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0. Introduction

The study of the (long-term) behavior of the Kéhler—Ricci flow on mildly singular
varieties in relation to the Minimal Model Program was undertaken by J. Song and
G. Tian [29,30] and it requires a theory of weak solutions for certain degenerate parabolic
complex Monge-Ampeére equations modeled on:

C n
Z—f—kqb:logwd% (0.1)
where V is volume form and ¢ a t-dependent Kéhler potential on a compact Kéhler
manifold. The approach in [30] is to regularize the equation and take limits of the so-
lutions of the regularized equation with uniform higher order estimates. But as far as
the existence and uniqueness statements in [30] are concerned, we believe that a zeroth
order approach would be both simpler and more efficient.

There is a well established pluripotential theory of weak solutions to elliptic complex
Monge-Ampeére equations, following the pioneering work of Bedford and Taylor [2,3] in
the local case (domains in C™). A complementary viscosity approach has been developed
only recently in [23,17,34,18] both in the local and the global case (compact Kéhler
manifolds).

Surprisingly no similar theory has ever been developed on the parabolic side. The most
significant reference for a parabolic flow of plurisubharmonic functions on pseudoconvex
domains is [20] but the flow studied there takes the form

99 — (dagyy i 02)
ot
which does not make sense in the global case. The purpose of this article, the second of
a series on this subject, is to develop a viscosity theory for degenerate complex Monge—
Ampere flows of the form (0.3).

This article focuses on solving this problem on compact Kéhler manifolds, while its
companion [19] concerns the local case (domains in C™). More precisely we study here
the complex degenerate parabolic complex Monge—Ampere flows

P HEOTR) (1 3) — (wy + ddpy)™ = 0, (0.3)
where

o T €]0,+o0];
e w=w(t,x) is a continuous family of semi-positive (1,1)-forms on X,
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o F(t, z,7) is continuous in [0, T[x X x R and non-decreasing in r,
e u(t,z) > 0 is a bounded continuous volume form on X,
o ¢:Xr:=[0,T[xX — R is the unknown function, with ¢; := (¢, ).

Our plan is to adapt the viscosity approach developed by P.L. Lions et al. (see [25,14])
to the complex case, using the elliptic side of the theory which was developed in [17]. It
should be noted that the method used in [30] is a version of the classical PDE method
of vanishing viscosity which was superseded by the theory of viscosity solutions.

We develop the appropriate definitions of (viscosity) subsolution, supersolution and
solution in the first section, and connect these to weak solutions of the Kéhler—Ricci flow
(normalized or not).

As is often the case in the viscosity theory, one of our main technical tools is the
global comparison principle. We actually establish several comparison principles in the
second section, in particular the following:

Theorem A. Assume t — w; is non-decreasing or more generally reqular in the sense of
Definition 2.5. If ¢ (resp. ¥) is a bounded subsolution (resp. supersolution) of the above
degenerate parabolic equation then

max(p — ) < max(p(0, 2) — ¥(0,2))+,

zeX

with the notation a; = max(a,0), given a a real number.

We do not reproduce here the rather technical Definition 2.5 and refer the reader to
section 2 instead. It is enough to record here that the condition is satisfied in all the
situations arising from the Kéhler—Ricci flow with singularities.

In the third section we specialize to the complex Monge-Ampeére flows arising in
the study of the (normalized) Kéhler—Ricci flow on mildly singular varieties, assuming
F(t,z,¢) = ap, and

p(z,t) = @ f(z, t)dV (z),

where f > 0 is a positive continuous density and u is quasi-plurisubharmonic function
that is exponentially continuous (i.e. such that e* is continuous).

We construct barriers at each point of the parabolic boundary and use the Perron
method to eventually show the existence of a viscosity solution to the Cauchy problem:

Theorem B. Let pg be a continuous wy-plurisubharmonic function on X and assume F, p
are as above. The Cauchy problem for the parabolic complex Monge—Ampére equation with
initial data o admits a unique viscosity solution p(t,x); it is the upper envelope of all
subsolutions.
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We describe applications to the Kéahler—Ricci flow on varieties with a definite first
Chern class in the fourth section, showing in particular a generalization of Cao’s theo-
rem [8]:

Theorem C. Let Y be a Q-Calabi—Yau variety and Sy a positive closed current with
continuous potentials representing a Kdihler class o € HY(Y,R). The Kdihler-Ricci flow

th
—— = —Ric(w

ot ()

can be uniquely run from Sy and converges, as t — +o00, towards the unique Ricci flat
Kdhler—Einstein current Sxg in o.

We similarly handle the case of canonical models:

Theorem D. Let Y be a canonical model, i.e. a general type projective algebraic variety
with only canonical singularities such that Ky is nef and big and Sy a positive closed
current with continuous potential representing a Kdihler class o € HV1(Y,R). The nor-
malized Kahler—Ricci flow

8wt
—— = —Ric(wt) —w
ot (we) —we
can be uniquely run from Sy and exists for all time. Moreover w; has continuous potentials
on RT x Y and converges, as t — 400, towards the unique singular Kdhler-Einstein

metric Sxg on'Y.

The convergence is here uniform at the level of potentials. The existence of Sk is due
to [16], while the continuity of its potentials follows from the elliptic viscosity approach
of [17].

We also show that the weak Kahler—Ricci flows considered by Song and Tian [30]
(when the measure p is sufficiently regular) coincide with ours, this yields in particular
the global continuity of the corresponding potentials which was not established in [30].

We conclude by proposing a (discontinuous) viscosity approach to understanding the
behavior of the Kéhler—Ricci flow over the flips. This requires to extend our results
allowing for discontinuous densities, a promising line of research for the future. We plan
to come back to that question in a forthcoming work.

We learnt of the possibility to use viscosity solutions in the present context via a hint
in [9] where no attempt to fully justify this technique was made.

1. Complex Monge-Ampére flows on compact manifolds
1.1. Geometrical background for Complex Monge—Ampére flows

Let X be a n-dimensional compact complex manifold and n = dim¢(X).
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The sheaf Z)lgl of closed (1,1)-forms with continuous potential is, by definition, the
quotient sheaf Zy' := C%/PHx of the sheaf C} of real valued continuous functions
on X by its subsheaf of pluriharmonic functions. Given a section of Z;gl represented
by a cocycle (¢5)sep where ¢5 € C°(Ug,R) and U = (Ug)gep is covering of X, the
currents dd®¢s defined on each Ug glue into a closed current of bidegree (1,1) on X.
Global sections of Z)lgl form the background geometry in the study of degenerate complex
Monge-Ampére equations in the global case [16].

It is straightforward to formulate a parabolic analog. Let T" be positive real number
and consider the manifold with boundary X7 := [0, T[xX and denote by C%_ the sheaf
of continuous functions on Xrp. Denote by PH x,. /i1 C C%,, the sheaf of continuous real

valued local functions whose restriction to each X; := {t} x X & Xrisa pluriharmonic
real valued function.

Say a germ of real valued function on X7 is of class C? if it is of class C'' admitting
continuous second order partial derivatives in the X direction.

Definition 1.1. A family of closed real (1,1)-forms with continuous local potentials w =
(wt)eepo, 7] is a global section of the sheaf Z)léi/[o.T[ = C%,./PHxyr /0.1

A continuous family of closed real (1,1)-forms w = (w¢)sepo,7] is a global section of
the sheaf COZ;(’;/[O’T[ = C;i/P’HXT/[O,T[.

It is straightforward to see that there is a covering 4 = (Ug)gep of X such that, for
every w a global section of the sheaf Z)l(’;;/R = C%T /PHx, /r, W0, (U, is represented by
5 € CO([0, T[xUg, R) such that ®gp = dg — ®g € CO(Upp:) satisfies 0P g5 = 0 and
conversely such a cochain (®g)gep defines a global section of Z)l(i J[0,T]" The covering 4
will be fixed throughout the article for technical reasons but our results will not depend
on this choice.

We have a natural map Z)lfi/[o,T[ — (i)« 2" hence for every t € [0,T], w defines a
closed real (1,1)-form with continuous potentials w; by the prescription:

(> we = dd@ply s HO (X Z3L 0 ) = HO(X, 2X)

and, taking the Bott Chern cohomology class {w;} of w;, we get a map
{=}: H'(Xr, 23] o) = Hpo(X,R) = HY(X, PHx)

such that t — {w:;} is a continuous H}g’é(X ,R)-valued function. The resulting
map HO(XT,Z)I(;/[O T[) — C°([0, T, Hg’é(X, R)) is surjective. On the other hand,
1,1 1,1
H (X7, C’OZXT/[O)T[) maps onto C'([0,T[, H5(X,R)).
Let us remark that the previous definitions make sense for normal complex spaces.
However, for the formulation of the flows to be given in the next paragraph, it is necessary

to assume smoothness.
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1.2. Complex Monge—Ampére flows
Definition 1.2. The complex Monge—Ampeére flow associated to (w, u, F) where:

o we HY (X7, C’OZ)l(’;/[O () is a continuous family of closed real (1,1)-forms on X in
the sense of Definition 1.1,
o 0< u(t,z) € COX, QT;(’:/[O () is a continuous family of volume forms on X,

e F:[0,T[xX x R — R is continuous and non-decreasing in the last variable,

is the following parabolic equation:
(w+ ddeg)" = e HF(Em0) ), (CMAF) x 0.7

Here: ¢ : X7 — R is the unknown function.

A classical solution of a complex Monge-Ampére flow is a function of class C'2
satisfying equation (CMAF)x , , r pointwise in |0, T[xX.

Define Fs(t,z,r) := F(t,z,r — ®g(z)) and pg(t,x) := e_wﬁa—(tt’m)u(t,x) where (t,2) €
]O, T[X UB'

Definition 1.3. A function ¢ : X7 — R is a viscosity sub/super-solution of (CMAF),, ,..r
iff, for each 8 € B, ¢ = ¢+ Pp is a viscosity sub/super-solution of the following parabolic
Monge—-Ampeére equation:

(PMA),, g, (ddoqp)™ = e % +Fo(t29) 0 on )0, T[xUs.

A bounded function ¢ : X7 — R is a viscosity solution of (CMAF),, , r iff it is both
a sub- and a supersolution of (CMAF),, ,, r. Such a function is continuous.

A bounded function ¢ : X7 — R is a discontinuous viscosity solution of (CMAF),, ,,.r
iff its upper semi-continuous regularization ¢* is a subsolution of (CMAF),, , r and its
lower semicontinuous regularization ¢, is a supersolution of (CMAF)., ...

If a viscosity solution (resp. subsolution, resp. supersolution) is of class C*2, it is a
classical solution (resp. subsolution, resp. supersolution). We refer the reader to [19] for
a study of viscosity sub/super-solutions to local complex Monge—Ampére flows.

This definition is a special case of the general theory of [14] for viscosity solutions
of general degenerate elliptic/parabolic equations. The reader is referred to this survey
article for the first principles of the theory. The basic fact we certainly need to recall is
that subsolutions are u.s.c whereas supersolutions are l.s.c.

Recall that if w is a closed smooth (1, 1)-form in X, then the complex Monge-Ampeére
measure (w + ddy)™ is well-defined in the pluripotential sense for all bounded w-psh
functions ¢ in X, as follows from the work of Bedford and Taylor (see [2,21]) and viscosity
(sub)solutions of complex Monge-Ampeére equations can be interpreted in pluripotential
theory as explained in [17, Theorem 1.9].
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On the other hand, it is not clear to us how to interpret viscosity solutions of Com-
plex Monge—Ampeére flows in terms of pluripotential theory. We will note however the
following useful lemma which follows easily from [17, Theorem 1.9, Lemma 4.7].

Lemma 1.4. Let u € C°( X, R) such that:

e u admits a continuous partial derivative Oyu with respect to t,
o for everyt €]0, T, the restriction us of u to X; satisfies

(Wt + ddcut)n > 68tu+F(t’m’u),u(t,x)
in the pluripotential sense on X;.

Then u is a subsolution of (CMAF), ,.r.
Let v € C%(Xr,R) such that:

o The restriction vy of v to Xy is we-psh,

e v admits a continuous partial derivative Ozv with respect to t,

o there exists a continuous function w such that, for every t €]0,T|, the restriction v,
to X; satisfies

(wi + ddv)™ < e p(t, x)

in the pluripotential sense on X; and Opvy + F(t, z,v) > w.

Then v is a supersolution of (CMAF),, . r.
We also need to record a basic property from [19].

Proposition 1.5. Let ¢ be a viscosity subsolution of (CMAF),, . r. For each t €]0,T[, we
have ¢, € PSH(X, wy).

Let us remark that, for these applications of the results of [19] on weak solutions
to local complex Monge-Ampere flows, it is actually enough to assume the technical
condition that ®4 is continuous and locally Lipschitz in the time variable (hence 2 &4
exists a.e.) and p is only measurable but:

6'@[3
pg :=e” 9 ply, is continuous. (1.1)

We note that this condition allows the function ¢ — {w;} be Lipschitz non-differentiable.
However, we are not able to prove global results unless the following stronger regularity
condition holds:

®5 € C*2 1 is continuous, (1.2)

which is indeed what Definition 1.2 requires.
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1.8. The Kdhler—Ricci flow with canonical singularities

Normalized Kdhler—Ricci flow. Let us now interpret in the present framework the Kahler—
Ricci flow on varieties with canonical singularities that was defined in [30].

Let Y be an irreducible normal compact Kéahler space with only canonical singularities
and n = dimc(Y). Let # : X — Y be a log-resolution, i.e.: X is a compact Kahler
manifold, 7 is a bimeromorphic projective morphism and Exc(r) is a divisor with simple
normal crossings. Denote by { £} gece the family of the irreducible components of Exc().
With this notation, one has furthermore

Kx ="Ky + Z apE
E

where ap € Q>9, Ky denote the first Chern class in Bott—Chern cohomology of the
Q-line bundle Oy (Ky) on Y whose restriction to the smooth locus is the line bundle
whose sections are holomorphic top dimensional forms (or according to the standard
terminology canonical forms), Kx the canonical class of X and E also denotes with
a slight abuse of language the cohomology class of E. This means that for every non-
vanishing locally defined multivalued canonical form 7 defined over Y, the holomorphic
multivalued canonical form 7*n on X has a zero of order ap along F.

Denote by K(Y) C HY(Y, PHy ) the open convex cone of Kihler classes and let wy be
a semi-Kéhler form on Y with C? potential (see [16] for the definitions of Kithler metrics
and variants on normal complex spaces) such that {wp} + eKy € K(Y) for 1 > € > 0.
Assume h is a smooth hermitian metric on the holomorphic Q-line bundle underlying
Oy (Ky). Then

X := —dd‘logh

is a smooth representative of Ky € HY (Y, PHy ).
We are going to study the existence and the long term behavior of the normalized
Kéahler-Ricci flow (NKRF for short) on Y,

By
ot

= —Ric(wt) — W,

starting from the initial data wg. At the cohomological level, this yields a first order
ODE showing that the cohomology class of w; evolves as

{wi} =e Hwot+ (1 —e HKy.
We thus let T4, €]0, +00] be defined by

Trnaz = sup{t >0, e Hwo} + (1 —e Ky € K(Y)}
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and denote by the following C! in ¢ € [0, T'[ relative semi-Kéhler form on Y7,

xe=¢"xo+ (1—e "y,

where Yo is a smooth Kéhler representative of the Kéhler class wg and x is a smooth
representant of the canonical class Ky .

Then w = (w¢)¢epo,7] the solution of the normalized Kéhler-Ricci flow can be written
as wy = xt + dd°¢y, where ¢ : Yr — R is continuous in Yrp.

We now define

wrkrr ='W € HO(X, 24 10 1)

and

TN AT
UNKRF = Cn—z 277 € C'(X, Q%"
|l

which we view as a continuous element of C°( X7, Q};L /[O,T[) and ¢, is the unique com-
plex number of modulus 1 such that the expression is positive. As the notation suggests,
unkrr is independent of the auxiliary multivalued holomorphic form n but depends
on h an auxiliary smooth metric on Y. When it will be necessary to display this depen-
dence we shall write puyxgrr(h). Since the local potentials of x are of class C* the pair
(wNkRF, UNKRF) satisfies the requirements of Definition 1.2.

In local coordinates pyggrpr has a continuous density of the form

UNKRF = H |fel**2v
E

where v > 0 is smooth and fg is an equation of E in these local coordinates.
Lemma 1.6. Every viscosity solution ¢, of the Monge—Ampére flow

9¢
(CMAF)XaWNKRF,HNKRFgT (WNKRF + ddc¢)n = €¢+ 9t LNKRF

with Cauchy datum ¢¢ descends to Yp, i.e.: ¢r = "¢ and the element w + dd¢p €
HO(Y, C?/T/PHYT/[O7T[) obtained this way is independent of m and of h.

Proof. The fact that w + dd°¢ does not depend on the auxiliary hermitian metric A is
obvious. The rest follows from the quasi-plurisubharmonicity of viscosity (sub)solutions
established in [19], together with the argument in [16] for the static case which implies
that ¢, is constant along the fibers of . This also works for subsolutions. 0O

Definition 1.7. We say that w + dd°¢ € HO(Y,CY, /PHy, jjo,r() as in Lemma 1.6 is a
solution of the normalized Kéhler-Ricci flow on Y starting at wy.
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Lemma 1.6 implies that the notion does not depend on the choice of the log resolution
m:Y — X.

A basic observation is that the normalized Kéahler—Ricci flow can also be formulated
as (CMAF), v where

W =mtw+ddv, y = 67@7%MNKRF,
U € C*°(Xr,R) being arbitrary.

Change of time variable. The important case of (CMAF), , r when dealing with the
Kéhler—Ricci flow is thus when F'(¢,z,7) = ar. Then the sign of « is crucial for the long
term behavior of ¢;. We however observe that it plays no role for finite time:

Lemma 1.8. The solutions of the flows:

(wi () + dd°®)™ = et 5% 1y (1), t € [to,ta]

(wo(s) + dd°y)™ = e%uo(s), s € [s0,81]

coincide if we do the following change of variables (when o > 0):

s =80 =T =1, y(s) = (145 - s0)9 (to T M)

(&%

where

log(1+s— so)>

wo(s) = (1+5750)w1 <t0+ o

log(1+ s — s¢)
— )

to(s) = (1+s—s0)" 11 (to +

The proof is a straightforward computation. In the sequel we will therefore often
reduce to the case a = 0.

Kaihler-Ricci flow. The above formulation of the normalized Kéhler—Ricci flow is adapted
to the asymptotic behavior of solutions when ¢t — +o00. Applying Lemma 1.8 below to this
flow, one gets another equivalent flow which is nothing but the (classical, unnormalized)
Kéhler-Ricci flow. This equivalent formulation is given in the definition:

Definition 1.9. A flow on Xp of the form (w+dd®¢)"™ = e%fu is a Kéhler-Ricci flow on Y
iff

e wy € TK(Y) for t > 0;
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e u = IIg \3E|i‘fEEW where W is a volume form with continuous positive density
on X, sp € H°(X,Ox(E)) denotes the tautological section and hp a smooth metric
on Ox(E);

. %—“t’ = dd°log i — ag[E] in the sense of currents.

The corresponding cohomological flow takes the form a{;t} =1*Ky.
Klt pairs. Let us also mention without going into details that one may also replace Y
with a pair (Y, A) having klt singularities. In that case,

Kx EW*(Ky+A)+ZaEE
E

with ag > —1. In that case uyxrr has poles and the preceding discussion does not
apply. However, using a construction of [16], allowing high ramification along the E’s,
we construct a compact complex orbifold X whose moduli space is ¢ : X — X and we
may do the preceding construction replacing X by X. Indeed c¢*unygrp is continuous in
orbifold coordinates.

1.4. The Perron discontinuous viscosity solution

A very attractive feature of discontinuous viscosity solutions is that their existence is
easily established.

Definition 1.10. A Cauchy datum for (CMAF),, ,, r is a continuous function ¢¢ : X — R
such that ¢¢ € PSH(X,wyp).

We say ¢ € USC(X7,RU —o0) (resp. LSC(Xr,R U +00)) is a subsolution (resp.
supersolution) to the Cauchy problem:

C n @ xT
(w+ dd°p)" = eor T (Em0) Blx x {0} = %o (CMAF) x 1,7 (d0)

if ¢ is a subsolution (resp. supersolution) to (CMAF), ., r such that ¢|x.0y < ¢o
(resp. >).

The Cauchy Problem (CMAF)x ., ., 7(¢0) is said to be admissible if it has a bounded
subsolution and there exists a continuous function ¢ such that ¢o < ¥|x {0y and every
subsolution is < .

For instance, if (CMAF)x ., . r(¢0) admits a classical strict supersolution 1, this
Cauchy problem is admissible.

Proposition 1.11. If the Cauchy Problem (CMAF)x o . .r(00) ts admissible, denoting
by S the set of all its subsolutions, the usc regularization s* of s := sup,csu is a
discontinuous viscosity solution of (CMAF)x . ,.r.
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Proof. Omitted. See [14,24]. O

This construction raises two issues: whether s* is continuous, hence a true viscosity
solution and whether it is a solution to the Cauchy problem in the naive sense namely
whether s*[x x {0} = ¢o. The first issue is generally treated using a Comparison Principle
and the second issue is taken care of by barrier constructions.

The Parabolic Comparison Principle (PCP) states that if ¢ (resp. 9) is a subsolution
(resp. a supersolution) to (CMAF) x ., . r (o) then ¢ < 1p. It implies that s* as in Propo-
sition 1.11 is the unique viscosity solution to (CMAF)x ., ., #(¢0) and that it is continu-
ous. If the (PCP) holds for sub/supersolutions with extra regularity (e.g.: classical, Lips-
chitz, ...) it implies that there is at most one viscosity solution with this extra regularity.

Comparison Principles are rather elaborate forms of the maximum principle. We be-
lieve that (PCP) should hold under condition (1.1) provided there exists a semipositive
smooth closed (1,1)-form 6 of positive volume such that w; > 6 for all ¢ € [0,T[. Un-
fortunately, proving (PCP) is rather technical and we will describe what we have been
able to prove it in the next section. It is very encouraging that optimal results in that
direction are available in the local case [19].

2. Parabolic comparison principles

Let X be a compact complex manifold of dimension n and w; a continuous family of
closed real (1,1)-forms on X. We consider the complex Monge-Ampeére flow on Xr =
[0, T[x X associated to (w, F, p),

e T EER0) (1 ) — (Wi + ddpy)™ =0, (2.1)
according to Definition 1.2.
2.1. Statement of the global parabolic comparison principles

Let ¢ (resp. 1) be a bounded subsolution (resp. supersolution) to the parabolic com-
plex Monge-Ampere equation (2.1) in X associated to (w, i, F'). Our goal in this section
is to establish several versions of the global comparison principle, starting with the fol-
lowing:

Theorem 2.1. Assume that p(t,x) > 0 is positive in Xp and that locally in 10, T[xX we
have the inequality 0pp > —C' in the sense of viscosity, for some constant C' > 0. Then
for all (t,x) € [0,T[xX,

o(t,z) — ¥(t,x) < max(p(0,z) — (0, )4

zeX

In particular if (0,2) < (0,z) in X then o(t,x) < Y(t,x) in [0, T[xX.

Observe that as in the local case (see [19, Remark 2.4]), in order to apply the parabolic
Jensen—Ishii’s maximum principle, we need to assume that the supersolution satisfies a
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local lower bound on its time derivative even when p > 0, since our parabolic equation
has a structural disymmetry.

The versions of the comparison principle that we will use in the sequel require that
one weakens the hypothesis that u be positive and lift the condition on . It is not
clear what is the optimal provable result in this direction. We will state and prove four
variants which all require that we strengthen our working hypotheses as follows:

a) X is Kébhler,
b) there exists a semipositive closed (1,1) form 6 on X such that
we > 6 and {6} > 0, (2.1)
¢) (t,z,7) — F(t,z,r) is uniformly Lipschitz in the r variable,
d) (t,x) — F(t,z,0) is uniformly bounded above.

Since we also require F' is non-decreasing in the r variable, the conditions for F' are
satisfied when F(t,z,r) = ar with a > 0.

Corollary 2.2. Assume (2.1) holds. Assume that u(t,x) > 0 in Xt and locally in
10, T[x X, there exists a constant C' > 0 such that |0yp| < C and Oy > —C. Then

p(tx) = ¢(t,x) < max(p(0,2) — (0, 2))+,

zeX

for all (t,x) € [0, T[xX.

Corollary 2.3. Assume (2.1) holds. Assume that u(t,x) = pu(z) > 0 and t — wy = w(t, )
is constant. Then for all (t,z) € [0, T[x X,

(p(t,l’) - qu(tﬂ';) < maX(SO(Oa 'T) - 1/}(0717))-"-

rzeX

The following generalization holds:

Corollary 2.4. Assume (2.1) holds. Assume that u(t,x) = p(x) > 0 and t — wy = w(t,-)
is monotone in t. Then for all (t,z) € [0,T[x X,

p(t,x) = o(t, x) < max(p(0,2) = (0, 2))4-

reX

In order to lift this monotonicity condition, we introduce a slightly technical condition
in addition to (2.1).

Definition 2.5. Say t — w; is regular, if the following holds:
For every positive real constant ¢ > 0 there exists F(e) > 0 such that

vVt €[0,T — 2], V' €]t —e,t +¢, (1+ E(e))wr > wy > (1 — E(e))w;

and F(e) > 0ase — 0.
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Corollary 2.6. Assume that (2.1) holds, t — w; is reqular in the sense of Definition 2.5
and p(t,x) = p(z) > 0. Then for all (t,z) € [0, T[x X,

(p(t,.ﬁ) - ¢(t,]}) < maX(@(O’x) - ¢(O’ x))-‘r

zeX

Regularity in the sense of Definition 2.5 holds true if, in addition to (2.1), we require
# to be Kéhler. It should be remarked that when w; is a smooth family of K&hler forms
and p is a smooth positive volume form, the optimal comparison principle holds true
and follows from the existence of a classical solution to the Cauchy problem. However,
one needs Corollary 2.6 to obtain it by the present methods, the other versions being
too weak. On the other hand, the following generalization of this remark covers many
cases of interest:

Lemma 2.7. Let m: X — Y be a bimeromorphic morphism onto a normal Kdhler variety.
Assume w) is a continuous family of smooth Kdhler forms on Y. Then wy = 7w}

satisfies (2.1) and is reqular in the sense of Definition 2.5.
2.2. Proofs

We start by proving the Theorem and give the proof of the corollaries afterwards.

Proof. We first establish a slightly more general estimate (2.2) assuming p > 0 is positive.

Namely let p(t, z) > 0 and v (¢, z) > 0 be two positive continuous volume forms on Xy
and F,G : RT x X x R — R two continuous functions. Let ¢ be a bounded subsolution
to the parabolic complex Monge—Ampére equation (2.1) associated to (w, F, u) in X7 and
1 be a bounded supersolution to the parabolic complex Monge—Ampére equation (2.1)
associated to (w,G,v) in Xp. We assume furthermore that 9;¢p > —C locally on Xr.

We are going to show that for any fixed § > 0 small enough, either there exists a point
(f,#) €]0, T[x X where the function defined by

o

ot x) —v(t,2) = o(t,2) — 77— —¥(t,2)

achieves its maximum on X7 and the following inequality is satisfied

eﬁgw(i@,@(f,i))u(: 7)< eG(f,z,w(f,ae)>y(g7 ), (2.2)

or this maximum is achieved at some point (0,2) on the parabolic boundary. This is a
global version of [19, Lemma 3.1].

Choose a large constant C' > 0 such that ¢ and ¢ are both < C'/4 in L®-norm and
fix § > 0 arbitrarily small.
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Since ¢ — 1) is upper semicontinuous in [0, 7[x X and tends to —oo when t — T, the
maximum of ¢ — 1) is achieved at some point (to, o) € [0, T[x i.e.

M:=  sup  (@(t,xz) —(t,x)) = ¢(to, x0) — ¥(to, zo)
(t,z)€l0,T[x X

and there exists 77 < T such that it cannot be achieved in [T7, T[x X i.e. tg € [0,T'[x X.
If to = 0 then we obtain for any (¢,z) € Xr,

ot z) —v(t,z) < M = @(0,20) — (0, 20) = max(4(0,2) —(0,2)).  (23)

We now focus on the most delicate case when ¢ €]0,7'[ and assume that the maxi-
mum M of @(t, z) — (¢, x) is not achieved in {0} x X, nor in [T, T[x X i.e.

M > H)l(z}x{gé(t,m) —(t,x)}, where X7 := {0} x X U[T", T[xX (2.4)
T
The idea is to localize near the point xy and apply the parabolic Jensen—Ishii’s
maximum principle from [19]. Choose complex coordinates z = (z!,...,2") near x
defining a biholomorphism identifying an open neighborhood of xg to the complex ball
B, := B(0,4) C C" of radius 4, sending xg to the origin in C™.

Observe that ¢ is upper semi-continuous and satisfies, in X7 =]0, T[x X, the viscosity
differential inequality

. s P+ =0
eatw+W+F(t,m,w+T,t)M(t’ x) < (w+dd°@)™.

We let h(t,x) be a continuous local potential for w such that 9,k is continuous in
[0, T[x By i.e. dd°h = w in [0, T[x B4. We may without loss of generality assume that C
is chosen so large that ||h]|s < C/4.

Consider the upper semi-continuous function

a(t, ¢) = @(t, 27 (Q)) + h(t, 27 (C))-
Then @ satisfies the viscosity differential inequality
Ot HFOCD Ly Y < (ddeq)”, in |0, T[x Ba, (2.5)

where fi := z,(p) > 0 is a continuous volume form on By and

Flt,Cor) = F (t,x, r— h(t,z) + %) _ ah(t, @),

where z := 271(().

In the same way, the lower semi-continuous function

v(t,¢) = (t, 27 (0) + h(t, 271 (C))
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satisfies the viscosity differential inequality
0 tGHE 5(¢) > (dd°v)", in By, (2.6)

where 7 := z.(v) > 0 is a positive and continuous volume form on B, and
G (t,¢,r) = G(t,x,r — h(t,x)) — dih(t, ), with = := 2= 1(¢).

Observe that the functions F' and G are continuous in [0, 7[x By since d;h is contin-
uous.

Then we have

M = a(ty,0) — v(to,0) = max_ (a(t,{) — v(t, (). (2.7)
[0,7"]x B3
We are going to estimate the number M by applying the parabolic version of Jensen—
Ishii’s maximum principle.
As in the local case we use a penalization method [14,19] but we need the localizing
trick of [17] which consists in introducing a new localizing penalization function. For
e > 0, we consider the function defined in [0, T[x By X By by

(t7 x,y) — ﬂ(t,ar) - ’U(t’y) - a(x,y) - (1/2E)|J3 - y|2a

where o is the localizing penalization function constructed in [17]. This is a non-negative
smooth function o(x,y) > 0 in X? which vanishes to high order only on the diagonal
near the origin (0,0) and is large enough on the boundary of the ball Bs x B3 so that
o >3C on B?\ B2, to force the maximum to be attained at an interior point.

The role of the function ¢ is to force the maximum to be asymptotically attained
along the diagonal (as in the degenerate elliptic case, see [17]). The fact that the second
derivative of ¢ is a quadratic form on R?” x R?" which vanishes on the diagonal is going
to be crucial in the sequel.

Observe that since ¢(0,0) = 0, we also have

M= max_(a(t, ¢) — v(t, ¢) — (¢, (). (2.8)

[0,T"]x Bs

Since we are maximizing an upper semi-continuous function on the compact set
[0, T[x B2, there exists (t., 2., y.) € [0, T[xBs x Bz such that

- 1

M, = sup {u(t,x) —w(t,y) —o(z,y) — 2—|x _ y|2}
(t,@,y)€[0,T']x B3 €
= ﬂ(t67x6) - U(t67y5) - G(I57y5) - %Lﬂ:&‘ — y6|2-

Observe that o, 1, h are bounded by C/4 in the L>-norm in [0,7[x By, while o > 3C
on B2\ B2. Therefore for any ¢, we have

M. > M= I%a‘xx(ﬂ(to,x) —v(0,z)) > -3C/4 - §/T. (2.9)
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On the other hand, for (t,z,y) € [0,T[x B3 \ B3, we have
1
u(t,z) —v(t,y) —o(x,y) — %|x —y|? <+C -3C = -2C. (2.10)

Therefore if we assume 0 < § < CT/4, then for any € > 0 small enough, we have
(taaxavye) € [O,T/] X B%
The following result is classical (see [14, Proposition 3.7]):

Lemma 2.8. We have |z. — y.|? = o(g). Every limit point (t,%,7) of (te,x-,y.) satisfies
&=9, (&,2) € ANB3, € [0,T] and

lim M, = lim (a(t., zc) — v(te,ye) — o(xe,ye) = a(t, &) — v(t, &) — o(2, &).
e—0 e—0

Moreover o(3,%) =0 and (,4) €]0, T[x Bs.

Proof. Observe that the first part of lemma is a consequence of [14, Proposition 3.7].
To prove the second part we use following easy observation. From the first part of the
lemma, using (2.8) and (2.9), we deduce that

A
=
=
=
|
I
-
=
|
<
=
uﬂ)
2>
~—
|
Q
—
=
2>

) < M —o(%,%),
hence o(%,4) = 0. Since by construction A No~1(0) C B2, it follows that & € By. O

It follows from (2.4) that (£, %) €]0, T'[x Ba, hence it is an interior point of [0, T"] x B2.
Thus there exists a sequence (., 7 ;,yc;) €]0,T'[x By which converges to (f,%) such that
the conditions of the Lemma are satisfied.

We now apply the parabolic Jensen—Ishii’s maximum principle (see [19]) to u and v
with ¢(t,2,y) = |z — y[* + o(z,y). For j >> 1, we get the following:

Lemma 2.9. For any v > 0, we can find (T]-Jr,pj, Qj), (r;,p;,Q;) € RxC"x Symz (C™)
such that

(1) (T;ap;ry Q;r) € §2+u(t€j?$5j)) (Tj_apj_a Q;) € 732_v(t5j7y5j)7 where

(xaj - yé‘j)

pf = Dyo(ac,,ye,) + o
J

)

_ (e, — Ye,)
p] = 7Dy0(x5j7ysj) - EJTJEJ

)
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(2) The block diagonal matriz with entries (Qj, Q) satisfies:

QF 0

—(yHJAIDI < < ) < A+~4%
0 -Q;

where A = D*¢(xc,,ye,), i.e.

_ I -1
A5j1<—l I )JFDQU(%J"%J

and ||Al| is the spectral radius of A (maximum of the absolute values for the eigen-
values of this symmetric matriz).

Proof. The proof, just like in [19, section 3], consists in applying [14, Theorem 8.3] with
u; = u, up = —v. Observe that since the situation is localized near (Z,%) in |0, T"[x By,
the local lower bound on 9 and a local lower bound on 9;h imply a local lower bound
Ow > —C mear the point (£,#) with a larger constant C' > 1. This permits to fulfill
condition (8.5) on —v when applying [14, Theorem 8.3|. Also, we use u > 0 to see that
condition (8.5) in [14] is satisfied by u. Observe also that 7, > —C for j > large enough
(see the Remark following Proposition 1.6 in [19]). O

By construction, the Taylor series of o at any point in ANe~*(0) vanishes up to order
2n + 2. In particular,
)

= o(e?).

D20($5j7y5j) = O(lmfj - ij j

This implies ||A]| ~ 1/¢;. We choose v = ¢; and deduce

(27 < <Qo+ _23) <z (ff 7) o)

J

Looking at the upper and lower diagonal terms we deduce that the eigenvalues of
Q;‘, Q; are positive and O(sj*l). Evaluating the inequality on vectors of the form (Z, Z)
we deduce that the eigenvalues of Q;‘ —Q; are < o(e}).

For a fixed Q € Sym3(C"), denote by H = QU its (1,1)-part. It is a hermitian
matrix. Obviously the eigenvalues of H]“' = (Q;)l’l,Hj_ = (Q7)b! are O(Ej_l) but
those of Hf — H; are < o(e}). Since (T]-Jr,pj,Qj) € P*u(t.,, z.,) we deduce from
the viscosity differential inequality satisfied by u that H;r is positive definite and that
the product of its n eigenvalues is > ¢ > 0 uniformly in j (see [19, Theorem 2.5]). In
particular its smallest eigenvalue is > cs?_l. The relation H j‘ +o(e}) < H; forces
H; >0 for j > 1 large enough and det H;’ <det H; +o(gj).

From the viscosity differential inequalities satisfied by v and v, we deduce that
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T e+ F (e meu(te @)
e J (T—te;) J J J J ,u(tajaxaj)
+ —_
<det H}” < detH; + o(e;)

< T TOlejpe;0(te; ,ysj))l;(tsj,yej) +o(g;).
Therefore for j > large enough, we get

s _
ﬁ+F(t€,' s Te ,u(tg,. s Te )) - e - _
e T—te)) FAR] R ,U(tsj,l‘aj) < eG(tgj’yaj,v(taj,yaj))y(tsj’ygj) te CO(Ej).

Then letting j — 400, we infer the following (see [19, Lemma 3.1])
Lt P a,0(2)) ~ 2 4 G(ia0(E2)) (7 A
eT-b A(t, &) < e OHUEEIE(E 3. (2.11)

Back to ¢ and ¥ we then get the required inequality (2.2).
Ifv=p>0and G=F, then we get

Since F is non-decreasing in the last variable, it follows that
¢t &) <y(i, 7).
Taking into account the inequality (2.3), we conclude that

]

Ut ) = (1) — = < max(p(0,2) — 0(0,2) — -

Letting § — 0 we obtain the theorem. 0O

Proof of Corollary 2.2. We first establish a more general estimate.

Let p(t,x) > 0 and v(t,z) > 0 be two non-negative continuous volume forms on Xr
and F,G : Rt x X x R — R two continuous functions.

Assume that ¢ is a bounded subsolution to the parabolic complex Monge—Ampére
equation (2.1) associated to (w, F, 1) and v is a bounded supersolution to the parabolic
complex Monge-Ampére equation (2.1) associated to (w, G, ) in Xr.

Let 6 be as in (2.1.b) and let p < 0 be a bounded 6-psh function in X satisfying
(0 +dd°p)™ > o > 0 for a fixed positive volume form Xy on X [16]. Fix ¢ €]0, 1] and set

(pg(ta .73) = (1 - 5)‘»0(157 Ji) +ep— At7
where A = A(g) > 0 is a constant to be chosen later so that A(e) — 0 as ¢ — 0. Then

(w+dd@)" > (1 —e)"(w+dd°p)" 4+ " \o.
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Since ¢* < p+ Me, where M is a bound for the L*°-norm of ¢ and dyp > —C, it follows
that 0,0° < 0y + Ce¢, in the sense of viscosity and then

€at‘/’£+F(t’x’9@E)u(t7 LL’) < eatLp—A—‘,-EC'—Q—F(t,ac,c,o)-i-JWf'cf:‘/J/(t7 $),

<(1—e)"(w+ddp)",
if we choose A := eC'+ M ke —nlog(l—¢). Here, we used (2.1.c) to introduce & a uniform
Lipschitz constant for F' with respect to the variable r.
Therefore
(W + dde@®)" > 01" TEE9%) (1 ) 4 €™ .
Observe that since 0y < C,
O + F(t,z,¢0°) < C(1—¢€)+ By
where By > 0 exists thanks to (2.1.d), and choosing 7 := e”e~¢(1=2)=Bo we obtain
(@ +dd* )" > PO (u(t, ) £ o).
Thus ¢° is a subsolution to the parabolic equation associated to (w, F, u(t, ) + nXo).

Since the volume form p(t,z) + Ao is positive, we can apply the inequality (2.2) to
conclude that

eﬁ*f’F(tAs,isy@E(fmfs))(M(EE, i‘a) 4 T]AO) S eG(fg,iiE,@/}(fa,fE))y(f&’ JA:E)’ (212)
when there exists a point (f.,2.) €]0,T[x X where ¢¢ — 1) achieves its maximum on Xr.

In particular, v(f.,2.) > 0.
If moreover u = v, it follows from (2.12) that u(f,#) > 0 and then

t,2,¢°(f,2)) < G, 2,9(1, 2)). (2.13)
If moreover F' = (G, we conclude as before that

¢F — ¢ < max(gp — o)y < m;}X(sDo — o)+

Letting 6 — 0 and then ¢ — 0, we obtain the required inequality ¢ — ¥ <
maxyx (g — Yo)y. O

Proof of Corollary 2.3. Here we assume that the forms w do not depend on the time
variable. We will try and do the proof when p depends on ¢ in order to stress the role of
the hypothesis that p is time independent.
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We are going to regularize in the time variable to reduce to the previous case. Let (¢¥)
be the upper Lipschitz regularization of ¢ and (¢%) the lower Lipschitz regularization
of ¢ in the variable ¢ [19, Lemma 2.5]. Recall that

¢ (t,x) := sup{p(s, x) — kls —t|,s € [0, T},
lek(ta x) = inf{i/’(& :L') + ]{I|S - t|7 s € [07 T[}
Since w does not depend on the time variable, if follows that for each k > 1, ©* is a

subsolution to the parabolic equation associated to (w, Fy, 1) and 1)y, is a supersolution
to the parabolic equation associated to (w, F¥, u¥) (see [19, Lemma 2.5]). Recall that

F*(t,z,r) := sup{F(s,x,7) — k|s — t|;s € [0,T[, |s —t| < a/k},

Fr(t,z,r) ;= inf{F(s,z,r) + kls —t|;s € [0,T[, |s —t| < a/k},
pr(t,x) = inf{u(s, x); |s —t| < a/k},

pt(t, @) = sup{p(s, x);|s — t] < a/k},

for some o > 0.

As in the proof of Corollary 2.2 define, for 0 < e < 1, pF¢(¢t,2) := (1 — &) (¢, 7) +
ep(z) — Ap(e)t and ghe = Fs — %. Then we can apply the inequality (2.12) in the
proof of Corollary 2.2 to deduce that:

e?‘ngrFk(ﬂi,@k’E(ﬂi))(Mk + 1)) < eFk(tAvi”ébk(f’i))‘uk’ (2.14)

where (£, %) = (f(;’k@ Zs.k.e) €0, T[x X is a point where ¢ — 1)), achieves its maximum
on Xrp.

By construction ¢ < Ts < T where Ts does not depend on k,e. Since Fj, F¥ — F
locally uniformly and ju = p* = p,' for k large enough we get

)

W +F(£7£a¢k7€(fai‘)) < F(faivwk(fai))

Since F' is non-decreasing in the last variable, it follows that for k£ > 1 large enough and
forall0 <e<1,

Therefore we get

H)l(aTX(%f)k’E — ) < m)gx@k’s((), ) = Yr(0,-)) 4 < m)?X@k(Oa ) = ¥r(0,))+

! Here we use the hypothesis that p does not depend on t. Without this hypothesis an error term
log(m) appears that may diverge to +oco when € — 0, k being kept fixed, say if p(t,z) = 0
for t < £ but pu(t,z) > 0 for ¢t > {.
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First let € — 0. It follows that:
max(@" — 1) < max(@*(0,7) = ¥r(0,))+
T

Now we let k — +00 and use Dini-Cartan’s lemma to conclude that maxx.. (¢ — ) <
maxx (¢(0,-) — (0,-))+, which implies the required estimate as 6 — 0. O

Proof of Corollary 2.4. Now assume that w depends on ¢. Then from the proof of
Lemma 2.5 in [19], we see that for any (tg,z¢) €]0,T[xX there exists t§ €|t — a/
k,to + a/k[ such that ©F satisfies the viscosity inequality

(w(ts, mo) + ddccpk (to, o))" > eOre" (to,20)+F (t5,20,0" (to’Io))’u(IO)’

where o > 0 is a constant.

Now assume that ¢ — w(t,:) is non-decreasing. Then for k£ > 1 large enough,
(w(ts, zo) < (w(to + a/k,w) and then the function u*(t,z) = ©*(t — a/k,z) is a
subsolution to the parabolic equation associated to (w, Fi, p) in Ja/k, T[x X, where

A

Fy(t,x,r) = Fp(t — a/k,z,7).

In the same way, we see that the function vy := ¥ (¢t + «/k, z) is a supersolution to the
parabolic equation associated (w, F*, i) in |0, T[x X, where

FFt,a,r) = F*(t+ a/k,z,r).

Then one easily modifies the proof of Corollary 2.3, with u* replacing ¢* and wuy

replacing ¥y.
It is clear that the same argument works in the non-increasing case. 0O

Proof of Corollary 2.6. By Lemma 2.5 in [19], ¢* is a subsolution of the equation associ-
ated to ((1+ E(a/k))ws, Fy, 1) whereas 9y, is a supersolution of the equation associated

o ((1— E(a/k))ws, Fy, 1) with o > 0 as above. Hence ¢ = #I;/k) is a subsolution of
the equation to (wy, F, —log(1 + E(a/k)), 1) and 1), is a supersolution of the equation
associated to (wi, F* +1log(1+ E(a/k)), ). We can now argue exactly as in the proof of

Corollary 2.3, with ¥ replacing ©* and 1), replacing ¢r. O

Remark 2.10. Renormalization in the time variable leads to twisted parabolic complex
Monge-Ampeére equation of the type

OO E(L2) (w4 ddpy)™ = 0 (2.15)

in [0, T[xX, where h : [0, T[—>]0, +0o0] is a continuous positive function.
The comparison principle Theorem 2.1 holds for the twisted parabolic complex
Monge-Ampere equation (2.15) as in the local case (see [19]).
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3. Barrier constructions

Let X be a compact Kéhler manifold of dimension n and wq is semipositive closed
(1,1) form with positive volume. We consider in this section the Cauchy problem on Xy

©(0,7) = po(x), (0,2) € {0} x X, (3.1)

{ edieta ey (w4 dd®p)" =0
where (g is a given continuous wo-plurisubharmonic function on X and a € RY.

The Cauchy problem does not necessarily admit a solution when p vanishes identically
on an open set (see Proposition 3.7). We first treat the case when p > 0 is positive, and
then allow p to vanish along pluripolar sets. This latter setting contains as a particular
case the Kdhler—Ricci flow on varieties with canonical singularities.

We will mainly focus on the case a = 0. The case a > 0 is actually easier and can be
reduced to the previous one by a change of time variable. We also need to impose some
uniformity in the positivity properties of the forms we are dealing with:

We assume in the whole section that X is a compact Kdihler manifold of dimension n
and there exists a closed real (1,1)-form 6 on X whose cohomology class is semi-positive
and a Kdhler form © such that for all 0 < t < T, the background continuous family of
closed (1, 1)-forms satisfies:

3.1. Existence of sub/supersolutions

Lemma 3.1. The Cauchy problem (3.1) admits a continuous subsolution w, Lipschitz in
the variable t.
Assume p(t,x) > fo(z)dV, where fo > 0 is a continuous density such that

/fo dv > 0. (T)
X

Then, there exists a continuous supersolution v, Lipschitz in the variable t.
Moreover we can choose these so that u < ¥ in [0, T[xX.

Proof. By [16], there exists a continuous 6-psh function p; in X such that (0+dd°p;)" =
c1dV in the weak sense on X, where ¢; is a normalizing constant. We can normalize p;
so that p; < g in X. Define for C; > 0, the function

u:=—Ct+ p1(x).

Then, by Lemma 1.4, if C; >> 1 is chosen so large that e~ supx, 4 < c1dV, the
function w is a subsolution to the Cauchy problem (3.1).
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In the same way we construct a supersolution. Since fy > 0 is a bounded upper
semi-continuous function on X and f « fodV > 0, there exists a continuous ©-psh py
satisfying

(© +dd°p2)"™ = c2fo(x) Ao

in the weak sense on X, where ¢y is a normalizing constant (by [27,17]). We normalize
p2 so that ps > ¢ in X. Consider the function

v = 4+Cot + 02,

where Cy > —log s is a positive constant.

Lemma 1.4 implies then that  is also a supersolution to the parabolic complex Monge—
Ampere equation (3.1). Since ¥ > g in X we obtain a continuous supersolution to the
Cauchy problem (3.1). O

Corollary 3.2. Assume either > 0 or the hypotheses of Corollaries 2.4 or 2.6 are satis-
fied in addition to those of Lemma 3.1(T). Then the Cauchy problem (5.1) is admissible.

Fix u, v a subsolution and a supersolution of the Cauchy problem (3.1). We are now
in the position to apply Proposition 1.11. The natural candidate to be a solution is the
upper envelope of subsolutions

¢ :=sup{u|u € S,u <Y <o}, (3-3)

where S denotes the family of all subsolutions to the Cauchy problem (3.1). We let
©* denote the upper semi-continuous regularization of ¢ and ¢, denote its lower semi-
continuous regularization. It follows that:

Corollary 3.3. Assume the hypotheses of Corollaries 2.4 or 2.6 are satisfied in addition
to those of Lemma 3.1(7).

The upper semi-continuous reqularization ¢* is a discontinuous viscosity solution to
the underlying parabolic Monge—Ampére equation in |0, T[xX.

The lower semi-continuous reqularization p, is thus a supersolution to the parabolic
Monge—Ampére equation in 10, T[x X and they satisfy then for all (t,z) €)0,T[x X,

" (t,2) — pu(t, ) < max(¢™(0,2) — (0, 2)). (3-4)

If we could make sure that o* < @9 < ¢, on the parabolic boundary {0} x X, it
would follow from the inequality (3.4) that ¢* = @, = @ is a unique viscosity solution
of the Cauchy problem. Establishing this classically requires the construction of barriers
at each boundary point in {0} x X.
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3.2. Existence of barriers

Definition 3.4. Fix (0,z0) € {0} x X and £ > 0.
1. An upper semi-continuous function u : X — R is an e-subbarrier to the Cauchy
problem (3.1) at the boundary point (0, ), if

o w is a subsolution to the Monge-Ampeére flow (3.1) in 0, T[x X,
e u(0,-) <y in X,
 us(0,20) = po(x0) — &

When € = 0, u is called a subbarrier.
2. A lower semi-continuous function v : X7 — R is an e-superbarrier to the Cauchy
problem (3.1) at the boundary point (0, zp), if

o v is a supersolution to the Monge-Ampere flow (3.1) in |0, T[x X,
e 0(0,) = g in X,
o v*(0,20) < wol(z0) + €.

When € = 0 v is called a superbarrier.
We now investigate the existence of sub/super-barriers.

Proposition 3.5.

1. Assume wy < wy and fix € > 0. There exists a continuous function U, in Xp :=
[0, T[xX, Lipschitz in t which is an e-subbarrier to the Cauchy problem (3.1) at any
point (0,z¢) € {0} x X.

2. Assume p(t,z) > 0 in X1 and fix € > 0. There exists a continuous function V.
in Xp, Lipschitz in t, which is a e-superbarrier to the Cauchy problem (3.1) at any point

(0,z9) € {0} x X.
As the proof will show one can moreover impose that for all (¢,z) € Xr,
—Cit + p1(x) S Uc(t,2) < Ve(t,z) < Cat + pa(x),
where C1, p1,Cs, p2 are independent of € and given in Lemma 3.1.
Proof of Proposition 3.5. 1. By [17], since u is continuous, there exists wy a continuous
0-psh function on X such that (6 + ddwg)™ > €“°u. Adding a negative constant we can
always assume that wg < g in X.

Fixe > 0,7=mn.>0,C =C; >0 (to be chosen below) and set

u(t,z) == (1 = n)po(z) + nwo(z) — Ct, (t,x) € Xr.
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This is a continuous function in X7 such that for any ¢ € [0,T]. Since wy < wy, uy is
we-psh in the space variable z € X and satisfies the differential inequalities

(w + ddu)™ > 0" (0 + ddwo)™ > n"e*°p on X,

while d;u = —C' in X7. We choose C' = C(n) > 1 large enough so that n"e®° > e~ ¢,
hence for each ¢ €]0, 471 we have

(Wt + ddcut)" > eatu(ty.)‘u

Note that uwg = ¢ + n(we — vo) < o in X. We can choose n > 0 so small that
nsupy (w0 — wp) < e and Lemma 1.4 enables to conclude that u is an e-subbarrier for
the Cauchy problem (3.1) at any point (0, o).

We can moreover use Lemma 3.1 to find a bounded subsolution —C4t + p; to the
Cauchy problem (3.1) which is independent of €. Set for (¢,z) € Xr,

Us(t7 .’IJ) = Sup{u(tv $)7 _Clt + Pl}

The function U is also an e-subbarrier to the Cauchy problem (3.1) at any boundary
point (0,z¢) € {0} x X.

2. Constructing superbarriers. Fix € > 0. Since © is Kéhler and ¢y is in particular a
O-psh function in X (recall that wy < ©), there exists a C'*°-smooth ©-psh function @g
in X such that ¢y < @9 < g+ in X (see [15,6]). Thus there is a constant C' > 0 such
that

(© +dd°pp)" < e“p

pointwise on X, as we are assuming p > 0.
Set v(t, x) := @o(z) + Ct in X7 and observe that

(O + ddvy)™ = (0 + dd°@o)"™ < e < e .
Since wy < © we infer that v; also satisfies, in the viscosity sense:
(we + ddv)™ < ecu.
Therefore v is a continuous e-superbarrier to the Cauchy problem (3.1) at any bound-
ary point in {0} x X.
Using Lemma 3.1 and the condition © > w;, we moreover obtain a supersolution
p2 + Cst to the Cauchy problem (3.1) and set for (¢,z) € X,

Ve(t,z) := inf{v(t, x), pa(z) + Cat}-

This V is an e-superbarrier to the Cauchy problem (3.1) at any boundary point (0, z¢) €
{0} x X. O
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Remark 3.6.

1. If the Cauchy data ¢y is a continuous 6-psh function on X satisfying (6+dd o)™ >
€%, then we can take wg = g in the above construction of subbarriers. The correspond-
ing function U is then a bounded continuous subsolution, which is uniformly Lipschitz
in t and satisfies U(0, -) = g, i.e. U is a subbarrier to the Cauchy problem (3.1).

2. If the Cauchy data ¢ is a continuous ©-psh function on X such that (0 + ddpy)™
has an L°°-density, then we can take ¢y = ¢o and € = 0 in the above construction of
superbarriers. We thus obtain a bounded continuous supersolution V' which is uniformly
Lipschitz in ¢ and such that V(0,-) = o in X, i.e. V is a superbarrier to the Cauchy
problem (3.1).

3.83. Non-negative densities

We explain in this section a non-existence result: when g vanishes on an open set,
there is no solution unless the initial data has special properties.

Proposition 3.7. Assume that u = fdV, where f > 0 vanishes identically on D x [0,4],
where D C X 1is open.

If the initial data @g is not a mazimal w-psh function in D, then the Cauchy problem
(3.1) has no viscosity solution.

Recall that a continuous w-psh function u is mazimal in D if it satisfies the homoge-
neous complex Monge-Ampére equation (w + dd®u)™ = 0 there.

Proof of Proposition 3.7. Assume that the Cauchy problem (3.1) with initial data g
has a solution ¢ in [0,d] x X. Since u = 0 in [0, d] x D, it follows that ¢ is a solution to
the degenerate parabolic equation (w; + dd°p¢)™ =0 in D X [0, d].

We claim that for almost every ¢ > 0, the function ¢; is a continuous w;-psh function
on X, which is a viscosity solution of the elliptic equation

(wt + ddc@t)n = 0.

This is clear if ¢ is a classical solution. To treat the general case we use inf convolution
to approximate ¢ by an increasing sequence (¢;) of semi-concave functions which satisfy
the same equation on a slightly smaller domain that we still denote by [0,4] x D for
simplicity. The functions ¢; admit a (1,2)-Taylor expansion almost everywhere, hence
for a.e. (t,x),

(w + ddg; (£, 2))" = 0.
Fixing one such ¢, it follows that for almost every x,

(w+dd°p,(t,-))" =0.
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It follows that the latter actually holds everywhere in D in the viscosity sense
(see [19]).

Since ¢; increases to ¢, it follows from the continuity of the complex Monge-Ampere
operator along monotone sequences that for almost every ¢ the function ¢; satisfies
(w4 dd®p(t,-))” =01in D.

Note finally that ¢, — o uniformly, hence ¢¢ is maximal in D. 0O

3.4. Canonical vanishing: existence of solutions

‘We now restrict our attention to semi-positive measures
p(z,t) = @ f(z, t)dV (z),

where f > 0 is a positive continuous density and u is quasi-plurisubharmonic function
that is exponentially continuous (i.e. such that e is continuous). The measure u is thus
allowed to vanish only along the closed pluripolar set (u = —o0), in a time independent
fashion.

Lemma 3.8. For any € > 0 there exists a lower semi-continuous function w
[0,T[xX — R, which is an e-superbarrier to the Cauchy problem (5.1) at any boundary
point (0, z¢) with u(xg) > —o0.

Proof. We can assume without loss of generality that « < 0 is a ©-psh function on X.
Fix e > 0. From the approximation theorem of Demailly (see [15,6]), it follows that there
exists a smooth ©-psh function @g in X such that pg < @9 < g+ € in X. Set

v(t,x) == Qo —tu+ Ct, (t,x) € [0, T[xS,

where  := {x € X |u(zx) > —oo} is open and C > 0 is a constant to be chosen later.
Observe that v is continuous in [0, T[x and satisfies

O + ddvy =20 + dd°@g — t(dd°u+ ©) + (t — 1)O,
in the sense of currents in 2. Since dd°u+ © > 0, for 0 < t < T, we have
O + ddv; <20 + dd°Pg

in the sense of currents in Q.

We choose C' > 1 so big that (20 +dd°@y)™ < e“dV. This we can do since 20 4 dd°pg
is a smooth positive form on X.

Note that e?¥ = e“~% thus it follows from Lemma 3.9 that v satisfies the viscosity
parabolic differential inequality (© +ddv;)™ < ey in [0, T[x €. As w; < O, Lemma 3.9
also implies that v is a supersolution to the parabolic Monge—Ampére equation (3.1) in
[0, T[xS.
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On the other hand we know that there exists a (continuous) supersolution @ to the
parabolic Monge—Ampére equation (3.1) in R* x X such that g > ¢g in X. The function
w := inf{v, ¥} is continuous on [0,T[xX \ {u = —oo} and uniformly Lipschitz in ¢. It
can thus be extended as a lower semi-continuous function on [0, T[x X by setting

w(0, x0) := inf{Go(w0), To(z0)}

for any point (0, xg) with u(xg) = —oco. We let the reader check that this extension, which
we still denote by w, is a supersolution to the parabolic Monge—Ampére equation (3.1)
in ]0, T[x X such that o < wp < g + € in X.

Fix a point g € X such that u(xg) > —oo. Then w*(0,z¢) = w(0,z0) < wo(xo) + €,
hence w is an e-superbarrier at such a point. O

In the proof above, we have used the following technical result:

Lemma 3.9. Let pu > 0 be a continuous volume form on some domain D. Let v be a
bounded lower semi-continuous function in D C X and p a C%-smooth function in D
such that dd°p < dd°p in the sense of currents. Then (dd“p)™ < (dd°p)’y in the viscosity
sense in D.

If ©1 and ©2 are smooth closed real (1,1)-forms in X such that ©1 < Oy and (04 +
ddy)" < p in the viscosity sense, then (01 + dd®)™ < p in the viscosily sense.

Recall that (dd®p)y is the (1,1)-form defined pointwise by (dd®p)4(xg) := dd®p(x¢) if
dd®p(zo) > 0 and 0 otherwise.

Proof of Lemma 3.9. If ¢ a C? lower test function for 4 at a point ¢ € D, i.e. ¢ <, ¥,
then p — v <, p — q. Since dd“y < dd°p, it follows that p — % is plurisubharmonic
in D. Hence dd°(p — q)(x0) > 0, i.e. dd°p(xq) > dd°q(xg). If dd®q(xo) > 0 it follows that
dd®p(zo) > 0 and (dd°q(zo))™ < (dd°p(x))™. This proves the first statement.

The proof of the second statement goes along the same lines. O

Definition 3.10. Say ¢ — wy is very regular if it is regular in the sense of Definition 2.5
and there exists 7 > 0, a function of class C! € : [0, T[— [0,1— 7] such that ¢(0) = 0 and
w > (1 — €(t))wo.

As we will see in the next section, this condition is satisfied in many geometric situa-
tions and the following result will be important for our applications.

Theorem 3.11. Assume that p = e“fdV is as above and t — wy; is non-decreasing or is
very regqular in the sense of Definition 3.10. Then the mazimal subsolution @ constructed
in Proposition 1.11 is a unique viscosity solution to the Cauchy problem (3.1).

Proof. We first assume t — w; is non-decreasing. By Proposition 3.5, given € > 0 there
exists a continuous e-subbarrier U at any point (0,z9) € {0} x X ie. U < ¢ and
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U(0,20) > wo(zog) — €. Since U is continuous, it follows that U < ¢, in RT x X, hence
©«(0,20) > wo(xp) for any xg € X. This shows that ¢, is a supersolution to the Cauchy
problem (3.1).

We claim that ¢*(0,-) < ¢o in X. Indeed if we fix £ > 0, by Lemma 3.8 there exists
an e-superbarrier w to the Cauchy problem (3.1) in [0, T[xX at any point (0,z() with
u(zg) > —oo and which is uniformly Lipschitz in ¢.

Since w is a supersolution to the Cauchy problem (3.1) in [0, T[x X, it follows from
the comparison principle (Corollary 2.6) and the continuity of w that ¢ < w in ]0, T[x X.
Since w is continuous up to the boundary,

©*(0,20) <w(0,2z0) < po(zo) +€

for any zp € X with u(zg) > —oc.

Therefore ¢*(0,-) < ¢ almost everywhere in X, since the set {u = —oo} has
Lebesgue measure 0. Since the slice function ¢*(¢, -) is we-plurisubharmonic for all ¢ > 0
[19, Theorem 2.5, and ¢* is upper semicontinuous on [0, T[x X it follows that ¢*(0,-)
is wo-plurisubharmonic. Hence ¢*(0,2) < po(z) for all x € X.

We have shown that ¢*(0,-) < ¢g < ¢*. It follows therefore from Corollary 3.3 that
©* =« =9 =1 1in [0,T[x X is the unique solution to the Cauchy problem (3.1).

Definition 3.10 is an ad hoc definition whose only virtue is to allow the construction
of a subbarrier in Proposition 3.5 be carried out by:

u(t, z) = (1 —n —e(t))do(x) + nu(z) - Ct.

The superbarrier construction is completely insensitive to this difficulty and the the-
orem follows. 0O

3.5. Comparison with the vanishing viscosity method

In this section we consider the following e-perturbation of Cauchy problem (3.1) on X
with canonical vanishing given by a quasi-plurisubharmonic function w:

edretaeew fdV — (e© + wy + dd®p;)" = 0
(p(O,.Z‘) = L)00($)7 (va) € {0} x X,

where g is a given continuous wg-plurisubharmonic function on X.

Here £ > 0 is a non-negative constant and © is a Kéhler form. Then, if ¢ — w; is
very regular, t — 0 + w; is very regular too. In particular, Theorem 3.11 applies and
for every € > 0 we have a viscosity solution ¢(e¢) of the above e-perturbed complex
Monge—-Ampere flow.

Proposition 3.12. ¢(g) converges locally uniformly to ¢(0) in R* x X ase — 0.
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Proof. Since ¢(&’) is a supersolution of e-perturbed complex Monge-Ampere flow when-
ever £ > g, the comparison principle implies that

#(0) < d(e) < (') if0<e<e.

Using [14, section 6] (see also [19, Lemma 1.7]) we conclude with the comparison principle
for e-perturbed complex Monge-Ampére flows. O

Remark 3.13. One could also perturb p to a smooth positive volume form.
4. Applications

In this section we show that our hypotheses are satisfied when studying the (normal-
ized) Kahler—Ricci flow on a variety with canonical singularities. We prove the existence
and study the behavior of the normalized Ké&hler—Ricci flow (NKRF for short) on such
varieties starting from an arbitrary closed positive current with continuous potential.

4.1. The normalized Kihler—Ricci flow on varieties with canonical singularities

Let Y be an irreducible compact Kéahler normal complex analytic space with only
canonical singularities. Let xo be a Kéhler form on Y. We study the existence of the
normalized Kéhler—Ricci flow on Y,

By
ot

= —Ric(wt) — we,

starting from an initial data wg = x4+ dd°¢g with ¢y being a continuous potential which
is plurisubharmonic with respect to the given Kéhler form yo on Y. At the cohomological
level, this yields a first order ODE showing that the cohomology class of w; evolves as

{wi} =e Huwot+ (1 —e HKy.
We thus defined by
Trnaz = sup{t >0, e Hwo} + (1 —e Ky € K(Y)}

the maximal time of existence of the flow.

Recall that given a Kéhler class on Y with a smooth positive representative xo and
¢o € PSH(Y, x0) a continuous function, the Cauchy problem with initial data Sy := xo+
dd¢q for the normalized K&hler—Ricci flow is defined after a desingularization 7 : X — Y
as the Cauchy problem with initial data @g := 7*¢q for the flow (CMAF)
(see Definition 1.7). We prove the following general version of Tian—Zhang’s existence

X, WNKRF;ILNKRF ;T

theorem for the Kahler—Ricci flow:
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Theorem 4.1. The Cauchy problem with initial data Sy := xo + dd°pg for the normalized
Kdhler—Ricci flow on'Y has a unique viscosity solution defined on [0, Tynaz[¥Y .

Proof. Fix T' < Ty4.. Since for any t € [0,T], e {wo} + (1 — e *)Ky € K(Y), one can
show that there exists a smooth family of Kéhler forms (x;)o<i<r € K(Y") such that for
any t € [0,T], {x¢} = {w:}. Observe that if Ky is semi-ample then T},,, = +00 and we
can take x; := e txo + (1 — e )y, where x is a smooth semi-positive representative of
the canonical class Ky-.

In any case we can write w; = x¢ + dd°¢;, where ¢ is a solution to the corresponding
Monge-Ampere flow at the level of potentials,

(Xt +dd°gy)™ = 2T dVy, (4.1)
on Yr for some admissible volume form dVy on Y, or equivalently
(0 4 dd°p;)"™ = %P ngpE,

on a log resolution 7 : X — Y, where uyxgrr is a volume form on X with canonical
vanishing i.e. locally unxrr = llg|fe|**2dVx. Here we write ¢ := 7*¢ and 6; := 7*x;.

Since (xt)o<t< is a smooth family of Kéhler forms on Y, it follows that the family of
forms [0, T[> t — 0 is very regular on X in the sense of Definition 3.10. Therefore we
can apply Theorem 3.11 to get a unique solution to the Monge-Ampere flow on Xr for
any fixed T' < Tynqy starting at ¢g. By uniqueness all these solutions glue into a unique
solution of the Monge-Ampere flow on [0, Ty,q.[x X starting at ¢o. Pushing this solution
down to Y we obtain a solution to the NKRF starting at Syp. 0O

We have recovered by a zeroth order method one of the main results in [30]. Our
viscosity solution can be identified with their weak solution thanks to Proposition 3.12.

If Y is minimal, i.e.: Ky is nef, the flow is defined up to existence time T" = 400, and
it is natural to enquire about its long-term behavior. The sequel of this and the following
section will be mainly devoted to the study of this problem.

Turning briefly our attention to the case when —Ky is ample, it follows from
Lemma 1.8 that a similar result holds when Y is a Q-Fano variety. We refer the reader
to [4] for background on Q-Fano varieties. The Normalized Kéhler-Ricci flow is here

awt

el —Ric(w:) + we

and the cohomology class is again constant (equal to ¢;(Y")) if we start from an initial
data Sy = x + dd®¢o, where x is a Kéhler form representing ¢;(Y’). The flow can be
written, at the level of potentials,

(X + dd°¢y)™ = PP~ dVs,
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for some admissible volume form dVy, or equivalently
(0o + dd°py)™ = e~ unkrr,

on a log resolution 7 : X — Y, where 6y := 7*(x) and punkgrr is a volume form with
canonical vanishing i.e. locally unxrr = lg|fe]|?*®dVy.

Theorem 4.1 then guarantees that this complex Monge-Ampeére flow can be started
from an arbitrary continuous 6p-psh potential ¢y and exists for all times ¢ > 0. The long
term behavior is however much more difficult to understand on Q-Fano varieties and
is related to the (mildly) singular version of the Yau-Tian—Donaldson conjecture (see
[4,13,33]).

4.2. Canonically polarized varieties

We work in this section on a minimal model of general type, i.e. ¥ has canonical
singularities and Ky is big and nef (hence semi-ample by a classical result of Kawamata).
This contains in particular the case when Y is a canonical model, i.e. a general type
projective algebraic variety with only canonical singularities such that Ky is ample
(see [5] for the existence of a unique canonical model in every birational class of complex
projective manifolds of the general type).

4.2.1. Starting from the canonical class

In this paragraph, we assume Ky is ample. If we start the normalized Kéhler—Ricci
flow from an initial data Sy = xo + dd¢ whose cohomology class {xo} = ¢1(Ky) is
the canonical class, then {w;} = ¢;(Ky) is constantly equal to the canonical class of Y.
Thus w; = xo + dd°¢; and the flow can be written, at the level of potentials,

(XO + ddc¢t>" _ 68‘¢+¢thY

on RT x Y for some admissible volume form dVy .

Theorem 4.1 gives a unique viscosity solution to this complex Monge-Ampeére flow
with initial data ¢9 € PSH(X,x0) N C°(X). This shows in particular that the Kéhler—
Ricci flow can be run on Y from an initial data Sy which is an arbitrary positive current
in ¢1(Ky) with continuous potentials.

It follows from [16, Theorem 7.8] that Y admits a unique singular Kéhler—Einstein cur-
rent Skg € ¢1(Ky), which is a smooth bona fide Kédhler—Einstein metric on the regular
part Y., of Y, and admits globally continuous potentials at singular points Y, [17].

Theorem 4.2. Given any initial data Sy which is an arbitrary positive current with con-
tinuous potentials in c¢1(Ky), the normalized Kihler—Ricci flow

By
ot

= —Ric(wt) — Wt

can be run from Sy and converges, as t — 400, towards Skg.
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The convergence is uniform at the level of (properly normalized) potentials. One can
further show that the convergence holds in the C*-sense in Y., (see [29]), if Sy is a
smooth Kéhler form on Y.

Proof of Theorem 4.2. We work on a log resolution 7 : X — Y. Let 6y := 7*(x0). Recall
from [16,17] that

™ Ske =00+ dd°pkg,

where pxr € PSH(X,0y) NC°(X) is a viscosity/pluripotential solution of the elliptic
degenerate complex Monge—Ampeére equation

(o + dd°prr)" = e’ P uNKRF-

Thus ¢ kg is a fixed point (= static solution) of the NKRF and the comparison principle
yields

llo: — erEllLe®rxx) < llvo — ©kEl L~ (x)-

We can actually reinforce this uniform control by applying the comparison principle
to the functions u(t,z) = elp(t,z) and ukgp(t,z) = etpxr(z) which are etfy-psh in X:
observe indeed that ¢ — €'y is non-decreasing and the wu;’s satisfy the twisted parabolic
Monge—-Ampeére equation

(e'00 + ddCuy)™ = € Oty p .

It follows therefore from Remark 2.10 that for all £ > 0,

lor — wrellLex) < e llpo — exEllLe(x),

from which the conclusion follows. O

4.2.2. Starting from an arbitrary class
Here we come back to the general case when Ky is nef and big.

Theorem 4.3. Given any initial data Sy which is an arbitrary positive current with con-
tinuous potentials in the Kihler class {xo}, the Kahler—Ricci flow

8wt

e —Ric(wt) — wy (4.2)

can be run from Sy and converges, as t — 400, towards Skg.



P. Eyssidieux et al. / Advances in Mathematics 293 (2016) 37-80 71

Again the convergence is uniform at the level of (properly normalized) potentials. One
can further show that the convergence holds in the C*-sense in Y., (see [29]), if Sp is a
smooth Kéhler form on Y.

Proof of Theorem 4.3. Theorem 4.1 implies that the equation (4.2) has a unique solution
starting from Sp. It is clear that at the level of cohomology classes {w:} — ¢1(Ky) as
t — +o0o0. We want to show that this is the case for the flow itself. This can be done
using the comparison principle at the level of potentials.

We work on a log resolution 7 : X — Y so that (4.2) is equivalent to the following
Monge-Ampere flow:

(0 + dd°py)" = €291 ungcrp,

where 0; := 7*(x:) and pykrr is a volume form with canonical vanishing i.e. locally
pnkrr = g|fe**PdVx.

Let ¢xg be the potential of the singular Kdhler—-Einstein metric Skxg on Y given
by [16} i.e. Sk = x + dd¢pgg and (X + ddC¢KE)n = 6¢KEdVy. Define 0, := W*(X) and
vkp =7 (¢kg). Then the Kéhler—Einstein equation can be written as

(0o +dd°prr)" = e iNKRF.
The proof will be completed in three steps.

Step 1: We first establish a lower bound for the solution ¢ by finding an appropriate
subsolution to the Cauchy problem for the flow (4.1). Consider

u(t,z) ==e oo+ (1 — e Nogr + h(t)e ™,

on Rt x Y, where h is a C' function in Rt to be chosen so that u is a subsolution to
the Cauchy problem for the flow (4.1).
Observe that u(0,z) = g if h(0) = 0 and for all ¢ > 0,

0; + dduy = e " (0 + ddpo) + (1 — e ") (oo + ddprr) > 0
in the weak sense of currents, hence u; is 6;-psh and satisfies the inequality
(0 + ddu)™ > (1 — e )" (0o + ddprp)” = (1 — e ") e’ 2dVy.

in the pluripotential sense on X.

On the other hand dyu +u = @xg + h/(t)e* thus u is a subsolution if (1 —e~%)"
e Me™"  We therefore choose h to be the unique solution of the ODE R (t)
ne'log(l — e™*) with h(0) = 0. We let the reader check that

A

h(t)=n {(et —1)log(e! — 1) — € log(et)} =O0(t) as t — +o0.
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It follows therefore from Lemma 1.4 that u is a subsolution to the Cauchy problem for
the normalized Monge-Ampere flow (4.1). By the comparison principle we have u < ¢
in RT x X i.e.

exe(@) — o(t,z) < h(t)e™ = O(te™), (4.3)
for all (t,2) e Rt x X.
The proof of the upper bound is done by constructing an appropriate supersolution

to the Cauchy problem. The construction is more involved and uses our earlier results
in the degenerate elliptic case. We proceed in two steps.

Step 2: We first assume that Ky is ample. Fix § an arbitrary Kéhler form on X and set
0; :=e 0y + (1 — e ). Let ¢ be the solution to the Monge-Ampere flow

(6r + dd°o0)" = €™ Nk, (4.4)
and let ¢ be the solution to the degenerate elliptic equation
(B + dd°p)" = e’ unkrp- (4.5)
Assume moreover that 8y < 8 and consider the function
v(t,z) =1 + Ce ™,

defined on R x X, where C := maxx (¢g — ¢) > 0 is chosen so that vg = C + 3 > ¢
in X. This implies that ddv; 4+ 0; < dd“w 4+ S hence for all ¢ > 0,

(dd°v; + 0,)" < (dd + B)" = ¥ = P nkpp,
in the sense of viscosity on X.

Therefore v is a supersolution to the flow (4.4) and the comparison principle yields
the upper bound

plt,) < (x) + e~ max(o — )
When g is an arbitrary Kéhler form on X, it follows from the definition of #; that
there exists T >> 1 such that 6; < 23 for ¢t > T. The Kéhler-Ricci flow starting

from the current 07 4+ dd°pr has a unique solution given by ¢(¢,x) := p(t + T, x) for
(t,z) € RT x X. Translating in time we can thus assume that 6y < 28. Set

v(t,z) == (1+e p(x) + h(t)e " + Be™,
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where h is a smooth function, h(0) = 0 and B := maxx(po — 2¢) so that vy > @g. We
want v to be a supersolution of the flow (4.4). Since ddv; +6; < (1 +e~t)(ddy + B) we
get

(v +0,)" < (1+e7")"(dd") + f)" = (1 +e~")"e.

Since v + v =1 — W' (t)e~" we impose —h/(t)e~t = nlog(l + e *). Observe again that
h(t) = O(t). By the comparison principle we conclude that ¢(t,z) < v(¢,z) hence

plt,x) < P+ (max(po — 20) + maxp)e" + h(t)e". (4.6)

From (4.3) and (4.6) we conclude, when Ky is ample that |p; — ¢xr| = O(te™) as
t — +o0.

Step 3: We now establish the upper bound when Ky is merely nef and big. We set
B = 0 := 7*(x), where ¥ is semi-positive and big and represents the canonical class Ky .
The solution to the corresponding (4.5) is the function ¢ = pkg.

We approximate 8 by Kéhler forms 5. := 8 + en for € > small enough, where nn > 0
is a fixed Kéhler form on X. Set 65 := e %0y + (1 — e~ *)5. and solve as in Step 2 the
corresponding complex Monge—Ampere flow

(0 + dd°p5)™ = 29" T4 vk, (4.7)

with Cauchy data ¢f = ¢¢ which is 65-psh in X since 6§ = 6. Let ¢* be the continuous
Be-psh solution of the degenerate elliptic equation

(B + dd“y*)" = e*" pnkrr,

which exists by [16]. It follows from Step 2 that there exists ¢ > 1 such that for ¢ > ¢,
and z € X,

P° (1) < ¢ () + 7" max(p(te, 1) — 2% (2)) + h(t)e ™,

where h is a smooth function satisfying the h'(t)e~* = nlog(1 + 2e~*) with h(0) = 0.
Since 6 < 0°, the function ¢ is a supersolution to the parabolic equation (4.7) with

the same Cauchy condition. Moreover the family ¢ — 65 is very regular in the sense of

Definition 3.10. The comparison principle yields ¢ < ¢° on RT x X. Therefore

o(t,z) — pre(z) <Y (v) — k()
+ max(p(te, z) — 2¢°(x))

+ max Y= 4 h(t))e ™", (4.8)
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for t > t. and © € X. The comparison principle shows that the family (¢¢)csq is
non-increasing and ¢° — @xg pointwise in X as ¢ — 0 (see [17]). The convergence
® — wkg is uniform on X, as follows from Dini’s lemma.

By using (4.3) and (4.8), we conclude that ¢; — @gp uniformly on X as t — +o0.
Thus 6; +ddp; — O +ddpkg. Pushing down to Y we conclude that w; — Sk weakly
onY. O

4.3. Calabi—Yau varieties

Let Y be a Q-Calabi—Yau variety, i.e. a Gorenstein Kéahler space of finite index with
trivial first Chern class (see [16, Definition 7.4]).

Fix xo a Kéhler form on Y and Sy = xo + dd®¢o a positive closed current with a
continuous potential ¢g € PSH (Y, x0) NC°(Y). The Kéhler-Ricci flow

0
% = —Ric(w,)
preserves the cohomology class {xo} since ¢1(Y) = 0. Thus w; = xo + dd°¢: and the
KRF can be written at the level of potentials as the complex Monge-Ampere flow

(X0 + dd°¢y)" = e”?dVy

for some admissible volume form dVy

It follows from Theorem 3.11 that the corresponding complex Monge-Ampeére flow
on a log resolution 7 : X — Y with initial data ¢g := ¢ o 7 has a unique viscosity
solution . This shows in particular that the Kéhler-Ricci flow in the sense of Defini-
tion 1.9 can be run on Y from an initial data Sy which is an arbitrary positive current
with continuous potentials. The solution exists for all times ¢ > 0. Again, we recover one
of the main results of [30].

It follows from [16, Theorem 7.5] that Y admits a unique singular Ricci flat Kéhler—
Einstein current Skp in the Kéhler class {6y}, which is a smooth bona fide Kahler—
Einstein metric on the regular part Y;., of Y, and admits globally continuous potentials
at singular points Y4, thanks to [17].

Theorem 4.4. Let Y be a Q-Calabi-Yau variety and fix ag € K(Y') a Kahler class. Given
any initial data Sy € ay which is an arbitrary positive current with continuous potentials
on'Y, the Kdhler—Ricci flow

3wt

—; = ~Ric(w) (4.9)

can be run from Sy and converges, ast — 400, towards the singular Ricci flat Kihler—
FEinstein current Skg € aqg.
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The convergence here is uniform on Y at the level of (properly normalized) potentials.
A parabolic version of Yau’s C2-estimate, together with Tsuji’s trick and parabolic Evan—
Krylov’s 4+ Schauder theory allow to show that the convergence holds in the C*°-sense
in Yy (see [29]) when Sy is a smooth Kéhler form on Y.

Proof of Theorem 4.4. The Kahler—Ricci flow (4.9) is equivalent to the following complex
Monge—Ampere flow on X, a log resolution 7: X — Y

(6 + dd°p)"™ = e inkrr, (4.10)

starting at o with the usual notations.

By Theorem 3.11, this flow has a unique solution ¢ defined in Rt x X. Observe
that the solution ¢ is uniformly bounded in R* x X. Indeed let p be a solution to the
degenerate elliptic equation (6y + ddp)™ = dVy on Y normalized by maxx (¢ — p) =0,
which exists by [16]. The function ¥ (¢,z) := p(x) is a solution to the Monge-Ampeére
flow (4.10) with Cauchy condition ¥y = p. By the comparison principle we conclude that
for any (t,z) € R x X, we have

p(x) —max(p = o) < ¢(t,x) < p(z).

This shows that there exist uniform constants mg, My such that mg < (¢, z) < My for
all (t,z) e RT x X.

The proof of the convergence theorem goes by approximating by perturbed com-
plex Monge—Ampeére flows and by using the comparison principle as in the proof of
[19, Theorem 5.2].

We first prove an upper bound. Consider the flows

(0o + dd°¢y)" = e P He(@=Mo) gy, (4.11)

starting at ¢g, where € > 0 is a parameter that we shall eventually let converge to zero.

By Theorem 3.11, the flow (4.13) has a unique viscosity solution ¢ on RT x X. Observe
that ¢ is a subsolution to this flow by the choice of M. The comparison principle thus
insures

o(t,x) < °(t,x), in RT x X.

It remains to estimate ¢° from above. For € > 0 fixed, the solution of the perturbed flow
uniformly converges, as t — 400, to the solution of the static equation

(0 + dd°u®)" = (" =Mo) gy,

using a similar reasoning as in the previous section.
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By the strong version of the comparison principle for the equation (4.13) as in the
proof of Theorem 4.2, we have

c(t € < —et € .
max [6°(t @) - u () < e~ max po(2) — u”(2)

Moreover by stability of solutions to degenerate complex Monge—Ampere equations
established in [17] we know that u® — u uniformly on X to the solution u of the equation
(60 + dd“u)™ = dVy, normalized by the condition [, udVy = 0. We infer

ot z) —u(r) <e max lpo(z) — us(z)] + max [uf (z) — u(z)]. (4.12)
‘We now take care of the lower bound. Consider for £ > 0
(90 + ddc¢t)n — eatw+€(w7mo)dvy’ (413)

starting at ¢g. Observe that ¢ is a supersolution to this flow by the choice of mg. The-
orem 3.11 guarantees that this flow has a unique viscosity solution *. The comparison
principle thus yields

(@) < plt,a), in RY x X.

We now estimate 1° from below. For ¢ > 0 fixed, the solution of the perturbed flow
uniformly converges, as t — +o00, to the solution of the static equation

(B0 + dd°v®)"™ = =" — mg)dVy-.

Again by stability of solutions to degenerate complex Monge—Ampeére equations estab-
lished in [17] we know that v — u uniformly on X, where u is the unique solution of the
equation (fy + ddu)™ = dVy, normalized by the condition fX upungrr = 0. As above
we obtain the lower bound

u(z) — p(t,x) <e et max |v°(z) — wo(x)| + max lu(z) — v (x)|. (4.14)

It is now clear from (4.12) and (4.14) that ¢; — w uniformly in X as ¢t — +o0.
Pushing down everything to Y we see that wy = 0y 4+ dd°¢y — 0y + dd°u = Skg, as
t — +o0, as claimed. O

4.4. Smoothing properties of the Kihler—Ricci flow

Smoothing properties of the Kéhler—Ricci flow have been observed and used by many
authors in the last thirty years (see e.g. [1,32,28]).

Attempts to run the Kahler—Ricci flow from a degenerate initial data have motivated
several recent works [10-12,30,31]. The best result (before [22]) is that of Song and
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Tian [30] who showed that on a projective variety Y with canonical singularities, the
Kéhler—Ricci flow

awt

E = —Ric(wt)

can be run from an initial data Ty = xo + dd®¢y which is a positive current with contin-
uous potentials.? It is then classical that the flow exists on a maximal interval of time
[0, Tynaz[, where

Tinaz = sup{t > 0] {wo} — te1(Y) is Kéhler }.

The parabolic viscosity approach we have developed in this article allows us to show
that the potentials constructed in all these works are globally continuous on [0, Tha[ XY .

Theorem 4.5. Let Y be a projective variety with at worst canonical singularities. Fiz x a
smooth closed form representing c1(Ky ), xo a Kdhler form on'Y and let So = xo+dd®do
be a positive current with a continuous potential on'Y . The Kdhler—Ricci flow with initial
data Sy

8wt

E = —RIC(UJt)

admits a unique solution wy = xo + tx + dd°¢;, with

o for all 0 < t < Thas, the function x — @(x) is a xi-psh function on'Y which is
smooth in Yeeg;
o (t,x) = o(t,x) continuous on [0, Taz[ XY .

Proof. When Ky is semi-ample, we can assume x > 0 hence ¢t — 0; = 0y + tx is non-
decreasing. In the general case since 6y > 0 is Kéhler, there exists a constant A > 0 such
that —y < A6y in Y. Therefore the family t — 6, = 6y + tx is very regular in the sense
of Definition 3.10. The result is thus an immediate consequence of Theorem 3.11. O

The continuity of ¢ at singular points of Yy;,, is the novelty here: this is the parabolic
analogue of the main application of [17].

For complex Monge-Ampere flows starting from even more degenerate initial data,
we refer the reader to [22], where the work of Song and Tian is extended so as to allow
the Kéhler—Ricci flow to be run from a positive current with zero Lelong numbers. Our
viscosity approach can also be used in this latter context to show that the maximal
solution of the Kéhler—Ricci flow becomes immediately smooth on Y4, for ¢ > 0, with
globally continuous potentials on Y.

2 The precise assumption in [30] is a bit more restrictive but can easily be extended to this statement as
observed in [7].
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5. Concluding remarks: the Kihler—Ricci flow over flips
The extinction time of the KRF on Y can be expressed as
Ty = sup{t > 0,{wo} + tKy} € K(Y).
Let us assume that (Y, {wo}) satisfies the following assumptions:

e Y has terminal singularities.

o Th < o0.

o {wr,} ={wo} + ToKy is a non-trivial pull back from a Kahler class, i.e.: that there
exists a non-biholomorphic proper bimeromorphic holomorphic map v~ : ¥ — Z
such that Z is a normal Kéhler complex space and {wo} + To Ky € (¢~ )*K(Z).

e For N € N* divisible enough the sheaf of graded algebras

P(Y/Z) = @ ¢; Oy (nNKy)

neN
is locally finitely generated over Oz.

The last condition is fulfilled thanks to [5, Thm. 1.2 (3)] if Y and Z are projective
varieties. We then denote by ¢ : Y+ — Z the relative canonical model of ¢~ : Y — Z,
namely Y+ := Proj(P(Y/Z)). It is known thanks to the classical work of M. Reid that
Y " is normal (and has canonical singularities) and it is trivial to see that ¥ is a proper
bimeromorphic mapping.

It follows from [26, Lemma 3.38]? that Y™ has terminal singularities. Also, if Y, Z are
projective and Y is Q-factorial, then Y+ is Q-factorial. One can construct a diagram:

D
N,

where X is smooth, 7~, 71 are log-resolutions such that Exc(7t) UExc(n™) is a divisor
with simple normal crossings, ¥+, 1~ are proper bimeromorphic holomorphic maps. By
construction, — Ky is ¢y~ -ample, Ky+ is 1)T-ample and one has the following properties:

3 Stated for algebraic varieties. The proof however goes through in the complex analytic category since

1~ is a projective morphism due to the fact that —Ky is ¢~ -ample.
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Lemma 5.1. There exists a real number € > 0 such that for t €Ty, To + €|,
{wr,} + (t —To)Ky+ € K(YT).
Proof. Immediate consequence of the fact that Ky + is yT-ample. O

Lemma 5.2. The exceptional divisors of m~ are exceptional for wT.

Proof. The bimeromorphic map Y+ — - =~ — — > Y contracts no divisor, since a log-
canonical model is a contraction and Y™ — Z is the log-canonical model of Y — Z see
[5, section 3]. O

Furthermore, for an exceptional divisor E of 7F, we have ap < ap(Y) := a}, where
ap = 0 if E is not 7 -exceptional by [26, Lemma 3.38] and we define 6p = af; —ap > 0.
We define a measurable volume form with semipositive continuous density on X by

w= (HtSTo + s ([ [ 8E|iff)> pnxrr(hT)
E

and & € HY(X,Zy) 0n o) by

XTy+e

t

W = wo + /du (dd“log(pt) — ap[E] — Liusm,y0E[E]).
0

The fact that w has continuous local potentials is straightforward. The pair (w, u)
defines a Kéahler-Ricci flow on Y = Y~ for ¢t < Ty and a Kéhler-Ricci flow on Y+ for
t > Tp. On the other hand the flow (CMAF)g v does not satisfy condition (1.1) at Tp.
Indeed in every coordinate system one can find a potential in such a way that this flow
has the following expression:

(ddc¢)n _ e% ‘2E|2aE+2H{t>TO}6E.

We believe a large part of the theory developed here should hold in spite of the
breakdown of condition (1.1) but we shall not treat any further this topic in the present
article and hope to return to that problem in a later work.
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