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1 Introduction

My internship took place at the Institut de Mathématiques de Toulouse (IMT) from the 6th of June

2016 to the 29th of July 2016. I was directed by Grégory Faye, junior CNRS researcher, whom I thank for

his advices. The purpose of this internship was to study periodic traveling waves solution to the equation:

∂tu(x, t)−
[∫

R
J(y)u(x− y, t)dy − u(x, t)

]
= f(u(x, t), t) for all x ∈ R, t ≥ 0. (1.1)

The hypothesis satisfied by the functions f and J and the definition of a periodic traveling wave will be

detailed later. The periodic traveling waves are an interesting type of solutions, as proved by the work

done in [1] on the equation:

∂tu(x, t)− ∂xxu(x, t) = f(u(x, t), t) for all x ∈ R, t ≥ 0, (1.2)

for which, under some conditions on the initial conditions, a solution u converges exponentially fast in

L∞ to a periodic traveling wave. This is called the exponential stability of periodic traveling waves, and

that was our main motivation to work on periodic traveling waves solution to (1.1). The first specificity

of this evolution equation, arising in the modelling of population dynamics, is that the diffusion term∫
R
J(y)u(x − y, t)dy − u(x, t) is nonlocal, because of the convolution. The local counterpart (1.2), with a

Laplace operator instead of the convolution diffusion, has already been studied in [1]. Moreover, in (1.1),

f depends on the time. The autonomous case, that is to say the equation:

∂tu(x, t)−
[∫

R
J(y)u(x− y, t)dy − u(x, t)

]
= f(u(x, t)) for all x ∈ R, t ≥ 0, (1.3)

was the subject of the work done in [3]. In [3] and in [1], the authors proved the existence, the uniqueness

and the exponential stability respectively of traveling waves and of periodic traveling waves solution to

their equations. My purpose during this internship was to understand their methods, and to adapt them in

order to work on (1.1) which shows the specificities of both (1.2) and (1.3). Thus, this report is organized

as follows. In section 2, I will explain with more details the hypothesis satisfied by f and J , and the exact

definition of a periodic traveling wave. Then, in section 3, I will prove a strong maximum principle and

a comparison principle inspired by the well-known theorems for elliptic equations used in [1], which are

essential for the sequel. I prove the uniqueness of periodic traveling wave solution to (1.1) in section 4 with

a method inspired from [1]. In section 5, I prove the existence, firstly in every compact set, then in the

wanted unbounded domain. In section 6, I will propose some extensions of this work, which I would have

tackled if I had had more time.

2 Presentation of the problem

We are interested in the study of the following nonlocal evolution equation, arising in the modelling of

population dynamics:

∂tu(x, t)−
[∫

R
J(y)u(x− y, t)dy − u(x, t)

]
= f(u(x, t), t) for all x ∈ R, t ≥ 0,
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where f and J verify the following assumptions.

Hypothesis (H1)

(i) there exists T > 0 such that for all u ∈ R and t ∈ R, f(u, t+ T ) = f(u, t),

(ii) f ∈ C2,1(R× [0;T ]), and for all t ∈ [0;T ], f(·, t) is Lipschitz,

(iii) define, for all α ∈ R, w(α, ·) the unique solution of the Cauchy problem:{
∂tw = f(w, t),

w(0) = α.
(2.1)

We can define the Poincaré map P such that for all α ∈ R, P (α) = w(α, T ).

We assume that P admits only three fixed points α− < α0 < α+ such that

d

dα
P (α±) < 1 <

d

dα
P (α0).

(iv) sup {∂uf(u, t) | u ∈ [W−(t),W+(t)], t ∈ [0;T ]} < 1.

Definition 2.1. A differentiable function g ∈ C0(R) is said bistable if it has only three zeros α− < α0 < α+

such that

g′(α±) < 0 < g′(α0).

Definition 2.2. A periodic traveling wave solution to

∂tu(x, t)−
[∫

R
J(y)u(x− y, t)dy − u(x, t)

]
= g(u(x, t)) for all x ∈ R, t ≥ 0,

where g is bistable, is a solution u such that there exist c ∈ R and U such that for all x ∈ R, t ∈ R, ξ ∈ R,

we have u(x, t) = U(x− ct), lim
ξ→+∞

U(ξ) = α−, lim
ξ→−∞

U(ξ) = α+ for all t ≥ 0, and U(0, 0) = α0.

In [3], this problem was studied with f independent of time, that is to say f ∈ C2(R) and f bistable. Here,

hypothesis (H1) is a generalization of the case f bistable, where f depends on time.

Hypothesis (H2)

(i) J is a nonnegative even continuous and continuously differentiable function of R,

(ii)

∫
R
J(y)dy = 1,

(iii) there exists µ0 > 0 such that for all µ ∈ (0;µ0),

∫
R
J(y)eµydy < +∞.

Here, J is an integral kernel taken smooth enough and even in order to simplify the following reasoning

and calculation.
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Remark 2.3. By the assumptions on f , the only T -periodic solutions to (2.1) are w(α±, ·) and w(α0, ·).
We will note for all t ∈ [0;T ], W±(t) := w(α±, t).

Our model is the nonlocal counterpart of the following problem, studied in [1]:{
∂tu− ∂xxu = f(u, t),

u(x, 0) = g(x) for all x ∈ R,
(2.2)

with the same assumptions on f , where g is a given function in L∞(R). Indeed, it was proved that if g

satifies lim sup
z→+∞

g(z) < α0 and lim inf
z→+∞

g(z) > α0, then the solution of (2.2) converges in L∞ as t → +∞

exponentially fast to a periodic traveling wave (as defined below) solution to (2.2). Here, we will rather

study the existence and uniqueness of a periodic traveling wave solution to (1.1).

Definition 2.4. A periodic traveling wave solution to (1.1) is a solution u to (1.1) such that there exist

c ∈ R and U such that for all x ∈ R, t ∈ R, ξ ∈ R, we have u(x, t) = U(x − ct, t), U(ξ, t + T ) = U(ξ, t),

lim
ξ→+∞

U(ξ, t) = W−(t), lim
ξ→−∞

U(ξ, t) = W+(t) for all t ≥ 0, and U(0, 0) = α0.

Consequently, if we write ξ = x− ct, we are now interested in the study of the following system:
∂tU − c∂ξU − [J ∗ U − U ] = f(U, t),

U(ξ, t+ T ) = U(ξ, t) for all ξ ∈ R, t ≥ 0,

lim
ξ→+∞

U(ξ, t) = W−(t), lim
ξ→−∞

U(ξ, t) = W+(t) for all t ≥ 0,

U(0, 0) = α0,

(2.3)

where for all (ξ, t) ∈ R, J ∗ U(ξ, t) :=

∫
R
J(y)U(ξ − y, t)dy.

Remark 2.5. Let (U, c) be a solution to (2.3), and τ ∈ R. We note Uτ the function such that for all

ξ ∈ R, t ∈ R, Uτ (ξ, t) = U(ξ + τ, t). Then (Uτ , c) is also a periodic traveling wave solution to (1.1).

Remark 2.6. u is a periodic traveling wave solution to (1.1) such that u(0, 0) = α0 if and only if the

couple (U, c) as defined in definition 2.4 is a solution to the system (2.3).

Thus, the proof of the existence and uniqueness of periodic traveling waves solution to (1.1) is equivalent

to the following theorem:

Theorem 1 (Existence and Uniqueness of a periodic traveling wave). There exists a unique function

U : R× [0;T ] −→ R and a unique constant c ∈ R such that (U ; c) satisfies the system (2.3).

3 Maximum Principles and a comparison principle

To prove Theorem 1, we will need some preliminary results. The proof of similar results for (2.2) used

a strong maximum principle and a comparison principle. In this section, we will prove the nonlocal

counterparts of these principles.
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3.1 The weak maximum principle

Theorem 2 (Weak maximum principle). Let R be defined by R := ∂t − L where Lu = J ∗ u − u + c∂ξu.

Assume J satisfies hypothesis (H2). Suppose that Ru ≤ 0 in Q := R× [0;T ].

Then, max
Q̄

u = max
∂Q

u.

Proof. First, suppose that Ru < 0 in Q. Assume, by way of contradiction, that u reaches its maximum at

a point (x0, t0) in the interior of Q. Then, Ru(x0, t0) = −[J ∗ u− u](x0, t0) ≥ 0. This is a contradiction.

In the general case, define an auxiliary function v with v(x, t) = eµx in Q, where µ is a constant which will

be determined later. Thus,

Rv(x, t) = −
∫
R
J(x− y)(eµy − eµx)dy − cµeµx = −eµx

(∫
R
J(y)e−µydy − 1 + cµ

)

Define J̄(µ) :=
∫
R J(y)e−µydy + cµ. Then, we have:

• J̄(0) = 1,

• J̄ ′(0) = −
∫
R yJ(y)dy + c = c,

• J̄ ′′(0) =
∫
R y

2J(y)dy > 0.

Thus, in accordance with the sign of J̄ ′(0), that is to say the sign of c, we can choose µ such that J̄(µ) > 1,

and therefore Rv < 0 in Q. Define ε > 0 and w := u + εv. Thus, Rw < 0 in Q. The conclusion is found

when ε→ 0.

3.2 The nonlinear comparison principle

Theorem 3 (Nonlinear nonlocal comparison principle). Assume f : R × [0;T ] satisfies hypothesis (H1)

ans J satisfies hypothesis (H2).

Assume there exist u and v verifying:

∂tu− [J ∗ u− u]− c∂xu ≥ f(u, t),

∂tv − [J ∗ v − v]− c∂xv ≤ f(v, t),

u(x, 0) ≥ v(x, 0) for all x ∈ R,
lim

x→+∞
u(x, t) ≥ lim

x→+∞
v(x, t) for all t ∈ [0, T ],

lim
x→−∞

u(x, t) ≥ lim
x→−∞

v(x, t) for all t ∈ [0, T ].

Then, u(x, t) ≥ v(x, t) for all t ∈ [0, T ], x ∈ R.

Proof. Define w := u− v, and γ such that for all x ∈ R, and all t ∈ [0, T ],

γ(x, t) =

{
f(u(x,t),t)−f(v(x,t),t)

u(x,t)−v(x,t) if u(x, t) 6= v(x, t),

∂sf(u(x, t), t) if u(x, t) = v(x, t).
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Thus, for all x ∈ R, t ∈ [0, T ], f(u, t) − f(v, t) = γ(x, t)w. Notice that with these assumptions, γ ∈
L∞(R× [0, T ]), and we get:

∂tw − [J ∗ w − w]− c∂xw − γ(x, t)w ≥ 0 in Q,

w(0, x) ≥ 0 in R,
lim

x→±∞
w(x, t) ≥ 0 in [0, T ].

Using the weak maximum principle with the operator R defined with Ru := ∂tu−[J∗u−u]−c∂xu−γ(x, t)u,

we get w ≥ 0 in Q. We do not have any problem with the sign of γ to use the maximum principle since

γ ∈ L∞(R× [0, T ]), and therefore it suffices to change the variable w into eλtw where λ ≥ ||γ||L∞(R×[0,T ]).

Hence, we conclude the proof of the nonlinear comparison principle.

3.3 The strong maximum principle

Lemma 3.1. Let R and J be as above. Assume Ru ≤ 0 in Q. Assume there exist x0 ∈ R and 0 < t0 ≤ T
such that u(x0, t0) = sup

Q
u. Then, u(x, t0) = u(x0, t0) for all x ∈ R.

Proof. We know that Ru(x0, t0) ≤ 0 by assumption. Moreover, ∂ξu(x0, t0) = 0, ∂tu(x0, t0) = 0, and∫
R
J(x0 − y)[u(y, t0)− u(x0, t0)]dy ≤ 0.

Thus,
∫
R J(x0 − y)[u(y, t0)− u(x0, t0)]dy = 0.

By assumption, J is non negative, even and continuous. Therefore, there exists 0 < a < b such that

[−b;−a] ∪ [a; b] ⊂ Supp(J). Hence, if Γ := {y ∈ R | u(y, t0) = u(x0, t0)},

(x0 − [−b,−a] ∪ [a, b]) ⊂ Γ.

Let A and C ∈ [a, b] be such that A
C /∈ Q. So x0 − C ∈ Γ and x0 + A ∈ Γ. Now, repeating this argument

with x0 −A and for x0 + C, we have

(x0 −A− [−b,−a] ∪ [a, b]) ⊂ Γ and (x0 + C − [−b,−a] ∪ [a, b]) ⊂ Γ.

Thus, {x0 + pC − qA|(p, q) ∈ {0; 1; 2}2} ⊂ Γ. By induction, {x0 + pC − qA|(p, q) ∈ N2} ⊂ Γ. Therefore, Γ

is closed, non empty, and contains a dense partition of R. Hence, Γ = R.

Lemma 3.2. Let D− be a half sphere centered at (x0, t0) ∈ Q :

D− =
{

(x, t); (t− t0)2 + (x− x0)2 < ρ2, t ≤ t0
}
⊂ Q,

and assume that Ru ≤ 0 and u < sup
Q

u in {(x, t) ∈ D− such that t < t0}. Then u(x0, t0) < sup
Q

u.

Proof. Assume by contradiction that u(x0, t0) = sup
Q

u. Let α be a positive constant. Let v be defined on

Q by v(x, t) = e−[(x−x0)2+α(t−t0)] − 1. Hence

Rv(x, t) = e−[(x−x0)2+α(t−t0)][−α+ 2c(x− x0) + 1−
∫
R
J(y)e(x−x0)2−(x−y−x0)2dy],
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therefore Rv < 0 in D− with α sufficiently large. Notice that v(x0, t0) = 0. Let E be the subset of Q

defined by :

E := {(x, t) ∈ D−|(x− x0)2 + α(t− t0) < 0}.

Also define S1 := ∂E ∩D− and S2 := Ē ∩ ∂Dρ(x0, t0) where Dρ(x0, t0) is the sphere centered at (x0, t0) of

radius ρ. u < sup
Q

u in S2, so there exists a positive constant δ such that u ≤ sup
Q

u − δ in S2. Let ε be

a positive constant. Define w := u+ εv. Therefore, for small enough ε, w < sup
Q

u in S2. It is also worth

noticing that Rw < 0 in E, w < sup
Q

u on ∂E\{(x0, t0)} and w(x0, t0) = sup
Q

u. Since Rw < 0 in E, w

cannot reach an interior maximum in E according to the weak maximum principle. Hence,

max
Ē

w = max
∂E

w = w(x0, t0).

This implies ∂w
∂t (x0, t0) ≥ 0. So,

∂u

∂t
(x0, t0) ≥ −ε∂u

∂t
(x0, t0) ≥ εα > 0.

But since u(x0, t0) = sup
Q

u, Ru(x0, t0) ≥ ∂u
∂t (x0, t0) > 0. This is a contradiction.

Theorem 4. Let R be defined by Ru := ∂tu − Lu where Lu = J ∗ u − u + c∂ξu. Assume J satisfies

hypothesis (H2). Suppose that Ru ≤ 0 in Q := R× (0;T ). Also suppose that there is a point (x0; t0) such

that 0 < t0 ≤ T , x0 ∈ R and

u(x0, t0) = max
Q

u

.

Then u is a constant in R× [0; t0].

Proof. Assume, by way of contradiction, that there exists (x1, t1) such that 0 < t1 < t0 and u(x1, t1) < M .

Then, by Lemma 3.1,

u(x, t1) < M for all x ∈ R.

Let t̄0 be such that u(x0, t̄0) = M and u(x0, t) < M for all t ∈ (0, t̄0), so that t1 < t̄0 ≤ t0. Then, u(x, t) < M

for all x ∈ R and all t ∈ (t1, t̄0). Lemma 3.2 implies that u(x0, t̄0) < M , which is a contradiction with the

definition of t̄0. Thus we have the conclusion of the strong maximum principle.

4 Uniqueness

Note Lcu := ∂tu− [J ∗ u− u]− c∂ξu− f(u, t). Since we got a nonlinear comparison principle and a strong

maximum principle, we can follow the method in six steps presented by Alikakos et al [1]. Let (c, U) and

(c̄, Ū) be two solutions of (2.1). Assume c̄ ≤ c.

Step 1: Define M± := sup
ξ∈R

(±U(ξ, 0)). Notice w(±M±, 0) = ±M±. Therefore, by the comparison

principle, we get w(−M−, t) ≤ U(ξ, t) ≤ w(M+, t) for all ξ ∈ R, t ≥ 0. By T -periodicity, we get
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w(−M−, kT + t) ≤ U(ξ, t) ≤ w(M+, kT + t) for all ξ ∈ R, t ≥ 0, k ∈ N. It follows, with the assumptions

on P , that lim
k→+∞

w(±M±, t+ kT ) = W±(t). So

W−(t) ≤ U(ξ, t) ≤W+(t) for all t ≥ 0, ξ ∈ R.

By the strong maximum principle and the periodicity of U and W±, we get:

W−(t) < U(ξ, t) < W+(t) for all t ≥ 0, ξ ∈ R.

We can find the same result for Ū with exactly the same reasoning.

Step 2: Define ν± := − 1
T

∫ T
0 ∂uf(W±(t), t)dt and a±(t) := exp(ν

±t
2 +

∫ t
0 ∂uf(W±(τ), τ)dτ).

Notice P ′(α±) = exp(
∫ T

0 ∂uf(W±(τ), τ)dτ) < 1, so ν± > 0 and a±(T ) = exp(−ν±T
2 ) < 1.

Define

δ0 :=
sup{η > 0 : |∂uf(u, t)− ∂uf(W±(t), t)| ≤ ν±

2 ∀t ∈ [0, T ], u ∈ [W±(t)− η,W±(t) + η]}
2 ‖a+‖C0([0,T ]) + 2 ‖a−‖C0([0,T ])

,

ξ0 := inf

{
ξ̄ ≥ 1 : |U(±ξ, t)−W±(t)| ≤ δ0

2
ξ ∈ [ξ̄; +∞) and t ∈ [0;T ]

}
.

For all δ ∈ (0; δ0], we define U±δ (ξ, t) := U(ξ, t) + δa±(t). Then,

LcU±δ = δ∂ta
± + f(U, t)− f(U + δa±, t) = δa±

[
ν±

2
+ ∂uf(W±(t), t)−

∫ 1

0
∂uf(U + δθa±(t), t)dθ

]
> 0

in [ξ0; +∞)× [0;T ] for the sign ”+” and in (−∞;−ξ0]× [0;T ] for the sign ”−”. Therefore, U±δ are super

solutions in these domains.

Step 3: By assumption, Ū(±∞, t) = W±(t) uniformly on R. Therefore, there exists z̃0 > 0 sufficiently

large such that

Ū(ξ − z + (c− c̄)t, t) ≤

{
U(ξ, t) if ξ ∈ [−ξ0, ξ0]

U(ξ, t) + δ0 if ξ /∈ [−ξ0, ξ0]
∀t ∈ [0;T ], z ≥ z̃0. (4.1)

Define δz̃0 = inf{δ > 0 | Ū(ξ − z, 0) ≤ U(ξ, 0) + δ, for all z ≥ z̃0, ξ ∈ R}. By definition, we notice

δz̃0 ∈ [0; δ0]. We want to show that δz̃0 = 0.

Notice that Lc(Ū)(ξ − z + (c − c̄)t, t) = 0. Using the comparison principle, the definition of δz̃0 on

[ξ0; +∞)× {0} and (4.2) on {ξ0} × [0;T ], we get:

Ū(ξ − z + (c− c̄)t, t) ≤ U+
δz̃0

(ξ, t) for all z ≥ z̃0, (ξ, t) ∈ (ξ0; +∞)× [0;T ].

Since z is arbitrarily taken in [z̃0; +∞) and c ≥ c̄, we get:

Ū(ξ − z, T ) ≤ U+
δz̃0

(ξ, T ) for all z ≥ z̃0, ξ ∈ (ξ0; +∞).

So, by periodicity, for all ξ ≥ ξ0, z ≥ z̃0, we have

Ū(ξ − z, 0) ≤ U(ξ, 0) + δz̃0a
+(T ),
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and in a similar manner, for all ξ ≤ −ξ0, z ≥ z̃0, we have

Ū(ξ − z, 0) ≤ U(ξ, 0) + δz̃0a
−(T ).

It is known that Ū(ξ − z, 0) ≤ U(ξ, 0) for all z ≥ z̃0, ξ ∈ [−ξ0, ξ0]. Therefore,

Ū(ξ − z, 0) ≤ U(ξ, 0) + δz̃0 max{a+(T ), a−(T )} for all ξ ∈ R.

Thus, by definition of δz̃0 , δz̃0 ≤ δz̃0 max{a+(T ), a−(T )}. Since a±(T ) < 1, we get δz̃0 = 0. So Ū(ξ−z, 0) ≤
U(ξ, 0) for all ξ ∈ R and z ≥ z̃0.

Step 4: From this last result, we conclude with a comparison principle that Ū(ξ− z+ (c− c̄)t, t) ≤ U(ξ, 0)

for all (ξ, t) ∈ R× [0; +∞). So, for all k ∈ N,

α0 = U(0, 0) = U(0, kT ) ≥ Ū(−z̃0 + (c− c̄)kT, kT ) = Ū(−z̃0 + (c− c̄)kT, 0).

With k → +∞, noticing c̄ ≤ c and Ū(+∞, 0) = α+ > α0, we conclude c = c̄.

Step 5: Define z0 = inf{y ∈ R : Ū(ξ − z, 0) ≤ U(ξ, 0) for all z ≥ y, ξ ∈ R}. It is clear that z0 exits and

is finite. We want to show that Ū(ξ − z0, 0) = U(ξ, 0) for all ξ ∈ R. Assume by way of contradiction that

there exist some ξ ∈ R such that Ū(ξ − z0, 0) < U(ξ, 0). By a strong maximum principle, (do not forget

c = c̄) Ū(ξ − z, t) < U(ξ, t) for all (ξ, t) ∈ R2, z ≥ z0. Take ε > 0 small enough so that (4.2) is true for

z̃0 = z0 − ε. Then, proceed as in step 3 to get Ū(ξ − z, 0) ≤ U(ξ, 0) for all z ≥ z̃0. Thus, by definition of

z0, z̃0 ≥ z0, but this is impossible. Hence Ū(ξ − z0, 0) = U(ξ, 0) for all ξ ∈ R.

Step 6: We now want to show z0 = 0.

By a strong maximum principle, we have that Ū(ξ−z0, 0) < U(ξ, 0) for all (ξ, t) ∈ R2, z ≥ z0. We also have

U(ξ, 0) = Ū(ξ − z0, 0). Therefore, U(ξ + z0 − z, 0) = Ū(ξ − z, 0) < U(ξ, 0) for all z > z0. Hence U(·, 0) is

strictly monotonic. Observe U(z0, 0) = Ū(0, 0) = α0 = U(0, 0). Since U(·, 0) is strictly monotonic, we must

have z0 = 0. Hence, for all ξ ∈ R, U(ξ, 0) = Ū(ξ, 0). Therefore, since U and Ū verify the same parabolic

equation with the same initial condition and the same limit conditions, we must have U(ξ, t) = Ū(ξ, t) for

all ξ ∈ R, t ∈ [0;T ].

5 Existence

We intend to use here the method developed in [1]. First of all, we will prove the existence of solutions in

bounded domains [−M ;M ] × [0;T ] with M ≥ 1. Then, we will prove that these solutions are uniformly

bounded for all M , so that we can find a solution (U∗, c∗) taking M → +∞.

5.1 Existence in a bounded domain

Let M ≥ 1 be fixed. Define ΩM := (−M ;M) and QM := ΩM × [0, T ]. We also define

χM = {g ∈ C1([−M ;M ]) : g(±M) = α±, g(0) = α0, ∂ξg ≥ 0 in ΩM}.

We aim to construct a solution to the problem in a bounded domain. First of all, for any given initial

conditions g in χM and any propagation speed c in R, we assure the existence of a function V such that
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for all ξ ∈ [−M ;M ] and all t ∈ [0;T ], ∂tV (ξ, t)− c∂ξV (ξ, t)− [J ∗V −V ](ξ, t) = f(V (ξ, t), t). Then, we will

adjust c so that the solution satisfies V (0, T ) = α0. Finally, we are going to choose a good initial condition

in χM to have a T-periodic in time solution.

Lemma 5.1. Let c be in R and g be in χM . Then, the system
Lc(V ) := ∂tV − c∂ξV − [J ∗ V − V ] = f(V, t) for all (ξ, t) ∈ QM ,
V (±M, t) = W±(t) for all t ≥ 0,

V (ξ, 0) = g(ξ) for all ξ ∈ ΩM .

(5.1)

has a solution, noted V (g, c; ξ, t).

Remark 5.2. Here, we use the notation J ∗ V (ξ, t) =
∫
R J(y)Ṽ (ξ − y, t)dy where

Ṽ (ξ, t) =


V (ξ, t) if ξ ∈ ΩM ,

W−(t) if ξ ≤ −M,

W+(t) if ξ ≥M.

Proof. Notice that if V is a solution to (5.1), V is well defined in QM , since we find with a comparison

principle that

W−(t) < V (ξ, t) < W+(t) for all (ξ, t) ∈ QM .

Let c be fixed in R. Notice that if V ∈ C1([−M ;M ]×[0;T ]), then J ∗V −V ∈ C1([−M ;M ]×[0;T ]). There-

fore, if c = 0, then there clearly exists V0 ∈ C1([−M ;M ]× [0;T ]) satisfying (5.1) since g ∈ C1([−M ;M ]).

Now, suppose c 6= 0. With the semi-group theory, (5.1) admits a solution noted V (g, c; ξ, t). Indeed, define

A(u) = c∂ξu+ J ∗ u− u for all u ∈ D(A) := C1([−M ;M ]). We notice that:

• D(A) is dense in C0([−M ;M ]),

• A is closed (with the dominated convergence theorem),

• With the Fourier transform, for all λ > 0, λ belongs to the resolvent set, and A is dissipative.

Thus the Hille-Yosida theorem gives us that A is the generator of a strongly continuous semi-group. Then,

the equation ∂tu = Au + F (u) where F (u)(ξ, t) := f(u(x, t), t) for all (ξ, t) ∈ QM , has a solution, since f

is regular enough.

We now want to define a constant C(M, g) such that V (g, C(M, g); 0, T ) = α0.

Lemma 5.3. Let g be in χM . There exists a constant C(M, g) ∈ R such that V (g, C(M, g); 0, T ) = α0.

Proof. Notice that if ξ = ±M , then ∂ξV ≥ 0. Moreover, ∂ξV satisfies :

L(∂ξV ) := ∂t(∂ξV )− c∂ξ(∂ξV )− [J ∗ ∂ξV − ∂ξV ]− ∂uf(V, t)∂ξV = 0.

As in section 3, we can prove that the operator L has a maximum principle, because f is regular enough to

have ∂uf(V, ·) ∈ L∞(QM ). This maximum principle gives us ∂ξV > 0 in QM . We note ∂cV = ∂cV (g, c; ·, ·).
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Then ∂cV satisfies L(∂cV ) = ∂ξV > 0 in QM , and ∂cV ≡ 0 if t = 0 or if ξ = ±M . Thus, with the maximum

principle for L, we get

∂cV > 0 in QM .

Moreover, notice that V (g, c, 0, T ) depends continuously of c. Let ζ : [−M ;M ]× [0;T ]→ R be such that
∂ξζ > 0 in [−M ;M ]× [0;T ],

ζ(±M) = α±,

ζ(0) = α0,

and K > 0 sufficiently large such that W (ξ, t) := ζ(ξ) − K(T − t) satisfies W (±M, t) ≤ W±(t) for all

t ∈ [0;T ]. Define C+(M) = sup
(ξ,t)∈[−M ;M ]×[0;T ]

∂tW−[J∗W−W ]−f(W,t)
∂ξW

. Then, by the definition of C+(M), we

get: 
LC

+(M)(W ) < 0 in ΩM ,

W (±M, t) ≤W±(t) for all t ∈ [0;T ],

W (·, 0) < g for all g ∈ χM .

Thus, by the comparison principle, W (ξ, t) ≤ V (g, C+(M); 0, T ) in QM , for all g ∈ χM . Hence

α0 = W (0, T ) ≤ V (g, C+(M); 0, T ).

Define in the same manner C−(M) = inf
(ξ,t)∈[−M ;M ]×[0;T ]

∂tW−[J∗W−W ]−f(W,t)
∂ξW

. Then, we find

α0 = W (0, T ) ≥ V (g, C−(M); 0, T ).

Thus, since V (g, c, 0, T ) depends continuously of c, and ∂cV > 0, there exists a unique C = C(M, g) ∈
[C−(M);C+(M)] such that V (g, C; 0, T ) = α0. Moreover, with the properties of V , we find that

V (g, C(M, g); ·, T ) ∈ χM .

Lemma 5.4. Let g be in χM . We note V (ξ, t) := V (g, C(M, g); ξ, t) for all (ξ, t) ∈ R× [0;T ]. Then, there

exist fixed constants l > 0 and K ≥ 0 such that:

∂ξV (ξ, t) ≤ e−ltsup
x∈R
|g′(x)|+ (1− e−lt)K

l

for all (ξ, t) ∈ R× [0;T ].

Proof. Notice that ∂ξV satisfies:

∂t(∂ξV ) + ∂ξV − C(M, g) ∂ξ(∂ξV )− ∂uf(V, t)∂ξV = J ′ ∗ V.

we define K := sup
ξ∈R,t∈[0;T ]

|J ′ ∗ V (ξ, t)| and l := 1 − sup {∂uf(u, t) | u ∈ [W−(t);W+(t)], t ∈ [0;T ]}. Then,

since we made the hypothesis that sup {∂uf(u, t) | u ∈ [W−(t);W+(t)], t ∈ [0;T ]} < 1, we must have l > 0.

The comparison principle gives us the expected result.
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Remark 5.5. The hypothesis sup {∂uf(u, t) | u ∈ [W−(t);W+(t)], t ∈ [0;T ]} < 1 is crucial here. If it is

not satisfied, as explained in [3], there can exist some discontinuous solutions to (5.2) (defined below) with

the propagation speed c = 0.

Remark 5.6. The bound we found here still depends on M .

To conclude the construction of a solution in a bounded domain, we only have to adjust g ∈ χM so that

for all (ξ, t) ∈ R× [0;T ], we have V (g, C(M, g); ξ, t+ T ) = V (g, C(M, g); ξ, t).

Theorem 5. The following system
LC(U) := ∂tU − C∂ξU − [J ∗ U − U ] = f(U, t) for all (ξ, t) ∈ QM ,
U(±M, t) = W±(t) for all t ≥ 0,

U(ξ, 0) = U(ξ, T ) for all ξ ∈ ΩM .

(5.2)

admits a solution noted (VM , CM ).

Proof. Define Z : χM → χM with Z(g) = V (g, C(M, g); ·, T ).

• Lemmas 5.1 and 5.3 give us that Z is well-defined,

• χM is a non-empty, closed and convex set of C1([−M ;M ]),

• Since ∂cV > 0 and V (·, c, 0, T ) depends continuously of g, we have that C(M, g) depends continuously

of g, and therefore that T is continuous,

• Lemma 5.4 gives us that Z(χM ) is bounded in C1([−M ;M ]), which implies that Z is a compact

operator.

Thus, we can use the Schauder fixed point theorem which gives us that there exists ḡ ∈ χM such that Z(ḡ) =

ḡ. Hence, V (ḡ, C(M, ḡ); ·, ·) is a solution of (5.2) with C = C(M, ḡ). We note VM :≡ V (ḡ, C(M, ḡ); ·, ·)
and CM := C(M, ḡ).

5.2 Estimate of CM and
∥∥V M

∥∥
Our purpose is now to do the passage to the limit M → +∞, but CM or VM could diverge while M

tends to +∞. Thus, we now have to prove that
{
CM

}
M≥1

and sup
M≥1

∥∥VM
∥∥
C1([−M ;M ]×[0;T ])

are uniformly

bounded.

Lemma 5.7. We recall that (VM , CM ) be a solution to (5.2).

(i) If (V̄ , c̄) satisfies 
∂tV̄ − c̄∂ξV̄ − [J ∗ V̄ − V̄ ] = f(V̄ , t) for all (ξ, t) ∈ QM ,
V̄ (±M, t) ≤W±(t) for all t ∈ [0;T ],

V̄ (ξ, 0) ≤ V̄ (ξ, T ) for all ξ ∈ [−M ;M ],

V̄ (0, 0) ≥ α0,

then CM ≤ c̄.
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(ii) If V̂ satisfies 
∂tV̂ − CM∂ξV̂ − [J ∗ V̂ − V̂ ] = f(V̂ , t) for all (ξ, t) ∈ [0;M ]× [0;T ],

V̂ (±M, t) ≤W±(t) for all t ∈ [0;T ],

V̂ (ξ, 0) ≤ max{α0, V̂ (ξ, T )} for all ξ ∈ [0;M ],

then V̂ ≤ VM in [0;M ]× [0;T ].

Proof.

(i) Assume by contradiction that CM > c̄. We know that ∂ξV
M > 0 in QM . Therefore, in QM , we have:

Lc̄(VM ) = (CM − c̄)∂ξVM > 0.

Define:

m0 = inf
{
m ∈ (−2M ; 2M) | VM (ξ, 0) > V̄ (ξ −m, 0) in (−M ;M) ∩ (m−M ;m+M)

}
.

We know that VM (M, 0) = α+ > V̄ (−M, 0) and VM (0, 0) = α0 ≤ V̄ (0, 0). Therefore, m0 ∈ [0; 2M).

Moreover, by definition of m0, there exists ξ0 ∈ ΩM
m0

:= (m0 −M ;M) such that VM (ξ0, 0) = V̄ (ξ0 −
m0, 0). With the assumptions on VM and V̄ on the boundary, we deduce that VM (ξ, t) ≥ V̄ (ξ−m0, t)

on the parabolic boundary of ΩM
m0
× (0;T ]. Hence, the comparison principle applied to VM (ξ, t) and

V̄ (ξ −m0, t) on ΩM
m0
× [0;T ] gives us:

VM (ξ, T ) > V̄ (ξ −m0, T ) for all ξ ∈ ΩM
m0
.

Yet, we also know that

VM (ξ0, T ) = VM (ξ0, 0) = V̄ (ξ0 −m0, 0) ≤ V̄ (ξ0 −m0, T ).

There is a contradiction. Hence CM ≤ c̄.

(ii) Define

m0 = inf
{
m ∈ [0;M ] | VM (ξ, 0) > V̂ (ξ −m, 0) in [m;M ]

}
.

We follow the same method, using a comparison in (m0,M) × (0;T ] on VM (ξ, t) and V̂ (ξ −m0, t).

If we define ξ0 such that VM (ξ, 0) > V̂ (ξ−m0, 0) for all ξ ∈ [m0;M ], we find the same contradiction

as in (i) if m0 6= 0. Hence, m0 = 0, and the comparison principle in [m0;M ] gives us that V̂ ≤ VM

in [0;M ]× [0;T ].

We now want to estimate CM using Lemma 5.7 (i), in order to be able to pass to the limit M → +∞ in

the next subsection. We will follow the idea given by [1].

Theorem 6.
{
CM

}
M≥1

is uniformly bounded.
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Proof. Define for all s ∈ R, ζ(s) = 1
2(1 + tanh( s2)). Then, ζ ′ = ζ(1− ζ) > 0 in R. We define w1 ≡W+ and

w2(t) = w(α− − ε0, t) with ε0 small enough so that w2(t) ≥W−(t)− 1 for all t ∈ [0;T ]. We choose:

V̄ (ξ, t) = w1(t)ζ(ξ + ξ0) + w2(t)[1− ζ(ξ + ξ0)] for all (ξ, t) ∈ [−M ;M ]× [0;T ],

where ξ0 is chosen so that ζ(ξ0) = α0−α−+ε0
α+−α−+ε0

.

Since w1(T ) = w1(0) and w2(T ) > w2(0), with the definition of V̄ we remark:

• V̄ (·, T ) > V̄ (·, 0),

• ∂ξV̄ > 0,

• V̄ (0, 0) = α0, V̄ (+∞, 0) = α+, and V̄ (−∞, 0) = α− − ε0.

Therefore, we only have to find a good c̄ to verify the assumptions of Lemma 5.7 (i).

By Taylor’s expansion, we get:

ζf(w1, t)− (1− ζ)f(w2, t)− f(ζw1 + (1− ζ)w2, t) =
1

2
ζ(1− ζ)(w1 − w2)2∂2

uf(θ, t),

where θ is a constant in (w2;w1) and where ζ is evaluated in ξ + ξ0.

Let c̄ be fixed later. We calculate:

Lc̄(V̄ ) = (ζf(w1, t) + (1− ζ)f(w2, t)− f(ζw1 + (1− ζ)w2, t)

= −ζ(1− ζ)(w1 − w2)
[
c̄+ J∗ζ−ζ

ζ′ −
1
2(w1 − w2)∂2

uf(θ, t)
]
.

Notice that ζ ′ > 0 in R, (w1 − w2) > 0 in [0;T ], and J∗ζ−ζ
ζ′ is bounded in R by a constant K > 0.

We take c̄ = K + 1 + 1
2 sup{(W+(t)−W−(t) + 2)|∂2

uf(u, t)| : t ∈ [0;T ], u ∈ [W−(t)− 1;W+(t) + 1]}.

Thus, we have Lc̄(V̄ ) < 0 in QM for all M such that ζ(−M) ≤ ε0
α+−α−−ε0 . This last condition on M

implies that V̄ (−M, 0) ≤ α−.

Therefore, we can use Lemma 5.7 (i) to find that CM ≤ c̄.

Theorem 7. sup
M≥1

∥∥VM
∥∥
C1([−M ;M ]×[0;T ])

is uniformly bounded.

Proof. We already know that for all M ≥ 1, ‖VM‖L∞(QM ) ≤ sup
t∈[0;T ]

|W±(t)| and that for all ξ ∈ R, t ∈

[0;T ], k ∈ Z,

∂ξV
M (ξ, t+ kT ) ≤ e−l(t+kT )sup

x∈R
|∂ξVM (ξ, 0)|+ (1− e−l(t+kT ))K̃

l

by Lemma 5.4, with K̃ :=
∫
R |J

′(y)|dy sup
t∈[0;T ]

|W±(t)|. Thus, passing to the limit k → +∞, since VM is

T -periodic in time, we get for all ξ ∈ R, t ∈ [0;T ],

∂ξV
M (ξ, t+ kT ) ≤ K̃

l
,

and this bound does not depend on M . Moreover, for all M ≥ 1,

∂tV
M = CM∂ξV

M +
[
J ∗ VM − VM

]
+ f(VM , t)

and all the terms on the right side are uniformly bounded. We can then deduce the expected result.
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5.3 Existence on an unbounded domain

We have proved that {CM}M≥M0 and supM≥M0
||VM ||C1(QM ) are uniformly bounded. Thus, there exists

a subsequence {Mj} such that Mj → +∞ as j → +∞, and CMj → c∗ ∈ R, and VMj → U∗ uniformly in

any compact of R× [0;T ]. Thus, passing to the limit in (5.2), we get:
LC(U∗) := ∂tU

∗ − c∗∂ξU∗ − [J ∗ U∗ − U∗] = f(U∗, t) for all (ξ, t) ∈ R× [0;T ],

U∗(0, 0) = α0,

U∗(ξ, 0) = U∗(ξ, T ) for all ξ ∈ R,
∂ξU

∗ ≥ 0 in (ξ, t) ∈ R× [0;T ].

(5.3)

We now have to show that U∗(±∞, t) = W±(t) for all t ∈ [0;T ].

Remark 5.8. (5.3) admits a trivial solution which is w(α0, t). Since we have not yet proved that the VMj

converges to U∗ uniformly on R, the limit conditions are not a priori satisfied by U∗, since it can be the

trivial solution.

Lemma 5.9. If U∗ is a non-trivial solution of (5.3), then U∗(±∞, t) = W±(t) for all t ∈ [0;T ].

Proof. Since U∗ is not trivial, ∂ξU
∗(ξ, t) 6= 0 for some (ξ, t) in R × [0;T ]. Thus, by the strong maximum

principle, we get

∂ξU
∗(ξ, t) > 0 in R× [0;T ].

Therefore, since U∗ is uniformly bounded by supt∈[0;T ] |W±(t)|, U∗(±∞, t) exists for all t, and

U∗(−∞, 0) < α0 < U∗(+∞, 0).

We know that U∗(·, t) is monotone for all t, and ∂ξU
∗ converges weakly to 0 as |ξ| → 0. Hence, U∗(±∞, t)

are periodic solutions of ∂tw = f(w, t), and therefore U∗(±∞, t) = W±(t). So, we have also proved that

(CM , VM ) converges uniformly to (c∗, U∗) as M → +∞.

Lemma 5.10. U∗ is non trivial.

Proof. Without loss of generality, we can assume that c∗ ≥ 0 and U∗(0; t) ≥ w(α0, t), because U∗(0; t) <

w(α0, t) directly gives us that U∗ is not trivial. Thus, we have the following statements:

lim
j→+∞

CMj ≥ 0 and lim
j→+∞

min
t∈[0;T ]

{VMj (0, t)− w(α0, t)} ≥ 0.

We will fix j later. With the definition of w, we have that ∂αw = exp(
∫ t

0 ∂uf(w, τ)dτ) > 0. We define:

K := max

{
|wαα(α, t)|
wα(α, t)

+ 1 : α ∈ [α−;α+], t ∈ [0;T ]

}
.

Let ε > 0 be a constant and define

δ ∈
(

0; min

{
1

16K
;
α+ − α0

8
;
α0 − α−

2

})
,
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and ζ ∈ C∞(R) be as:
0 ≤ ζ ′(s) < 5

√
δ, and α0 + 2δ ≤ ζ(s) < α0 + 7δ if s ≥

√
δ,

ζ(s) = α0 + (s+
√
δ)2 − 2δ if s ∈ [−

√
δ;
√
δ],

0 ≤ ζ ′(s) < 4
√
δ, and α0 − 2δ ≤ ζ(s) < α0 + δ if s ≤ −

√
δ.

Fix δ1 > 0 sufficiently small, and define for all α, ŵ(α, t) as the solution to{
∂tŵ = f(ŵ, t)− δ1(max{0, ŵ − ŵ(α0 + δ, t)})3,

ŵ(α, 0) = α.

Thus, we have that ∂αw ≥ ∂αŵ > 0 and ŵ(α, ·) = w(α, ·) if α ≤ α0 + δ. Fix ε > 0. Now, our purpose is

to apply Lemma 5.7 (ii) to compare the functions V̂ (ξ, t) = ŵ(ζ(εξ), t) and VMj with j sufficiently large.

By the definition of ζ and ŵ, with ε small enough, we can verify that V̂ satisfies the second and the third

assumptions of the lemma. We only have to show that LC
Mj

(V̂ ) ≤ 0 on [0;Mj ]× [0;T ]. We calculate:

LC
Mj

(V̂ ) = −δ1(max{0, ŵ− ŵ(α0 + δ, t)})3−εζ ′(εξ)∂αŵ(ζ(εξ), t)−
∫
R
J(ξ−y)[ŵ(ζ(εy), t)− ŵ(ζ(εξ), t)]dy.

Define δ2 := mint∈[0;T ]{ŵ(α0 + 2δ, t)− ŵ(α0 + δ, t)}.

• If ζ ≥ α0 + 2δ: then εξ ≥
√
δ and 0 ≤ ζ ′ < 5

√
δ, and we have:

LC
Mj

(V̂ ) ≤ −δ1δ
3
2 − ε5

√
δ min{0;CMj}∂αŵ − [J ∗ V̂ − V̂ ](ξ, t),

≤ −δ1δ
3
2 − ε5

√
δ min{0;CMj}∂αŵ +

∫
R
J(y)|y|dyε5

√
δ sup
α∈[α−;α+],τ∈[0;T ]

|∂αŵ(α, τ)|,

< 0,

for ε small enough.

• If ζ < α0 + 2δ: then εξ ≤
√
δ but we only have to focus on the case εξ ≥ 0 to use Lemma 5.7 (ii).

We have:

LC
Mj

(V̂ ) ≤ −ε4
√
δ min{0;CMj}∂αŵ − [J ∗ V̂ − V̂ ](ξ, t)

We can calculate with the Taylor theorem that:

ŵ(ζ(ε(ξ − y)), t) = ŵ(ζ(εξ), t) +
(
−εyζ ′(εξ) + ε2y2

2 ζ ′′(εξ) +O(ε3)
)
∂αŵ(ζ(εξ), t)

+ 1
2

(
−εyζ ′(εξ) + ε2y2

2 ζ ′′(εξ) +O(ε3)
)2
∂ααŵ(ζ(εξ), t) +O(ε3)

= ŵ(ζ(εξ), t) +
(
−εyζ ′(εξ) + ε2y2

2 ζ ′′(εξ) +O(ε3)
)
∂αŵ(ζ(εξ), t)

+
(
ε2y2

2 (ζ ′(εξ))2 +O(ε3)
)
∂ααŵ(ζ(εξ), t) +O(ε3).

One can verify with an estimation of the rest in the Taylor development thatO(ε3) denotes a uniformly

bounded function of y. Therefore, since J is nonnegative and even, we can remove the terms at odd

orders in y in the Taylor expansion of [J ∗ V̂ − V̂ ], and so we get:

[J ∗ V̂ − V̂ ](ξ, t) ≥
∫
R
J(y)y2dy ∂αŵ(ζ(εξ), t)

[
ε2 − 16δε2K

]
+O(ε3)

> 0

.
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with ε small enough, since δ < 1
16K . Then, since lim

j→+∞
CMj ≥ 0, we can take j large enough so that

LC
Mj

(V̂ )(ξ, t) < 0.

Therefore, using Lemma 5.4 (ii), we get V̂ ≤ VMj in [0,Mj ] × [0;T ]. Hence U∗ ≥ V̂ in [0; +∞) × [0;T ],

and there exist (ξ, t) ∈ [0; +∞)× [0;T ] such that V̂ (ξ, t) > w(α0, t). Therefore U∗ 6= w(α0, t).

Thus, (U∗, c∗) is a solution to (2.3) and therefore we have proved Theorem 1.

6 Extensions

My internship was too short to prove other valuable results, but many extensions of this problem are worth

being studied.

6.1 Exponential Stability of pulsating transition front

We have proved that there exists a unique couple (U, c) solution to (2.3). The motivation to study traveling

waves solution to (1.1) is the following theorem, which focus on the behaviour of some solutions to (1.1):

Theorem 8. Define g ∈ L∞(R) be such that lim sup
z→+∞

g(z) < α0 and lim inf
z→+∞

g(z) > α0. Let u be the solution

to (1.1) such that for all x ∈ R, u(x, 0) = g(x). Then , there exist µ > 0, C ≥ 0 and x̂ ∈ R such that for

all t ≥ 0:

‖u(x, t)− U(x+ x̂− ct, t)‖L∞(R ≤ Ce
µt.

Such a theorem has already been proved in [2].

6.2 Bistable on average nonlinearity

Definition 6.1. f is said bistable on average if it satisfies:

• f(α−, t) = f(α+, t) = 0 for all t ∈ R,

• 1
T

∫ T

0
∂uf(α−, s)ds < 0 and 1

T

∫ T

0
∂uf(α+, s)ds > 0.

Let T > 0 and fT such that fT is bistable on average, and let g be defined such that for all v ∈ R,

g(v) :=
1

T

∫ T

0
fT (v, s)ds.

Then, we can remark that g is bistable, whose zeros are α−, α+ and a third reel α0 such that α− < α0 < α+.

In [4], the existence, uniqueness and asymptotic stability of periodic traveling waves solution to:

∂tu− ∂xxu = fT (u, t). (6.1)

Thus, we can conjecture that the same results remain true for the equation:

∂tu− [J ∗ u− u] = fT (u, t). (6.2)

That is to say, we can conjecture the following propositions:
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Proposition 6.2. If T is small enough, then there exists a unique periodic traveling wave (uT , cT ) solution

to 
∂tu

T − cT∂ξuT − [J ∗ uT − uT ] = fT (uT , t),

uT (ξ, t+ T ) = uT (ξ, t) for all ξ ∈ R, t ≥ 0,

lim
ξ→+∞

uT (ξ, t) = W−(t), lim
ξ→−∞

uT (ξ, t) = W+(t) for all t ≥ 0,

uT (0, 0) = α0,

(6.3)

We note (ug, cg) the unique solution to the following system:
∂tug − cg∂ξug − [J ∗ ug − ug] = g(ug),

lim
x→+∞

ug(x) = α−, lim
x→−∞

ug(x) = α+,

ug(0, 0) = α0.

Proposition 6.3.

cT −→
T→0

cg,∥∥uT − ug‖W 1,2;p
loc
−→
T→0

0

for all p ∈ (1; +∞), and where

W 1,2;p
loc :=

{
v ∈ Lploc(R

2) | ∂tv, ∂ξv, ∂ξξv ∈ Lploc(R
2)
}
.

6.3 Regularity

We have used the hypothesis (H1) (iv), that is to say

sup
{
∂uf(u, t) | u ∈ [W−(t),W+(t)], t ∈ [0;T ]

}
< 1,

in order to find a smooth solution u for the speed c. This hypothesis is crucial for the regularity of the

solution. Indeed, as explained in [3] in the autonomous case, if c = 0 and if (H1) (iv) is not satisfied, and

with a well-chosen nonlinearity f , then there can exist a solution with a point of jump discontinuity. In

order to ignore these problems of discontinuity if (H1) (iv) is not satisfied, we can seek for weak solutions,

as in [3], that is to say seek for couples (u, c) verifying for all φ ∈ C∞c (R) and for all t ∈ R:∫
R
u(ξ, t)φ(ξ)dξ =

∫
R
u(ξ, 0)φ(ξ)dξ +

∫ t

0

∫
R

[J ∗ u(ξ, s)− u(ξ, s) ]φ(ξ)dξds

−c
∫ t

0

∫
R
u(ξ, s)φ′(ξ)dξds+

∫ t

0

∫
R
f(u(ξ, s), s)φ(ξ)dξds,

and we can study the special case c = 0 as done in [3] in the autonomous case, to deal with eventual

discontinuous solutions.
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6.4 Neural network

We can study the following neural network equation:

∂tu(x, t)−
[∫

R
J(y)u(x− y, t)dy − u(x, t)

]
=

∫
R
J(y)f(u(x− y, t), t)dy for all x ∈ R, t ≥ 0, (6.4)

which can be seen as an extension of our work, with a nonlocal nonlinearity. The existence of periodic

traveling wave solution to (6.4) could be proved with a homotopy from a well-known problem, as done in

[6] in the autonomous case.

7 Conclusion

The purpose of my internship was to study the existence and uniqueness of the periodic traveling waves

solution to the nonlocal evolution equation (1.1). The exponential stability was proved in [2]. Thus, under

some hypothesis on the initial conditions, we know the behaviour of a solution to (1.1), which was the main

motivation of this study. It is worth highlighting that the strong maximum principle and the comparison

principle that I proved in section 3 are useful and interesting theorems, which could be used again in

another context. Although the proof of the uniqueness is very similar to the one in [2], the existence was

proved with an alternative approach, using a preliminary study of the problem on a bounded domain. In

[2], the authors proved the existence of a periodic traveling wave solution to:

∂tu− (θ − 1)∂xxu− θ[J ∗ u− u] = f(u, t), (7.1)

where θ ∈ [0; 1]. It was proved that for all θ ∈ [0; 1], there exists a unique traveling wave (uθ, cθ) solution

to (7.1). Then, since {cθ}θ∈[0;1) and sup
θ∈[0;1)

‖uθ‖C1(R×[0;T ]) are uniformly bounded, we can pass to the limit

θ → 1 to find a periodic traveling wave solution to (1.1). These are two general methods for the study of

reaction-diffusion systems, that I learnt during my internship. The study of nonlocal evolution equation

permits to do a generalization of some results on classical local reaction-diffusion systems. This kind of

equation is involved in the study of many fields: we have for example already cited in this report the model

of population dynamics or neural network equations, but the study of reaction-diffusion systems is capital

in biomathematics in general.

To conclude, during this internship, I have discovered more precisely the world of research in mathemat-

ics, thanks to the serious and friendly atmosphere in the IMT. I have learnt several valuable methods for

the study of reaction-diffusion systems, and I have started becoming familiar with the concept of traveling

wave. Therefore, I think that this internship have brought me precious knowledge, that is why I deeply

thank my mentor, his other intern Gwenaël Peltier and the PhD students with whom I shared an office.
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