Examen de Mathématique

Durée : 1h15. Les calculatrices, les téléphones portables et les documents ne sont pas autorisés.

EXERCICE 1

Soit ϕ la forme bilinéaire de $(\mathbb{R}_2[X])^2$ définie par

$$\forall (P,Q) \in \mathbb{R}_2[X]^2, \ \phi(P,Q) = P(1)Q(-1) + P(-1)Q(1).$$

On rappelle que $(1, X, X^2)$ est une base de $\mathbb{R}_2[X]$.

- 1. (a) Montrer que ϕ est une forme bilinéaire symétrique.
 - (b) Déterminer sa matrice par rapport à la base canonique de $\mathbb{R}_2[X]$.
- 2. On considère la famille $\mathcal{B} = (1 X^2, X, X^2)$.
 - (a) Montrer que \mathcal{B} est une base de $\mathbb{R}_2[X]$.
 - (b) Déterminer la matrice de ϕ dans cette base.
 - (c) En déduire l'expression, dans cette base, de ϕ et de la forme quadratique q associée.
 - (d) ϕ est-il un produit scalaire de $\mathbb{R}_2[X]$?
- 3. Soit $F = \{ P \in \mathbb{R}_2[X]; P(0) = 0 \}.$
 - (a) Montrer que F est un sous-espace vectoriel de $\mathbb{R}_2[X]$ et déterminer une base de F.
 - (b) Déterminer l'orthogonal de F relativement à ϕ défini par

$$F^{\perp} = \{ P \in \mathbb{R}_2[X]; \forall Q \in F, \phi(P, Q) = 0 \}.$$

EXERCICE 2

Soit la forme quadratique $q: \mathbb{R}^3 \longrightarrow \mathbb{R}$ suivante

$$q(x) = 2x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 2x_2x_3 + 2x_3^2$$
, où $x = (x_1, x_2, x_3) \in \mathbb{R}^3$.

- 1. Déterminer f la forme polaire associée à la forme quadratique q.
- 2. Démontrer que f est un produit scalaire sur \mathbb{R}^3 .
- 3. On munit \mathbb{R}^3 de ce produit scalaire. Soient $u_1 = (-1, 1, 1), u_2 = (2, -2, 3)$ et $u_3 = (1, 3, 4)$ trois vecteurs de \mathbb{R}^3 .
 - (a) Démontrer que (u_1, u_2, u_3) est une base de \mathbb{R}^3 .
 - (b) Appliquer la méthode Gram-Schmidt aux vecteurs (u_1, u_2, u_3) afin d'obtenir une base de \mathbb{R}^3 orthonormée pour le produit scalaire f.

EXERCICE 3

On considère \mathbb{R}^4 muni du produit scalaire euclidien usuel. Soit $F\subset\mathbb{R}^4$ le sous-espace vectoriel

$$F\left\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4; x_1 + 2x_2 + x_3 - 2x_4 = 0 \text{ et } x_1 - x_2 - x_3 - x_4 = 0\right\}.$$

- 1. Déterminer la dimension de F et de F^{\perp} .
- 2. Déterminer une base orthonormée de F^{\perp} .
- 3. Soit $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$. Déterminer $u \in F$ et $v \in F^{\perp}$ tels que x = u + v.