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ABSTRACT. We study the dynamics of polynomial automorphisms of
C*. To an algebraically stable automorphism we associate positive
closed currents which are invariant under f, considering f as a ratio-
nal map on P*. These currents give information on the dynamics and
allow us to construct a canonical invariant measure which is shown to
be mixing.
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INTRODUCTION

The dynamics of polynomial automorphisms of C? has been studied quite
intensively in the past decade. We refer to the survey articles by Bedford
and Smillie [B-Sm 99] and the second author [S 99] which contain a quite
extensive bibliography. We recall few basic facts.

The algebraic structure of the group Aut(C*) of polynomial automor-
phisms of C* is well understood when k = 2. Any polynomial automorphism
is conjugate either to an elementary automorphism

e(z,w) = (az + P(w), fw + ),

where P is a polynomial, or to a finite composition of Hénon maps h; defined
as follows
hj(z,w) = (Pj(2) — ajw, 2),

where P; are holomorphic polynomials of degree d; > 2. We denote by ‘H
the semigroup generated by Hénon maps (see [F-M 89]).

It is clear that only the elements of H are dynamically interesting. If
h € H is of degree d, then h = ho--- o h is of degree d". One can define
the Green function

1 n
G+(va) = 710g+”h (Z,U})H,

and the associated current T = dd°G™, where d° = i(d — 9)/27. There are
similar objects G~, T_ associated to the inverse map h~! and one can define
a probability measure p := T+ AT_. Here are some important properties of
these objects:

e The function G satisfies the invariance property Gt o f =d-G*. It
is Holder continuous and (Gt =0) = Kt := {p/ (h"(p))n>0 is bounded}.

e The support of T’y coincides with the boundary of K, which also equals
the Julia set of h (i.e. the complement of the largest open set on which the
family (h™) is equicontinuous).

e The current 7', is extremal among positive closed currents in C? and is
-up to multiplicative constant- the unique positive closed current supported
on KT [F-S 94].
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e The measure p is invariant and has support in the compact set 0K,
where K = {p € C? / (h™(p))nez is bounded}.

This type of properties has interesting dynamical consequences: connect-
edness of 9Kt [B-Sm 91], density of stable manifolds in 0Kt [B-Sm 91],
mixing of p [B-Sm 92].

The measure 4 has been studied by Bedford-Smillie-Lyubich [B-Sm 92]
and [B-L-S 93]. They show in particular that p maximise entropy and is
well approximated by Dirac masses at saddle points.

Much less is known in the study of the dynamics of polynomial automor-
phisms of C*¥, k > 3. Indeed the algebraic structure of Aut(C¥), k > 3 is
poorly understood.

Bedford and Pambuccian [B-P 98] have introduced the class of shift-like
maps in C*. A shift like automorphism of type v € {1,...,k — 1} has the
form

f(zla R ,Zk;) = (227 <y Rl P(Zk‘—l/-i-l) - (lZl)-
They introduced the corresponding currents 7y and 7_ and constructed the
invariant measure p = 1% A TFv.

Coman and Fornaess [C-F 99] have studied the Green function of inter-
esting classes of polynomial automorphisms of degree 2 in C3. They study
in particular the rate of escape at infinity of orbits.

In this paper we consider polynomial automorphisms of C* as rational
maps on P¥. The behaviour under iteration of the hyperplane at infinity
plays a central role. Before describing the results we obtain, we first recall
few notions. For more details, we refer to [S 99].

Let f = (fi,...,fr) be a polynomial map in C*. Let d = degf :=
max(deg f;) > 2. We denote by End(C¥) the space of maps of generic rank k.

We denote by z = (z1, ..., 2) the coordinates in C¥ and [z1 : -+ : 2 : t] the
homogeneous coordinates in P*. So the hyperplane at infinity is identified
with (¢ = 0).

We consider the extension f of f to P* as rational map. In homogeneous
coordinates
flz:t] = [Fi(z,t) : - : Fr(z,t) : t9],

where Fj(z,1) = f;(z). The mapping f has an indeterminacy set I which is
an analytic subset of codimension > 2 contained in (¢ = 0). Let I,, denote
the indeterminacy set of f7. When f is an automorphism we denote it’s
indeterminacy set by I*, and I~ denotes the indeterminacy set of f~1.
Similarly d = deg f and d_ = deg f~!.

We will say that f is algebraically stable iff for all n > 0, f*((t = 0)\1,,)
is not contained in I. This is equivalent to the fact that deg f™ = (deg f)™.

Elements of H are algebraically stable. When f is algebraically stable,
one can associate to f a Green function

1
S H + n
G(z) = lim —olog™ [lf"(2)l]-

If we define T' = dd“G, one can show that T is a non zero positive closed
current. More precisely if w denotes the standard Fubini-Study Kéhler form
on P*, then T = lim(f™)*w/d" is a positive closed current on P* of mass one
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which gives zero mass to the hyperplane (¢ = 0) (theorem 1.8.1 [S 99]). So
T = T'|cr has mass one in CF.

From now on we identify f and f. If f € End(C¥) is algebraically ”stable
we define inductively the analytic sets X; by

Xi=f((t=0)\1), Xj1=f(X;\ ).

The sequence is decreasing, X; is non empty because f is algebraically
stable. Hence it is stationary. Let X be the corresponding limit set (when
f € Aut(C*), we denote this set by X*). Replacing f by an appropriate
iterate, we can always assume that X = f((¢ =0) \ I). In the automorphism
case, the notation is X1 if f is algebraically stable and X~ when f~! is
algebraically stable. Observe that X is always contained in the hyperplane
at infinity.

For an algebraically stable endomorphism of C*, we define U the basin of
attraction of X, i.e.

U={zeCk/ lin f(z) € X} and K := C*\ U.

In the first paragraph we explore the first properties of algebraically stable
endomorphism of C*. We show that one can define a Green function G and
prove that (G > 0) C U. In particular U is of infinite Lebesgue measure
and has nonempty fine interior (theorem 1.7).

In general the function G is not continuous (example 1.11) and K C (G =
0) is different from the set Kt of points with bounded forward orbit.

We say that an endomorphism is weakly regular if X NI = (). This
is the case of the elements of H in C2. We show (theorem 2.2) that for
a weakly regular endomorphism (G = 0) = K, 9K N (t = 0) = I and
dim [ 4+ dim X = k — 2. The proof uses heavily the theory of positive closed
currents.

The rest of the paper concerns algebraically stable automorphisms. When
f is such an automorphism, we define U = {2/ lim,, 1 fF(2) € X*},
K* =CF\ U* and

K* ={ze CF/(fF"(2))n>0 is bounded}.

In general K™ is not closed and could be empty (example 1.5). We always
have X+ C I~ and X~ C I'". Chapter 2 of [S 99] is devoted to the study of
regular automorphisms, i.e. automorphisms such that T NI~ = (). Here
we study more general cases and find results that are new even for regular
automorphisms. Let Ty = lim é(f”)*w, T- =lim 2 (f~")*w. Set

r =dim X" + 1, respectively s = dim X~ + 1,

when f (resp. f~!) is algebraically stable.

Assuming that f~! is weakly regular (I~ N X~ = () and that I~ is
attracting for f, we show (theorem 2.13) that K is the complement of the
basin of attraction of I~, that K = K™ N K~ is compact and W5(K) =
K*, WY(K) = K, where W$/v denote the stable and unstable sets. In
particular when f and f~! are both weakly regular without beeing regular
and I~ is f-attracting, then the basin B(IT N1~) of I™ NI~ is not empty.



4 VINCENT GUEDJ & NESSIM SIBONY

When f is an algebraically stable automorphism, the current 77, is ex-
tremal in the cone of positive closed currents of bidegree (1,1) on P* (the-
orem 3.6). This property is crucial to establish dynamical properties of f.
When dim X = 0 and f is weakly regular, then the support of T, is equal
to OK1 and any positive closed current supported on Kt is proportional to
T (theorem 2.4). This implies in particular that KT is connected. When
dim X =7 — 1, the current 77 is supported on K.

In section 3 we construct a dynamically interesting positive closed current
supported on Kt. More precisely if f~! is weakly regular and I~ is f-
attracting then the sequence

1

drs

(f")*(wk_s) ,dimX~ =s5—1,

converges to a positive closed current o supported on Kt (theorem 3.1).
Moreover oy satisfies f*os = d® os. This allows to construct an interesting
invariant probability measure y = o4 AT?. When f is regular then s+r = k,
d® =d} and oy, =T7 [S 99].

We show that when s = 1 (i.e. dim X~ = 0), then any stable manifold
of dimension 1 is dense in the support of o7 (corollary 3.8). We show in
paragraph 4 that the measure y is mixing (theorem 4.1). We also give an-
other construction of os using partial Green function (theorem 4.5). Under
appropriate assumptions, there is a function i on the support of 1" defined
by

1
h(z) = lim(s—nlog+ | f"(2)|], 6 =d2/d > 1.
The function h satisfies the functional equation
ho f(z) =6-h(z)

and describes the rate of escape to infinity in B(I* N 1~). The measure
can be constructed using the function h in that case (theorem 4.6).

In section 5 we give examples where the non trivial hypotheses we make
are satisfied: when is I~ f-attracting (section 5.2), estimates on the growth
of fon KT NK~ (section 5.3).

It is clear that we are concerned with the first steps of the dynamics
of polynomial automorphisms in C¥, k& > 3 and that the subject will be
developed in the future.

We end up this introduction with a list of the most frequently used
NOTATIONS:

z: = (21,...,2;)=canonical coordinates in C*

[z:t]: = [21:---: 2 : t}=homogeneous coordinates in P¥

(t=0): =hyperplane at infinity in P*

End(C*): =set of polynomial endomorphisms f = (fi,..., fx) of C¥
Aut(CF): =set of polynomial automorphisms of C*

deg(f): =degree of f=max;< <y deg(f;) when f € End(C*)

dy: =deg(f) when f € Aut(C*) and d_ = deg(f~!)

algebraically stable: see definition 1.1

weakly regular: see definition 2.1

g-regular: see definition 2.6
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G*(z): =Green function of f € Aut(C*)= lim % log™ || f™(2)]|

G+ (z,t): =homogeneous Green function (G+(z,t) = G (z/t) +log |t|)
T,: =Green current of f (satisfies Ty = dd°G™* in CF)

0 =f*invariant current supported on K+ (see theorem 3.1)

p: =os A T?=invariant measure (section 4)

I'": =indeterminacy set of f={p € (¢t = 0) / f is not holomorphic at p}
XT: =limit set of f at infinity=F*((t = 0) \ Isx)

U+: =basin of attraction of X+t= {p € C*/ lim,,_ 10 f"(p) € X}
Kt: =Ck\ U™t

K*: ={z € CF/(f™"(2))n>0 is bounded } C K+

K: ={z € CF/(f"(2))nez is bounded } C K

re =dim Xt +1

st =dimX~ 41

I's =dim It +1

l: =dimI~ +1

g =dim(ItTNI7)+1

1. ALGEBRAICALLY STABLE ENDOMORPHISMS

Let f € End(CF). We still denote by f the rational extension of f to P,
in homogeneous coordinates F' = (Fy(z,t),..., Fp(z,t),t%) in C**1. Let I
denote the indeterminacy set of f at infinity, this is the set of points [z : 0]
in (¢t = 0) such that Fy(z,0) = --- = Fi(z,0) = 0. Let I, denote the
indeterminacy set of f".

Definition 1.1. We say that f is algebraically stable iff Vn > 0, f*((t =
0)\ I,) is not contained in I.

Let f be an algebraically stable endomorphism of C* of degree d > 2. We
define G(z) = limd"log™ || f™(2)||. The existence of the log-homogeneous
Green function G(z,t) = limd " log||F™(z,t)|| was shown in [S 99]. Tt
satisfies G(z,1) = G(z), G o F(z,t) = dG(z,t) and is not identically —oo.
The current T = dd°G is well defined on P* and satisfies f*T =d - T.

Remark 1.2. One should observe that the notion of algebraically stable is
not tnvariant under conjugacy. It also might happen that f is not alge-
braically stable but f% is (see example 1.4.6.2 in [S 99]). But clearly the
dynamical consequences that can be deduced from the study of T are invari-
ant under conjugacy. When a power of f is algebraically stable, we only
constider iterates of that power. This does not change much the dynamical
behavior.

In this section we show that the set (G > 0) of orbits converging to infinity
with maximal speed is rather big (proposition 1.3) and consists of orbits
attracted by the limit set X of f at infinity (theorem 1.7). In contrast with
the two-dimensional situation, the set K+ of points with bounded forward
orbit is not necessarily closed (example 1.5) and the Green function GV is
not necessarily continuous (example 1.11).
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Proposition 1.3. Let f € End(CF) be an algebraically stable endomor-
phism. Let G denote the Green function associated to f. Then

G
lim sup (2) =

Moreover the set (G > 0) is an F, set, connected and of infinite mea-
sure on any complex line where G is not identically zero. Therefore the set
{z/ lim f"(z) = oo} is of infinite measure.

Proof. The Green current T associated to f does not have mass on the
hyperplane at infinity (¢ = 0) (theorem I1.8.1 p.22 [S 99]). Assume there is
e >0, C' > 0 such that

G(z) <(1—¢)log™ |z| + C.
Then the plurisubharmonic log-homogeneous Green function will satisfy
G(z,t) = log|t| + G(z/t) < (1 — &) max(log|z|,log |t|) + e log|t| + C.

Thus T will have mass at least € on the hyperplane (¢ = 0), a contradiction.
We also know [S 99] that G < log™ |z| + O(1), so we only have to prove that
the lim sup cannot be strictly less than 1.

Assume, for simplicity, that G is not identically zero on the line L =
{(¢,0,...,0) /¢ € C} and G(0) = 1. Let m(r) denote the Lebesgue measure
of the set {¢ / G(re®,0,...,0) > 0}. By submean value property,

1 2w ) 1
1=G(0) < o /. G(re,0,...,0)do < %(longr + C)m(r).
So the measure of {(/G((,0,...,0) > 0} is infinite. It is crucial in this
argument that G is of slow growth. The claim of connectedness of (G > 0)
follows easily from similar statement for subharmonic functions in C not
growing too rapidly, see [H 59]. O

Proposition 1.4. Let f € End(CF). Define
Kt = {z e CF / (f™(2))n>0 bounded }

The set KT is an F, set (not necessarily closed). If f € Aut(C*) and
a = |Jac f| # 1 then KT is of zero or infinite measure, both cases occur.

Proof. For M > 0 define K;; = {z/|f"(2)| < M,n > 0}. Then KT =
U M>0KJ\+/[ so KT is an F, and an increasing union of polynomially convex
sets. The set KT is clearly invariant under f.

When f € Aut(C*), we let A(K) denote the Lebesgue measure of K.
We have A(KT) = |a|?* \(K™). If |a| # 1, this implies that A\(K ™) is zero or
infinite. U

Example 1.5. There are algebraically stable biholomorphisms of C* with
one of the following properties:

1) Kt is empty.

2) K+ is non-empty and non-closed with K+ = C3\UY, where U™ is the
basin of attraction of an attractive fixed point at infinity.
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We consider an algebraically stable biholomorphism of C3 constructed
from a Hénon map in C2. Define for d > 2, h(x,y) = (x%+ay,z). Consider
flz,y,2) = (@ + ay, 2, A) + y + 2),
where A is a polynomial of degree d. We have I™ = {[0 : y : z : 0]},
Xt=f((t=0)\I")=[1:0:a:0], a#0, thus XT NIt =0, hence f is

algebraically stable. Similarly
_ 1 1
f 1(1:,?/, Z) = (y7 E($ - yd)vz - A(y) - 5(1" - yd)))
thus - ={[z:0:2:0]}, X =fY(t=0)\I")=[0:1:aa+1:0] and
1 is also algebraically stable. If (z,,yn) denotes the orbit of (x,y) under
h in C?, then

n—1
fn(xu Y, Z) = (Jjnayna z+ Z(A(:UJ) + J"j—l))'
7=0

Let Kt = {(z,y) € C?/ (zn)n>0 bounded}. It is easy to check that X+ is
an attractive fized point for f. Let UT denote the basin of attraction of X .
Then C3\ UT := Kt = K,' x C. It is known [Fr-M 89] that the orbits
of points in K}J{ cluster on Ky = K}J{ N K,  which is compact in C? If
RA > ¢ > 1 on Kj, then clearly K is empty and in particular f has no
periodic point.

We now show that it is possible to choose the polynomial A so that K+
is dense in KT and KT\ KT is also dense in K*. Let p be a saddle fized
point for h. Assume |a| = |Jf] > 1 and Q(x,y) = A(z) + y vanishes at
p. Let W*(p) be the stable manifold at p, which is dense in K; = 8K;
[B-Sm 91]. Then W#(p) x C is dense in Kt and is contained in K*. Indeed
S o Qs 25 1) < C Xyl — pl < O, where = < 1. If pl s
another saddle fixed point of h where Q(p") # 0, one checks that no point in
Ws(p') x C is in K+. Observe that there is a constant C' such that for any
(z,y,2) € KT one has |f"(z,y,2)| < Cn.

Remark 1.6. [t is easy to check for the previous example that

G*(2,y,2) = Gy (,y).
Observe that (G = 0) = KT might be different from K*. Note also that
deg f = deg f~1

For an algebraically stable endomorphism f of C¥, we define
U:= {z € Cr/ lim f"(2) € X} and K := CF\ U.

Theorem 1.7. Let f € End(C¥) be an algebraically stable endomorphism.
Then
Kc(G=0).

In particular U s of infinite measure and of nonempty fine interior.

Proof. Define ¢ = log[max; |Rj|1/ D], where R; are homogeneous polynomi-
als of degree D such that X = ﬂR;l(O). Since X C (¢t = 0), we can fix
Ry = tP so that if we identify C* with (¢t = 1), we get ¢ = Pick = 0.
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Recall that that the Green function G is the decreasing limit of d~" log || F™||,
where F : Ck*1 — CF*1 is a homogeneous representative of the extension of
f to P* normalized so that ||F(Z)|| < ||Z]|¢. Since d~!log || F|| has positive
Lelong number at every point of 7=1(I), so has G, hence there exists 0 <
v << 1such that G' < 4¢ in a neighborhood of 7~ (I\ B(INX,¢))NOBjy1.
Here B(IN X,e) = {p € P¥ /dist(p, X N I) < e} and By, denotes the unit
ball in C¥+1. Since log||Z|| is smooth outside the origin, we get from the
log-homogeneity of G

(¥) G <9+ (1—7)log||Z||+Cv in 7 }(Vz),

where V. is a neighborhood of I\ B(I N X, ¢) in P,

We can assume ¢ < log||Z||, so the sequence d~"@ o F"™ is uniformly
bounded from above by log ||Z||. Thus we can extract a subsequence which
converges towards a function U which is either identically —oco or plurisub-
harmonic (see [H6 83]). Since ¢ = @cx > 0 we get U # —co. We infer
from the logarithmic growth of ¢ that ¢ = \ij|(ck < G in C*. Now we claim
G <1 on K. Indeed let p € K. If (f™*(p)) admits a bounded subsequence,
then G(p) = ¢¥(p) = 0, therefore we can assume f"(p) — oo. Since p € K,
f™(p) — I'\ X for some subsequence n; — oo. Thus f™i(p) € V. for £ small
and i large enough. Hence (x) yields

1 N 1 | 1 N

Gp) = 2 Go f"(p) < v o 7 (p) + (1= 7)o log™ |1/ (p)| +
hence G(p) < ¢ (p).

We show hereafter that v < (1 — a)log™ ||z|| + C for some constants

C > 0,0 < a < 1. Assuming this we obtain, since K is f-invariant,

1 . 1 . c
G(p) = deOf (p) <(1-— a)d710g+ 11" ()|| + djvfor every p € K,

hence G(p) < (1 — a)G(p), i.e. G(p) = 0.

It remains to show that ¢ < (1 — a)log™ ||z|| + C in C*¥. By a result
of Siu [Siu 74], this is equivalent to say that the current S defined by ¥
on P* has positive mass on the hyperplane at infinity (t+ = 0). Now S =
limd="(f™)*(o), where o is the current defined by ¢. Note that the Lelong
number v(o,q) is positive at every point ¢ € X. It is a well-known (and
simple) fact that Lelong number increase by taking pull-back (see e.g. [Fa
99]). Without loss of generality we can assume f((t =0)\ I) C X, thus

v(f*(o),p) > v(o, f(p)) > 0 at every point p € (t =0) \ I.
Since codimc!; > 2, we infer d~! f*(0) = o’ + [t = 0] for some a > 0. The
invariance f*[t = 0] = d[t = 0] thus yields S > «[t = 0].
We just showed that (G > 0) C U, so proposition 1.3 says that U is of
infinite measure. U

Cv
dn’

Corollary 1.8. Let f € End(CF) be an algebraically stable endomorphism.
The basin of any attractive fized point has complement of infinite measure
and even open in the fine topology. When f is a biholomorphism, such a
basin is biholomorphic to CF.

Proof. Such a basin is contained in C, hence in (G = 0). The set (G > 0) is
open in fine topology and has infinite measure. O
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Remarks 1.9.

i) When X is an attracting set then U is its basin of attraction hence is
open. This happens e.g. when X NI =0 (f is "weakly reqular”) and in this
case U = (G > 0) (see theorem 2.2). Note however that (G > 0) might be
different from U (see example 1.11 below when |b| > 1).

ii) The set X is not necessarily attracting: f(0,y,0) = (0,by,0) in exam-
ple 1.11 below, thus X = {[z :y :0:0]} is not attracting if |b| < 1.

There might be unbounded orbits in K (see example 1.5). However they
have slower growth. Moreover in the biholomorphism case we have the
following

Proposition 1.10. Let f € Aut(CF) be an algebraically stable biholomor-
phism. Assume f~1 is weakly reqular (i.e. X~NI~ =0). Then f(IT\X~) C
I~ and unbounded orbits cluster in (t =0) only on I~.
Proof. Let 2z, — p € I'T\ X~ be such that f(z,) — ¢q. If ¢ ¢ I~, then
2n = 7Y f(2,)) — X, a contradiction. So f(IT\ X~)c I .

Similarly, if z,, = f"(z) — q € (t = 0)\ I, where z € C¥, then z,, | —
f'(q) € X~. Now X~ is an attracting set for f~! since X~ NI~ =0, so
z = f""(zy,) — X, a contradiction. O

We now give an example where G is discontinuous on a thick set of C3.

Example 1.11. Let P(x,y) be a homogeneous polynomial of degree d > 2.
Define f(x,y,z) = (xP(z,y) + 2,2 + by, z). Then

P o) = (5= 2 e - Py - 24 )

If deg, P =d then dy =d+1, d- =d>+d+1land It ={0:y:2:0]},
Xt =TI ={x:y:0:0]}, X ={[0:0:1:0]}. When |b] > 1 then
I~ is an attracting set for f (see lemma 5.8). Consequently the map f~1
is normal in C3, the function G~ is Hélder continuous (theorem 1.7.1 p115
[S 99]) and K~ = {G~ = 0} (recall that a map g is normal at a point p, if
there is a neighborhood V' of p such that Up>og™ (V) N1, =0).

The action of f on X is given by folx : y] = [P(x,vy) : x%]. We choose P
such that the Julia set for fo coincides with P! (take e.g. P(x,y) = (z—2y)?
in which case the map fy is subhyperbolic [C-G 93]). For such a choice we
get EY = (t = 0), where ET denotes the closure of I} := Uj>114;.

Let q=ItNI"=[0:1:0:0]. The preimages of q are dense on the
hyperplane at infinity and hence the log-homogeneous Green function G+ is
equal to —oco on a dense subset of (t = 0). Let p = [xo : yo : 0 : 0] be a
periodic point for fo, it is repelling in one direction and the other eigenvalues
are zero so the stable manifold is two dimensional. The restriction of G+
to W#(p) has to be pluriharmonic as it is the case on any complex manifold
M where fﬁw is equicontinuous (see [F-S 95a]). The local stable manifolds
are graphs over (z,t), we can get a sequence M; of such graphs converging
to a graph My through q. If G+ were continuous then d+|Mj — G~+|M0 and

the function d+|M0ﬁC3 would be pluriharmonic. This is impossible since a
pluriharmonic function on a 2—dimensional shell extends as a pluriharmonic
function in the ball, but we know G*(q) = —occ.
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We get that G+ has a point of discontinuity in any open set intersecting
(t = 0) and actually in any shell of f~7(My). Observe also that the set of
points of discontinuity of GT is totally invariant because GT o f = d, GT.
However since G is a non-negative u.s.c. function, it is continuous at any
point where G vanishes, for example on (0,y,0). Note that {(0,y,0)/y €
C*} is in the basin of attraction UT of X when |b| > 1, thus GT might
vanish in U™T.

When |b| > 1, the set of perodic points in C® is not empty. We also
have in this case that the map f is volume expanding so for any open set
V., Upsof™(V) clusters on (t = 0) = E™. Hence for such a map the set of
normal points is empty.

2. WEAKLY REGULAR ENDOMORPHISMS

In this section we introduce the notions of weakly-regular endomorphism
(definition 2.1) and g—regular automorphism (definition 2.6) and derive
properties of their Green currents (theorem 2.2, proposition 2.9). When
I~ is assumed to be an f—attracting set (a non trivial hypothesis which we
check on some examples given in section 5), we get a good understanding of
the sets KT, K~, K (theorem 2.13).

Definition 2.1. An endomorphism f € End(CF) is called weakly regular
when X N1 =10.

It follows from the definition that a weakly regular endomorphism is al-
gebraically stable. Moreover X is an attracting set for f, i.e. there exists
an open neighborhood V' of X such that f(V) cC V and N;>1f7(V) = X.
It’s enough to compute the derivative of f around X.

Theorem 2.2. Let f € End(CF) be a weakly reqular endomorphism. Set
r=dimc X +1 and ' = dimc I + 1. Then

i) K= (G =0). The Green function G is continuous in C*.

i) T" is supported on OK and OK N (t = 0) = KN (t = 0) = I. The
current T" is of total mass in Ck. For j <r, f*T9 = d/T1.

iii) The numbers r and 1" satisfy I' =k —r so

dime X +dimc I =k — 2.

i) T™ = 0 in CF1, more precisely SuppT™ = 1.
v) When f € Aut(CF), then d’, < d"™".

Proof. We already know K C (G = 0) from theorem 1.7. Let V' be a small
neighborhood of X which does not intersect I. There exists a constant
Cy > 0 such that

log™ |z| — Cy < G(2) <log™ |z| + Cy in V NCE.

Indeed G is bounded near X, so we only use log-homogeneity. Therefore G >
0 in U and it follows from the upper-semi-continuity that G is continuous,
even Hélder continuous in U, since U is a normal component [S 99].

Since X is an attracting analytic set of dimension r» — 1, it follows from
lemma 2.3 below that 7" = 0in U. So 1" is supported on 9K and G-T" =0
in C*, hence T"t! = 0 in CF.
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Since INX =0in (t=0) =P weget (r—1)+ (1" —1)<k—2,s0
r+1' < k. The current T" admits continuous potentials out of I. Since I has
dimension I’ — 1 < k — (r 4 1), the currents 77 are well defined on P* for
j <r+1 (see corollary 3.6 in [F-S 95b]) and satisfy f*T7 = @’T7. Moreover
T™ has no mass on I [Ha-P 75], hence is of total mass in C¥. The current
T+ has support in I. It follows from the support theorem of Federer (see
[Fe 69]) that dim I > k — (r + 1). Consequently r + I’ = k.

We have G < d~'log |F| and 7—*(I) = (F = 0) in C¥+!, hence the current
TH=U+1 has some mass on each branch of I. Therefore TFV+1 = T7+1 ig
an R-cycle whose support is 1. This proves that any point of I is a limit of
points in JK.

Observe that f*(w") has no mass on (¢t = 0) since dim I = k—r —1. Thus
if f € Aut(CF), we get

dl, = frw) AwhT = / WA (Y (R < dE
Ck Ck
(]

Lemma 2.3. Let A C (t = 0) be an analytic subset of dimension a — 1. If
A is attracting for f, then T = 0 in the basin of attraction of A.

Proof. Assume (21 =-+- =2, = 0) N A = () then, in these coordinates,

1
IERT + 2 2
G= lim o log® (T +- +17P).

The convergence is locally uniform in the basin of attraction of A, therefore
T* =0 (see theorem 2.5.2 in [S 99]). O

The rest of the paper concerns polynomial automorphisms. If f € Aut(CF)
is weakly regular, we have just seen that G is comparable to log™ || in U™
and G™ = 0 on K. This allows to show a convergence result towards
T, similar to theorem 2.2.12 of [S 99]. This yields in particular a rigidity
property of KCF:

Theorem 2.4. Assume f € Aut(C¥) is weakly regular.

If there exists a non-trivial positive closed current S of bidegree (1,1) on
P* whose support is contained in KT, then S is proportional to T'y. In that
case r = 1.

Conversely when r =1, T\ is the only positive closed current of bidegree
(1,1) and of mass 1 with support on K.

Example 2.5. Consider f(z,y,z) = (yz¢ + 2,y + 2,9). Then f €
Aut(C3) with X+ ={[z :y:0:0]} and IT = {[z : 0: 2 :0]}. So f is not
weakly regular since Xt NIT ={[1:0:0:0]} # 0. On the other hand
Ny, 2) = (y— 2 2,0 — 2y — 2%H1)9), 50 X~ = {[0:0:1:0]} and
I=={[z:y:0:0]}, hence f~' is weakly regular.

Note that X+ N IT is a (super)attractive fized point for fo = fix+.

Definition/Notations 2.6. Let f € Aut(CF) be an algebraically stable
biholomorphism such that =1 is also algebraically stable. We set

dimXt=r—-1, dmX =s5—1,
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dimIT =0 —-1, dimI- =0l—1, dimItTNI =q—1.
We say that f is q-regular if X* NI+ =( and
codimIT NI~ = codimI™ + codim I~ in (t = 0), with dim(ITNI")=¢—1
So in this case we get the relations
r+l'!=s+l=kandqg+r+s=k.

Remarks 2.7.

i) With the convention dim() = —1, 0-regular biholomorphisms are pre-
cisely the “reqular automorphisms” studied in [S 99]. Observe that f is
q-reqular iff f~1 is q-reqular.

i) If I~ is biholomorphically equivalent to P'=1 (or to any compact com-
plex manifold whose cohomology is one dimensional) and X+t NIT =0, then
X+t and I'T NI~ are disjoint analytic subsets of I~ ~ P! so dim X+ +
dim(ITNI7) <1—2 hence r+q < 1. This yields r +s+q < k if
X NI =0. Now T:H ANT? is a well defined current with support in
ITNI~ (see [F-S 95b] and theorem 2.2) so dim(ITNI~7) >k — (r+s+1)
by the support theorem [Fe 69], i.e. v+ s+ q > k. So in this case the con-
dition codimu—oy It NI~ = codimy—g) I'* 4 codimy—gy I~ of definition 2.6
is automatically satisfied. We don’t know any example of an automorphism
f € Aut(CF) such that f and f~' are weakly reqular and for which It NI~
does not have the expected dimension.

Examples 2.8.

i) Consider f(z,y,2) = (z¢+ ay? + z,2¢ +y,z). Then f € Aut(C?) with
Yoy, 2) = (z,y— 24 0 — 2 —aly—2%%). If a # 0 we obtain ITNI~ = ()
so f is O-reqular, while f is 1-regular if o = 0.

ii) Consider f(x,y,z,w) = (h(z,y),9(z,w)), where h,g : C* — C? are
Hénon mappings. Then f € Aut(C*) is 0-regular if deg(h) = deg(g) and
2-regular if deg(h) # deg(g).

Proposition 2.9. Let f € Aut(CF) be a g-reqular biholomorphism. Define
G = max(G*,G7) and let T be the current defined by G on P*. Then

i) (dd°G)™+s = 77+ = (T )" A (T_)® in CF ;

i) Suppr st =1t NI ;

iii) the current 775 = (T)" A (T-)* is of total mass in C ;

w) OKtNIOK-—N({t=0)=I"nNI".

v) If I~ is an attracting set for f, then d, < d° < d(fr.

Proof. Note that G and G~ are continuous (theorem 2.2). Since (dd°G™)" =
0in Ut = (G* > 0) and (dd°G™)* =01in U~ = (G~ > 0) (by theorem 2.2
again), the first claim is a consequence of lemma 2.12 below.

Since f is g-regular, I N I~ has dimension ¢ — 1 = k — (r + s) — 1.
So 77, which clusters only on It NI~ in (t = 0), has total mass in C¥
(see [Ha-P 75]). The current 7""% is supported on Kt N K~ = (G = 0),
therefore (dd°G)"™**1 = 0 in C*. Since (t = 0) \ [T C U* and (t =
0)\ I~ C U™, it follows that 775! is supported on I* N I~. Now G <
max(d ! log |F|,d-"log|F~1[) in C**1, so 7"+s*! has some mass on each
branch of IT N I~. Therefore every point of IT™ NI~ is a limit of points in
KT NoK~.
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Assume [~ is f-attracting. Then there exists C' > 1 such that 1 +
[|f(2)|| = C[1+]|z]|] for every point z in a small neighborhood V of I~ with
f(V) cc V. Thus the function log™ || f(2)|| grows at least like log™ ||z|| in
V. We recall herebelow (lemma 2.11) a comparison principle for plurisub-
harmonic functions with logarithmic growth. Since log || f|| > log(1 + ||z])
on the support of T AT? and since T'] AT puts no mass on (¢ = 0), one
gets by lemma 2.11

1< /C T AT A frb——s — /Ck<f-1)*(Tj_ AT) A0 = d Jdr..

There might be equality as follows from remark 1.6. The last inequality
follows from theorem 2.2.v: X NI~ =0 =d% < d’_fs. O

Remark 2.10. When ¢ =0 (i.e. f is a regular automorphism), then I~ =
X is always an attracting set for f and we get d'. = d* (see also proposition
2.3.2 in [S 99)).

When q > 1, then OK™ N 0K~ is not compact. We give examples in
section 5.2 such that I~ is an attracting set for f. Observe that if || f(p)|| >
C(1+|pl])Y for [|p|| >> 1 on OKT NOK~, then since T NT? is supported
on OKT NOK~, we get with the same proof that d* /d', > ~. This is of
interest when v > 1 (see remark 3.2).

Lemma 2.11 (T 83). Let S be a positive closed current of bidimension
(s,8) in C*. Let u,v be locally bounded p.s.h. functions in a neighborhood of
Supp S in Ck. Assume v > 0 and u(z) < v(z) + o(v(2)), ||z|| — +o0. Then

S A (ddu)® < S A (ddv)®.
Ck Ck
The corresponding lemma when s = k is is given in [T 83] p322. The

proof is an integration by part argument.

Lemma 2.12. Let u,v be continuous non-negative plurisubharmonic func-
tions in C* such that (dd°u)” = 0 in (u > 0) and (dd°v)®* = 0 in (v > 0).
Set w = max(u,v). Then

(ddw)™s = (dd°u)" A (ddv)*.

Proof. Fix € and consider u. = max(u + ¢,v), v = max(u,v + €). Since
ue, V. decrease toward w as € — 0, we have
(ddue)" A (ddve)® — (dd“w)" .

We can assume without loss of generality that r > s. We have (ddv)" =0
in (v>u+e¢e)C (v>0). Moreover v. = v + ¢ near (v =u+¢) and v > 0,
therefore (dd“v.;)® = (dd‘v)® = 0 near (v = u + ¢). Thus (ddu.)" A (dd“v:)®
has support in the open set (v < u + €), hence

(ddug)" A (ddv.)® = (ddu)" A (ddve)®.
Now Supp(dd®u)” C (u = 0), thus ve = v 4 € near Supp(ddu)”, this yields
(ddue)” A (ddve)® = (ddu)” A (ddv)®.

(]
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Theorem 2.13. Let f € Aut(C*). Assume f~1 is weakly reqular (I"NX~ =
0) and I~ is an attracting set for f. Then the following holds

i) =1 is normal on C¥ and K~ = K~ = (G~ = 0) is closed in C*.

i) Kt = CF\ B(I7) is closed in C*, where B(I™) denotes the basin of
attraction of I- ; K¥N(t=0)=X"=0K+tn(t=0).

i) K := Kt N K~ is a compact polynomially convex subset of C* which
contains the nonwandering set of f.

w) W(K)=K", W'(K)=K".

Proof. That I~ is attracting for f means the existence of a neighborhood V'
of I™ in P* such that f(V'\ Iy) CC V and Nj>1 f/(V \ I};) = I~. It follows
that if x, — = € C*, f~"(x,) cannot cluster on I~, hence f~! is normal.
Since an unbounded orbit for f~! cannot approach I~, it is necessarily
in U™, the basin of X~ which is attracting for f=' since - N X~ = 0.
Therefore K~ = K~ = C*¥\ U~ is closed. The fact that K~ = (G~ = 0)
follows from theorem 2.2.

Let x € CF\ B(I7). If f"(x) clusters at infinity, it has to avoid a
neighborhood of I~ hence f~" is well defined and = = f~"i(f™ (x)) is
arbitrarily close to X~, a contradiction. So K+ = CF\ B(I7) and it is
closed. Since (t =0)\ I is sent by f into X+ C I~ which is attracting for
f, KT can cluster only on I". If p € I\ X~ then the blow-up f(p) of f at
the point p is an analytic subset of (¢ = 0) which is included in I, otherwise
fY(f(p)\ I7) = p should belong to X . Therefore p € B(I~) and K+ can
only cluster on X~. On the other hand, we will show hereafter (theorem
3.1) that there exists a non zero positive closed current oy of bidimension
(s,s) with support in KT -here dim X~ = s — 1. Moreover o, A [t = 0] is
a well defined current of bidimension (s — 1, s — 1) (see theorem 3.1) which
has support on X ~. Since X~ is irreducible, we have X~ C Supp o, hence
OK™ clusters at every point of X .

Similarly K~ clusters on I~ hence K = K+ N K~ is compact. The
polynomial convexity of K follows from the fact that the sequence H,, :=
max(log™ || f™[|,log™ || f~"||) is bounded exactly on K.

We now prove that the stable set W*(K) := {z € C* / lim,,_, 100 f(2) €
K} equals K. Indeed for x € K+, G~ (f"(z)) = d-"G~ () so if zy =
lim "% (z) then G~ (z9) =0. Thusxg € K- NKT =K, ie. WS(K)=KT".

Similarly let € K—. Assume f~"i(z) — y. For any neighborhood U of
y, f(U) contains x, so y ¢ B(I~). Therefore y € KT and W%(K) = K.

O

Remark 2.14. The hypotheses of the theorem are satisfied in example 1.8
when |b| > 1. We give other examples in section 5.

Corollary 2.15. Assume f, f~! are weakly reqular and I~ is f-attracting.
Then either f is a reqular automorphism (i.e. ITNI~ =0), or KT\ K+
is not empty. In the latter case, the basin B(IT N 17) contains KT\ KT,
hence f is not normal.

Proof. We know from theorem 2.2 that 9KC* N (t = 0) = I'". On the other
hand K+ N (t = 0) C X~ by theorem 2.13. Since X~ NI~ = (), this yields
either X~ = I" (hence f is regular) or X~ # It hence OK* \ KT is not
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empty. Proposition 1.10 implies that orbits in Kt \ KT cluster only on
It NI~ hence K\ KT is in the basin BT NI )of ITNI". O

3. CURRENTS SUPPORTED BY K7

In this section we construct, under suitable assumptions, a canonical cur-
rent o which is invariant by f and supported on K+ (theorem 3.1). This
shows in particular that KT is non empty (compare with example 1.5).
When 7% is an extremal point in the cone of positive closed current of bide-
gree (s, s) on P¥, we show a strong convergence result towards o, (theorem
3.4) which can be thought of as a "mixing property” of o5. We prove the
extremality of 7_ (theorem 3.6), so everything works fine when s = 1: we
obtain as a consequence the density of stable manifolds of dimension 1 in
the support of o1 (corollary 3.8). It is an interesting open problem to show
extremality of currents like 7%, s > 1.

Theorem 3.1. Let f € Aut(CF) be such that f~' is weakly reqular and I~
is f-attracting. Then K+ does not carry a non zero positive closed current
of bidimension (s +1,s + 1), where dim X~ = s — 1.

However there is a positive closed current os of bidimension (s,s) sup-
ported on K+ which satisfies f*o, = d* o, and

/ 08/\wk_$:/ os AWk = 1.
Pk Ck

More precisely, if d* > d{fs_l, then

1 n\x/, k—s
(YR — o,

in the weak sense of currents. Moreover for any smooth closed form © ~
wk—s;
1
dTLS

(f")"(©) — os.

Proof. Assume S is a non zero positive closed current of bidimension (s +
1,5+ 1) with support in K+. Then S A [t = 0] is well defined and non zero
(this follows from [F-S 95] p 412), since K+ N (t = 0) = X~ is of dimension
s — 1. The current S A [t = 0] has support in X~ (theorem 2.13) and is of
bidimension (s, s), this is impossible because dim X~ = s — 1.

Define R, = &= (f")*(w*~%). The currents R, are positive, closed, of

bidimension (s, s) with mass

1
/ansz/ N (P ) = 1.
Cck Cck =

The last equality holds because dim I~ = k—s—1 (theorem 2.2) so (f~")*(w?)
has no mass on I~. We still denote by R, the trivial extension to P
Since I~ is an attracting set for f, any cluster point of (R,,) has support in
K+ = CF\B(I™) (we can argue as in lemma 2.3 since I~ is attracting and of
dimension k —s— 1) and is of total mass 1 in C* since dim X~ = s—1. If we
take a limit point of a Cesaro sum, we get the invariant candidate because
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f* is continuous on currents in C*, and the limit current cannot have mass
on X~ whose dimension is only s — 1.

Consider now © a smooth closed form cohomologous to w*~* whose sup-
port does not intersect I—. This is possible since dim/~ =k — s — 1, so we
can find a linear subspace L of dimension s in P* which does not intersect
I~ and regularize the current of integration [L]. Define

1 *
91 = E(f 9)|Ck

The current ©; is closed and positive in C*. The mass of O, is
1 1
O1 AW = — @ AT () = 7 | en (f ) (w) =1
)
since I~ NSupp © = (). We still denote by ©1 = d_° f*© the trivial extension
to P*. Observe that since f~1((t =0)\ I~) C X, we get
SuppO; N(t=0)C X"

So ©; is cohomologous to © and it is smooth in P* \ X ~, hence
1 *
Ef © = 0+ dd°(9),

where S is a current of bidegree (k —s — 1,k — s — 1) which is smooth in
P*\ X~. Replacing S by S — Aw*=*~1, we can assume further that S < 0
in P*\ V, where V is a small neighborhood of X~. We can iterate previous
equation and get

()70 = O 4 ddc(5,)
where .
e
_ Z CT
is a decreasing sequence of negatlve currents in P*\ V| since we can assume

f~YV) cc V. Fix C > 0 so that —Cw*=*~1 < § <0, hence

vk (oh—s—1y < L (riye
djs(f)( ) < dj_(f)()

in P¥\ V. Then

_ k—s—1
_ CX 11
7=0 +

in PF\ V, where 6 := d* /d""*7' > 1. This shows (S,,) converges towards
a current S, in P*\ V, hence in P¥ \ X~ since V was an arbitrarily small
neighborhood of X~. Thus

I (f") O =0+dd°S, — 05:= 0 +dd°S
in P¥\ X~. Now o, extends trivially through X~ for dimension reasons
(Harvey’s theorem). There follows from the discussion above that the in-
variant current o, has support on K+ and is of total mass 1 in C*.
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Observe that if ©' is another smooth form which is cohomologous to ©,
then ©® = ©+dd«a, where « is a smooth form of bidegree (k—s—1,k—s—1).
Now ||(f)*(@)]] = O(d1**™), so d="(f")*(a) — 0 since d* > d*~*~1.
Therefore d_"*(f™)*(©') — o5, in particular

1 n\x/, k—s
(@) = o

O

Remarks 3.2.

i) When f is 0-regular, we have dl_fl_s < dlj__s =d* . In this case I~ =
X is f-attracting and o5 = T_lffs (see [S 99]).

i) When f is q-reqular with 6 = d° /d’. > 1, then we could consider for
os a cluster point of the sequence N ! Zjvzl TP NS (fI)*wh=T=5. This will
allow us to construct an invariant measure which does not charge pluripolar
sets in section 4.

The next result uses Cauchy-Schwarz inequality in the style of Ahlfors-
Beurling (see [A 73]) to show convergence of truncated currents towards
closed currents (see [B-Sm 91] and [S 99] for similar results in the context
of complex dynamics).

Proposition 3.3. Let f € Aut(CF) be such that d> > d"°7' for some
integer s < k — 1. Let ¢ > 0 be a test function with support in a ball B of

Ck. Let uq,...,u be continuous plurisubharmonic functions in B. Then
1 —n\*
SW = (1) (") Addoun A A ddw

is a bounded sequence of positive currents. Moreover Hng)H, ||dch,gl)|] — 0.
So any cluster point is a closed positive current of bidegree (s +1,s +1).

Proof. We first consider the sequence S, := SO = d_"(f")* (Yw?®). Tt is
clearly bounded. Let 6 be a (0, 1) test form. We have

/(f—”)*(c‘w Aw*) A AWET /&p AWS A () 0N (fr) whst

1/2
< (/ w* NP A A (f")*wk_5_1> (/ W A () [9 ABO A w"f‘s‘lD
< O(d =) 0(dm 1),
The mass ||dSy|| of the currents dS,, thus satisfies
[dSnll = O((d~"/d2)"?) — 0.

Similarly one gets ||dd°S,|| = O((d% 71 /d*)") — 0.

Consider now S = d”"(f")* (Yw?®) A dd°u;. We can use exactly the
k—s—2

1/2

same inequalities, replacing w* =1 by dd°u; A w
1dS || = O((d5 =51 /d=)"/2) if we show

/ OSTA (fn)*(ddcul A wk—s—?) -0 (dzzr(k—s—l)> .
Supp ¥

. So we have again
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Note that we can assume without loss of generality that ;1 < 0 on B. So
7 := max(u1, Alog||z||) defines a plurisubharmonic function in C*, where
A is chosen large enough so that u; = u; in a neighborhood of Supp ¢ and
Uy = Alog||z|| near 0B = (||z|| = 1). We infer

/ ws+1 A (fn)*(ddcul A wk—s—2) < / ws+1 A (fn)*(ddcdl A wk—s—Q)
Supp ¢ Ck

_ A/ ws—l—l A (fn)*(wk—s—l)
Ck
< Adi(k_s_l).
Thus HdS,(ll)H — 0. One gets similarly HdS,(Ll)H, HddCS,(ll)H —0foralll. O

Theorem 3.4. Let f € Aut(CF) be such that X~ NI~ = O with I~ f-
attracting. Assume di_s_l < d*, where s — 1 = dim X, and T?® is ex-
tremal in the cone of positive closed currents of bidegree (s,s). Let R be a
positive closed current of bidimension (s, s) in C*¥. We assume R is smooth
or R =dd“ui\...Adduy_s, where the u;’s are continuous plurisubharmonic
functions. Let ¢ > 0 be a test function. Then

1 n\*
() (pR) — cov,

where ¢ = [ @R NTS.

Proof. 1t is enough to show convergence on a generating family of test forms
Ya’, with a d, d°-closed and strictly positive and 0 < ¢ < 1. For simplicity
we only consider Yw?®.

The sequence S, = d_"°(f™")*(¢w®) is bounded and all cluster points
are closed (proposition 3.3). We compute the mass of S,,. We infer from
theorem 3.1

Sy Awk=s = Yw® A i(]"”)*(wk_s) — /W,Z)ws Nos=:Cy
Pk Cck dms

Let S be a limit point of (S,). Clearly 0 < S <T%. Now T* is extremal
thus S = CyT?, so the sequence (S,) actually converges towards CyT?.
Therefore if R is smooth

(f")"(¢R),Yw® >=< pR, Sp >— /Ws Nos < pR, T >,

1
< s
thus R, = dZ"°(f")*(¢R) — cos, with ¢ =< R, T* >.

When R = dduy A ... A dd°up_s, where the u;’s are merely continuous
plurisubharmonic functions, we need to go step by step using proposition
3.3 (as in the proof of theorem 7.1 in [S 99]). We first show that S, A dd“uy
converges towards CyT" A dd®u;. Let 6 be a test form of bidegree (k — s —
1,k —s—1). We have

< S, ANdduq,0 >=< ddc(Sn AN 0), uy >
=< S, Add®O,ur > +2 < dO ANd°Sy,u1 > + < O Add°Sy,,ur > .

The first term converges towards < CyT?® Add°0,u; >=< CyT° Ndduy,0 >
since up is continuous. The last two terms converge to 0 since ||dS,]|,
||ddS,|| — O (proposition 3.3).
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Now set S,(Lj) = Sp Adduy A ... A dduj. Tt follows from proposition 3.3
that ||dS§L])|\, ||ddCS’T(L])|| — 0. So using that wj; is continuous, we get by
induction that 5’7(1]) — CyT? Ndduy A ... Ndduj. For j = k — s this yields
R, — cog. O
Remarks 3.5.

i) When f is 1-reqular, we have k—1—s = r, thus the hypothesis d{fl_s <
d® is equivalent to d', < d®. Since I” is f-attracting, we have showed that
d, < d* always (proposition 2.9) and d', < d* if || f(2)|| > [1 + ||z][]*™ on
OKT NOK™ for||z|| large (remark 2.10).

ii) When T* is merely extremal in the cone of positive closed currents S
of bidegree (s,s) which satisfy (f~1)*S = d* S, then the same proof shows

convergence of Py dis (f)*(pS) towards cos.

When s = 1 the next theorem asserts T_ is extremal. So our assumptions
become [~ is f-attracting and d_ > dy if K = 3. The latter is necessary to
insure non-trivial dynamics as follows from example 1.5.

Theorem 3.6. Let f € Aut(CF) be an algebraically stable biholomorphism.
Then Ty, the Green current of f, is extremal in the cone of positive closed
currents of bidegree (1,1). When r = 1, i.e. dimX™T = 0, then OKT is
connected.
Proof. Let S be a positive closed current of bidegree (1,1) on P* such that
S < Ty. We want to show that S = o - T, where 0 < a < 1. Denote by
Sy, the trivial extension through (¢ = 0) of the current d'} (f~")*S|cx. Since
d" (f~)*Ty = T4 in C*, we have S,, < T on P*.
Set now S, = d;"(f™)*Sy. Clearly S, = S in C* and
1 *
Sy < o ()T =T
+
Since T} has no mass on the hyperplane (¢ = 0), neither have S/ and S,
hence S/, = S on P*. The next lemma yields S = S/, — « - Ty, where
a=[|S] = [Snll
When 7 = 1, T has support equal to OKT. Hence extremality of 7"
implies the connectedness of 9K in CF. O

Lemma 3.7. Let (0,) be a sequence of positive closed currents of bidegree
(1,1) and constant mass « € [0,1]. If o, < T then

d%; (f")*(on) — - T

Proof. Set o/, = Ty — oy, this is a positive closed current of bidegree (1,1)
and of mass 1 —a on P¥. Consider ,,, ¢/, potentials of oy, ¢/, in C**! such
that Gt = ¢, + ¢}, and

(1) on(z,t) <a-logll(z,t)], ¢,(z1) < (1-a)-log|(z1)].

Set vy, := d ", o F". Then (v,) is a sequence of potentials of d, " (f")*oy,.
It follows from (1) that (vy) is locally uniformly bounded from above. We
can extract a convergent subsequence, v,, — v. Since

on=G" — gy > G~ (1-a)log]| (= 1),
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we get v, > GT—(1—a)d " log ||F"(z,t)|| hence v > a-G™ is not identically
—00. Now ¢, < a-log||(z, )| gives v < a-GT, so v =aG™". O

Corollary 3.8. Let f € Aut(C3) be such that =1 is weakly regular (X~ N
I~ =0) with I~ f-attracting and d— > d. Let p be a periodic saddle point
of type (1,2) (one eigenvalue has modulus < 1, and two have modulus > 1).
Then the stable manifold W#(p) is dense in the support of ;.

Proof. Let D be an holomorphic disk through p in the stable direction. Let
[D] = [ R3[D]df, where Ry are rotations around p in a cone, such that for
each 6 in the parameter space, f~"(R;D) converges to the stable manifold.
Moreover we can assume that the local potential for [D] is continuous except
at the point p where it has a logarithmic singularity. Let ¢ be a positive
test function. We infer from theorem 3.4

() (PlD) — eon,

where ¢ = [ ¢[D] A T_ (the proof of theorem 3.4 goes through with minor
modification in the presence of an isolated logarithmic singularity).

We claim ¢ > 0. Otherwise G~ would be harmonic and non negative on
W#(p) ~ C, hence G|_WS » =0 by the minimum principle. Now W#(p) C K+
which clusters on X~ at infinity. Since X~ is disjoint from I~ there exists
C > 0 such that

log" 2| —C <G (2) <logt|2|] +C on K.

Thus G~ is unbounded on W#(p), hence non-constant. Therefore ¢ > 0, so
W*#(p) is dense in the support of o;. O

Remark 3.9. When f € Aut(CF) is as in theorem 3.4 and p is a periodic
saddle point of type (s,k—s), we can show similarly that the stable manifold
of p either is dense in Suppos orelse does not intersect Suppos.

4. INVARIANT MEASURE

Let f € Aut(CF) with f~! weakly regular, I~ f-attracting and d* >
di_s_l. We set p := o5 AT?, where o5 and T? are the invariant currents
defined by theorems 3.1 and 2.2. The wedge product is well-defined since
T_ has locally bounded potential near K.

We show in section 4.1 that p is mixing if 7% is extremal (theorem 4.1).
In section 4.2 we give, for some g—regular biholomorphisms, an alterna-
tive construction of p in terms of a partial Green function. As a simple
application, we show that p does not charge pluripolar sets (theorem 4.6).

4.1. Mixing.

Theorem 4.1. Let f € Aut(C*) be such that X~ NI~ = O with I~ f-

attracting and d® > dljfsfl. Then p:= o5 N'T? is an invariant probability

measure with support in the compact set K = {p € C*/(f™(p))nez is bounded }.
If T? is extremal then p is mixing.
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Proof. The current T has support in K~ = K~ by theorems 2.2 and 2.13
and o, has support in K by theorem 3.1, therefore p has support in the
set K = KTN K~ which is compact (theorem 2.13 ). That x is an invariant
probability measure follows from the corresponding invariance of T° and os.

Let ¢ be a test function. Assuming 7% is extremal and d°® > di_s_l, we
want to show

po fT"T? Nog = %(f_”)*(cpr) Nos— c T2 Nos,
where ¢, = [ @dpu.

We can assume without loss of generality that 0 < ¢ < 1. Consider
R, = d_"™(f~™)*(¢T?). This is a bounded sequence of positive currents.
Any cluster point R is closed (proposition 3.3), with 0 < R < T%. So
R = cT? with

1

c=1lim < R,,0 >=lim < ¢T?, Pz

(f")"e >,

where © is as in the proof of theorem 3.1. Since d_"*(f")*© converges
to o5 in the sense of positive currents and since T° = (dd°G~)° with G~
continuous, one can show in the style of proposition 3.3 that

1
) ans
Thus ¢ = ¢, is independent of the cluster point, hence (R,) actually con-
verges towards c, 1.

We now need to show that R, Aoy — ¢, 1% Nos. Let 1 be a test function.
Recall from the proof of theorem 3.1 that o, = © + dd®Sy. Thus

< Ry Nog, ) >=< Rp, YO > + < dd°(VRy), Soo > .

The first term converges towards < ¢, 7% A ©,9 > since © is smooth, the
second can be decomposed as A,, + B,, + C,,, where

Ap =< Ry, dd“YASs >, B, =2 < dR,,dYASs >,Cp =< dd°Ry,, ¥ Ss0 > .
We are going to show that
Ap — ¢y, < T2, ddY NS >=cp < T2 Ndd®See, ) >,

and By, C,, — 0. This will yield the desired mixing property (see [Wa 82]).

Recall from the construction of o (theorem 3.1) that So, = lim Sy out of
a neighborhood of X+, with Sy smooth in C*. Out of a small neighborhood
of XT, we have

C 1 . k—s—1
0< Sy = 5w < 5y > (AGLy) o ()
Jj=0

< oT?

(f")"O >—< oT?, 04 >= cy.

where G;’ =d?log™ || f7]] < log*||z]| is locally uniformly bounded. Since
SN is smooth, we have the desired convergence when replacing S, by Sn.
So we need to get a control on < R, dd“y A [Seo — Sn| > that is uniform in
n. Now this is a straightforward consequence of (),

C 1
|< Bn, dd“) A [Soo — Sn] >| < W > 5 / T3 AwA(dd°G oy )F =571
>0 Supp
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and it follows from Chern-Levine-Nirenberg inequalities that the integrals
are all bounded by 1. Therefore
Cl
|< Ry, ddt A [Seo — SN] >| < N
This estimate allows us to show that A,, has the right convergence. We show
similarly that B,,, Cy, both converge to 0 using the fact that ||dR,||, ||dd°R,|| —
0 (proposition 3.3). O

Proposition 4.2. Let f € Aut(CF) be such that f~' is algebraically stable.
Let ¢ > 0 be a test function in a ball B of Ck. Let R be a positive closed
current of bidimension (s,s) and uq,...,u; be continuous plurisubharmonic
functions in B. Set

RY .= —(f™*(pR) Add°uy A ... A ddu;.

1
4
Then (RY) is bounded and ||dR|| = O(d="'?), ||dd*RV|| = O(d=").

Proof. The proof is very similar to that of proposition 3.3, therefore we
only treat the case | = 0. Recall that d_"(f")*w = dd°G;, in CF, where

0 < Gy <log"t|z|| + O(1), hence G, is locally uniformly bounded in C*.
Therefore
1

< dTLS

(f")(pR),w* >=< @R, (dd°G},)* >< |l@R[[||Gy, [|7(5)

by Chern-Levine-Nirenberg inequalities. This shows (R%O) ) is bounded.
Now let 6 be a (0,1) test form. We have

/(f")*(agp/\R) NGNS = ’/&p/\R/\ (fTYON(F) st

< ([raverdoniye) " ([rauy pagne)”

< o@d"“ V" odmr?.

So ||[dRy|| = O(d:n/g) — 0. Similarly, one shows ||dd°R,|| = O(d_"). 0

Recall that the volume-entropy of f is defined as

l . n
H(f)=liminf max 7ng](f ),
n—co 1<j<k M

where p;(f) denotes the degree of f*L, more precisely
pi(f) = | FI)ANST = [ ) nwh,
Ck Ck
where L is a generic linear subspace of codimension j in P*. Friedland

has shown that H(f) always dominate the topological entropy of f and
conjectured they actually coincide (see [Fr 91]).

Lemma 4.3. Let f € Aut(CF) be such that =1 is weakly reqular and d* >
dE*7t. Then H(f) = logd®.
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Proof. The j* dynamical degree of f is defined as A;(f) := lim infnaoo[pj(f")]l/".
Clearly \j(f) = Ag—;(f71) for every 1 < j < k—1 (the k' dynamical degree
is nothing but the topological degree of f which equals 1). Now
MY =d <X(fH=d<...<X(fH=d,
because (f~7)*(w') has no mass at infinity if / < s. On the other hand
N = () <diT <db i <d® fors+ 1< <k
This yields H(f) = logd®.. O

Remark 4.4. We can actually show that the measure p has maximal entropy

hu(f) = huop(f) = H(f) = logd?.
A proof of this fact will appear elsewhere.

4.2. Partial Green function.

We now give an alternative construction of the current o5 and the in-
variant measure p = o A T°. It relies on a control of the growth of f on
Supp 7'} which needs to be established (see examples 5.3), but allows us to
get extra information on the invariant measure u.

Theorem 4.5. Let f € Aut(CF) be a q-regular biholomorphism such that
§i=d° Jd} > 1.
1) Assume that on SuppT?,

é
(1) f @I < Gillpll® for [Ipll >> 1.
Then §~™(f")*w? AT and dZ"*(f")*w*=% converge to the same limit o
which is a positive closed current of bidimension (s,s). Moreover f*o, =
d® os and
= (dd°h)* NTY,

where h = lim 6" log™ || f"|| is defined on SuppT?. The current oy is of
total mass 1 in C* and has support in K+ if I~ is an attracting set for f.

2) Assume moreover that in a neighborhood of I™ NI~ on Supp T}, we
have

2) [1f @Il = Callpll*.

Then h is continuous and o has support in (h = 0).

Proof. Set hy,(p) = 6 "log™ || f™(p)]|. It follows from (1) that S Cy /8
is decreasing on SuppT’y. Let h be the limit, it clearly satisfies h o f = 6h.
We have

S = %(f”)*wq ANTY = (ddhy,)? NTY.
Since h,, decrease towards h > 0, we get by induction on ¢ that the sequence
S, has a unique limit o, which satisfies o, = (dd°h)? AT}. Set R, =
d="(f")*w*=5. Then

R =50 = gyt (getmrer =11 ) = (GrUmye = 1i) Am

where 7, is a bounded sequence of positive closed currents of bidimension
(s+1,5+1). Since the potentials of d;"(f")*w uniformly converge towards
Gt on compact subsets of C¥, we infer R, — S,, — 0. The functional
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equation satisfied by oy follows from f*S,, = d* S, 1 (or equivalently from
the invariance of Ty and ho f = dh).

When 1~ is an attracting set for f, it follows from lemma 2.3 that o4 has
support in K T, hence it is of total mass in C¥. Note that we recover in this
case the situation of theorem 3.1.

When the second inequality (2) holds, we get easily

[Pt — hn| < 5% near I NI~ on SuppT7.

So h is continuous in a neighborhood W of I NI~ on Supp T} and there
exists C' > 0 such that log™ ||p|| — C < h(p) <log™ ||p|| + C in W.

Condition (2) implies that ITNI~ is an attracting set for JiSupp 7 Denote
by B(IT NI7) = Uj>of 7 (W) its basin of attraction. We claim Supp 77 \
B(ITNI7)c K*. Indeed if (f™(p))n>0 is unbounded, then it cannot cluster
on X~ which is attracting for f~!. So it clusters on ¢ € IT\ X~ (recall that
Supp T intersects (¢t = 0) exactly along I by theorem 2.2ii). Now the blow
up f(q) of f at g is included in I~ (otherwise f~1(f(¢)\I7) =q € X°),
so q is sent by f|SuppT_T_ in It N I~. In other words, we have shown the
inclusion I\ X~ C B(IT NI~), so forward unbounded orbits on Supp T7}
actually converge towards I N I~. Clearly h = 0 on K N Supp7? and
h > 0 in B(I* N I7) by the functional equation h o f = dh. Thus h is
continuous since it is upper-semi continuous, non-negative and continuous
in(h>0)=B(I"nI").

It remains to check that os = (dd°h)? ATY has support in (h =0) C K.
This follows from an argument similar to lemma 2.3, using that 1T NI~ is
an attracting set for figupp 7y with dim(ITNI~)=q—1. O

Theorem 4.6. Let f € Aut(CF) be a q-reqular biholomorphism with § :=
d® /d'y > 1 which satisfies (1) above. Then p := osAT? is an invariant prob-
ability measure with compact support in K which does not charge pluripolar
sets.

Proof. Since o5 = (dd°h)? AT} and T have locally bounded potentials, it
follows from the Chern-Levine-Nirenberg inequalities (and their generaliza-
tion to the case of pluripositive currents, see [Fa-G 99]) that the measure
= os AN'T? does not charge pluripolar sets. That p is invariant and has
support in the compact set K = K™ N K~ follows from theorem 4.1. O

Remark 4.7. An argument similar to that of corollary 3.8 shows that any
unstable manifold of dimension k — s intersecting the support of o5 is dense
in the support of T®. The crucial point here is that if A is an unstable
polydisc of dimension k — s, then o5 A [A] is well defined (and non-zero)
since o, = (dd°h)? NTY. has locally bounded potentials.

5. EXAMPLES

5.1. The sets X+ and IT.
Let f € Aut(C*) be an algebraically stable biholomorphism. Recall that
the sequence X;’ is defined inductively by

X =f((t=0)\1Iy), X}y = f(X; \ ).
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This is a decreasing sequence of irreducible analytic subsets, thus it is station-
ary and we have denoted by X the corresponding limit set. Recall also that
the sequence of indeterminacy sets Iy; is increasing since I; = U{:_Ol FHIp).
We have denoted by I the set [ fio, Where jo is the first integer such that
XtT=X ;g :

When f is O-regular, it was shown in [S 99] that X+ = X" and I =
Iy = X~ is irreducible. This is not so in general.

Example 5.1. Consider f(z,y,2) = (2% + 2% + y,2% + 2,2). Then f €
Aut(C3) with X7 = {[zx :y :0: 0]}, Xo = Xt ={[1:0:0:0]} and
Ir={0:1:0:0]}, I;o =I" ={[z:y:2:0] /2 + 2% =0}. Note that I'"
is not irreducible.

When X is an attracting set for f, the dynamics of f in U™, the basin of
attraction of X, is given by that of fo := fix+ : XT — XT. It is therefore
natural to wonder what kind of pairs (fo, X ) arise. When X NI =0,
we can find a projective space P"~! which is disjoint from I+ and mapped
surjectively by f onto X . In this case if X is smooth, it follows from a
result of Lazarsfeld [L 84] that X+ is isomorphic to a projective space P"~1
and fy is an endomorphism of X+ ~ P"~! of degree d,. However it is easy
to construct examples with X non-smooth or, when X NI # (), with
X smooth but non isomorphic to P" 1.

5.2. When is I~ an attracting set for f 7

5.2.1. The case of q-reqular automorphisms.

When f is a 0-regular automorphism of C¥, then I~ = X is an attracting
set for f (see proposition 2.5.3 in [S 99]). We now consider biholomorphisms
of C3 of the form

fi(x,y,2) € C s (P(z) + Ay) + az,Q(z) + by, z) € C°,
where P, A, Q are polynomials of degree d,m,d and ab # 0. We assume
d>d >msothat dy =d, IT ={[0:y:2:0]} and X is a point which
does not belong to It (hence f is weakly regular). The inverse mapping is
given by
_ _ 1 _
P ) = (507 = QI e - PG) - A0~ - QD)

a

We assume md' > d so that d_ = md > dy, I = {[x : y : 0: 0]} and
X~ ={[0:0:1:0]}. Note that f is 1-regular.

Lemma 5.2. Assumed >d >m+1> 3 and set
1
Voim {0n2) € € max(el, ) >~ max(1,J:) |

Then there exists g > 0 such that 0 < e < &9 = f(Vz) C V.j2. Therefore
1~ is an attracting set for f.
Proof. Pick (z,y,2) € Ve and set (2,4, 2') = f(x,y, 2).
If || = max(|[, [y[), then
y C /
Y| = |Q(x) + by| > Chla|” —bly| > %!wld,
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for 0 < e < 1. Since d’ > 2, we get || > 2/¢ for £; small enough. Moreover
2| = |z] <ely'l/2, s0 (2", ¢/, 2") € Vepa.
We assume now |y| = max(|z|,|y|) > 1/e. Suppose first that |z|¢ > |y|'t*
where 0 < ¢t < 1 will be chosen later. In this case
12 Crlaf? — /00 > Dyt > Do s 9
for 0 < € < g9 << 1. Moreover
Z_ 2 G
ly/| = Cylz|¥—1 = |y|(A+D(A=1/d)"
We choose ¢ > 0 so that d > 1+t > d'/(d" — 1) This is possible since
we assumed d’ > 3. The first inequality will be used below, the second one
insures (1+¢)(1—1/d") > 1. Therefore |2'| < e|y[/2, hence (z', 3/, 2") € V5.
Finally suppose |z|% < |y[***. We have no clear control on |y/|, how-
ever we can control |z/|. Indeed observe that |P(z)| < Cy[max(|x|,1)]? <
Cyly| D4/ Thus

2

m / C3 m
2] = [P(x) + A(y) + az| = Csly|™ = Caly| "0 — elally] > P |y/™ > -

for 0 < e <eyq << 1, since d(1 +t) < md'. Moreover
\z’|< 2|z| < 2 1 <2
|1:/| - C3’y|m ~ Oy |y‘m—(1+t)/d/ P

The latter inequality follows from our choice of ¢: we have indeed m — (1 +
t)/d" >2— (1+1t)/d > 1. This shows (2',y',2') € V5. O

Remark 5.3.

1) More generally, the set I~ is f-attracting for mappings of the form
f=('+y™+ B(z,y) + az,Q(x) + by, ) with appropriate conditions on
the degrees of the mized terms in B.

2) If the leading term in y depends on x or if m = 1, then some hypothesis
on b has to be made to insure [~ 1is attracting. Consider for instance f =
(% + 2Py™ + az,x? + by, x), where d > m +p and p > 1. Then f is still
1-regular and I~ is f-attracting iff |b] > 1. The proof of this fact is left to
the reader since it is very close to that of lemma 5.4 below. Observe that
d_ =md+ p.

5.2.2. Other examples.

Consider f(z,vy,2) = (zP(x,y) + az, 247! + by, x), where P is a homoge-
neous polynomial of degree d > 1 and ab # 0. We assume P(0,1) # 0.
Then f € Aut(C?) is an algebraically stable biholomorphism such that
d_. =d*>+d+1>d+1 = d,. Observe that f is not weakly regular
but f~!is, since I- = {[z :y:0:0]} and X~ = {[0:0:1:0]}. The
following lemma completes the assertions of example 1.11.

Lemma 5.4. Fiz A such that 0 < X\ < 1/(1+d) and set

1 1
Vo= { (00.2) € €/ max(fal ) > max(2, 12D |

Assume |b| =1+ 2t > 1. Then there exists e > 0 such that 0 < € < g9 =
F(V2) C V4. In particular I~ is an attracting set for f.
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Proof. Pick (z,y,2) € Ve and set (2,y/,2') = f(x,vy, 2).
1F o] = masx([z], ly]) > 1/e, then Jy/] = [e#+1 + by] < [ /2 < (14 )/

and \

! 2 €

@g—d< for 0 <e<ep << 1.
'l ~ Ja] 1+t

Thus (2,9, 2") € V/(144)-
Assume now |y| = max(|z|,|y|) > 1/e. If |2|"1 < t|y|, then |y/| >
(I+1¢)|yl > (1+1t)/e and

[Edl E c (=Y

'~ Ayl D L)
for ¢ small enough. Similarly if |z|*t > 2|b||y|, we obtain (2/,y/,2') €
V./(1+¢) by considering [3/|. On the other hand if tly| < |z|*Tt < 2[b]|y],
then |P(z,y)| > C|y|? for some constant C' > 0 hence

] 2 Cla| P(a,9)| = lalle] > Clyl /0D — Jaley] > C|y| 41/ 0+,
Therefore |2/| > (1 4 t)/e and |2'| < (¢/[1 + ) |2’|. In all cases, we get
',y 2") € Voyuq)- 0

5.3. Growth of f on Supp (7).

We push further our analysis of the mappings f(z,y, z) = (P(z)+ A(y) +
az,Q(x)+ by, x) and show that they satisfy the growth conditions of section
4.2.

Proposition 5.5. Let f be as in lemma 5.6. Set § =d_/dy = md'/d > 1.
Then there exists C > 0 such that

1
Sl <@ < Cllpll° for all p € Ve, 0 Supp T,
where €9 > 0 is chosen small enough.

Proof. Tt follows from lemma 5.6 that f(Vz) C V5. Since Supp 7’ is com-
pletely invariant, this yields f(Vz N Supp7}) C V.o N SuppTy. Note that
V. N Supp Ty is a neighborhood (in Supp 7T';) of the point It NI~ =[0:1:
0:0]. Thus

1
VeNSupp Ty = {(a:,y, z) € Supp T4 / |y| > - max(1, |z|) and |z| < c(a)]y\},

where ¢(e) — 0 as € — 0.

Fix (z,y,2z) € V2N Supp Ty and set (z',y',2') = f(x,y,2). To simplify
notations, we assume P, A, are unitary polynomials. We claim |z|? >
ly|™ /2 if ¢ is small enough. Otherwise |2/| = |z? 4 y™ + Lo.t. +az| > |y|™/4
and |y/| = |Q(x) + by| < Coly|™ /%, hence
2y 1 ma-a/g 5 L

ly'| — 4Co ~ 4Gy’
contradicting |2'| < ¢(g/2)|y/|.

Similarly one gets |z| < 2|y|™ in V. N SuppTy. This shows |y|°/C; <
|z|?" < C1]y|® for some constant C; > 0. Since § = md'/d > 1, this yields

1
5|y\‘s < |y| = |Q(z) + by| < Cly|°.
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5.4. Various examples.

5.4.1. We give here examples of algebraically stable biholomorphisms f &
Aut(C?) such that Gt > 0 on an open set which is attracted by a point of
indeterminacy m € I N X .

Proposition 5.6. Consider f(x,y, z) = (yz?+az,y*T +bx,y), where ab #
0 and d > 3. Set

WuR,R’ = {(xaya Z) € (CB/R < |$’, ‘y| < R/ and |y’ < t‘x|7 |Z’ < t|y|}7

where R > R>1and 0 <t < 1. Fize > 0 such that%%z <t 1
Then there exists Ry > 1 such that

R>Ry= f(Wt,R,R’) C Wtd—l7(1,€)Rd+17(1+€)(R/)d+1.

In particular f7(Wypr) —[1:0:0:0 =X+t NI" and Gt (p) > 0 for all
points p € Wi g Rrr.

Proof. Pick (z,y,2z) € Wyrr and set (z/,9/,2") = f(z,y,2). Then |2/| <

lyl|lz|¢ + |al|z| < (1 + ¢)|y||z|® if R is large enough. Similarly |2/| > (1 —

e)|yllz|? and (1 —&)[y|¢™ < |y/| < (1+¢)|y|¢T!. Therefore

Ed 1 1
<

Y| ~ 1+elyl?

< t471if R is large enough

and

| _L+elyl® a0 € _

= < —= <t <t .

2] S 1=z since T——
As a consequence f/(Wygp)—[1:0:0:00 =X +nITif R > Ry >> 1.
Moreover for any p € Wi g g, we can find M > 1 such that ||f7(p)|| >
M@+ “thus G*(p) > 0. O

5.4.2. Let f € Aut(C?) be such that X~ NI~ = () with d_ > d,. Assume
I~ is an attracting set for f. Note that X~ is a point (s = 1) since otherwise
dimIy—> = dim I~ = 0 so f would be regular (by lemma 5.4) with d; =
d? , contradicting our assumption. We have constructed in theorem 4.1 an
invariant ergodic measure y = o1 A T_ of maximal entropy logd_. It is
expected that periodic saddle points of type (1,2) are equidistributed with
respect to the measure p. A first glimpse of the importance of these points
was given in corollary 3.8 (resp. remark 4.8), where we showed that the
stable (resp. unstable) manifolds of such points are dense in the support of
o1 (resp T-). The following example shows that one cannot expect similar
properties for the periodic points of type (2, 1). Indeed we obtain an unstable
manifold of dimension 1 which is closed.

Example 5.7. Consider f(x,y,z) = (zy® + az, 2™ + by,z), d > 1 and
ab# 0. Then f € Aut(C3) with

P ) = (507 = #4401 = by - 24 )
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+:

We easily get XT = {[x :y : 0:0]}, X= ={0:0:1:0]}, I
=0 and

{I0:y:2:0]} and I ={[x:y:0:0]}. Note that X~ NI~
I =Ip=I"U{z:0:2:0]}.

We can check that 1~ is an attracting set for f if |b| > 1. Since d_ =
d*>+d+1>d+1=d,, we are in the situation described above. Observe
however that 0 is a fized point with eigenvalues b, \/a, —/a. So 0 is a saddle
fized point of type (2,1) if |a] < 1. Since f(0,y,0) = (0,by,0), we get that
the unstable manifold of 0 is exactly the line {(0,y,0)}.

5.4.3. It is interesting to point out that our main results apply to biholo-
morphisms f € Aut(C*) which are not necessarily algebraically stable. Con-
sider e.g.

f(x,y,2) = (z,y — 2% 2+ 92 — 2y2%), with d > 3.
We have Iy = (y =0)U (2 =0) and f((t=0)\1If) =[0:0:1:0] € Iy, so
f is not algebraically stable. More precisely f7 is never algebraically stable
(j > 1) and the first dynamical degree is given by

Lemma 5.8. \(f) = ¢=v/d+4d ”%2+4d.

Proof. One easily get by induction on j that the dominating term in f7
arises on the third coordinate as c;y® 2%, where o, B satisfy aj 11 = B; and

B; = d(aj+ B3;). We infer deg(f7) = ¢ (d+7 W)J +c (dfi Vf“‘d)], where

¢,c are constants with ¢ > 0. This yields A\;(f) = lim; ., (deg(f7))"/7 =
d+Vd?+4d 0
2
On the other hand f~!(xz,y, 2) = (22 —y% + 2, 2%+, x) is weakly regular
with I- ={[0:y:2:0]}, X" ={[1:0:0:0]} (s=1)and d_ = 2d >
dy+ = d+ 1. One can check in this case that I~ is an f—attracting set, this
insures the existence of the invariant current oy.

Remark 5.9. It is interesting to note that for every j > 1, f7 is not even
conjugated to an algebraically stable biholomorphism. This is clear since

M(f7) = ([d—l— Vd? +4d]/2>] & N. There are polynomial automorphisms

g of C3 with interesting dynamics such that g is not algebraically stable but

g2 is O-regular: consider e.g. g(z,y,2z) = (x% + y™ + z,2% + y,x) with

d' > max(d, m). Then g2 is reqular, so M\1(g) = \/M1(g%) = Vmd'.
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