point.

We now show that it is possible to choose the polynomial A so that K+

is dense in K+ and K+ \K+ is also dense in K+. Let p be a saddle fixed
point for h. Assume |a| = |Jf | > 1 and Q(x, y) = A(x) + y vanishes at
p. Let W s(p) be the stable manifold at p, which is dense in K+

h = ∂K+
h

[B-Sm 91]. Then W s(p)×C is dense in K+ and is contained in K+. Indeed∑n
j=0 |Q(xj , xj−1)| ≤ C

∑n
j=0 |xj − p| ≤ C ′

∑n
j=0 ε

j, where ε < 1. If p′ is
another saddle fixed point of h where Q(p′) 6= 0, one checks that no point in
W s(p′)× C is in K+. Observe that there is a constant C such that for any
(x, y, z) ∈ K+ one has |fn(x, y, z)| ≤ Cn.

Remark 1.6. It is easy to check for the previous example that

G+(x, y, z) = G+
h (x, y).

Observe that (G+ = 0) = K+ might be different from K+. Note also that
deg f = deg f−1

For an algebraically stable endomorphism f of Ck, we define

U :=
{
z ∈ Ck/ lim

n→+∞
fn(z) ∈ X

}
and K := Ck \ U.

Theorem 1.7. Let f ∈ End(Ck) be an algebraically stable endomorphism.
Then

K ⊂ (G = 0) .
In particular U is of infinite measure and of nonempty fine interior.

Proof. Define ϕ̃ = log[maxj |Rj |1/D], where Rj are homogeneous polynomi-
als of degree D such that X = ∩R−1

j (0). Since X ⊂ (t = 0), we can fix
R1 = tD so that if we identify Ck with (t = 1), we get ϕ = ϕ̃|Ck ≥ 0.
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Recall that that the Green function G̃ is the decreasing limit of d−n log ||Fn||,
where F : Ck+1 → Ck+1 is a homogeneous representative of the extension of
f to Pk, normalized so that ||F (Z)|| ≤ ||Z||d. Since d−1 log ||F || has positive
Lelong number at every point of π−1(I), so has G̃, hence there exists 0 <
γ << 1 such that G̃ ≤ γϕ̃ in a neighborhood of π−1(I \B(I∩X, ε))∩∂Bk+1.
Here B(I ∩X, ε) = {p ∈ Pk /dist(p,X ∩ I) < ε} and Bk+1 denotes the unit
ball in Ck+1. Since log ||Z|| is smooth outside the origin, we get from the
log-homogeneity of G̃

(∗) G̃ ≤ γϕ̃+ (1− γ) log ||Z||+ CV in π−1(Vε),

where Vε is a neighborhood of I \B(I ∩X, ε) in Pk.
We can assume ϕ̃ ≤ log ||Z||, so the sequence d−nϕ̃ ◦ Fn is uniformly

bounded from above by log ||Z||. Thus we can extract a subsequence which
converges towards a function Ψ̃ which is either identically −∞ or plurisub-
harmonic (see [Hö 83]). Since ϕ = ϕ̃|Ck ≥ 0 we get Ψ̃ 6≡ −∞. We infer
from the logarithmic growth of ϕ that ψ = Ψ̃|Ck ≤ G in Ck. Now we claim
G ≤ ψ on K. Indeed let p ∈ K. If (fn(p)) admits a bounded subsequence,
then G(p) = ψ(p) = 0, therefore we can assume fn(p) → ∞. Since p ∈ K,
fni(p) → I \X for some subsequence ni →∞. Thus fni(p) ∈ Vε for ε small
and i large enough. Hence (∗) yields

G(p) =
1
dni

G ◦ fni(p) ≤ γ
1
dni

ϕ ◦ fni(p) + (1− γ)
1
dni

log+ ||fni(p)|+ CV
dni

,

hence G(p) ≤ ψ(p).
We show hereafter that ψ ≤ (1 − α) log+ ||z|| + C for some constants

C > 0, 0 < α < 1. Assuming this we obtain, since K is f -invariant,

G(p) =
1
dn
G ◦ fn(p) ≤ (1− α)

1
dn

log+ ||fn(p)||+ C

dn
, for every p ∈ K,

hence G(p) ≤ (1− α)G(p), i.e. G(p) = 0.
It remains to show that ψ ≤ (1 − α) log+ ||z|| + C in Ck. By a result

of Siu [Siu 74], this is equivalent to say that the current S defined by Ψ̃
on Pk has positive mass on the hyperplane at infinity (t = 0). Now S =
lim d−ni(fni)∗(σ), where σ is the current defined by ϕ̃. Note that the Lelong
number ν(σ, q) is positive at every point q ∈ X. It is a well-known (and
simple) fact that Lelong number increase by taking pull-back (see e.g. [Fa
99]). Without loss of generality we can assume f((t = 0) \ I) ⊂ X, thus

ν(f∗(σ), p) ≥ ν(σ, f(p)) > 0 at every point p ∈ (t = 0) \ I.
Since codimCIf ≥ 2, we infer d−1f∗(σ) = σ′ +α[t = 0] for some α > 0. The
invariance f∗[t = 0] = d[t = 0] thus yields S ≥ α[t = 0].

We just showed that (G > 0) ⊂ U , so proposition 1.3 says that U is of
infinite measure. �

Corollary 1.8. Let f ∈ End(Ck) be an algebraically stable endomorphism.
The basin of any attractive fixed point has complement of infinite measure
and even open in the fine topology. When f is a biholomorphism, such a
basin is biholomorphic to Ck.

Proof. Such a basin is contained in K, hence in (G = 0). The set (G > 0) is
open in fine topology and has infinite measure. �
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Remarks 1.9.
i) When X is an attracting set then U is its basin of attraction hence is

open. This happens e.g. when X ∩ I = ∅ (f is ”weakly regular”) and in this
case U = (G > 0) (see theorem 2.2). Note however that (G > 0) might be
different from U (see example 1.11 below when |b| > 1).

ii) The set X is not necessarily attracting: f(0, y, 0) = (0, by, 0) in exam-
ple 1.11 below, thus X = {[x : y : 0 : 0]} is not attracting if |b| < 1.

There might be unbounded orbits in K (see example 1.5). However they
have slower growth. Moreover in the biholomorphism case we have the
following

Proposition 1.10. Let f ∈ Aut(Ck) be an algebraically stable biholomor-
phism. Assume f−1 is weakly regular (i.e. X−∩I− = ∅). Then f(I+\X−) ⊂
I− and unbounded orbits cluster in (t = 0) only on I−.

Proof. Let zn → p ∈ I+ \ X− be such that f(zn) → q. If q /∈ I−, then
zn = f−1(f(zn)) → X−, a contradiction. So f(I+ \X−) ⊂ I−.

Similarly, if zni = fni(z) → q ∈ (t = 0) \ I−, where z ∈ Ck, then zni−1 →
f−1(q) ∈ X−. Now X− is an attracting set for f−1 since X− ∩ I− = ∅, so
z = f−ni(zni) → X−, a contradiction. �

We now give an example where G+ is discontinuous on a thick set of C3.

Example 1.11. Let P (x, y) be a homogeneous polynomial of degree d ≥ 2.
Define f(x, y, z) = (xP (x, y) + z, xd+1 + by, x). Then

f−1(x, y, z) =
(
z,

1
b
(y − zd+1), x− zP (z, b−1[y − zd+1])

)
.

If degy P = d then d+ = d + 1, d− = d2 + d + 1 and I+ = {[0 : y : z : 0]},
X+ = I− = {[x : y : 0 : 0]}, X− = {[0 : 0 : 1 : 0]}. When |b| > 1 then
I− is an attracting set for f (see lemma 5.8). Consequently the map f−1

is normal in C3, the function G− is Hölder continuous (theorem 1.7.1 p115
[S 99]) and K− = {G− = 0} (recall that a map g is normal at a point p, if
there is a neighborhood V of p such that ∪n≥0gn(V ) ∩ Ig = ∅).

The action of f on X+ is given by f0[x : y] = [P (x, y) : xd]. We choose P
such that the Julia set for f0 cöıncides with P1 (take e.g. P (x, y) = (x−2y)d

in which case the map f0 is subhyperbolic [C-G 93]). For such a choice we
get E+ = (t = 0), where E+ denotes the closure of I+

∞ := ∪j≥1Ifj .
Let q = I+ ∩ I− = [0 : 1 : 0 : 0]. The preimages of q are dense on the

hyperplane at infinity and hence the log-homogeneous Green function G̃+ is
equal to −∞ on a dense subset of (t = 0). Let p = [x0 : y0 : 0 : 0] be a
periodic point for f0, it is repelling in one direction and the other eigenvalues
are zero so the stable manifold is two dimensional. The restriction of G̃+

to W s(p) has to be pluriharmonic as it is the case on any complex manifold
M where fn|M is equicontinuous (see [F-S 95a]). The local stable manifolds
are graphs over (z, t), we can get a sequence Mj of such graphs converging
to a graph M0 through q. If G̃+ were continuous then G̃+|Mj

→ G̃+|M0
and

the function G̃+
|M0∩C3 would be pluriharmonic. This is impossible since a

pluriharmonic function on a 2−dimensional shell extends as a pluriharmonic
function in the ball, but we know G̃+(q) = −∞.
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We get that G̃+ has a point of discontinuity in any open set intersecting
(t = 0) and actually in any shell of f−j(M0). Observe also that the set of
points of discontinuity of G+ is totally invariant because G+ ◦ f = d+G

+.
However since G+ is a non-negative u.s.c. function, it is continuous at any
point where G+ vanishes, for example on (0, y, 0). Note that {(0, y, 0) / y ∈
C∗} is in the basin of attraction U+ of X+ when |b| > 1, thus G+ might
vanish in U+.

When |b| > 1, the set of perodic points in C3 is not empty. We also
have in this case that the map f is volume expanding so for any open set
V , ∪n≥0f

n(V ) clusters on (t = 0) = E+. Hence for such a map the set of
normal points is empty.

2. Weakly regular endomorphisms

In this section we introduce the notions of weakly-regular endomorphism
(definition 2.1) and q−regular automorphism (definition 2.6) and derive
properties of their Green currents (theorem 2.2, proposition 2.9). When
I− is assumed to be an f−attracting set (a non trivial hypothesis which we
check on some examples given in section 5), we get a good understanding of
the sets K+,K−,K (theorem 2.13).

Definition 2.1. An endomorphism f ∈ End(Ck) is called weakly regular
when X ∩ I = ∅.

It follows from the definition that a weakly regular endomorphism is al-
gebraically stable. Moreover X is an attracting set for f , i.e. there exists
an open neighborhood V of X such that f(V ) ⊂⊂ V and ∩j≥1f

j(V ) = X.
It’s enough to compute the derivative of f around X.

Theorem 2.2. Let f ∈ End(Ck) be a weakly regular endomorphism. Set
r = dimCX + 1 and l′ = dimC I + 1. Then

i) K = (G = 0). The Green function G is continuous in Ck.
ii) T r is supported on ∂K and ∂K ∩ (t = 0) = K ∩ (t = 0) = I. The

current T r is of total mass in Ck. For j ≤ r, f∗T j = djT j.
iii) The numbers r and l′ satisfy l′ = k − r so

dimCX + dimC I = k − 2.

iv) T r+1 = 0 in Ck+1, more precisely SuppT r+1 = I.
v) When f ∈ Aut(Ck), then dr+ ≤ dk−r− .

Proof. We already know K ⊂ (G = 0) from theorem 1.7. Let V be a small
neighborhood of X which does not intersect I. There exists a constant
CV > 0 such that

log+ |z| − CV ≤ G(z) ≤ log+ |z|+ CV in V ∩ Ck.

Indeed G̃ is bounded nearX, so we only use log-homogeneity. Therefore G >
0 in U and it follows from the upper-semi-continuity that G is continuous,
even Hölder continuous in U , since U is a normal component [S 99].

Since X is an attracting analytic set of dimension r − 1, it follows from
lemma 2.3 below that T r = 0 in U . So T r is supported on ∂K and G ·T r = 0
in Ck, hence T r+1 = 0 in Ck.
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Since I ∩X = ∅ in (t = 0) = Pk−1 we get (r − 1) + (l′ − 1) ≤ k − 2, so
r+ l′ ≤ k. The current T admits continuous potentials out of I. Since I has
dimension l′ − 1 ≤ k − (r + 1), the currents T j are well defined on Pk for
j ≤ r+1 (see corollary 3.6 in [F-S 95b]) and satisfy f∗T j = djT j . Moreover
T r has no mass on I [Ha-P 75], hence is of total mass in Ck. The current
T r+1 has support in I. It follows from the support theorem of Federer (see
[Fe 69]) that dim I ≥ k − (r + 1). Consequently r + l′ = k.

We have G̃ ≤ d−1 log |F | and π−1(I) = (F = 0) in Ck+1, hence the current
T k−l

′+1 has some mass on each branch of I. Therefore T k−l
′+1 = T r+1 is

an R-cycle whose support is I. This proves that any point of I is a limit of
points in ∂K.

Observe that f∗(ωr) has no mass on (t = 0) since dim I = k−r−1. Thus
if f ∈ Aut(Ck), we get

dr+ =
∫

Ck

f∗(ωr) ∧ ωk−r =
∫

Ck

ωr ∧ (f−1)∗(ωk−r) ≤ dk−r− .

�

Lemma 2.3. Let A ⊂ (t = 0) be an analytic subset of dimension a− 1. If
A is attracting for f , then T a = 0 in the basin of attraction of A.

Proof. Assume (z1 = · · · = za = 0) ∩A = ∅ then, in these coordinates,

G = lim
n→+∞

1
2dn+

log+
(
|fn1 |2 + · · ·+ |fna |2

)
.

The convergence is locally uniform in the basin of attraction of A, therefore
T a = 0 (see theorem 2.5.2 in [S 99]). �

The rest of the paper concerns polynomial automorphisms. If f ∈ Aut(Ck)
is weakly regular, we have just seen that G+ is comparable to log+ |z| in U+

and G+ = 0 on K+. This allows to show a convergence result towards
T+ similar to theorem 2.2.12 of [S 99]. This yields in particular a rigidity
property of K+:

Theorem 2.4. Assume f ∈ Aut(Ck) is weakly regular.
If there exists a non-trivial positive closed current S of bidegree (1, 1) on

Pk whose support is contained in K+, then S is proportional to T+. In that
case r = 1.

Conversely when r = 1, T+ is the only positive closed current of bidegree
(1, 1) and of mass 1 with support on K+.

Example 2.5. Consider f(x, y, z) = (yxd + z, yd+1 + x, y). Then f ∈
Aut(C3) with X+ = {[x : y : 0 : 0]} and I+ = {[x : 0 : z : 0]}. So f is not
weakly regular since X+ ∩ I+ = {[1 : 0 : 0 : 0]} 6= ∅. On the other hand
f−1(x, y, z) = (y − zd+1, z, x − z[y − zd+1]d), so X− = {[0 : 0 : 1 : 0]} and
I− = {[x : y : 0 : 0]}, hence f−1 is weakly regular.

Note that X+ ∩ I+ is a (super)attractive fixed point for f0 := f|X+.

Definition/Notations 2.6. Let f ∈ Aut(Ck) be an algebraically stable
biholomorphism such that f−1 is also algebraically stable. We set

dimX+ = r − 1, dimX− = s− 1,
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dim I+ = l′ − 1, dim I− = l − 1, dim I+ ∩ I− = q − 1.
We say that f is q-regular if X± ∩ I± = ∅ and

codim I+∩ I− = codim I+ + codim I− in (t = 0), with dim(I+∩ I−) = q−1

So in this case we get the relations

r + l′ = s+ l = k and q + r + s = k.

Remarks 2.7.
i) With the convention dim ∅ = −1, 0-regular biholomorphisms are pre-

cisely the ”regular automorphisms” studied in [S 99]. Observe that f is
q-regular iff f−1 is q-regular.

ii) If I− is biholomorphically equivalent to Pl−1 (or to any compact com-
plex manifold whose cohomology is one dimensional) and X+∩I+ = ∅, then
X+ and I+ ∩ I− are disjoint analytic subsets of I− ' Pl−1 so dimX+ +
dim(I+ ∩ I−) ≤ l − 2 hence r + q ≤ l. This yields r + s + q ≤ k if
X− ∩ I− = ∅. Now T r+1

+ ∧ T s− is a well defined current with support in
I+ ∩ I− (see [F-S 95b] and theorem 2.2) so dim(I+ ∩ I−) ≥ k − (r + s+ 1)
by the support theorem [Fe 69], i.e. r + s+ q ≥ k. So in this case the con-
dition codim(t=0) I

+ ∩ I− = codim(t=0) I
+ + codim(t=0) I

− of definition 2.6
is automatically satisfied. We don’t know any example of an automorphism
f ∈ Aut(Ck) such that f and f−1 are weakly regular and for which I+ ∩ I−
does not have the expected dimension.

Examples 2.8.
i) Consider f(x, y, z) = (xd + αyd + z, xd + y, x). Then f ∈ Aut(C3) with

f−1(x, y, z) = (z, y−zd, x−zd−α[y−zd]d). If α 6= 0 we obtain I+∩ I− = ∅
so f is 0-regular, while f is 1-regular if α = 0.

ii) Consider f(x, y, z, w) = (h(x, y), g(z, w)), where h, g : C2 → C2 are
Hénon mappings. Then f ∈ Aut(C4) is 0-regular if deg(h) = deg(g) and
2-regular if deg(h) 6= deg(g).

Proposition 2.9. Let f ∈ Aut(Ck) be a q-regular biholomorphism. Define
G = max(G+, G−) and let τ be the current defined by G on Pk. Then

i) (ddcG)r+s = τ r+s = (T+)r ∧ (T−)s in Ck ;
ii) Supp τ r+s+1 = I+ ∩ I− ;
iii) the current τ r+s = (T+)r ∧ (T−)s is of total mass in Ck ;
iv) ∂K+ ∩ ∂K− ∩ (t = 0) = I+ ∩ I−.
v) If I− is an attracting set for f , then dr+ ≤ ds− ≤ dq+r+ .

Proof. Note thatG+ andG− are continuous (theorem 2.2). Since (ddcG+)r =
0 in U+ = (G+ > 0) and (ddcG−)s = 0 in U− = (G− > 0) (by theorem 2.2
again), the first claim is a consequence of lemma 2.12 below.

Since f is q-regular, I+ ∩ I− has dimension q − 1 = k − (r + s) − 1.
So τ r+s, which clusters only on I+ ∩ I− in (t = 0), has total mass in Ck

(see [Ha-P 75]). The current τ r+s is supported on K+ ∩ K− = (G = 0),
therefore (ddcG)r+s+1 = 0 in Ck. Since (t = 0) \ I+ ⊂ U+ and (t =
0) \ I− ⊂ U−, it follows that τ r+s+1 is supported on I+ ∩ I−. Now G ≤
max(d−1

+ log |F |, d−1
− log |F−1|) in Ck+1, so τ r+s+1 has some mass on each

branch of I+ ∩ I−. Therefore every point of I+ ∩ I− is a limit of points in
∂K+ ∩ ∂K−.
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Assume I− is f -attracting. Then there exists C > 1 such that 1 +
||f(z)|| ≥ C[1+ ||z||] for every point z in a small neighborhood V of I− with
f(V ) ⊂⊂ V . Thus the function log+ ||f(z)|| grows at least like log+ ||z|| in
V . We recall herebelow (lemma 2.11) a comparison principle for plurisub-
harmonic functions with logarithmic growth. Since log ||f || ≥ log(1 + ||z||)
on the support of T r+ ∧ T s− and since T r+ ∧ T s− puts no mass on (t = 0), one
gets by lemma 2.11

1 ≤
∫

Ck

T r+ ∧ T s− ∧ f∗ωk−r−s =
∫

Ck

(f−1)∗(T r+ ∧ T s−) ∧ ωk−r−s = ds−/d
r
+.

There might be equality as follows from remark 1.6. The last inequality
follows from theorem 2.2.v: X− ∩ I− = ∅ ⇒ ds− ≤ dk−s+ . �

Remark 2.10. When q = 0 (i.e. f is a regular automorphism), then I− =
X+ is always an attracting set for f and we get dr+ = ds− (see also proposition
2.3.2 in [S 99]).

When q ≥ 1, then ∂K+ ∩ ∂K− is not compact. We give examples in
section 5.2 such that I− is an attracting set for f . Observe that if ||f(p)|| ≥
C(1 + ||p||)γ for ||p|| >> 1 on ∂K+ ∩ ∂K−, then since T r+ ∧ T s− is supported
on ∂K+ ∩ ∂K−, we get with the same proof that ds−/d

r
+ ≥ γ. This is of

interest when γ > 1 (see remark 3.2).

Lemma 2.11 (T 83). Let S be a positive closed current of bidimension
(s, s) in Ck. Let u, v be locally bounded p.s.h. functions in a neighborhood of
SuppS in Ck. Assume v > 0 and u(z) < v(z) + o(v(z)), ||z|| → +∞. Then∫

Ck

S ∧ (ddcu)s ≤
∫

Ck

S ∧ (ddcv)s.

The corresponding lemma when s = k is is given in [T 83] p322. The
proof is an integration by part argument.

Lemma 2.12. Let u, v be continuous non-negative plurisubharmonic func-
tions in Ck such that (ddcu)r = 0 in (u > 0) and (ddcv)s = 0 in (v > 0).
Set w = max(u, v). Then

(ddcw)r+s = (ddcu)r ∧ (ddcv)s.

Proof. Fix ε and consider uε = max(u + ε, v), vε = max(u, v + ε). Since
uε, vε decrease toward w as ε→ 0, we have

(ddcuε)r ∧ (ddcvε)s −→ (ddcw)r+s.

We can assume without loss of generality that r ≥ s. We have (ddcv)r = 0
in (v > u+ ε) ⊂ (v > 0). Moreover vε ≡ v + ε near (v = u+ ε) and v > 0,
therefore (ddcvε)s = (ddcv)s = 0 near (v = u+ ε). Thus (ddcuε)r ∧ (ddcvε)s

has support in the open set (v < u+ ε), hence

(ddcuε)r ∧ (ddcvε)s = (ddcu)r ∧ (ddcvε)s.

Now Supp(ddcu)r ⊂ (u = 0), thus vε ≡ v + ε near Supp(ddcu)r, this yields

(ddcuε)r ∧ (ddcvε)s = (ddcu)r ∧ (ddcv)s.

�
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Theorem 2.13. Let f ∈ Aut(Ck). Assume f−1 is weakly regular (I−∩X− =
∅) and I− is an attracting set for f . Then the following holds

i) f−1 is normal on Ck and K− = K− = (G− = 0) is closed in Ck.
ii) K+ = Ck \ B(I−) is closed in Ck, where B(I−) denotes the basin of

attraction of I− ; K+ ∩ (t = 0) = X− = ∂K+ ∩ (t = 0).
iii) K := K+ ∩K− is a compact polynomially convex subset of Ck which

contains the nonwandering set of f .
iv) W s(K) = K+, W u(K) = K−.

Proof. That I− is attracting for f means the existence of a neighborhood V
of I− in Pk such that f(V \ If ) ⊂⊂ V and ∩j≥1f j(V \ Ifj ) = I−. It follows
that if xp → x ∈ Ck, f−np(xp) cannot cluster on I−, hence f−1 is normal.
Since an unbounded orbit for f−1 cannot approach I−, it is necessarily
in U−, the basin of X− which is attracting for f−1 since I− ∩ X− = ∅.
Therefore K− = K− = Ck \ U− is closed. The fact that K− = (G− = 0)
follows from theorem 2.2.

Let x ∈ Ck \ B(I−). If fnj (x) clusters at infinity, it has to avoid a
neighborhood of I−, hence f−nj is well defined and x = f−nj (fnj (x)) is
arbitrarily close to X−, a contradiction. So K+ = Ck \ B(I−) and it is
closed. Since (t = 0) \ I+ is sent by f into X+ ⊂ I− which is attracting for
f , K+ can cluster only on I+. If p ∈ I+ \X− then the blow-up f(p) of f at
the point p is an analytic subset of (t = 0) which is included in I−, otherwise
f−1(f(p) \ I−) = p should belong to X−. Therefore p ∈ B(I−) and K+ can
only cluster on X−. On the other hand, we will show hereafter (theorem
3.1) that there exists a non zero positive closed current σs of bidimension
(s, s) with support in ∂K+ -here dimX− = s − 1. Moreover σs ∧ [t = 0] is
a well defined current of bidimension (s− 1, s− 1) (see theorem 3.1) which
has support on X−. Since X− is irreducible, we have X− ⊂ Suppσs, hence
∂K+ clusters at every point of X−.

Similarly K− clusters on I− hence K = K+ ∩ K− is compact. The
polynomial convexity of K follows from the fact that the sequence Hn :=
max(log+ ||fn||, log+ ||f−n||) is bounded exactly on K.

We now prove that the stable set W s(K) := {z ∈ Ck / limn→+∞ fn(z) ∈
K} equals K+. Indeed for x ∈ K+, G−(fn(x)) = d−n− G−(x) so if x0 =
lim fnj (x) then G−(x0) = 0. Thus x0 ∈ K− ∩K+ = K, i.e. W s(K) = K+.

Similarly let x ∈ K−. Assume f−ni(x) → y. For any neighborhood U of
y, fni(U) contains x, so y /∈ B(I−). Therefore y ∈ K+ and W u(K) = K−.

�

Remark 2.14. The hypotheses of the theorem are satisfied in example 1.8
when |b| > 1. We give other examples in section 5.

Corollary 2.15. Assume f, f−1 are weakly regular and I− is f-attracting.
Then either f is a regular automorphism (i.e. I+ ∩ I− = ∅), or ∂K+ \K+

is not empty. In the latter case, the basin B(I+ ∩ I−) contains K+ \ K+,
hence f is not normal.

Proof. We know from theorem 2.2 that ∂K+ ∩ (t = 0) = I+. On the other
hand K+ ∩ (t = 0) ⊂ X− by theorem 2.13. Since X− ∩ I− = ∅, this yields
either X− = I+ (hence f is regular) or X− 6= I+ hence ∂K+ \ K+ is not
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empty. Proposition 1.10 implies that orbits in K+ \ K+ cluster only on
I+ ∩ I−, hence K+ \K+ is in the basin B(I+ ∩ I−) of I+ ∩ I−. �

3. Currents supported by K+

In this section we construct, under suitable assumptions, a canonical cur-
rent σs which is invariant by f and supported on K+ (theorem 3.1). This
shows in particular that K+ is non empty (compare with example 1.5).
When T s− is an extremal point in the cone of positive closed current of bide-
gree (s, s) on Pk, we show a strong convergence result towards σs (theorem
3.4) which can be thought of as a ”mixing property” of σs. We prove the
extremality of T− (theorem 3.6), so everything works fine when s = 1: we
obtain as a consequence the density of stable manifolds of dimension 1 in
the support of σ1 (corollary 3.8). It is an interesting open problem to show
extremality of currents like T s−, s > 1.

Theorem 3.1. Let f ∈ Aut(Ck) be such that f−1 is weakly regular and I−

is f-attracting. Then K+ does not carry a non zero positive closed current
of bidimension (s+ 1, s+ 1), where dimX− = s− 1.

However there is a positive closed current σs of bidimension (s, s) sup-
ported on K+ which satisfies f∗σs = ds−σs and∫

Pk

σs ∧ ωk−s =
∫

Ck

σs ∧ ωk−s = 1.

More precisely, if ds− > dk−s−1
+ , then

1
dns−

(fn)∗(ωk−s) −→ σs,

in the weak sense of currents. Moreover for any smooth closed form Θ ∼
ωk−s,

1
dns−

(fn)∗(Θ) −→ σs.

Proof. Assume S is a non zero positive closed current of bidimension (s +
1, s+ 1) with support in K+. Then S ∧ [t = 0] is well defined and non zero
(this follows from [F-S 95] p 412), since K+ ∩ (t = 0) = X− is of dimension
s − 1. The current S ∧ [t = 0] has support in X− (theorem 2.13) and is of
bidimension (s, s), this is impossible because dimX− = s− 1.

Define Rn = 1
dns
−

(fn)∗(ωk−s). The currents Rn are positive, closed, of
bidimension (s, s) with mass∫

Ck

Rn ∧ ωs =
∫

Ck

ωk−s ∧ 1
dns−

(f−n)∗(ωs) = 1.

The last equality holds because dim I− = k−s−1 (theorem 2.2) so (f−n)∗(ωs)
has no mass on I−. We still denote by Rn the trivial extension to Pk.
Since I− is an attracting set for f , any cluster point of (Rn) has support in
K+ = Ck \B(I−) (we can argue as in lemma 2.3 since I− is attracting and of
dimension k−s−1) and is of total mass 1 in Ck since dimX− = s−1. If we
take a limit point of a Cesaro sum, we get the invariant candidate because
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f∗ is continuous on currents in Ck, and the limit current cannot have mass
on X− whose dimension is only s− 1.

Consider now Θ a smooth closed form cohomologous to ωk−s whose sup-
port does not intersect I−. This is possible since dim I− = k − s− 1, so we
can find a linear subspace L of dimension s in Pk which does not intersect
I− and regularize the current of integration [L]. Define

Θ1 :=
1
ds−

(f∗Θ)|Ck .

The current Θ1 is closed and positive in Ck. The mass of Θ1 is∫
Ck

Θ1 ∧ ωs =
1
ds−

∫
Ck

Θ ∧ (f−1)∗(ωs) =
1
ds−

∫
Pk

Θ ∧ (f−1)∗(ωs) = 1

since I−∩SuppΘ = ∅. We still denote by Θ1 = d−s− f∗Θ the trivial extension
to Pk. Observe that since f−1((t = 0) \ I−) ⊂ X−, we get

SuppΘ1 ∩ (t = 0) ⊂ X−.

So Θ1 is cohomologous to Θ and it is smooth in Pk \X−, hence
1
ds−
f∗Θ = Θ + ddc(S),

where S is a current of bidegree (k − s − 1, k − s − 1) which is smooth in
Pk \X−. Replacing S by S − Aωk−s−1, we can assume further that S ≤ 0
in Pk \ V , where V is a small neighborhood of X−. We can iterate previous
equation and get

1
dns−

(fn)∗Θ = Θ + ddc(Sn),

where

Sn =
n−1∑
j=0

1

djs−
(f j)∗(S)

is a decreasing sequence of negative currents in Pk \V , since we can assume
f−1(V ) ⊂⊂ V . Fix C > 0 so that −Cωk−s−1 ≤ S ≤ 0, hence

−C 1

djs−
(f j)∗(ωk−s−1) ≤ 1

djs−
(f j)∗(S) ≤ 0

in Pk \ V . Then

0 ≤ Sn − Sn+p ≤
C

δn

p−1∑
j=0

1
δj

(
1

dj+n+

(f j+n)∗ω

)k−s−1

,

in Pk \ V , where δ := ds−/d
k−s−1
+ > 1. This shows (Sn) converges towards

a current S∞ in Pk \ V , hence in Pk \X−, since V was an arbitrarily small
neighborhood of X−. Thus

1
dns−

(fn)∗Θ = Θ + ddcSn −→ σs := Θ + ddcS∞

in Pk \ X−. Now σs extends trivially through X− for dimension reasons
(Harvey’s theorem). There follows from the discussion above that the in-
variant current σs has support on K+ and is of total mass 1 in Ck.
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Observe that if Θ′ is another smooth form which is cohomologous to Θ,
then Θ′ = Θ+ddcα, where α is a smooth form of bidegree (k−s−1, k−s−1).
Now ||(fn)∗(α)|| = O(dn(k−s−1)

+ ), so d−ns− (fn)∗(α) → 0 since ds− > dk−s−1
+ .

Therefore d−ns− (fn)∗(Θ′) → σs, in particular

1
dns−

(fn)∗(ωk−s) → σs.

�

Remarks 3.2.
i) When f is 0-regular, we have dk−1−s

+ < dk−s+ = ds−. In this case I− =
X+ is f-attracting and σs = T k−s+ (see [S 99]).

ii) When f is q-regular with δ = ds−/d
r
+ > 1, then we could consider for

σs a cluster point of the sequence N−1
∑N

j=1 T
r
+∧ δ−j(f j)∗ωk−r−s. This will

allow us to construct an invariant measure which does not charge pluripolar
sets in section 4.

The next result uses Cauchy-Schwarz inequality in the style of Ahlfors-
Beurling (see [A 73]) to show convergence of truncated currents towards
closed currents (see [B-Sm 91] and [S 99] for similar results in the context
of complex dynamics).

Proposition 3.3. Let f ∈ Aut(Ck) be such that ds− > dk−s−1
+ for some

integer s ≤ k − 1. Let ψ ≥ 0 be a test function with support in a ball B of
Ck. Let u1, . . . , ul be continuous plurisubharmonic functions in B. Then

S(l)
n :=

1
dns−

(f−n)∗(ψωs) ∧ ddcu1 ∧ . . . ∧ ddcul

is a bounded sequence of positive currents. Moreover ||dS(l)
n ||, ||ddcS(l)

n || → 0.
So any cluster point is a closed positive current of bidegree (s+ l, s+ l).

Proof. We first consider the sequence Sn := S
(0)
n = d−ns− (fn)∗(ψωs). It is

clearly bounded. Let θ be a (0, 1) test form. We have∣∣∣∣∫ (f−n)∗(∂ψ ∧ ωs) ∧ θ ∧ ωk−s−1

∣∣∣∣ = ∣∣∣∣∫ ∂ψ ∧ ωs ∧ (fn)∗θ ∧ (fn)∗ωk−s−1

∣∣∣∣
≤
(∫

ωs ∧ ∂ψ ∧ ∂ψ ∧ (fn)∗ωk−s−1

)1/2(∫
ωs ∧ (fn)∗

[
θ ∧ θ ∧ ωk−s−1

])1/2

≤ O(dn(k−s−1)/2
+ )O(dns/2− ).

The mass ||dSn|| of the currents dSn thus satisfies

||dSn|| = O((dk−s−1
+ /ds−)n/2) → 0.

Similarly one gets ||ddcSn|| = O((dk−s−1
+ /ds−)n) → 0.

Consider now S
(1)
n = d−ns− (fn)∗(ψωs) ∧ ddcu1. We can use exactly the

same inequalities, replacing ωk−s−1 by ddcu1 ∧ ωk−s−2. So we have again
||dS(1)

n || = O((dk−s−1
+ /ds−)n/2) if we show∫

Suppψ
ωs+1 ∧ (fn)∗(ddcu1 ∧ ωk−s−2) = O

(
d
n(k−s−1)
+

)
.
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Note that we can assume without loss of generality that u1 ≤ 0 on B. So
ũ1 := max(u1, A log ||z||) defines a plurisubharmonic function in Ck, where
A is chosen large enough so that ũ1 ≡ u1 in a neighborhood of Suppψ and
ũ1 ≡ A log ||z|| near ∂B = (||z|| = 1). We infer∫

Suppψ
ωs+1 ∧ (fn)∗(ddcu1 ∧ ωk−s−2) ≤

∫
Ck

ωs+1 ∧ (fn)∗(ddcũ1 ∧ ωk−s−2)

= A

∫
Ck

ωs+1 ∧ (fn)∗(ωk−s−1)

≤ Ad
n(k−s−1)
+ .

Thus ||dS(1)
n || → 0. One gets similarly ||dS(l)

n ||, ||ddcS(l)
n || → 0 for all l. �

Theorem 3.4. Let f ∈ Aut(Ck) be such that X− ∩ I− = ∅ with I− f-
attracting. Assume dk−s−1

+ < ds−, where s − 1 = dimX−, and T s− is ex-
tremal in the cone of positive closed currents of bidegree (s, s). Let R be a
positive closed current of bidimension (s, s) in Ck. We assume R is smooth
or R = ddcu1∧. . .∧ddcuk−s, where the uj’s are continuous plurisubharmonic
functions. Let ϕ ≥ 0 be a test function. Then

1
dns−

(fn)∗(ϕR) −→ cσs,

where c =
∫
ϕR ∧ T s−.

Proof. It is enough to show convergence on a generating family of test forms
ψαs, with α d, dc-closed and strictly positive and 0 ≤ ψ ≤ 1. For simplicity
we only consider ψωs.

The sequence Sn = d−ns− (f−n)∗(ψωs) is bounded and all cluster points
are closed (proposition 3.3). We compute the mass of Sn. We infer from
theorem 3.1∫

Pk

Sn ∧ ωk−s =
∫

Ck

ψωs ∧ 1
dns−

(fn)∗(ωk−s) −→
∫
ψωs ∧ σs =: Cψ

Let S be a limit point of (Sn). Clearly 0 ≤ S ≤ T s−. Now T s− is extremal
thus S = CψT

s
−, so the sequence (Sn) actually converges towards CψT s−.

Therefore if R is smooth

<
1
dns−

(fn)∗(ϕR), ψωs >=< ϕR,Sn >→
∫
ψωs ∧ σs < ϕR, T s− >,

thus Rn = d−ns− (fn)∗(ϕR) → cσs, with c =< ϕR, T s− >.
When R = ddcu1 ∧ . . . ∧ ddcuk−s, where the uj ’s are merely continuous

plurisubharmonic functions, we need to go step by step using proposition
3.3 (as in the proof of theorem 7.1 in [S 99]). We first show that Sn ∧ ddcu1

converges towards CψT s− ∧ ddcu1. Let θ be a test form of bidegree (k − s−
1, k − s− 1). We have

< Sn ∧ ddcu1, θ >=< ddc(Sn ∧ θ), u1 >

=< Sn ∧ ddcθ, u1 > +2 < dθ ∧ dcSn, u1 > + < θ ∧ ddcSn, u1 > .

The first term converges towards < CψT
s
−∧ddcθ, u1 >=< CψT

s
−∧ddcu1, θ >

since u1 is continuous. The last two terms converge to 0 since ||dSn||,
||ddcSn|| → 0 (proposition 3.3).
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Now set S(j)
n = Sn ∧ ddcu1 ∧ . . . ∧ ddcuj . It follows from proposition 3.3

that ||dS(j)
n ||, ||ddcS(j)

n || → 0. So using that uj+1 is continuous, we get by
induction that S(j)

n → CψT
s
− ∧ ddcu1 ∧ . . . ∧ ddcuj . For j = k − s this yields

Rn → cσs. �

Remarks 3.5.
i) When f is 1-regular, we have k−1−s = r, thus the hypothesis dk−1−s

+ <
ds− is equivalent to dr+ < ds−. Since I− is f-attracting, we have showed that
dr+ ≤ ds− always (proposition 2.9) and dr+ < ds− if ||f(z)|| ≥ [1 + ||z||]1+γ on
∂K+ ∩ ∂K− for ||z|| large (remark 2.10).

ii) When T s− is merely extremal in the cone of positive closed currents S
of bidegree (s, s) which satisfy (f−1)∗S = ds−S, then the same proof shows
convergence of 1

n

∑n
j=1

1

djs
−

(f j)∗(ϕS) towards cσs.

When s = 1 the next theorem asserts T− is extremal. So our assumptions
become I− is f -attracting and d− > d+ if k = 3. The latter is necessary to
insure non-trivial dynamics as follows from example 1.5.

Theorem 3.6. Let f ∈ Aut(Ck) be an algebraically stable biholomorphism.
Then T+, the Green current of f , is extremal in the cone of positive closed
currents of bidegree (1, 1). When r = 1, i.e. dimX+ = 0, then ∂K+ is
connected.

Proof. Let S be a positive closed current of bidegree (1, 1) on Pk such that
S ≤ T+. We want to show that S = α · T+, where 0 ≤ α ≤ 1. Denote by
Sn the trivial extension through (t = 0) of the current dn+(f−n)∗S|Ck . Since
dn+(f−n)∗T+ = T+ in Ck, we have Sn ≤ T+ on Pk.

Set now S′n = d−n+ (fn)∗Sn. Clearly S′n ≡ S in Ck and

S′n ≤
1
dn+

(fn)∗T+ = T+.

Since T+ has no mass on the hyperplane (t = 0), neither have S′n and S,
hence S′n ≡ S on Pk. The next lemma yields S = S′n → α · T+, where
α = ‖S‖ = ‖Sn‖.

When r = 1, T+ has support equal to ∂K+. Hence extremality of T+

implies the connectedness of ∂K+ in Ck. �

Lemma 3.7. Let (σn) be a sequence of positive closed currents of bidegree
(1, 1) and constant mass α ∈ [0, 1]. If σn ≤ T+ then

1
dn+

(fn)∗(σn) → α · T+.

Proof. Set σ′n = T+ − σn, this is a positive closed current of bidegree (1, 1)
and of mass 1−α on Pk. Consider ϕn, ϕ′n potentials of σn, σ′n in Ck+1 such
that G+ = ϕn + ϕ′n and

(1) ϕn(z, t) ≤ α · log ‖(z, t)‖, ϕ′n(z, t) ≤ (1− α) · log ‖(z, t)‖.
Set vn := d−n+ ϕn ◦ Fn. Then (vn) is a sequence of potentials of d−n+ (fn)∗σn.
It follows from (1) that (vn) is locally uniformly bounded from above. We
can extract a convergent subsequence, vnp → v. Since

ϕn = G+ − ϕ′n ≥ G+ − (1− α) log ‖(z, t)‖,
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we get vn ≥ G+−(1−α)d−n+ log ‖Fn(z, t)‖ hence v ≥ α·G+ is not identically
−∞. Now ϕn ≤ α · log ‖(z, t)‖ gives v ≤ α ·G+, so v = αG+. �

Corollary 3.8. Let f ∈ Aut(C3) be such that f−1 is weakly regular (X− ∩
I− = ∅) with I− f-attracting and d− > d+. Let p be a periodic saddle point
of type (1,2) (one eigenvalue has modulus < 1, and two have modulus > 1).
Then the stable manifold W s(p) is dense in the support of σ1.

Proof. Let D be an holomorphic disk through p in the stable direction. Let
˜[D] =

∫
R∗θ[D]dθ, where Rθ are rotations around p in a cone, such that for

each θ in the parameter space, f−n(R∗θD) converges to the stable manifold.
Moreover we can assume that the local potential for ˜[D] is continuous except
at the point p where it has a logarithmic singularity. Let ϕ be a positive
test function. We infer from theorem 3.4

1
dns−

(fn)∗(ϕ ˜[D]) −→ cσ1,

where c =
∫
ϕ ˜[D] ∧ T− (the proof of theorem 3.4 goes through with minor

modification in the presence of an isolated logarithmic singularity).
We claim c > 0. Otherwise G− would be harmonic and non negative on

W s(p) ' C, henceG−|W s(p) ≡ 0 by the minimum principle. NowW s(p) ⊂ K+

which clusters on X− at infinity. Since X− is disjoint from I−, there exists
C > 0 such that

log+ |z| − C ≤ G−(z) ≤ log+ |z|+ C on K+.

Thus G− is unbounded on W s(p), hence non-constant. Therefore c > 0, so
W s(p) is dense in the support of σ1. �

Remark 3.9. When f ∈ Aut(Ck) is as in theorem 3.4 and p is a periodic
saddle point of type (s, k−s), we can show similarly that the stable manifold
of p either is dense in Suppσs orelse does not intersect Suppσs.

4. Invariant measure

Let f ∈ Aut(Ck) with f−1 weakly regular, I− f -attracting and ds− >

dk−s−1
+ . We set µ := σs ∧ T s−, where σs and T s− are the invariant currents

defined by theorems 3.1 and 2.2. The wedge product is well-defined since
T− has locally bounded potential near K+.

We show in section 4.1 that µ is mixing if T s− is extremal (theorem 4.1).
In section 4.2 we give, for some q−regular biholomorphisms, an alterna-
tive construction of µ in terms of a partial Green function. As a simple
application, we show that µ does not charge pluripolar sets (theorem 4.6).

4.1. Mixing.

Theorem 4.1. Let f ∈ Aut(Ck) be such that X− ∩ I− = ∅ with I− f-
attracting and ds− > dk−s−1

+ . Then µ := σs ∧ T s− is an invariant probability
measure with support in the compact set K = {p ∈ Ck/(fn(p))n∈Z is bounded }.

If T s− is extremal then µ is mixing.
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Proof. The current T s− has support in K− = K− by theorems 2.2 and 2.13
and σs has support in K+ by theorem 3.1, therefore µ has support in the
set K = K+∩K− which is compact (theorem 2.13 ). That µ is an invariant
probability measure follows from the corresponding invariance of T s− and σs.

Let ϕ be a test function. Assuming T s− is extremal and ds− > dk−s−1
+ , we

want to show

ϕ ◦ f−nT s− ∧ σs =
1
dns−

(f−n)∗(ϕT s−) ∧ σs → cϕT
s
− ∧ σs,

where cϕ =
∫
ϕdµ.

We can assume without loss of generality that 0 ≤ ϕ ≤ 1. Consider
Rn = d−ns− (f−n)∗(ϕT s−). This is a bounded sequence of positive currents.
Any cluster point R is closed (proposition 3.3), with 0 ≤ R ≤ T s−. So
R = cT s− with

c = lim < Rn,Θ >= lim < ϕT s−,
1
dns−

(fn)∗Θ >,

where Θ is as in the proof of theorem 3.1. Since d−ns− (fn)∗Θ converges
to σs in the sense of positive currents and since T s− = (ddcG−)s with G−

continuous, one can show in the style of proposition 3.3 that

< ϕT s−,
1
dns−

(fn)∗Θ >−→< ϕT s−, σs >= cϕ.

Thus c = cϕ is independent of the cluster point, hence (Rn) actually con-
verges towards cϕT s−.

We now need to show that Rn∧σs −→ cϕT
s
−∧σs. Let ψ be a test function.

Recall from the proof of theorem 3.1 that σs = Θ + ddcS∞. Thus

< Rn ∧ σs, ψ >=< Rn, ψΘ > + < ddc(ψRn), S∞ > .

The first term converges towards < cϕT
s
− ∧ Θ, ψ > since Θ is smooth, the

second can be decomposed as An +Bn + Cn, where

An =< Rn, dd
cψ∧S∞ >, Bn = 2 < dRn, d

cψ∧S∞ >,Cn =< ddcRn, ψS∞ > .

We are going to show that

An −→ cϕ < T s−, dd
cψ ∧ S∞ >= cϕ < T s− ∧ ddcS∞, ψ >,

and Bn, Cn → 0. This will yield the desired mixing property (see [Wa 82]).
Recall from the construction of σs (theorem 3.1) that S∞ = limSN out of

a neighborhood of X+, with SN smooth in Ck. Out of a small neighborhood
of X+, we have

0 ≤ SN − S∞ ≤ C

δN

∑
j≥0

1
δj

(
ddcG+

j+N

)k−s−1
, (])

where G+
j = d−j+ log+ ||f j || ≤ log+ ||z|| is locally uniformly bounded. Since

SN is smooth, we have the desired convergence when replacing S∞ by SN .
So we need to get a control on < Rn, dd

cψ ∧ [S∞−SN ] > that is uniform in
n. Now this is a straightforward consequence of (]),

|< Rn, dd
cψ ∧ [S∞ − SN ] >| ≤ C||ψ||2

δN

∑
j≥0

1
δj

∫
Supp ψ

T s−∧ω∧(ddcGj+N )k−s−1
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and it follows from Chern-Levine-Nirenberg inequalities that the integrals
are all bounded by 1. Therefore

|< Rn, dd
cψ ∧ [S∞ − SN ] >| ≤ C ′

δN
.

This estimate allows us to show that An has the right convergence. We show
similarly thatBn, Cn both converge to 0 using the fact that ||dRn||, ||ddcRn|| →
0 (proposition 3.3). �

Proposition 4.2. Let f ∈ Aut(Ck) be such that f−1 is algebraically stable.
Let ϕ ≥ 0 be a test function in a ball B of Ck. Let R be a positive closed
current of bidimension (s, s) and u1, . . . , ul be continuous plurisubharmonic
functions in B. Set

R(l)
n :=

1
dns−

(fn)∗(ϕR) ∧ ddcu1 ∧ . . . ∧ ddcul.

Then (R(l)
n ) is bounded and ||dR(l)

n || = O(d−n/2− ), ||ddcR(l)
n || = O(d−n− ).

Proof. The proof is very similar to that of proposition 3.3, therefore we
only treat the case l = 0. Recall that d−n− (f−n)∗ω = ddcG−n in Ck, where
0 ≤ G−n ≤ log+ ||z|| + O(1), hence G−n is locally uniformly bounded in Ck.
Therefore

<
1
dns−

(fn)∗(ϕR), ωs >=< ϕR, (ddcG−n )s >≤ ||ϕR||||G−n ||sL∞(B),

by Chern-Levine-Nirenberg inequalities. This shows (R(0)
n ) is bounded.

Now let θ be a (0, 1) test form. We have∣∣∣∣∫ (fn)∗(∂ϕ ∧R) ∧ θ ∧ ωs−1

∣∣∣∣ = ∣∣∣∣∫ ∂ϕ ∧R ∧ (f−n)∗θ ∧ (f−n)∗ωs−1

∣∣∣∣
≤
(∫

R ∧ ∂ϕ ∧ ∂ϕ ∧ (f−n)∗ωs−1

)1/2(∫
R ∧ (f−n)∗

[
θ ∧ θ ∧ ωs−1

])1/2

≤ O(dn(s−1)/2
− )O(dns/2− ).

So ||dRn|| = O(d−n/2− ) → 0. Similarly, one shows ||ddcRn|| = O(d−n− ). �

Recall that the volume-entropy of f is defined as

H(f) = lim inf
n→∞

max
1≤j≤k

log ρj(fn)
n

,

where ρj(f) denotes the degree of f∗L, more precisely

ρj(f) =
∫

Ck

f∗(L) ∧ ωk−j =
∫

Ck

f∗(ωj) ∧ ωk−j ,

where L is a generic linear subspace of codimension j in Pk. Friedland
has shown that H(f) always dominate the topological entropy of f and
conjectured they actually cöıncide (see [Fr 91]).

Lemma 4.3. Let f ∈ Aut(Ck) be such that f−1 is weakly regular and ds− ≥
dk−s−1

+ . Then H(f) = log ds−.



DYNAMICS OF POLYNOMIAL AUTOMORPHISMS OF Ck 23

Proof. The jth dynamical degree of f is defined as λj(f) := lim infn→∞[ρj(fn)]1/n.
Clearly λj(f) = λk−j(f−1) for every 1 ≤ j ≤ k−1 (the kth dynamical degree
is nothing but the topological degree of f which equals 1). Now

λ1(f−1) = d− < λ2(f−1) = d2
− < . . . < λs(f−1) = ds−,

because (f−j)∗(ωl) has no mass at infinity if l ≤ s. On the other hand

λj(f−1) = λk−j(f) ≤ dk−j+ ≤ dk−s−1
+ ≤ ds− for s+ 1 ≤ j ≤ k.

This yields H(f) = log ds−. �

Remark 4.4. We can actually show that the measure µ has maximal entropy

hµ(f) = htop(f) = H(f) = log ds−.

A proof of this fact will appear elsewhere.

4.2. Partial Green function.
We now give an alternative construction of the current σs and the in-

variant measure µ = σs ∧ T s−. It relies on a control of the growth of f on
SuppT r+ which needs to be established (see examples 5.3), but allows us to
get extra information on the invariant measure µ.

Theorem 4.5. Let f ∈ Aut(Ck) be a q-regular biholomorphism such that
δ := ds−/d

r
+ > 1.

1) Assume that on SuppT r+,

(1) ||f(p)|| ≤ C1||p||δ for ||p|| >> 1.

Then δ−nq(fn)∗ωq ∧ T r+ and d−ns− (fn)∗ωk−s converge to the same limit σs
which is a positive closed current of bidimension (s, s). Moreover f∗σs =
ds−σs and

σs = (ddch)q ∧ T r+,
where h = lim δ−n log+ ||fn|| is defined on SuppT r+. The current σs is of
total mass 1 in Ck and has support in K+ if I− is an attracting set for f .

2) Assume moreover that in a neighborhood of I+ ∩ I− on SuppT r+, we
have

(2) ||f(p)|| ≥ C2||p||δ.
Then h is continuous and σs has support in (h = 0).

Proof. Set hn(p) = δ−n log+ ||fn(p)||. It follows from (1) that hn+
∑

j≥n+1C1/δ
j

is decreasing on SuppT r+. Let h be the limit, it clearly satisfies h ◦ f = δh.
We have

Sn =
1
δnq

(fn)∗ωq ∧ T r+ = (ddchn)q ∧ T r+.

Since hn decrease towards h ≥ 0, we get by induction on q that the sequence
Sn has a unique limit σs which satisfies σs = (ddch)q ∧ T r+. Set Rn =
d−ns− (fn)∗ωk−s. Then

Rn − Sn =
1
δnq

(fn)∗ωq ∧
(

1
dnr+

(fn)∗ωr − T r+

)
=
(

1
dn+

(fn)∗ω − T+

)
∧ τn,

where τn is a bounded sequence of positive closed currents of bidimension
(s+1, s+1). Since the potentials of d−n+ (fn)∗ω uniformly converge towards
G+ on compact subsets of Ck, we infer Rn − Sn → 0. The functional
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equation satisfied by σs follows from f∗Sn = ds−Sn+1 (or equivalently from
the invariance of T+ and h ◦ f = δh).

When I− is an attracting set for f , it follows from lemma 2.3 that σs has
support in K+, hence it is of total mass in Ck. Note that we recover in this
case the situation of theorem 3.1.

When the second inequality (2) holds, we get easily

|hn+1 − hn| ≤
c

δn
near I+ ∩ I− on SuppT r+.

So h is continuous in a neighborhood W of I+ ∩ I− on SuppT r+ and there
exists C > 0 such that log+ ||p|| − C ≤ h(p) ≤ log+ ||p||+ C in W .

Condition (2) implies that I+∩I− is an attracting set for f|SuppT r
+
. Denote

by B(I+ ∩ I−) = ∪j≥0f
−j(W ) its basin of attraction. We claim SuppT r+ \

B(I+∩I−) ⊂ K+. Indeed if (fn(p))n≥0 is unbounded, then it cannot cluster
on X− which is attracting for f−1. So it clusters on q ∈ I+ \X− (recall that
SuppT r+ intersects (t = 0) exactly along I+ by theorem 2.2ii). Now the blow
up f(q) of f at q is included in I− (otherwise f−1(f(q) \ I−) = q ∈ X−),
so q is sent by f|SuppT r

+
in I+ ∩ I−. In other words, we have shown the

inclusion I+ \X− ⊂ B(I+ ∩ I−), so forward unbounded orbits on SuppT r+
actually converge towards I+ ∩ I−. Clearly h = 0 on K+ ∩ SuppT r+ and
h > 0 in B(I+ ∩ I−) by the functional equation h ◦ f = δh. Thus h is
continuous since it is upper-semi continuous, non-negative and continuous
in (h > 0) = B(I+ ∩ I−).

It remains to check that σs = (ddch)q ∧T r+ has support in (h = 0) ⊂ K+.
This follows from an argument similar to lemma 2.3, using that I+ ∩ I− is
an attracting set for f|SuppT r

+
with dim(I+ ∩ I−) = q − 1. �

Theorem 4.6. Let f ∈ Aut(Ck) be a q-regular biholomorphism with δ :=
ds−/d

r
+ > 1 which satisfies (1) above. Then µ := σs∧T s− is an invariant prob-

ability measure with compact support in K which does not charge pluripolar
sets.

Proof. Since σs = (ddch)q ∧ T r+ and T s− have locally bounded potentials, it
follows from the Chern-Levine-Nirenberg inequalities (and their generaliza-
tion to the case of pluripositive currents, see [Fa-G 99]) that the measure
µ = σs ∧ T s− does not charge pluripolar sets. That µ is invariant and has
support in the compact set K = K+ ∩K− follows from theorem 4.1. �

Remark 4.7. An argument similar to that of corollary 3.8 shows that any
unstable manifold of dimension k− s intersecting the support of σs is dense
in the support of T s−. The crucial point here is that if ∆ is an unstable
polydisc of dimension k − s, then σs ∧ [∆] is well defined (and non-zero)
since σs = (ddch)q ∧ T r+ has locally bounded potentials.

5. Examples

5.1. The sets X+ and I+.
Let f ∈ Aut(Ck) be an algebraically stable biholomorphism. Recall that

the sequence X+
j is defined inductively by

X+
1 = f((t = 0) \ If ), X+

j+1 = f(X+
j \ If ).
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This is a decreasing sequence of irreducible analytic subsets, thus it is station-
ary and we have denoted by X+ the corresponding limit set. Recall also that
the sequence of indeterminacy sets Ifj is increasing since Ifj = ∪j−1

l=0 f
−l(If ).

We have denoted by I+ the set Ifj0 , where j0 is the first integer such that
X+ = X+

j0
.

When f is 0-regular, it was shown in [S 99] that X+ = X+
1 and I+ =

If = X− is irreducible. This is not so in general.

Example 5.1. Consider f(x, y, z) = (xd + zd + y, zd + x, z). Then f ∈
Aut(C3) with X+

1 = {[x : y : 0 : 0]}, X+
2 = X+ = {[1 : 0 : 0 : 0]} and

If = {[0 : 1 : 0 : 0]}, If2 = I+ = {[x : y : z : 0] / xd + zd = 0}. Note that I+

is not irreducible.

When X+ is an attracting set for f , the dynamics of f in U+, the basin of
attraction of X+, is given by that of f0 := f|X+ : X+ → X+. It is therefore
natural to wonder what kind of pairs (f0, X

+) arise. When X+ ∩ I+ = ∅,
we can find a projective space Pr−1 which is disjoint from I+ and mapped
surjectively by f onto X+. In this case if X+ is smooth, it follows from a
result of Lazarsfeld [L 84] that X+ is isomorphic to a projective space Pr−1

and f0 is an endomorphism of X+ ' Pr−1 of degree d+. However it is easy
to construct examples with X+ non-smooth or, when X+ ∩ I+ 6= ∅, with
X+ smooth but non isomorphic to Pr−1.

5.2. When is I− an attracting set for f ?

5.2.1. The case of q-regular automorphisms.
When f is a 0-regular automorphism of Ck, then I− = X+ is an attracting

set for f (see proposition 2.5.3 in [S 99]). We now consider biholomorphisms
of C3 of the form

f : (x, y, z) ∈ C3 7→ (P (x) +A(y) + az,Q(x) + by, x) ∈ C3,

where P,A,Q are polynomials of degree d,m, d′ and ab 6= 0. We assume
d ≥ d′ > m so that d+ = d, I+ = {[0 : y : z : 0]} and X+ is a point which
does not belong to I+ (hence f is weakly regular). The inverse mapping is
given by

f−1(x, y, z) =
(
z, b−1[y −Q(z)],

1
a
[x− P (z)−A(b−1[y −Q(z)])]

)
.

We assume md′ > d so that d− = md′ > d+, I− = {[x : y : 0 : 0]} and
X− = {[0 : 0 : 1 : 0]}. Note that f is 1-regular.

Lemma 5.2. Assume d ≥ d′ ≥ m+ 1 ≥ 3 and set

Vε :=
{

(x, y, z) ∈ C3 / max(|x|, |y|) > 1
ε

max(1, |z|)
}
.

Then there exists ε0 > 0 such that 0 < ε < ε0 ⇒ f(Vε) ⊂ Vε/2. Therefore
I− is an attracting set for f .

Proof. Pick (x, y, z) ∈ Vε and set (x′, y′, z′) = f(x, y, z).
If |x| = max(|x|, |y|), then

|y′| = |Q(x) + by| ≥ C1|x|d
′ − b|y| ≥ C1

2
|x|d′ ,



26 VINCENT GUEDJ & NESSIM SIBONY

for 0 < ε < ε1. Since d′ ≥ 2, we get |y′| ≥ 2/ε for ε1 small enough. Moreover
|z′| = |x| < ε|y′|/2, so (x′, y′, z′) ∈ Vε/2.

We assume now |y| = max(|x|, |y|) > 1/ε. Suppose first that |x|d′ ≥ |y|1+t
where 0 < t < 1 will be chosen later. In this case

|y′| ≥ C1|x|d
′ − b|x|d′/(1+t) ≥ C1

2
|x|d′ ≥ C1

2
|y|1+t > 2/ε,

for 0 < ε < ε2 << 1. Moreover
|z′|
|y′|

≤ 2
C1|x|d′−1

≤ C ′1
|y|(1+t)(1−1/d′)

.

We choose t > 0 so that d′ > 1 + t > d′/(d′ − 1) This is possible since
we assumed d′ ≥ 3. The first inequality will be used below, the second one
insures (1+t)(1−1/d′) > 1. Therefore |z′| < ε|y′|/2, hence (x′, y′, z′) ∈ Vε/2.

Finally suppose |x|d′ ≤ |y|1+t. We have no clear control on |y′|, how-
ever we can control |x′|. Indeed observe that |P (x)| ≤ C2[max(|x|, 1)]d ≤
C2|y|(1+t)d/d′ . Thus

|x′| = |P (x) +A(y) + az| ≥ C3|y|m − C2|y|(1+t)d/d
′ − ε|a||y| ≥ C3

2
|y|m >

2
ε

for 0 < ε < ε4 << 1, since d(1 + t) < md′. Moreover

|z′|
|x′|

≤ 2|x|
C3|y|m

≤ 2
C3

1
|y|m−(1+t)/d′

<
2
ε
.

The latter inequality follows from our choice of t: we have indeed m− (1 +
t)/d′ > 2− (1 + t)/d′ > 1. This shows (x′, y′, z′) ∈ Vε/2. �

Remark 5.3.
1) More generally, the set I− is f-attracting for mappings of the form

f = (xd + ym + B(x, y) + az,Q(x) + by, x) with appropriate conditions on
the degrees of the mixed terms in B.

2) If the leading term in y depends on x or if m = 1, then some hypothesis
on b has to be made to insure I− is attracting. Consider for instance f =
(xd + xpym + az, xd + by, x), where d > m + p and p ≥ 1. Then f is still
1-regular and I− is f-attracting iff |b| > 1. The proof of this fact is left to
the reader since it is very close to that of lemma 5.4 below. Observe that
d− = md+ p.

5.2.2. Other examples.
Consider f(x, y, z) = (xP (x, y) + az, xd+1 + by, x), where P is a homoge-

neous polynomial of degree d ≥ 1 and ab 6= 0. We assume P (0, 1) 6= 0.
Then f ∈ Aut(C3) is an algebraically stable biholomorphism such that
d− = d2 + d + 1 > d + 1 = d+. Observe that f is not weakly regular
but f−1 is, since I− = {[x : y : 0 : 0]} and X− = {[0 : 0 : 1 : 0]}. The
following lemma completes the assertions of example 1.11.

Lemma 5.4. Fix λ such that 0 < λ < 1/(1 + d) and set

Vε =
{

(x, y, z) ∈ C3 / max(|x|, |y|) > max(
1
ε
,

1
ελ
|z|)
}
.

Assume |b| = 1 + 2t > 1. Then there exists ε0 > 0 such that 0 < ε < ε0 ⇒
f(Vε) ⊂ Vε/(1+t). In particular I− is an attracting set for f .
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Proof. Pick (x, y, z) ∈ Vε and set (x′, y′, z′) = f(x, y, z).
If |x| = max(|x|, |y|) > 1/ε, then |y′| = |xd+1 + by| ≤ |x|d+1/2 ≤ (1 + t)/ε

and
|z′|
|y′|

≤ 2
|x|d

<

(
ε

1 + t

)λ
for 0 < ε < ε1 << 1.

Thus (x′, y′, z′) ∈ Vε/(1+t).
Assume now |y| = max(|x|, |y|) > 1/ε. If |x|d+1 < t|y|, then |y′| ≥

(1 + t)|y| > (1 + t)/ε and

|z′|
|y′|

≤ |x|
(1 + t)|y|

≤ C

|y|1−1/(d+1)
<

(
ε

1 + t

)λ
,

for ε small enough. Similarly if |x|d+1 > 2|b||y|, we obtain (x′, y′, z′) ∈
Vε/(1+t) by considering |y′|. On the other hand if t|y| < |x|d+1 < 2|b||y|,
then |P (x, y)| ≥ C|y|d for some constant C > 0 hence

|x′| ≥ C|x||P (x, y)| − |a||z| ≥ C ′|y|d+1/(1+d) − |a|ελ|y| ≥ C ′′|y|d+1/(1+d).

Therefore |x′| ≥ (1 + t)/ε and |z′| ≤ (ε/[1 + t])λ|x′|. In all cases, we get
(x′, y′, z′) ∈ Vε/(1+t). �

5.3. Growth of f on Supp (T+)r.
We push further our analysis of the mappings f(x, y, z) = (P (x)+A(y)+

az,Q(x)+ by, x) and show that they satisfy the growth conditions of section
4.2.

Proposition 5.5. Let f be as in lemma 5.6. Set δ = d−/d+ = md′/d > 1.
Then there exists C > 0 such that

1
C
||p||δ ≤ ||f(p)|| ≤ C||p||δ for all p ∈ Vε0 ∩ SuppT+,

where ε0 > 0 is chosen small enough.

Proof. It follows from lemma 5.6 that f(Vε) ⊂ Vε/2. Since SuppT+ is com-
pletely invariant, this yields f(Vε ∩ SuppT+) ⊂ Vε/2 ∩ SuppT+. Note that
Vε ∩ SuppT+ is a neighborhood (in SuppT+) of the point I+ ∩ I− = [0 : 1 :
0 : 0]. Thus

Vε∩SuppT+ =
{

(x, y, z) ∈ SuppT+ / |y| >
1
ε

max(1, |z|) and |x| < c(ε)|y|
}
,

where c(ε) → 0 as ε→ 0.
Fix (x, y, z) ∈ Vε ∩ SuppT+ and set (x′, y′, z′) = f(x, y, z). To simplify

notations, we assume P,A,Q are unitary polynomials. We claim |x|d ≥
|y|m/2 if ε is small enough. Otherwise |x′| = |xd+ ym+ l.o.t.+ az| ≥ |y|m/4
and |y′| = |Q(x) + by| ≤ C0|y|md

′/d, hence

|x′|
|y′|

≥ 1
4C0

|y|m(1−d′/d) ≥ 1
4C0

,

contradicting |x′| < c(ε/2)|y′|.
Similarly one gets |x|d ≤ 2|y|m in Vε ∩ SuppT+. This shows |y|δ/C1 ≤

|x|d′ ≤ C1|y|δ for some constant C1 > 0. Since δ = md′/d > 1, this yields
1
C
|y|δ ≤ |y′| = |Q(x) + by| ≤ C|y|δ.
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�

5.4. Various examples.

5.4.1. We give here examples of algebraically stable biholomorphisms f ∈
Aut(C3) such that G+ > 0 on an open set which is attracted by a point of
indeterminacy m ∈ I+ ∩X+.

Proposition 5.6. Consider f(x, y, z) = (yxd+az, yd+1 +bx, y), where ab 6=
0 and d ≥ 3. Set

Wt,R,R′ :=
{
(x, y, z) ∈ C3 /R < |x|, |y| < R′ and |y| < t|x|, |z| < t|y|

}
,

where R′ > R > 1 and 0 < t < 1. Fix ε > 0 such that 1+ε
1−ε < t−1.

Then there exists R0 > 1 such that

R > R0 ⇒ f(Wt,R,R′) ⊂Wtd−1,(1−ε)Rd+1,(1+ε)(R′)d+1 .

In particular f j(Wt,R,R′) → [1 : 0 : 0 : 0] = X+ ∩ I+ and G+(p) > 0 for all
points p ∈Wt,R,R′.

Proof. Pick (x, y, z) ∈ Wt,R,R′ and set (x′, y′, z′) = f(x, y, z). Then |x′| ≤
|y||x|d + |a||z| ≤ (1 + ε)|y||x|d if R is large enough. Similarly |x′| ≥ (1 −
ε)|y||x|d and (1− ε)|y|d+1 ≤ |y′| ≤ (1 + ε)|y|d+1. Therefore

|z′|
|y′|

≤ 1
1 + ε

1
|y|d

< td−1 if R is large enough

and
|y′|
|x′|

≤ 1 + ε

1− ε

|y|d

|x|d
< td−1 since

1 + ε

1− ε
< t−1.

As a consequence f j(Wt,R,R′) → [1 : 0 : 0 : 0] = X + ∩I+ if R ≥ R0 >> 1.
Moreover for any p ∈ Wt,R,R′ , we can find M > 1 such that ||f j(p)|| ≥
M (d+1)j

, thus G+(p) > 0. �

5.4.2. Let f ∈ Aut(C3) be such that X− ∩ I− = ∅ with d− > d+. Assume
I− is an attracting set for f . Note that X− is a point (s = 1) since otherwise
dim If−2 = dim I− = 0 so f would be regular (by lemma 5.4) with d+ =
d2
−, contradicting our assumption. We have constructed in theorem 4.1 an

invariant ergodic measure µ = σ1 ∧ T− of maximal entropy log d−. It is
expected that periodic saddle points of type (1, 2) are equidistributed with
respect to the measure µ. A first glimpse of the importance of these points
was given in corollary 3.8 (resp. remark 4.8), where we showed that the
stable (resp. unstable) manifolds of such points are dense in the support of
σ1 (resp T−). The following example shows that one cannot expect similar
properties for the periodic points of type (2, 1). Indeed we obtain an unstable
manifold of dimension 1 which is closed.

Example 5.7. Consider f(x, y, z) = (xyd + az, xd+1 + by, x), d ≥ 1 and
ab 6= 0. Then f ∈ Aut(C3) with

f−1(x, y, z) =
(
z, b−1[y − zd+1],

1
a
[x− b−dz(y − zd+1)d]

)
.
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We easily get X+ = {[x : y : 0 : 0]}, X− = {[0 : 0 : 1 : 0]}, I+ =
{[0 : y : z : 0]} and I− = {[x : y : 0 : 0]}. Note that X− ∩ I− = ∅ and
I+
∞ = If2 = I+ ∪ {[x : 0 : z : 0]}.
We can check that I− is an attracting set for f if |b| > 1. Since d− =

d2 + d + 1 > d + 1 = d+, we are in the situation described above. Observe
however that 0 is a fixed point with eigenvalues b,

√
a,−

√
a. So 0 is a saddle

fixed point of type (2, 1) if |a| < 1. Since f(0, y, 0) = (0, by, 0), we get that
the unstable manifold of 0 is exactly the line {(0, y, 0)}.

5.4.3. It is interesting to point out that our main results apply to biholo-
morphisms f ∈ Aut(Ck) which are not necessarily algebraically stable. Con-
sider e.g.

f(x, y, z) = (z, y − zd, x+ y2 − 2yzd), with d ≥ 3.

We have If = (y = 0) ∪ (z = 0) and f((t = 0) \ If ) = [0 : 0 : 1 : 0] ∈ If , so
f is not algebraically stable. More precisely f j is never algebraically stable
(j ≥ 1) and the first dynamical degree is given by

Lemma 5.8. λ1(f) = d+
√
d2+4d
2 .

Proof. One easily get by induction on j that the dominating term in f j

arises on the third coordinate as cjyαjzβj , where αj , βj satisfy αj+1 = βj and

βj = d(αj +βj). We infer deg(f j) = c
(
d+
√
d2+4d
2

)j
+ c′

(
d−
√
d2+4d
2

)j
, where

c, c′ are constants with c > 0. This yields λ1(f) = limj→+∞(deg(f j))1/j =
d+
√
d2+4d
2 . �

On the other hand f−1(x, y, z) = (x2d−y2 +z, xd+y, x) is weakly regular
with I− = {[0 : y : z : 0]}, X− = {[1 : 0 : 0 : 0]} (s = 1) and d− = 2d >
d+ = d+ 1. One can check in this case that I− is an f−attracting set, this
insures the existence of the invariant current σ1.

Remark 5.9. It is interesting to note that for every j ≥ 1, f j is not even
conjugated to an algebraically stable biholomorphism. This is clear since

λ1(f j) =
(
[d+

√
d2 + 4d]/2

)j
6∈ N. There are polynomial automorphisms

g of C3 with interesting dynamics such that g is not algebraically stable but
g2 is 0-regular: consider e.g. g(x, y, z) = (xd + ym + z, xd

′
+ y, x) with

d′ > max(d,m). Then g2 is regular, so λ1(g) =
√
λ1(g2) =

√
md′.
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