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Abstract

We propose and study a new model to describe biological invasions constrained on infinite
homogeneous one dimensional metric graphs. Our model consists of an infinite PDE-ODE
system where, at each vertex of the one-dimensional lattice Z, we have a logistic equation, and
connections between vertices are given by diffusion equations on the edges supplemented with
Robin like boundary conditions at the vertices. We establish the main properties of the system
and study the long time behavior of the solutions, especially by characterizing an asymptotic
spreading speed for the system. In the fast diffusion regime, we derive a novel asymptotic
model which exhibits similar propagation properties as the classical discrete Fisher-KPP on the

one-dimensional lattice Z.
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1 Introduction

Traveling waves in biology are ubiquitous and have been found in many contexts, such as the
spread of cancer cells in healthy tissue, traveling bands of bacteria, the diffusion of genes within a
population, or the spread of an epidemic, to name a few. One common feature of these biological
spreading phenomena is that they are highly complex, network-driven dynamic processes. In many

applications, the intrinsic heterogeneity of the underlying networks makes it very challenging to

*email: gregory.faye@math.univ-toulouse.fr



Figure 1: Schematic spatial configuration of the system (1.1)-(1.2) where the unknowns p; are indexed on
the lattice Z while each v; is locally defined on (0, 7).

analyze these processes and assess the relevant factors that effectively drive the propagation. From a
modeling perspective, it is also quite difficult, given the multiscale nature of the considered biological
processes, to adopt a formalism that could combine intricate network structures and complex

dynamics, and still provide comprehensive and valuable feedbacks to the biological community.

Our focus here will be on biological processes that can be well approximated by macroscopic models
set on metric graphs. More precisely, given a metric graph, that is, a collection of interconnected
vertices and edges with prescribed lengths, we will consider non classical reaction-diffusion models
where, schematically, diffusion processes take place along the edges of the graph while reaction
kinetics occur at the vertices with prescribed rules of exchanges between vertices and adjacent
edges. Such a formalism has typically been proposed to study coupled membrane-bulk diffusion
systems [11, 12, 18] and to analyze the effects of transportation networks such as roads, railways
or waterways on the spread of epidemics among cities [3, 17] as reported for example for the
spread of COVID-19, Chikungunya virus, Zika virus and HIV virus [9, 10, 14]. Other types of
reaction-diffusion models on metric graphs have been proposed in the past decades. In population
dynamics, the so-called river network models [7, 15] describe the dynamics of organisms living in a
river system subject to a forced flow in the downstream direction. It typically consists of reaction-
diffusion equations set on the vertices of a given prescribed network with a continuity condition
at the edges, together with a Kirchoff law that translates the continuity of fluxes through the
edges. In cellular physiology, models of cells coupled by gap junctions [6, 16, 21] are typically set
on networks, and concentrations of diffusing particles follows a diffusion equation within each cell,
idealized by an edge, and at the junction between two cells, that is, at each vertex of the network,
specific boundary conditions are prescribed to account for the permeability properties of the cells

membrane.

In the present work, we propose a model where the underlying metric graph is indexed by the
one-dimensional lattice Z, such that each vertex of the graph is exactly connected to two incident
edges, and all edges have exactly the same length, denoted by ¢ > 0. As previously emphasized, our
framework is very general and relevant in a wide array of situations in biology. Nevertheless, for
convenience, we will adopt a population dynamics point of view and for the sake of simplicity and
illustration, we shall from now on refer to the vertices as “the cities” and the edges “the roads”.
For j € Z, we denote by p;(t) the density of individuals which reside in city j while we denote by
vj(t, z) the density of individuals diffusing along the road connecting city j to city j + 1 where ¢



refers to time and x € [0, ¢] represents the local position on the road. We refer to Figure 1 for a
schematic illustration of the spatial configuration of our so-called “city-road” model. Exchanges of
populations take place between cities and adjacent roads. Namely, given a city, indexed by j € Z, a
fraction o > 0 of individuals from the two adjacent roads at the city, that are v;_1(t,¢) and v;(t, 0),
joins the city, while a fraction 8 > 0 of individuals from the city j transfers to each of the two
adjacent roads. It is further assumed that the population in each city is subject to a logistic-type
growth, resulting in a nonlinear reaction term f(p) that models effective birth rate and intrinsic
competition. On the other hand, we assume that no such reaction is relevant on the roads and
consider solely a diffusion process, with diffusion coefficient d > 0, to describe the dynamics of
each v;. Transposing the above principles into equations, we are thus led to consider the following
system of equations:
o;(t, ) = do2vj(t,x), = € (0,0),

vVt >0, j€Z, { (1.1)
p;(t) = f(p;(t)) + alvj(t,0) +vj—1(t, £)) — 2Bp;(t),

with inhomogeneous Robin boundary conditions

—dd,v;(t,0 (t,0) = Bpi(t),
oo e 0j(t,0) + aw;(1,0) = Bp; (1 o)

daxvj (t,0) + Qavj (t,0) = 5pj+1(t)'
The nonlinearity f € €1([0,1]) satisfies
F0)=f(1)=0, 0< f(u) < f(0)u, Vuec(01).

We extend it to a negative function outside [0,1]. Let us already remark that by performing the
following rescaling
e T B e oy n), d o L and of e O
x 7 v;(t,2") — Lvj(t, x), <—>£2 an a<—>€,
we may assume, for the rest of the paper, and without loss of generality, that £ = 1.

Model (1.1)—(1.2) is largely inspired by the SIR model proposed by the first author and Besse in
[3]. There are nevertheless three important differences between the two models. First of all, the
intrinsic dynamics at each city are different, in our case it is given by a single logistic equation, while
in [3] it was given by an SIR compartment model resulting in a system of equations. Second, the
study [3] considered compact connected graphs, meaning that the number of cities and roads was
finite, while here model (1.1)—(1.2) is indexed by the one-dimensional lattice Z and thus infinite.
Finally, the model in [3] allowed a fraction of individuals to pass from one road to another one.
This is not taken into account in the boundary conditions (1.2) and we refer to the last section of
the present manuscript for a longer discussion about this possible extension into the model. One
of the key feature of system (1.1)—(1.2) is the preservation of the total population in the absence
of reaction kinetics at the cities. Indeed, assume that (v, p) with v = (v;)jez and p = (p;) ez is a
solution of (1.1)—(1.2) with f = 0 and such that the following quantity is well defined for all time



t > 0 for which the solution exists:

1
M(t) := Z [pj(t) +/ v;(t, x)dx] :
JEZ 0
Then, formally, integrating by parts in the first equation and using the boundary conditions, we

obtain
1 1 t
/0 vj(t, x)dx _/0 vj(0,z)dx = d/o (Oxvj(s,1) — 0yv;(s,0))ds
=5 [ )+ o) ds—a [ (0,051 +0,(5,0)ds,

while the second equation gives

) = p3(0) = [ (5.0 + 01 (5. 1))ds =25 [ py(s)ds.

Summing over Z, we deduce that M (¢) = M (0) for all ¢ > 0. As a consequence, we see that, in the
absence of reaction kinetics, the exchanges between the cities and the roads exactly compensate

each other.

Our aim here is to study the long time behavior of the solutions (1.1)—(1.2) as a function of the
various parameters of the model: «, 3, and d, the nonlinearity f and the chosen initial condition. We
are especially interested in characterizing the spreading properties of the system. More precisely,
given a compactly supported initial condition, that is, given an initial condition for which only
finitely many cities and/or roads have a nonzero initial population, does the corresponding solution
of the Cauchy problem converge to a unique positive stationary configuration? And if yes, at which
speed does the convergence towards this eventual steady state take place? In a nutshell, our main
results regarding our model (1.1)—(1.2) are as follows. At this stage of the presentation, we remain

formal and refer to the following sections for precise statements and assumptions.

Existence and uniqueness of classical solutions. We prove in Theorem 1 below that for each
well-prepared initial condition our model (1.1)—(1.2) admits a unique positive bounded classical
solution which is global in time. The structure of (1.1)—(1.2) is non standard, and since the
graph considered here is infinite, we cannot readily rely on the existing results of [3], which only
apply for compact graphs. We adopt a similar approach and construct solutions via an iterative
scheme. To obtain compactness and extract converging subsequences, we combine a priori estimates
via comparison principle techniques and standard parabolic estimates for the heat equation with

inhomogeneous Robin boundary conditions. This analysis is conducted in Section 2.

Long time behavior of the solutions. We fully characterize the long time behavior of the

unique solution of our model. More precisely, in Theorem 2, we first prove that the only posi-

tive, bounded, stationary solution of (1.1)—(1.2) is the constant sequence (g, 1) . Interestingly
j€



enough, the proof relies on the fact that stationary solutions of (1.1)—(1.2) are in one-to-one corre-

spondence with the stationary solutions of the discrete Fisher-KPP equation given by

Apj—1—2p; +pjr1) + f(pj) =0, jEL,

for some A > 0 depending explicitly on «, 8 and d. Finally, we demonstrate that the positive

bounded stationary solution (g, 1) s is the global attractor of the system (1.1)—(1.2) when ini-
jE

tialized with nontrivial nonnegative bounded initial condition. We refer to Theorem 3 for a precise
statement but we already emphasize that the convergence is locally uniform in j € Z and uniform
in x € [0,1]. The aforementioned results are proved in Section 3 and rely on comparison principle

techniques and the construction of adequate sub and super-solutions for the system (1.1)—(1.2).

Linear spreading speed. In Section 4, we analyze the linearized problem around the trivial
constant state (0,0) ez and derive a theoretical formula for the linear spreading speed, denoted by
¢«, and defined as the small possible speed ¢ > 0 for which there exists an exponential solution of
the form
(0 (t,2), p5(1)) = (7T~ NV (), &G~

for some prescribed positive profile V. The formula for ¢, is given in equation (4.9) below and we
refer to Figure 4 and Figure 5 for illustrations of the dependence of ¢, as a function of the other
parameters «, 3, d and f’(0). The characterization leading to the definition of ¢, is quite intricate.
Although we manage to prove that ¢, is well-defined, it is yet a problem to prove that there exists
a unique corresponding p, > 0 at which the spreading speed is attained, as it is usually the case for
reaction-diffusion systems having a monotone structure. We conjecture that it is indeed the case

based on our numerical computation of the linear spreading speed via its formula (4.9).

Asymptotic spreading. It turns out that the linear spreading speed c, defined in formula
(4.9) is precisely the asymptotic spreading speed of the nonlinear system (1.1)-(1.2) as proved in
Theorem 4 in Section 5. More precisely, we show that solutions of system (1.1)-(1.2) starting from
compactly supported initial conditions spread at speed c,. Traduced mathematically, if (v, p) is a

corresponding solution, then we have the following dichotomy:

(i) for all ¢ > ¢, we have

lim sup (vi(t,x),p;(t)) = (0,0);
i s (0362, (0) = (0.0

z€[0,1]

(i) for all ¢ € (0, ¢4), we have

lim inf @ﬂux%pﬂw)::<§J>.

t=-boo [j]<et
z€[0,1]

A key element of the proof is the construction of compactly supported generalized subsolutions for

the nonlinear system (1.1)-(1.2).



Large diffusion limit. We finally investigate the large diffusion limit d — +o00 of the system in
Section 6. Our first result, see Theorem 5 for a precise statement, ensures that for well-prepared
initial conditions, the solution of system (1.1)-(1.2) converges' as d — +o0 towards (V,P), which

is the solution of the asymptotic system

VE>0, j€Z, {Vj'(t) = —2aV;(t) + B(P;(t) + Pj41(t)),
Pi(t) = f(P;(t)) + a(Vj(t) + Vj-1(t) — 28P5(t).

For this asymptotic system, we also prove that (g, 1) - is the only positive bounded stationary so-
lution and that solutions to the corresponding Cauchy problem starting from bounded nonnegative
initial conditions asymptotically converge towards it, locally uniformly in j € Z. We further prove
in Theorem 6 the existence of an asymptotic spreading speed, denoted by ¢2° (see formula 6.8), for
the asymptotic system. We also conjecture? that

e — ¢,
d—+o00

where ¢, is the spreading speed of the full system (1.1)-(1.2), and leave it to future work to rigorously

demonstrate this asymptotic limit.

Our asymptotic spreading result echoes the ones obtained for standard reaction-diffusion equations
set on graphs such as, for instance, the Fisher-KPP equation set on the lattice [22] or homogeneous
trees [13], and where the linear spreading speed characterizes the long time behavior of the solutions
of the Cauchy problem starting from compactly supported initial data. We also refer to [5] for the
most recent results in the direction of the so-called logarithmic Bramson correction for the level
sets of the solutions for the Fisher-KPP equations on the lattice. In our setting, as expected,
the characterization of the spreading speed is less explicit and more intricate. Let us also remark
that our framework is at the crossroad of the aforementioned standard discrete reaction-diffusion
models and continuous models that take into account lines of transportation such as the so-called
“field-road” model of Berestycki, Roquejoffre and Rossi [1]. Indeed, on a formal level, our proposed
model can be thought of as being a one-dimensional version of the planar reaction-diffusion system

of [1], if we consider only one city and one semi-infinite road.

2 The Cauchy problem

In this section, we focus on the well-posedness of the problem (1.1)—(1.2). As a consequence, we

supplement the system with the initial condition

vjeZ, ‘ (2.1)

"Locally uniformly in (¢,5) € (0, +00) x Z and uniformly in z € [0, 1].
2This conjecture is verified numerically in Figure 4(c).



We shall always assume that the initial sequences h = (h;);jez and A = (A;) ez satisfy the following
compatibility condition
d&zh;(l) + Oéhj(l) = ﬁAj—l—l(O)-

Vj € Z, (2.2)

Throughout the paper, we let £>°(Z) denote the Banach space of bounded valued sequences indexed

by Z and equipped with the norm:
N | f = (u;);
[ull, (Z) I}leazx‘uj‘a oru (UJ)JeZh
and also define
X0 .= {u = (uj)jez |Vj € Z, uj € ‘50([0, 1],R) and ||ullec < +oo},

with norm

u = sup max |u;(x)|.
Julloe = sup s o)

The main result of this section is the following.

Theorem 1. The Cauchy problem (1.1)-(1.2)-(2.1) with nontrivial nonnegative bounded initial se-
quences h = (h;)jez € X0 and A = (A})jez € (®°(Z) satisfying the compatibility condition (2.2) ad-
mits a unique bounded positive global classical solution (v, p) = (vj, pj)jez with p; € €1([0,4+00),R)

and
v € €°(0, +00)x[0, 1], R), 8tvj,agvj € €°((0,+00)x(0,1),R), and Ozvj € €°((0, +00)x[0,1],R),
for all j € Z. Furthermore, for all t > 0, one has

VieZ, 0<uvj(tz)< max{g, Hh”oo} , 2 €[0,€], and 0 < p;(t) < max{||Al/s~(z), 1}

2.1 Uniqueness

In order to establish the uniqueness of the solution of the Cauchy problem (1.1)-(1.2)-(2.1), we shall
rely on a comparison principle for (1.1)-(1.2). We first define the notion of super and subsolutions
to (1.1)-(1.2). Let (v,p) = (v;,7;)jez with p; € €*([0,+00),R) and

7; € €°([0, 400)x[0, 1], R), 9,75, 025, € €°((0,+00)x(0,1),R), and 9,7, € €°((0, +00)x[0, 1], R),

for all j € Z. We say that (V, p) is a supersolution to (1.1)-(1.2) if it has the above regularity and

satisfies )
0¢v;(t, x) > d0,2v;(t,x), x€(0,1),

i (t) = f(p;(t) + a(v;(t,0) +7;-1(t, 1)) — 28p;(),
—d0,v;(t,0) + av;(t,0) > Bp;(t),
\daﬁj(t, 1) +aw;(t, 1) > Bp;1q (1),
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Figure 2: Numerically computed solution of system (1.1)-(1.2) at time t = 50 for f(u) = u(l —u) and
(o, B,d) = (1,1,1) starting from an initial condition where hj =0 for all j € Z and Aj =1 for j <0 and
A; =0 for j > 1. The red dots represent p; located at position j while each blue curve represents v; located

on the interval [j,j + 1].

for all ¢ > 0. We define similarly a subsolution (v, p) to (1.1)—(1.2) with the same regularity and

all above inequalities being reversed.

Proposition 2.1. Let (v,p) and (V,p) be respectively a subsolution and supersolution to (1.1)-
(1.2). If we assume that (v, p) and (V,p) are locally bounded in time and satisfy for all j € Z
that v;(0,7) < 0;(0,z) for all x € [0,1] and Qj(O) < p;(0), then we have v;(t,z) < v;(t,x) and
Bj(t) < p;(t) for allt >0, z €[0,1] and j € Z. Furthermore, if v(0) # v(0) or p(0) # p(0), then
we have v,(t,r) <v;(t,r) and Bj(t) < p;(t) for allt >0, x € 0,1] and j € Z.

The above comparison principle immediately extends to generalized sub and supersolutions, given

by the supremum of subsolutions and the infimum of supersolutions respectively.

Proof. We start by defining the following sequences w = v — v and z := p — p which share the

same regularity as the super and subsolutions, and satisfy the following system of equations

Oyw;(t,x) > dO,2w;(t, x), € (0,1),

zi'(t) > (g (t) — 28) z(t) + a(wj(t, 0) + wj—1(t, 1)),
—d0yw;(t,0) + awj(t,0) > Bz;(t),
\da w;(t, 1) + a2} (t,1) > Bzjy(t),

Vi€ Z,

for all t > 0, together with

w;(0,2) >0, € 0,1],
Zj(O) 2 0.

Vi e Z,



In the above system, we have also defined

Vt>0, jE€Z, gt):= pi(t) = Bj(t)

Since (v, p) and (V,p) are locally bounded in time, we have that for all 7" > 0, there exists a
constant C' > 0 such that |g;(t)] < C for all ¢t € (0,7] and j € Z. As a consequence, we can rely
on Proposition B.1 to infer that w;(t,z) > 0 and z;(t) > 0 for all t > 0, € [0,1] and j € Z. The
same Proposition B.1 also ensures that if furthermore w(0) # 0 or z(0) # 0, then w;(¢,z) > 0 and
zj(t) > 0 for all t > 0, x € [0,1] and j € Z. This concludes the proof. [

Proof of uniqueness of Theorem 1.  Assume that (v, p;) and (va, py) are two bounded
positive global classical solutions to (1.1)-(1.2)-(2.1) starting from the same initial condition (h, A).
Applying twice the comparison principle of Proposition 2.1, we readily obtain that (vi,p;) =

(va, pa).

2.2 Existence

Throughout this section, we shall always assume that the nontrivial nonnegative bounded initial
sequences h = (hj)jez € X and A = (A;) ez € £°°(Z) satisfy the compatibility condition (2.2).

To establish the existence of a solution to system (1.1)-(1.2)-(2.1), we construct an iterative se-
quence. More precisely, we obtain a solution to (1.1)-(1.2)-(2.1) as the limit of the sequence of
solutions (v, p")nen starting from (v°, p°) = (h, A), and where for each n > 1, the sequences

v = (v])jez and p" = (p}) ez are solutions to the following problem:

i (t,x) = dﬁzv;‘(t,x), z € (0,1),
vE> 07 dp?(t) 7 n—1 n—1 n (23)
ar f(Pj (t) + a(vj (t,0) + Vi1 (t,1) — 20p] (t),

with Robin boundary conditions

—dozv"(t,0) + av(t,0) = Bp (),
ve >0, { S (1,0)+ ey (0,0 = 56 1) (2.4
doyvj (t,1) + avj (t, 1) = Bl (8),
and initial datum

for all j € Z.
We say that (", p")nen is a supersolution to (2.3)-(2.4), if for all n > 1 one has p} € CL([0,+0),R)

and each v} has the following regularity

v} € €°([0, +00) x[0, 1], R), 0,07, 00} € €°((0,+00)x(0,1), R), and 8,0} € €°((0, +00)x[0, 1], R),



and satisfy

0 (t,7) > d0,7(t,)

) > [ ) + o 1(@0) +*ﬂ:§<t, 1) - 2673(0),
—d0, v} (t,0) + v’ (2,0) >

kal&,ﬂ}j(, 1) +avj(t,1) > Bpﬁl(t).

vVt >0, j€Z,

We define similarly a subsolution (v", p")nen to (2.3)-(2.4) with all above inequalities being reversed
and the same notion of regularity. For our purposes, we present a comparison principle which will
play an important role in the forthcoming proof of existence of solutions to (2.3)-(2.4)-(2.5) and

which is very similar to the one already proved in Proposition 2.1.

Proposition 2.2 (Comparison principle). Assume that (V",p")nen and (v", p")nen are respec-
tively supersolution and subsolution to (2.3)-(2.4). If (v°, p°) < (v°,p°)? and for alln > 1 one has
v7(0,2) <07(0,2) and B;L(O) <p}(0), for z € [0,1] and j € Z, then for all t > 0

Vta) STt a), 2 €[0,1],  and (1) < PLD),

for anym > 1 and j € Z.

Proof. We start by defining for all n € N the following sequences w" := v" —v" and z" := p" —p

which satisfies for all n > 1 the following system of equations

(O (t,2) > d@xzw (t, :c), € (0,1),

() > (g7(t) = 28) 22(1) + a(w) 7 (£,0) + W) (£, 1)),
—do,w?(t, ) aw}(t,0) > 27 (1),

doywj(t,1) + az}(t, 1) > Bz} (1),

together with

w(t,x) >0, = el0,1],
2(t) >0,
w?(0,2) >0, z€l0,1],
2(0) 20,

for all t > 0 and j € Z. In the above system, we have also defined

FEpm) = fer) )
am={ mO-pgt " (t) # 5 (8),

Fo7 (1), 27 (t) = pi (1),

3We use the notation (u, p) < (v,A) whenever u;(t,z) < v;(t,z) and p;(t) < A;(t) for all t > 0, j € Z and
z € [0,1].

10



which is well defined by the regularity of f. We shall now complete the proof of the proposition by

induction.
For n = 1, integrating the second inequality of the above system, we find
t
40 2 OB B2 o [ uf(s0) + 0f (5 D)l O 20, 10, e
0

since zjl(O) >0 and wjo-(t,x) >0 for all x € [0,1], t > 0 and j € Z. Now, for each j € Z we have

dwj(t, ) > ddswi(t,z), =€ (0,1),
—d@xw} (t,0) 4+ ozwjl» (t,0) >0,

d@ijl (t,1) + ozzjl-(t, 1) >0,

w;(0,z) >0, x€]0,1],

then the weak maximum principle for parabolic equation with Robin boundary condition [20]
ensures that
wi(t,z) >0, xz€0,1],

for all ¢ > 0.
Finally, assume that the property holds for n — 1, that is, w;‘_l(t, xz) > 0 for x € (0,1) and
z?_l(t) > 0 for all £ > 0 and j € Z. Once again, using the assumption that 2'(0) > 0 and the

variation of constants formula, we derive

t n t t n
2 (t) > 2P (0)elo (97 ()=20)ds o /O (w1 (5,0) + w'=} (s, 1)els (G D=2)dqs > 0 ¢ >0, jez,

from which we deduce, applying again the weak maximum principle, that

wi(t,z) >0, ze0,1],
for all ¢ > 0. This completes the proof of the proposition. ]
As already emphasized, we shall construct a classical solution (v, p) to (1.1)-(1.2)-(2.1) as the limit

of the sequence (v", p"),cn initialized with (v?, p%) = (h, A), where each (v", p") is the solution
of (2.3)-(2.4)-(2.5). We divide the proof into several steps.

Step 1: solvability of (2.3)-(2.4)-(2.5) on [0,7,,) for some 7,, > 0. We use induction to show
that (2.3)-(2.4)-(2.5) has a unique solution. For n = 1, we have that for each j € Z, the function

pjl- are solutions of the following Cauchy problem

/
{p} (t)
p;(0)
Since f is Lipschitz continuous, and by definition ’U?(t,()) = h;(0) and v?_l(t, 1) = hj—1(1), the

Cauchy-Lipschitz theorem ensures the existence of 0 < 77 < +o00, the maximal time of existence,

Flpj()) + a(vf(t,0) +v)_y (8, 1)) — 28p5(t), >0,

. (2.6)

11



such that the Cauchy problem (2.6) has a unique solution p]l € €1([0,T}1),R). Next, we for each
j € Z, we look at the following evolutionary problem on (0,77)

8tv1-( t,x) = dov 1-(15 z), ze€(0,1),
—ddzvj(t,0) + avj (t,0) = Bp;(t), (2.7)
40,01 (1,1) + awl(t, 1) = Bpb (1),

with initial data
vj(0,2) = hj(z), x€0,1].

Since p} € ¢1([0,T),R) for all j € Z, there exists a unique classical solution vl that is
vj € €°([0,T1) x [0,1],R), dyj,dzv; € €°((0,T1) x (0,1),R), and d,vj € €°((0,T1) x [0,1],R).

We remark that ¢ — v; L(t,0) and t — v; L(t,1) are continuous on [0,7}). As a consequence, we can
apply an induction argument to obtain the existence of a nonincreasing sequence of times 71}, > 0
such that 0 < T, < Tj,—1 < --- < T7 < 400 system (2.3)-(2.4)-(2.5) admits a unique couple of
solution p}} € C'([0,T},),R) and v} having the following regularity

v} € €°(10,T,) x [0,1],R), 9, 0207 € €°((0,T) x (0,1),R), and 0,0} € €°((0,T5,) x [0,1],R),

Jjo Pz

for each j € Z.

Step 2: solvability of (2.3)-(2.4)-(2.5) on [0,4+00). We give some a priori estimates to extend
the solution constructed in the previous step to T,, = +00. We claim that for each n > 1 and j € Z

one has

0< U; (t ‘T) < max {fg’ HhHOO} y T E [07 1]7 and 0 < p;l(t) < maX{”AHE‘X’(Z)v 1}) (28)

for all t € [0,T},). First, since both (v, p%) = (h,A) > (0,0) and (v*(t = 0),p"(t = 0)) =
(h,A) > (0,0), and (v", p")nen = (0,0) is a trivial subsolution, the comparison principle from
Proposition 2.2 ensures that for all ¢ € [0,7},) one has

0<vi(t,x), z€[0,1], and pi(t) <pj(t),

for any n > 1 and j € Z. On the other hand if we define for each n € N
(v",p") = ( max ¢ —, |[hfleo o, max{[[Alle=(z), 1} ] ,

then we can readily check that (v%, p%) = (h,A) < (¥9,p%) and also (v*(t = 0),p"(t = 0)) =
(h,A) < (¥*(t = 0),p"(t = 0)). It is also easy to check that (Vv",p")nen is a supersolution to
(2.3)-(2.4) since f is assumed to be negative outside the interval [0, 1]. Applying Proposition 2.2,

we obtain

n /8 7
v; (t,z) < max{a, |hl|s ¢, = €[0,1], and Pj (t) < max{||Al[g(z), 1},
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for all n > 1 and j € Z. This uniform bound implies that 7,, = +oo for all n > 1. As a
complementary remark, let us observe that thanks to our assumption on f and the uniform bound

(2.8), one gets the following uniform bound for the time derivative of p§, namely

Ve >0, |of(6)] < (£(0) +28) max{|Allpm(z), 1} + 20 mx{ﬁ ||h|roo} ,

for any n > 1 and j € Z.

Step 3: existence of a solution. Let T' > 0 be fixed and (v", p™),en be the solution of (2.3)-
(2.4)-(2.5) constructed in the previous step. We already know that for each n > 1 and j € Z the

function p? is globally Lipschitz continuous. As a consequence, since each v} is a solution of
oy (t,r) = d@gv;”(t, z), t>0, z€(0,1),
with Robin boundary conditions

—do,v7 (t,0) + avl(t,0) = Bp} (1),
v3(t,0) + avj(t,0) = Bpi () Vit >0,
do, v} (t,1) + o} (t,1) = Bply (1),

and initial datum

v;l(O,x) = hj(z), z€][0,1],

we have, by standard parabolic estimates for the heat equation on bounded domain with Robin
boundary conditions [19], that there exists 0 < v < 1 such that for any 7 € (0,7") and

Yn>1, jE€Z, |vf

w0 ([r11x[0.]) T 10507 |0 (7 1)x(0.1)

< C (l167 11 oo o,r417) + 10511 | oo qo.0+17) + 107 oo (fo.74+1]x]0,1]))

p
<C (Qmax{”AHgoo(Z), 1} + max {a; Hh”oo}) )

where the constant C' > 0 only depends on v,7,T,d, o, f . Then, by Schauder estimates [19], we
also have for alln > 1 and j € Z

1000} |50 (fr. ¢ [0,1)) F 10207 g0 (7 x0,1])

< C" (165 g0 jr 21y + 1051 llgow (e 2,7y + 1071 oo (0,741 x]0,17))

< 0 (2(7/0) + 28) max{lIA w2y 1} + (o + Dmax {2, ).

for some constant C’ > 0 independent of n and j. Finally, returning to the equation satisfied by

P}, we also deduce that p!!' € €% ([r,T]) with the following uniform estimate

165 g0 () < (F(0) + 28) 107 |00 (pr.17) + 2|0 |00 (11 x10,17) < C" (1A lloe (z) + [hloo),

for some C” > 0 independent of n and j.
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As a consequence, for any (N, M) € Z? such that N < M, the sequence

((v§)j=N,...: (P} )j=N,.... M)neN,

together with its respective time derivatives and space derivatives for v} up to order 2, is uniformly
bounded in €% norm on the compact set [r,7] x [0,1]. By Arzela-Ascoli’s theorem, up to a
subsequence, there exists a limit sequence (v,p) = (v, pj)jez such that (v",p™) converges to
(v,p) as n — 400 on any compact of (0,+00) x [0, 1] x Z, but also its respective time derivative

and space derivatives (up to order 2).

From Proposition A.1, one has
1 t
ity = [ Ko = ph)dy+ [ K= s = Do) + Kl = s.2)p(5)] ds
t
+ / [—aK(t — s,z — 1) + dO:K(t — s,z — 1)]vj(s,1)ds
0

_ /Ot QK (t — 5,2) + dOLK(t — s,2)] 07 (s, 0)ds,

where K(t,z) := \/ﬁexp (—f—;), and passing to the limit as n — +oo for ¢t € [1,T], x € [0,1]
and j € [N, M] for N < M, we end up with

1 t
vj(t,x) = / K(t,z —y)h;(y)dy + / Kt —s,2—1)pj+1(s) + K(t — s,2)p;(s)] ds
0 0
+ / [—aK(t — s,z — 1) + dOK(t — s,z — 1)] v;(s, 1)ds
0
- /Ot [alC(t — s,2) + dOLK(t — s,2)] v;(s,0)ds.

Taking t = 7 — 0, we recover
v;(t, ) " hj(z), x€l0,1].

Integrating the second equation in (2.3) from 0 to ¢, we get that

Ji(t) = A + / (F(o2(s)) — 28p%(s))ds + a / (071 (5,0) + 07 (s, 1))ds,

and passing to the limit as n — +o00, we get

pi(t) = A; + /0 (F(p3(s)) — 2Bp;(s))ds + a /0 (03(5,0) + vj_1(5, 1))ds,

from which we also recover that

pi(t) 2 Ay

Thanks to the regularity of 8301;;‘ up to the boundary at x = 0 and x = 1, we can also pass to the
limit as n — 400 in the boundary condition. As a consequence, (v, p) is a classical solution to
(2.3)-(2.4)-(2.5). By uniqueness of the problem (2.3)-(2.4)-(2.5), we remark that the convergence
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of (v, p") towards (v, p) holds for all n, and not only up to a subsequence. Finally, the a priori
bound (2.8) gives

Vt>0, je€Z, 0<w(t,z)<max {5, ||h||oo} , £ €[0,1], and 0 < p;(t) < max{||Al[go(z), 1}
a
Since (h, A) # (0,0), the comparison principle from Proposition 2.1 ensures that
Vt>0, je€Z, 0<wj(tz), ze€l0,1], and 0 < p;(t).

This concludes the proof of Theorem 1.

3 Long time behavior

We now turn to the study of the long time behavior of (1.1)—(1.2).

Theorem 2. The unique non-negative, bounded stationary solutions for equation (1.1)-(1.2) are

(U})Oap(;o)jez = (070) and (0?7 p(;o)jEZ = (gv 1)
Bounded nonnegative stationary solutions of system (1.1)-(1.2) are solutions to

0=dvj(z), =z€(0,1),j€Z,

(3.1)
0= f(pj) + av;(0) +vj-1(1)) = 2Bp;, J €,
together with the boundary conditions
—dv’(0) + av;(0) = Bp;, j € Z,
$0) +av,(0) = Bpj, .

dU}-(l) + owj(l) = 5/)]'4_1, jEeZ.

It follows from the v;-equation of (3.1) that there exist two sequences (a;);cz and (bj);cz of real
numbers such that
vj(x) =ajz+bj, z€(0,1), jeZ (3.3)

Then using (3.3), we have that
(0) = (1) = vy(1) — v;(0). (3.4
Substituting (3.4) into (3.2) we get that
(d+ a)oj(0) — dvg(1) = B py, j €L,
—duy(0) + (d+a)o; (1) = Bpj1, €L

Solving the above system, we obtain that

Bd d+ « )
T Pitei ). Vi€L, (3.5)

vi(0) = a(2d + «)
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and

Bd d+ a .
(1) = ———— 4 ——— Vi e Z. 3.6
v;(1) a(2d + a) pj + d Pi+1 | J € (3.6)

By applying the second equation of the system (3.1), and combining it with (3.5) and (3.6), we

derive that
Bd
2d + «

(pj—1 —2pj + pj+1) + f(p;) =0, Vj€LZL (3.7)

As a consequence, the existence and uniqueness of bounded nonnegative stationary solutions to
system (3.1)-(3.2) is equivalent to the existence and uniqueness of bounded nonnegative stationary
solutions to (3.7).

Proof of Theorem 2. Since f(0) = f(1) =0, it is clear that p; = 0,Vj € Z and p; = 1,Vj € Z
are always solutions of (3.7). Let us prove that they are actually the only bounded nonnegative

stationary solutions of (3.7).

Let p = (pj)jez # 0 be a non zero, bounded, nonnegative stationary solution (3.7). Then, neces-
sarily, one has p; > 0 for all j € Z. Indeed, if pj, = 0 for some jy € Z, then equation (3.7) implies
that pj,+1 = pj,—1 = 0, and by induction, p; = 0 for all j € Z. So from now on, we assume that p
satisfies p; > 0 for all j € Z. We let N > 2 be an integer which satisfies

zsida (1 - oo <N7_TH>> < f'(0). (3.8)

Consider the eigenvalue problem

—(pj—1—2pj +pj+1) = ppj, j=1,...,N,

and p; =0 for all j <0 and j > N + 1. One easily finds that the eigenvalues are given by

P
Iu,p:2<1—COS<]V+1>>7 p:17...7N7

with corresponding eigenfunctions ¢ = (gf)g )jez defined as

. pjm }
=1,....N
(;S?: Sln<N+1>7 J ’ ’ )

0, otherwise.

We consider the principal eigenfunction ¢! with eigenvalue p; > 0. Thanks to condition (3.8) on

N which ensures that

!
0
2d+a/“<f()’

and thanks to the KPP assumption on the function f, there exists ¢y > 0 such that for all € € (0, €]

one has

_$(6¢1)]<f(6¢]1)7 ]:LvN

16



where the operator £ : *°(Z) — £>°(Z) is defined as

Bd

(P)j = m(ﬂj—l —2p; + Pj+1), J EZ,

for any p € ¢°°(Z). From the discrete comparison principle (see Proposition B.4), we deduce that
ey <pj, j=1,...,N.
By the discrete translation invariance of the problem, we deduce that

m = inf p; > 0.

=Y/
Assume that m < 1. We let (ji)ren such that
W — M.
Pix k——+o0 m
For each j € Z, we denote
;= i i
Pj kiTQQP]—l—%a

and we remark that p; also satisfies (3.7). We also note that pp = m and by construction

po=m=inf p,.
jez Y

It is also satisfies

Bd
2d + «

p—1—po+p1—po | = —f(po) = —f(m) <0,
—_——  ——
>0 >0

which is impossible. As a consequence, one has m > 1. By a similar argument, this time with
M =supjcz pj > 0, one gets that necessarily M < 1. This implies that p; =1 for all j € Z and

concludes the proof of the theorem. ]

Next, we demonstrate that the positive stationary solution (v3°,p%°)jez = (g, 1) is the global
attractor of the system (1.1)—(1.2) starting from nontrivial nonnegative bounded initial condition.

More precisely, we shall prove the following result.

Theorem 3. Let (v, p) be the unique global classical solution of (1.1)-(1.2)-(2.1) starting from a
nontrivial nonnegative bounded initial sequence (h,A) € X° x (>°(Z) satisfying the compatibility
condition (2.2). Then,

lim (vj(t, ), p;(t)) = <§, 1> , Yz el0,1],

t——+o00

locally uniformly j € 7.
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Proof of Theorem 3. The first part of the proof consists of constructing a nonnegative, com-
pactly supported, stationary subsolution to (1.1)-(1.2). Actually, following the proof of Theorem 2,
there exists Ny > 1 large enough such that condition (3.8) is satisfied for all N > Njy. Next, with
N > Ny, we define p = (Bj) as

JEL
. Jm .
=1,...,N
p:: Sln<N+1>7 j ) ) )
5
0, otherwise,

and set

vi(w) == ajr+b;, we€l0,1], jeZ,
with

B o Bd d+ « .
YT % ta (21-2;) and by a@dta)\ d Ltln) VEL

By construction, v = (Qj) jez is compactly supported, and we have
d@ggj(:r) = 07 T € (O? 1)5

together with
—daxﬂj (0) + 0@]‘(0) = 68]-7
do,v;(1) + av;(1) = BB].H,
for all j € Z. Finally, there exists ¢y > 0 such that for all € € (0, €p] one has:

epd

2d+a (BH _2Bj+ﬁj+1> +flep) >0, j=1,...,N.

As a consequence (eg, eg) is a stationary, compactly supported, subsolution for all N > Ny and
e € (0,¢).

We now use the method of super- and subsolutions to prove the theorem. First, we consider (v, p)
defined by

vi(a) = max{nhuoo, 5}, p; = max {[All =z 1}, 2 €[0,1], j€Z.

«

Let t — (V(t), p(t)) be the global solution of (1.1)-(1.2) with initial condition (v(0), p(0)) = (¥, p).
It follows from the comparison principle from Proposition 2.1 that ¢t — (V(t), p(¢)) is non increasing
in time ¢ and satisfies (g, 1) < (v(t),p(t)) for all ¢ > 0. Thus, owing to Theorem 2, as t —

+00, it convergences locally uniformly in j to the unique positive solution of (3.1)-(3.2), namely
(vf,pf) = (g, 1), that is

~ B .
Vo € [07 1]7 ’Uj(t,.ill‘) t—:?)o a and Pj(t) t—:go 17
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locally uniformly in j € Z. Now, let t — (v(t), p(t)) be the solution of (1.1)-(1.2)-(2.1) starting from
the nonnegative, not identically equal to zero, bounded initial datum (h, A). Since (h,A) < (v, p),

~

we have (v(t), p(t)) < (V(t), p(t)) for all ¢ > 0 and thus
Ve €[0,1], limsup (vj(t,x),p;(t)) < <5,1> ,
t—400 «@
locally uniformly in j € Z. Furthermore, since 0 < (h,A), by the comparison principle from
Proposition 2.1, we have that 0 < (v(¢), p(t)) for all t > 0. As a consequence, upon reducing further
the size of €, we can always ensure that (ev, ep) < (v(1), p(1)). We now let ¢ — (v(t), p(t)) be the
global solution of (1.1)-(1.2) with initial condition (eg, eB), which by the comparison principle, is
nondecreasing in t. As a consequence, it also converges locally uniformly j to (v‘?o, pJOO) = (g, 1),

J
the unique positive solution of (3.1)-(3.2). Thus, we have that

B\ . o |
V$ € [07 1]7 (aul _tig—noo(y](t’w),ﬁﬂ(t)) Sltlin_ﬂg(v](t—i_171’)7pj(t+1))?
locally uniformly j. This completes the proof of Theorem 3. [ |

4 Exponential solutions and linear spreading speed

In order to study the spreading properties of system (1.1)-(1.2), we consider the existence of expo-

nential solutions for the linearized problem around the trivial state which writes:

‘ Op;(t,z) = dd?vj(t,x), =€ (0,1),
vVt >0, j€Z, (4.1)
p;(t) = f1(0)p; (t) + a(v;(t,0) + v;-1(t, 1)) — 2Bp;(1),

with the boundary condition

—dd,v;(t,0 (t,0) = Bpi(t),
oo e 03(t,0) + av; (£, 0) = Bp;(t) )

dazvj (t7 1) + avj (tv 1) = ﬁijrl(t)'
We will be looking for solutions of the form

(03(t,2), p3(1)) = (e7HI=NV (), e 710~ (4.3)

V(z) = acosh <\/§x> + bsinh Q/}) . Vxe[0,1],

for some A > 0, > 0, ¢ > 0 and (a,b) € R? that will be determined later. We substitute ansatz
(5.1) into (4.1), (4.2) and get that

where

pe = A,

pe = f'(0) + a(V(0) + eV (1)) — 28,
—dV'(0) + aV (0) = 8,

dV'(1) + aV (1) = Be .
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We first express (a,b) as a function of (V(0),V (1)), that is

We also deduce that

Lﬂm)\/2-HMhévg)xqo)+smhgvg>v%U-,
v =15 _MV(O) + MW”

As a consequence, using the Robin type boundary in (4.4), we deduce that

a+ vix B v
tanh(x/3> snﬂ1<\/g) (v%o) _g( ! ) (4.5)
v v [vw) T e |
ﬁnh.( 2) tanhv<x/3>

Define
2V d o

tanh,<x/3>7

and let us remark that when A > 0 we have A(A) > 0 and A is well-defined up to A = 0 with
A(0) = a? 4+ 2da > 0. Thus, we can invert the above system (4.5) and deduce that

A(N) == +d)\ +

V(0) = B VX o 7\/6 e M
(V) tanh <\/§> sinh <\/§>
and
V(1) B v e P +aeH+ VX

A tanh <\/§> sinh <\/§>
Therefore, we substitute the above two formulas into (4.4) to obtain

pe = A

uc=f’(0)—2,3+§?‘f) a+ +



Figure 3: Typical representation of the map U on (A, +00) with a unique global minimum at X = \.. Here,
parameters values are set to (o, 8,d, f'(0)) = (1,1,1,1).

As a consequence, we have that

A
cosh <c> =y(N),
where
AW : VX - WD
yN) = |—=A+26—-f(0)— | a+ (4.7)
208 ( tanh ( 3) VA
Solving the above equation, one gets that
A
Cc = m, (48)

where
u) =1 (yO0) + VPO — 1),

and y(A) is defined in (4.7). Now, to justify all the above computations, one needs to show that
A = p(A) is well-defined which is equivalent to proving that y(A) > 1 for some range of A. First of

all, one can actually check that y(\) — +00 as A — +o00. By a direct computation, we also have

that 7(0)
y(O0T) =1 (2%“) <1.

Thus, there exists A\g > 0 such that y(Ag) = 1 and

y(\) > 1, YA > Ao

We claim that such a A\g > 0 is unique. First, we observe that the equality y(A\g) = 1 is equivalent
to

2a3 VdXg Vdo

— = |la+ + = Xo + 28 — f(0).
Alo) tanh <\/§> sinh ( ’?)
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On the one hand, the map g : A — g(A) = XA+ 28 — f/(0) is strictly increasing on R, with
g(0) =28 — f'(0) and g(\) ~ X as A — 4o00. On the other hand, the map G defined as

ﬁ o+ vix + v
AR tanh<\/§) sinh( 3) 7

is decreasing on Ry with G(0) = 28 and G(\) ~ % as A — +oo. The fact that G is decreasing

G: A= G\ =

on R, comes from the direct computation:

VAS0, G'(\) = I <A ’ \/gsm}; < 3>> o\
Asinh (ﬁ) A(N)?

o (2) 1) e (2) ) s vt () -o

As a consequence since g(0) = 28— f/(0) < 28 = G(0) and g is strictly increasing with g(\) — +o0

<0,

where

as A — +oo while G is strictly decreasing G(\) — 0 as A — +00, we obtain the existence of a unique
Ao > 0 such that g(A\g) = G(N\g) and g(A) < G(\) for all X € [0, \g) together with g(A) > G(\) for
all A > Ag. This proves the claim.

The uniqueness of \g implies that y(A) < 1 for all A € (0, \g) such that p()) is only well-defined
for all A > X\g. Coming back to (4.8), we define ¥ : (Ag, +00) — Ry as

WO\ = M(AA)

We readily note that W(\) — +oo as A — AJ and as A — +o0. Since ¥ is smooth on (Ag, +00), it

achieves a minimum on (Ao, +00), and we can define

A
Cy := min ——. 4.9
>A\o ()\) ( )
We present in Figure 3 a typical representation of the map ¥ on (\g,+00). It exhibits a unique

global minimum at some A, > \g, values at which one has

We numerically computed the linear spreading speed c, by systematically evaluating the global
minimum of the function ¥ as given by formula (4.9) as a function of the various parameters of
the system. We reported the corresponding results in Figure 4. For the chosen parameter values,
variations of the linear spreading speed c, as a function of a and S show a similar pattern with, in

both cases, the existence of a maximal spreading speed (see panels (a) and (b) of Figure 4) at some
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Figure 4: Plots of the linear spreading speed (1.1) as parameters are varied.

optimal value of the parameters a or 8. More precisely, as either « or 3 is varied, while all other
parameters are kept fixed, the linear spreading speed is first increasing from zero towards a global
maximum value and then decreasing. On the other hand, when varying the parameter d, we clearly
observe a monotone convergence towards a limiting asymptotic value. The limiting value exactly
matches the asymptotic spreading speed ¢$° defined in formula (6.8) of Section 6 below. Finally,
as it is the case for spreading speeds for scalar continuous Fisher-KPP equations, we see that the
spreading speed c, is a strictly monotone function of the parameter f'(0), and we conjecture that c,
is proportional to 1/f7(0). This is numerically confirmed (see panel (e) of Figure 4) by performing
a linear regression of In(c,) as a function of In(f’(0)). We find that In(ci) ~ a1 In(f’(0)) + ap with
(a1,ap) ~ (0.5306, —0.5012), where the relative error of the coefficient a; compared to the predicted
value of 1/2 is approximately 0.0613.

We have also further explored the dependence of the spreading speed as a function of a and 3
by showing in Figure 5 the color plot of the map («a, ) — ci(a, ) and several of its isolines
(red curves). It shows that the spreading speed seems to converge towards a limiting value as
a = — +o0o. We numerically confirmed this behavior by plotting the linear spreading speed c,
as a function of @ = 8 where we observe a monotone convergence towards a limiting asymptotic
value, see the right panel of Figure 5. We leave it as future work to theoretically investigate this

asymptotic limit.
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Figure 5: Left: Amplitude of the spreading speed c. as a function of («, ) in the square [0,20] x [0,20].
Several isolines (red curves) are also reported. Right: Linear spreading speed c. as a function of o = 3.
Other values of the parameters are set to (d, f'(0)) = (1,1).

5 Asymptotic spreading

In this section, we investigate the asymptotic spreading properties of system (1.1)-(1.2) starting
from compactly supported initial conditions. We anticipate that the linear spreading speed c.
defined in the previous section via formula (4.9) is precisely the asymptotic spreading speed of the

nonlinear system (1.1)-(1.2) as stated in the following theorem.

Theorem 4. Let (v, p) be the unique bounded classical solution of the Cauchy problem (1.1)-(1.2)-
(2.1) starting from a nontrivial bounded compactly supported initial datum (0,0) #Z (h, A) < (g, 1>.
Let ¢, > 0 be defined in (4.9). Then:

(1) for all ¢ > c,, we have

lim sup (vi(t,z),p;(t)) =(0,0),
i sup (250,2), (1) = 0.0

z€[0,1]

(i1) for all c € (0,cy), we have

lim inf (v;(t,2), p;(t)) = <§,1>.

t—+oo |jl<ct
z€[0,1]

We illustrate the above result in Figure 6 by directly comparing the theoretical spreading speed
¢, given by formula (4.9) and numerically computed spreading speed (dark red circles) obtained
by numerically solving system (1.1)-(1.2) from compactly supported initial conditions using the

numerical scheme proposed in [3].
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Figure 6: Comparison between the theoretical spreading speed ¢, given by formula (4.9) and numerically
computed spreading speed (dark red circles) obtained by numerically solving system (1.1)-(1.2) from compactly

supported initial conditions.

5.1 Upper estimate

We first prove item (i) of Theorem 4, which is a direct consequence of the analysis conducted in
the previous section. Let ¢, > 0 be given by formula (4.9) and let A, > A\ be such that
A As
Cy = )rglg m = e
where we have set . := u(\s) > 0. Then the following sequence

vez0, jez weln), (vlta)p(t) = (UL (@) U)o ()

where

Vo el0.1], Vi(r) = - f [\/ATdcosh <\/§(1 - x)) + asinh (\/gu - m)]
sinh ( *d) A(N) Voudeost <\/§x> o <\/§x>] ’

is a solution of the linearized problem (4.1). We readily remark that Vi(z) > 0 for all z € [0, 1].

We can then introduce the sequences

Vt>0, jeZ x€l0,1], vt x)=min (ﬁe_“*(j_c*t)l/;(ﬂc), i) ,

and
Vt>0, j€Z, p;(t)=min (ﬁe—u*(j—c*t)’ 1) ’

for some ¥ > 0 to be fixed. Since the initial datum (0,0) # (h,A) < (g, 1) is assumed to be
compactly supported, we can always find ¥ > 0 sufficiently large such that

Vji€Z, zel0,1], hj(z)<v;(0,7) and A; <p;(0).
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From the comparison principle of Proposition 2.1, we deduce that
Vt>0, j€Z, zel0,1], wvi(t,x) <vi(t,x) and p;(t) < p,(t),
and thus for all ¢ > ¢, one has

Jim sup (v;(t,2), p;(t)) < lim sup (W;(t,z),p;(t)) = (0,0).

2€0,1] 2€[0,1]

By symmetry, that is using v_;(¢, ) and p_,(t) instead, we deduce item (i) of Theorem 4.

5.2 Lower estimate

Our aim is now to prove the lower estimate of item (ii) of Theorem 4. For that purpose, we shall

construct compactly supported subsolutions of the linear system penalized by § > 0 which reads

owj(t,x) = dd2vj(t,z), =z € (0,1),
p;(t) = (f'(0) = 8) pj(t) + a(v;(t,0) + vj1(t, 1)) = 2Bp;(1),

Vit >0, j€Z, (5.2)

together with the usual boundary conditions

—dd,v;i(t,0) + awi(t,0) = Bpi(t),
Vi >0, j €, v;(t,0) + aw;(t,0) = Bp;(t) (5.3)

dc‘?xvj (t, 1) + Qvj (t, 1) = Bpj-i-l (t)
The main result of this section is the following.

Proposition 5.1. Let ¢, be given by formula (4.9). For all c € (0, cy) close enough to c, there exists
d > 0 such that the penalized linear system (5.2)-(5.3) admits a nonnegative, compactly supported,
generalized subsolution (v, p) # (0,0).

Proof. In order to keep the presentation as light as possible, we will proceed with f/(0) instead of

£/(0) — 4 in (5.2) since our arguments naturally perturb for § > 0 small enough.

We set ¢ € (0, c.) and consider once again exponential solutions of (5.2)-(5.3) of the form

(05(t,2), 5 (1)) = (70~ DV (z), e7#l=0)

o= (3 e | 5). oo

this time with eventual complex parameters (), p,a,b) € C* that will be fixed along the proof.

where

Performing similar computations as in the previous section, we readily obtain that, given ¢ € (0, ¢y),
the couple (), ) € C? is a solution of the system (4.6) from which one obtains equation (4.8) which

we rewrite as

(I)(Cv )‘) =0,
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with ®(c, A) := XA — cu(A) where p(A) = In (y()\) +y(\)? — 1) and y(A) is given in (4.7). By
definition of ¢, and analyticity of the map ® on its domain of definition we have that there exists

a positive integer p > 1 such that
(i, M) =0, hdB(ci,A) =0 for k=1,....2p—1 and 9®(cy, \s) > 0.
Next, introducing the auxiliary variables
E:=c,—c>0 and z:=AX—-X,€C,
we see that ®(c,\) = 0 is equivalent, in a neighborhood of (¢, A) = (¢4, Ay), to

, OPD(cy, Ay Ca
€+ ' (A2 + a2 = (2,8), a.:= A 2p)! = - (2p)!ﬂ(2p)()‘*) >0,

where ¢ is analytic in a neighborhood of (0,0) and ¢(z,&) = O (|z[*T + £|z[?) as (2,€) — (0,0).
For small ¢ > 0, the polynomial equation p.& + p/(A\)€2 + a+2?P = 0 has 2p complex conjugate

roots which writes

1

Z:kt@) = (Mf)%ei[i27;+2?] +0 (5%) , fork=0,...,p—1.

Q%

Applying Rouché’s theorem, we get that the algebraic equation & + p/(\)€z 4 a 2% = ¢(2,€)

has also 2p complex roots which we denote by E:kt(f ) and these roots still satisfy
3 2k
i+ T 4 2km 1
() = <“*§) il 5+ +O(§p), for k=0,...,p— 1.
Ay

As a consequence, reverting to the full notation, we observe that for ¢ strictly less than and

sufficiently close to ¢, the equation ®(c,\) = 0 admits a solution of the form

with the following properties:

1

Re(\) = A, + O (ﬁ) >0, Im(\) = <’;g) " in <27;) +0 (5%) > 0.
B

V/Ad cosh é(1—x) + asinh i(1—:5)
sinh < 3) A(N) d d
+ Eeio\) [\/)\Ti cosh (\/§x> + «asinh (\/556)] ,
sinh

1) am

The corresponding profile V', given by

Ve e[0,1], V(z)=
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satisfies
Ve e [0,1], Re(V(z)) = Re(Vi(z)) + O (5*) >0, Im(V(z))=0 (5*) £0

and

Ve e [0,1], Arg(V(z)) =0 (5%) ,

where we denoted by Arg(V(x)) € (—m, x| the principal argument of V' (z). Taking the real parts

of the just constructed exponential solutions, we set

_AetReGLE) cos <Im(29r(§))

Bt a) = Vi)l HG ) - are(v(a).

and

Ax+Re(Z(8)) , . Im(z°
B e 0 o (P )

forallt >0, j € Z and x € [0,1]. In order to obtain compactly supported subsolutions, we truncate

the above solutions as follows. We define the sets

) e ) .
)= {y € R |t~ s <= T < sy )
and
em
)= {y <®. ) YT <“2<£>>}’

and we let

vt > 07 ] c Z7 = [0’ 1]’ Q](t,x) = {Uj(ta -T())a j th’U(ta l')? Bj(t) = {pJ(t()]v ] tehﬂp(t)a
, otherwise, »  otherwise.

Let us quickly check that (v;(t,z), Bj(t>) provides a generalized subsolution to the linear system
(5.2)-(5.3). Fixt > 0 and x € [0, 1] and consider j € Q,(t,x) N Q,(t), then by construction and
definition, we have that (Qj(t,x),gj(t)) = (v;(t,x), pj(t)) is a solution of (5.2)-(5.3). Let us now
consider j € Qy (¢, )\, (¢) such that v;(t,z) = v;(t,z) > 0 and Bj(t) =0, then

O, (t,z) = d@gyj(t,az),

and
2028~ F/(0) p, (1) ~a | 1;(1,0) +v;,(11) | <0,
~—~— ~—~—
<0 = >0

while

—d0,v;(t,0) + av;(t,0) — ng(t) <0,

since £j+1(t) > 0 and by the Hopf lemma, one has d,v;(t,0) < 0 and 9,v,(¢,1) > 0. On the other
hand, if j € Q,(t)\(t, ) then one has

v;i(t,z) =0, Ow,;(t,r) <0 and Oggj(t,:n) >0,
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such that
O, (t, x) — d@iyj(t,x) <0.

Next, since p; (t) = p;(t), we have

() + (28 = f/(0))p, (1) — o (v;(£,0) + 151 (, 1)) < () + (28 — £(0))5;(¢)
= (Ej(tﬂ 0) + 6j—1(t7 1)) )

and be choosing £ even smaller, we can always ensure that both v;(¢,0) < 0 and v;_1(¢,1) < 0.

And for the boundary conditions, we once again have

—d0,v;(t,0) + av,(t,0) — ng(t) <0,
daxﬂj(ta 1) + O‘Qj(ta 1) - 68j+1(t) <0.

Finally, using similar arguments, it is not difficult to check that in the remaining regime with
J € Z\Qy(t,x) U Qpy(t) where (v;(t, x),gj(t)) = (0,0) that (yj(t,:c),gj(t)) is a subsolution. This

concludes the proof of the proposition. [ |

Proof of item (ii) of Theorem 4. Let ¢ € (0,c¢,) and choose ¢ € (c,c,) very close to ¢
such that, from the previous Proposition 5.1, we get the existence of é > 0 such that the penalized
linear system (5.2)-(5.3) admits a nonnegative, compactly supported, generalized subsolution that

we denote (v¢%, p<9) 2 (0,0). By regularity of the nonlinearity f, there exists ¢ > 0 such that

(f'(0) —&u < f(u), 0<u<u.

Then, one can find n > 0, small enough, such that n£§/’5(t) < itforallt > 0and j € Z. As
a consequence (nve° ,ngcl"s) # (0,0) is a nonnegative compactly supported subsolution to the
full nonlinear system (1.1)-(1.2). By positivity of the solution of the nonlinear system (1.1)-(1.2)
ensured by Theorem 1 and upon eventually reducing the size of n > 0, we can always ensure that
at time ¢ = 1 the unique solution (v, p) of the Cauchy problem (1.1)-(1.2)-(2.1) starting from the
nontrivial bounded compactly supported initial datum (0,0) # (h, A) < (g, 1) satisfies

(nv°(0),mp*(0)) < (v(1), p(1)).

From the comparison principle of Proposition 2.1 we obtain that

Ve 1, (Ot = 1),mp™ (¢~ 1)) < (v(t), p(1))-

small such that

~—

As a consequence, there exists v € (0, 1

'8 /5
v v and v[c/tJ+1(tax) > UQTC/tJ+1(t —l,z) >

vLc’tJ (tv .Z') Z nch’tJ (t - 1, .'13) Z v,

™
™

with
plen () = np(h (E=1) > v and  piagya(t) 200, (E=1) > v,
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for all ¢t > 1 and = € [0,1]. Here, we denote by |z| the integer part of z € R. By a symmetry

argument, we also obtain

B B
= 2y,
o o

Vo) () > —v and vy (t ) >

and
p_iet)(t) =2 v and  p_jey1(t) 2 v,
for all t > 1 and x € [0, 1]. Upon eventually reducing the size of v and by positivity of the solution
(v, p) we can always ensure that
vj(l,z) > éy and pj(l)>v forall z€[0,1]] and ——-1<j<d+1.

«

Since (gu, 1/) - is a homogeneous subsolution of (1.1)-(1.2), we can apply a variant of the com-
j€

parison principle, Proposition 2.1, but with two boundaries as stated in Proposition B.2 of the
Appendix. More precisely, we set ((t) = —c’t and £(t) = ('t, from the previous analysis, we have
vy(t) = Zv and p;(t) = v for all £ > 1, j € [C(t) — 1,C() U (€(2), £(t) + 1] and @ € [0, 1]. Further-
more, at time t = 1, we also have v;(1,z) > gy and p;(1) > v for all j € [((1) —1,§(1) +1]. As a
consequence, the comparison principle with two boundaries ensures that

v>1 ze01), <t vlta)> v and ) >,

Q@

from which we deduce, from Theorem 3, that

Ve €[0,1], liminf inf (v;(¢t,z),p;(t)) > liminf inf (v;(t, x),p;(t)) > <§’1> :

t=-Fo0 |j|<et i=-oo [jl<e't

Since, we trivially have
. . B
Vo € [0,1], limsup inf (v;j(t,z),p;(t)) < (=,1),
t——+oo |jl<ct o

this concludes the proof of the theorem. [ |

6 Large diffusion limit

Motivated by our numerical finding (see panel (c) of Figure 4), in this section, we study the
asymptotic regime when d — +oco. For that purpose, we first set € := 1/d > 0 such that system
(1.1)-(1.2) rewrites

edpj(t,x) = agvj(t,a:), x € (0,1),

Vit >0, j €Z, { (6.1)
p;(t) = f(p;(t)) + alv;(t,0) +vj—1(t, 1)) — 28p;(t),

with associated Robin boundary conditions

—,v;(t,0) + aev;(t,0) = Bep;(t),
- 03(t,0) + acv; (t,0) = Bep; (1) 62)

a:rvj (t,1)+ OéE’Uj(t, 1) = ﬂepj+l(t)'
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6.1 Derivation of the asymptotic limiting system

Fix €g > 0. For each e € (0,¢], we consider h® = (h)jez € X? and A¢ = (Af)jez € £°(Z),
satisfying the compatibility condition (2.2), with

X2 = {u = (uj)jez | Vj € Z, uj € ‘52([0, 1, R) and |julje < +oo}.
We further suppose that there exists some positive constant x > 0 such that
Ve € (0,60), 0 <[|h+[[AYpec(zy <k, and th”HOO < ek, (6.3)

and we also assume that the sequences VY and PP defined as the following limits
1

Vj€Z, Vy=lim i hj(w)dz, and P} = lim Aj, (6.4)

satisfy (0,0) # (VO,PY) € £>°(Z) x {>(Z).
For each € € (0, €], we shall denote by (v€¢, p¢) the solution of (6.1)-(6.2) given by Theorem 1 with

initial condition

v5(0,2) = hj(x), € (0,1),
p5(0) = AS,

with (h¢, A°) satisfying the above conditions. For all £ > 0, one has

Vj € Z, (6.5)

Vt >0, VjeZ, 0<vi(tz)< max{g,ﬁ} ,  €10,1], and 0 < p5(t) < max{1,x},
from which we deduce that
vt >0, Vj € Z, ‘p;-/(t” < (f'(0) + 28) max{1, K} + 2a max {i, H} .

Let us set
Vt>0, Vje€Z, Vxel0,l1], wjt,z):= vt x).

It follows from (6.1) and (6.2) that w® = (w$);ez is a solution of
Vt>0, jE€Z, edwi(t,x)= agwj(t,x), z € (0,1),

and
—0pw$(t,0) + aews(t,0) = Beps/ (1),

vVt >0, j €Z, )
Do (£,1) + aews(t, 1) = Bepf (1),

with initial condition given by
1
w5(0,z) = ;hj”(a:), z €0,1].
Thanks to our condition on h€¢, we have that

vee (Ol Wl < k.
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From the parabolic comparison principle, we have for each ¢t > 0 that

Vj € Z, sup wj(s, ) < sup wi(s,0) + sup wi(s,1) + sup w;(0,x),
(5,2)€[0,] x[0,1] s€(0,4] s€[0,1] 2€[0,1]

and the Hopf Lemma [20] ensures that

Wiz sup w(s.0) < 2 sup pel(s) <
s€[0,t] A se(0,t]

g <(f’(0) +28) max{1, x} + 20 max {i n}> :

and

Vj €Z, sup wi(s,1) < s sup pyq'(s) < s ((f’(O) + 2f) max{1, K} + 2aymax {6, /@}) .
s€[0,t] ® 50,1 @ «

Applying a similar argument to —w$, we obtain for all £ > 0 that

Vj e Z, sup |w(s,z)| §/€+% ((f'(O)—FZﬁ) max{l,/ﬁ}+2amax{ﬁ,ﬁ}> .
(s,)€[0,t]x[0,1] @ o

This implies that for each € € (0, €] one has

2B

Vt>0, VjeZ, |0wi(t,x)] <K+ . ((f/(O) + 28) max{1l,k} + 2amax{§,/<;}> )

and

vVt >0, VjeZ, \8§v§(t,x)’ < €ok + @ ((f/(()) + 2f) max{1, k} + 2a max {i,ﬁ?}) ,

for all z € [0,1]. On the other hand, we also have

1 1
0,05(t, ) = 8,05(1,0) + ¢ /O wj(t,y)dy = aevj(t,0) — Bepj(t) + /0 w;(t,y)dy

such that
|0:05(t, )| < Cleo, @, B, 5, f(0)),
forallt >0,j€Z,ze0,1] and € € (0, €.

Based on the above estimates, we apply Arzela-Ascoli’s theorem, together with a diagonal extraction

argument, to obtain, up to a subsequence, the existence of a limit (U, P) with

Vo € [0,1], lim v5(t,z) = U;(t, x), liné p;(t) = Pj(t),
€E—

e—0 7

locally uniformly in (¢,7) € (0,4+00) x Z. The convergence also holds for the respective time and

space derivatives. At the limit, one has

vVt >0, j€Z, Pt



As a consequence, one necessarily has
Vt>0, jeZ, Ut xz)=Vt).

Integrating (6.1) from = = 0 to = 1 and using the Robin boundary conditions (6.2), one also
finds
d 1
€y ; v5(t, z)dz = 0zvj(¢, 1) — 0xv5(t,0) = €B(p5(t) + p511(t)) — ce(v5(t,0) + v5(t, 1)),
from which we get
Vi >0, jeZ, Vj(t)=-2aVj(t)+ B(Pj(t) + Pj41(t)).

By definition of the sequences V° and PP, we also have

VjieZ, Vi0)=V) and P;0)=P).

As a consequence, we have obtained the following result.

Theorem 5. Let ¢g > 0. For any initial sequences (h)oce<e, and (A€)o<e<e,, with he € X2
and h® € (°(Z) for all € € (0,€] and satisfying the compatibility condition (2.2) together with
the assumptions (6.3) and (6.4), the corresponding unique global classical positive solution (v€, p©)
satisfies

Vo € [07 1]7 1% ’U;(t,x) = V}(t)v 11_{% p;(t) = Pj(t)v

locally uniformly in (t,j) € (0,400) X Z, wherein (V,P) is solution of the asymptotic system

Vi(t) = —2aV;(t) + B(Pj(t) + Pj1(t)),

(6.6)
Pi(t) = f(P;()) + a(V;(t) + Vj-1(t)) — 28P5(t),

YVt >0, jEZ, {
with initial condition V;(0) = V}O and P;(0) = PJQ, j € Z, defined in (6.4).

6.2 Spreading properties of the asymptotic limiting system

In the following, we focus on the study of the long time behavior of system (6.6) and its spreading
properties. For that purpose, we first start by giving the notion of super and sub-solutions and

prove a comparison principle.

We say that (V,P) is a supersolution to (6.6) if for all j € Z one has V;, P; € €([0,+00),R)
which satisfy
— _

Vi >0, j €Z, {Vj(t) _Zf i(t) + B(P;(t) + Pjya (1)),

/

>
Pj(t) = f(P;(t)) + a(V;(t) + Vj-1(t)) — 28P;(2).

We similarly define a subsolution (V,P) to (6.6) with the same regularity and all the above in-
equalities being reversed. We can now state a comparison principle for (6.6) whose proof is a direct

consequence of Proposition B.5.
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Proposition 6.1. Let (V,P) and (V,P) be respectively a subsolution and supersolution to (6.6).
If we assume that (V,P) and (V,P) are locally bounded in time and satisfy for all j € 7 that
V;(0) <V;(0) and P;(0) < P;(0), then we have V;(t) < V;(t) and P;(t) < P;(t) for allt > 0 and
J € Z. Furthermore, if (V(0),P(0)) # (V(0),P(0)), then we have V;(t) < V;(t) and P;(t) < P;(t)
for allt >0 and j € Z.

A direct consequence of the above comparison principle is the uniqueness of bounded solutions of
system (6.6). More generally, for each nontrivial nonnegative initial condition (V9 P?) € £>°(Z) x
(> (Z), there exists a unique classical global solution (V,P) of system (6.6) with (V(0),P(0)) =
(V2 PY) such that Vj, P; € ([0, +00),R) for all j € Z, together with uniform bounds

VS0, VjeZ, 0<Vj(t)<max (Hvougm(z) , i) and 0 < Py(t) < max ([P sy 1)

Regarding the long time behavior of the solutions of system (6.6), we have the following result

which mirrors Theorem 3.

Proposition 6.2. Let (V,P) be the unique global classical solution of (6.6) starting from a non-
trivial nonnegative bounded initial sequence (VO,PY) € £°°(Z) x £>°(Z). Then,

t—+o00

i (0. 7,0 = (£.1).
locally uniformly j € Z.

Proof. Stationary solutions of system (6.6) satisfy

0= —2aV; + B(P; + Pji1),
Vj c Z, { J B( J ]+1)
0= f(Fy) +a(Vj+ Vj1) - 28F;

from which we deduce that V; = %(P] + Pj+1) and

0=f(P)+5

5 (Pjm1—2Pj + Pjt1),

for all j € Z. As a consequence, from the proof of Theorem 2, we deduce that (V;, P;) = (8/a, 1),
for all j € Z, is the only positive stationary solution to (6.6).

We now let Ny > 1 be large enough such that

5 (1 ~ cos (N”H)) < 70),

for all N > Np. We then define P = (P;) ez as

) g .
_ =1,...,N
Ej;: SIH<N+1>, J 9 9 )

0, otherwise,
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and set V. = (V) ez with

(B (. Jm (DT :
s Vo =1,...,N—1
2a<sm<N+1>+Sm<N+1 A :

<
I
DO
Q
N TN
=
+ |
[S—y
~——
<
I
=

L 0, otherwise.

By definition, one has V; = %(Bj + £j+1) for all j € Z. As a consequence, there exists vy > 0

such that (vV, vP) is a compactly supported stationary subsolution for all N > Ny and v € (0, vp].

One can also easily check that

viez Vymmax (Vg ) and Py ma ([P 1)

gives a stationary supersolution. One can then adapt the arguments of the proof of Theorem 3
to obtain the local uniform asymptotic convergence of the solutions towards the unique positive

stationary solution. n

Linearizing (6.6) around the trivial steady state, we obtain the following linear system

Vi(t) = —2aVj(t) + B(P;(t) + Py (1)),
Pi(t) = (f'(0) = 28)P;(t) + a(V;(t) + Via(8))-

We look for exponential solutions of the form

Vit >0, j €Z, {

(Vj(#), Pj(1)) = e U= (wg, po),

where vg > 0,pg > 0, ¢ > 0 and p > 0 to be determined later. Substituting this ansatz into the

linear system, we obtain that

(ne +2a)vg — B(1 +e #)py = 0,
(e 428 — f'(0))po — a(1 4 et)vg = 0,

pe + 2 —B(1l+eH) vo\ (0
—a(l+e") pc+28—f(0)) \po 0/
Since we are interested in nontrivial solutions, we must have that

det ue + 2a —B(1+e™#) _0
Ca(ltet) pet2s-fi(0)

which implies that

which also reads

(1e)? + (28 — f'(0) + 2a) e + 2a(26 — f'(0)) — 2a8(1 + cosh(p)) = 0.
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It follows from the above equation that

_ —(20425 - f(0)) £ VAW
21

cx (1)

9

where
A(p) := (2a — 28 + f'(0))* + 8aB(1 + cosh(u)) > 0.

Only retaining the positive root, we define

o0

o o —(20+28— £(0) + VAR
o e = 2 |

Let us show that ¢2° is well-defined. Indeed, we consider the following function

U(e, p) = =20+ (26 — £'(0))) + vV A(u) — 2uec.

By easy calculations, we have

U(c,0) = —(2a + 28 — £/(0)) + \/A(0) > 0,

0 0
Yu > 0, ‘ISZM) O =—-2c<0, \Il(gcc,,u) = —2u <0,
/J/:
and
0%V (c, 403 )
8/(; 2 = \/Tl(j)ﬁ(/i) (COSh(M) (2a —260+f (0))2 + 8af cosh(p) + 4af(1 + coshQ(u))>

> 0.

In view of the above properties of the function ¥(c, ), there exists ¢5° > 0 and p, > 0 such that

0¥ (c, )

o =0 and ¥(c°, puy) = 0.

(cgo uu‘*)

Furthermore,

(i) if 0 < ¢ < €2, then U(c, pu) > 0,Vu > 0,

(i) if ¢ > ¢2°, then the equation ¥(c, ) = 0 has two positive real roots ui(c), ua(c) with 0 <
pi(c) < py < pz(c) < 400, such that ¥(e,-) < 0in (u1(c), u2(c)) and ¥(e, ) > 01in (0, 1 (c))U
(M?(c)’ +OO)

Therefore, ¢2° is well-defined. It actually characterizes the spreading speed of (6.6) as stated in
the theorem below. Let us remark that our numerical evaluation of the linear spreading speed ¢y,

given by formula c,, as a function of d while all other parameters being kept fixed suggests that

e —> .
d——+o0

We refer to Figure 4(c) for an illustration. We leave for future work to rigorously prove such a

limit.
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Theorem 6. Let (V,P) be the unique global classical solution of (6.6) starting from a nontrivial
nonnegative compactly supported initial sequence (V°,PY) satisfying (0,0) S (V°,P%) < (B/a,1).
Then,

(1) for all ¢ > ¢, we have
lim sup (V;(?), P;(t)) = (0,0);

t——+o00 I]‘ZCt

(i) for all c € (0,¢3°), we have

lim inf (V;(t), Pi(t)) = </3,1>.

t—+oo [j|<ct a
Proof. Let us first prove item (i) of the theorem. We introduce the sequences

Vt >0, j€Z, V;(t)=min <19v0e_“*(j_ciot), i) and  P;(t) = min (ﬁe_“*(j_cgot), 1) ,

with ) B
+ e H*
=f—— > 0.
vo 5/1*0550 + 2«

Here ¥ > 0 is chosen large enough such that VjO < V;(0) and P]Q < P;(0) for all j € Z which is
always possible since (VY, P?) is assumed to be compactly supported. By construction (V,P) is a
supersolution of system (6.6). Thus if (V,P) is the unique global classical solution of (6.6) starting

from the nontrivial nonnegative compactly supported initial sequence (VY P?) then one has
Vt>0, j€Z, Vit)<V;(t) and P;(t) < Pi(t),
from which we readily deduce that for all ¢ > ¢°

lim sup V;i(t) < lim sup V;(t) =0,
t%leroo ]gg J( ) - t%lgloo ]gg ]( )
and

lim sup P;(t) < lim sup P;(t) = 0.
t—4o00 325 ‘7( ) T t—+4oo ]22 ]( )

By symmetry, we obtain a similar result for all j < —ct which concludes the proof of the first part

of the theorem.

The second step of the proof is to devise a compactly supported subsolution whose support moves

with speed ¢ close to ¢°. So let ¢ € (0,¢$°) and consider the linear system

Vi(t) = —2aV;(t) + B(Pj(t) + Pjya(t)),

Vit >0, j€Z, {
Pi(t) = (f'(0) = 28)P;(t) + a(V;(t) + Vj-1(2)).

Looking once again at exponential solutions of the form

(Vj(#), Pj(1)) = e U= (vg, po),
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with p,vg,po € C and ¢ > 0, we see, from the above discussion, that p and ¢ should satisfy
U(c, ) = 0. We recall that

U, pus) =0, 0¥ (%, ps) =0, and 2a := 0, ¥ (%, ps) > 0.
In addition, we also have
OV (7, tse) = =2 <0, Oy W (37, pts) = —2 < 0.
We then consider a neighborhood of (¢£°, 1), thus we set
§i=c —c¢ Ti=p—
The equation ¥(c, 1) = 0 becomes, for (¢, p) in a neighborhood of (¢5°, jix):
at? 4+ 267 + 21,8 = (7€), (6.9)

where ¢(7,€) is analytic in 7 in a neighborhood of 0, vanishing at (0,0) like |7|3 + [£|?. For small
€ > 0, the equation ar? + 27 + 2u.& = 0 has two complex roots

ra(6) = +iy [ 256 1 0(0).

By applying Rouché’s theorem, we find that equation (6.9) has also two complex roots, which are

complex conjugates up to order £, and are denoted by 74. These roots satisfy 74 (£) = +iy/ %5 +

O(&). Reverting to the full notation, we observe that for ¢ strictly less than and sufficiently close

to ¢2°, the equation ¥(c, u) = 0 admits a solution p with the following properties: its real part is
¢-close to jus, and hence positive; moreover, it has a nonzero imaginary part of order £1/2. Setting

po = 1, we get that
B(l+e™H)

Vo =
0 e + 2«

)

and since p = py + 7+ (§), we infer that
Re(vg) >0, Im(vg) <0, and |Arg(vo)| = O(VE),

where we denoted by Arg(vg) € (—m, x| the principal argument of vy. Taking the real parts of the
constructed exponential solutions, we set
Vj(t) := Re(V;(t)) = vole U~ cos (Im(p)(j — ct) — Arg(vo)),

rEh e {RuszdaanzeRWMjmammmmu—d»-

In order to obtain compactly supported subsolutions, we truncate the above solutions as follows.
We define

Qy(t) == {x eER|ct— u Arg(vo) i Arg(vo) } ;

() T T S 4T 2 T T
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and

T T
Qp(t) := R|ct— <z<ct
el {I k| 2tm(p) == 2im(u) } ’
and set _ _
Vi(t), 7€ Qy(t), Pi(t), je€Qp(t),
W0, V()= (), JEQv(t) (1) i (), J € Qp(t) (6.10)
0, otherwise, 0, otherwise.

Since both Im(p) = O(v/€) and |Arg(vg)| = O(v/€), we thus have that %ﬂ = O(1). We readily

(1)
have that when j € Qv (t) N Qp(t) or j € Z\Qy (t) N Qp(t), then (V;(t), P;(t)) is a solution of the
(

linear system (6.7). On the other hand, if j € Qv (¢)\Qp(t), then

Vi) +2aV;(t) — B(P;(t) + P (1) = V/(t) + 2aVj(t) = B(P;(t) + Pj4(t)) <0,
P(t) + (28 — [(0)P;(t) — a(V,(t) + V,_y (£)) = —a(Vi(t) + Vi_1(t)) <0,

upon taking ¢ small enough to ensure that both ﬁj(t) < 0 and ﬁj+1(t) < 0. A similar argument
with j € Qp(t)\Qy (t) shows that (V;(t),P;(t)) is a subsolution of (6.7) for all ¢ > 0 and j € Z.

At the moment, we have only constructed a compactly supported subsolution for the linear system
(6.7). It is not difficult to check that all the above arguments naturally perturb if instead we

consider the modified linear system

Vi(t) = —2aV;(t) + B(Pj(t) + Pj1(t)),

(6.11)
Pi(t) = (f'(0) — 28 = ) P;(t) + a(V;(t) + V;-1(2)),

Yt >0, j€Z, {

for some small § > 0. More precisely, there exists dyg > 0 such that for any § € (0,dp], one
can construct a compactly supported subsolution (V°,P°%) = (Kg,ﬁ?)jez in the form of (6.10).
Furthermore, let 1o > 0 be such that

(1 (0) = do)u < f(u), 0<u<u.

Then one can find 79 > 0 small enough such that T]QB;S-O (t) < forallt >0and j € Z. As a

consequence (770250,1702‘50) is a compactly supported subsolution to the nonlinear system (6.6).

We can now prove item (ii) of the theorem. Let ¢ € (0,¢°) and choose ¢ € (¢, ) very close to
¢3°. From the positivity of the solution of the nonlinear system (6.6), upon eventually decreasing

the size of 19 > 0, we can always ensure that at time ¢ = 1 one has
(V(1),P(1)) > (noV*(0),70P”(0)),

where (770!‘50, 770250) is the compactly supported subsolution associated to the speed ¢’ constructed

in the previous step. From the comparison principle of Proposition 6.1 we obtain that
V=1, (V(6),P() = (V™ (t — 1), 9P (t — 1)).
There exists v € (0,1) small, depending on ¢, such that

Vi (t) > noz‘fm (t—1)> gy and Ve 41(t) > noz‘fc,tm(t -1) >

v,

o™

39



with
PLc’tJ (t) > WOBCEC%J (t - 1) >v and PI_c’tJ+1(t) > UOB(EC/tJ+1(t - 1) > v,

for all t > 1. By a symmetry argument, we also obtain that

v,

s p

V_ i () > — d V.o js_4(t) > =

ey (t) 2~ an et 1 (t) =
with

P_ L't ] (t) >v and P_ Lc’t]—l(t) > v,

for all ¢ > 1. Upon even reducing the size of v, by positivity of the solution (V,P), we can always

ensure that
V(1) > éy and Pj(1)>v forall —d—-1<j<d+1
e

Since (gu, 1/) s is a homogeneous subsolution of (6.6), we are thus in a position to apply the
j

comparison principle of Proposition B.7 with two moving boundaries given by ((t) = —ct and
&(t) = dt. Tt implies that

VE>1,  inf Vi(t) >
- ljl<ct i®)

Ll

d inf Pj(t) >
v and - iof i (t) = v,

from which we deduce that

liminf inf (V;(t), P;(t)) > liminf inf (V;(t), P;(t)) > <§’1> .

t=+oo |j|<ct t—=+oo|j|<c't
But from Proposition 6.2, we have
. : B
limsup inf (V;(t), Pj(t)) < | —,1].
t—+oo |j|<ct «

As a conclusion, we have proved that

i it (30, 7500) = (2.1).

t—4o00 [7l1<ct

for all ¢ € (0,¢$°). This concludes the proof of the theorem. |

7 Discussion

Summary of main results. In this work, we have proposed a new model to describe biological
invasions constrained on infinite homogeneous one dimensional metric graphs. Our model consists
of an infinite PDE-ODE system where, at each vertex of the one-dimensional lattice Z, we have
a standard logistic equation and connections between vertices are given by diffusion equations
on the edges supplemented with Robin like boundary conditions at the vertices. Our first main
result is the existence and uniqueness of classical, global in time, positive bounded solutions of

our PDE-ODE model. Our second main result is the characterization of the long time behavior of
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the unique solution of our model, where we prove local uniform convergence towards the unique
positive bounded stationary solution of the system. Next, we analyzed the linearized problem
around the trivial constant state and derived a theoretical formula for the linear spreading speed
of our model, defined as the smallest possible speed for which there exist exponential solutions
with prescribed form. We then proved that this linear spreading speed is actually the asymptotic
spreading speed of the full nonlinear model, which constitutes the key result of our present study.
Finally, we investigated the large diffusion limit of the model and established the convergence
towards an asymptotic system for which we also managed to fully characterize its asymptotic
spreading properties. We also illustrated our theoretical findings with a selection of numerical

simulations.

Natural extensions. From a biological point of view, it could be interesting to consider several
extensions of the model. First of all, roads could be modeled as a hostile environment such that

the diffusion equation of (1.1) could be replaced by
8tUj = d@ivj - )\Uj,

for some A > 0 representing a death rate on the road. Such a modeling assumption has already
been proposed for other reaction-diffusion models [2]. We expect that the presence of a hostile
environment will have a direct effect on the stationary solutions of the model and thus on the long
time behavior of the solutions. More precisely, we anticipate a threshold effect and the existence
of a critical value for A (depending on all other parameters of the model), above which the only
stationary solution is the trivial constant steady state, and below which there exists a unique
bounded positive stationary solution. For values of A above this critical parameter, solutions of the
Cauchy problem are expected to uniformly converge to the trivial constant steady state, and thus

go extinct, reflecting the fact that the road is too hostile for the population to survive.

As explained in the introduction, for simplicity, our model neglects the possibility that individuals
could pass from one road to an adjacent one. Assuming that such exchanges are homogeneous and
symmetric, and if v > 0 denotes the corresponding exchange, then the Robin boundary conditions
(1.2) should be modified according to

—d@zvj(t, 0) + ozvj(t, 0) = ﬂpj(t) +v (Uj—l(ta E) - Uj(t, 0)) y
dam’l)j (t, f) + av; (t, f) = ,Bpj+1(t) +v (Uj+1(t, 0) — vy (t, 5)) .

These new exchange terms typically account for the permeability of cell membranes in gap junction
models [16]. We anticipate a similar threshold behavior as in the case of a hostile environment
described above with the existence of a critical value for v above which the populations on the
roads and the cities should go extinct and below which we observe similar spreading properties as
the one presented in our work. A possible interpretation is that for large v, the exchange terms act
as a dilution mechanism preventing the reaction kinetics at the cities to take over the diffusion on

the roads. We leave the analysis of these natural extensions for future work.
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Figure 7: Homogeneous rooted tree of degree k = 2. The red node represents the root of the tree. Fach

generation within the tree is labelled by an integer n € N.

Beyond the lattice case. Our model (1.1)-(1.2) considers the simplest connected metric graph
possible: the one dimensional lattice Z. It would be very relevant to extend our framework to
other classes of metric graphs. It seems natural to start by considering homogeneous trees, and we
already refer to recent developments regarding spreading properties of reaction-diffusion equations
on homogeneous trees [4, 8, 13]. In order to better explain the class of models we have in mind,
we introduce some notations. We let £ € N with £ > 1 and shall denote by T} a homogeneous tree
of degree k with the convention that T = Z. We recall that a homogeneous tree of degree k is an
infinite graph where each vertex has precisely k+ 1 adjacent vertices, and we refer to Figure 7 for an
illustration in the case k = 2. As in our original model, we suppose that all edges of the tree have
the same length ¢ > 0. To simplify the presentation, we will identify one vertex as being the root
of the tree and by convention we will label this vertex as n = 0 with associated population density
po(t). We will also assume that all populations at some fixed distance away from the root are
equal. As a consequence, it will be convenient to denote by p,(t) as a representative population at
distance n > 1 from the root. Similarly, we shall also denote by v, (¢, z) a representative population
leaving on the edge at distance n from the root. We readily remark that the new model is now
indexed by the natural integers N. Only the dynamics for each p,(t) has to be modified according
to
{pé(t) = f(po(t)) + (k + 1) (awo(t,0) — Bpo(t)) ,
Pr(t) = f(pn(t)) + & (vn—1(t,€) + kvn(t,0)) — (k + 1)Bpn(t), n =1,

Let us already remark that the new exchange terms can also be written as

a (vp—1(t, £) + kv, (8,0)) — (K + 1)Bpn(t) = a (vn—1(t, £) + va(t,0)) — 2Bpn(t)
+ (k - 1) (avn(tv 0) - Bpn(t)) )

where we see the presence of a new term (k — 1) (v, (t,0) — Bpn(t)) which can be interpreted as a
drift that may or may not block the propagation within the tree depending on the other parameters
of the model. For reaction-diffusion equations set on homogeneous trees [4, 13], the presence of
such a term typically prevents propagation within the tree for k large enough and we expect a
similar threshold to also happen here. We shall investigate the extension to homogeneous trees in

a forthcoming work.
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A Representation formula

We consider the heat equation
ow(t,z) = ddv(t,z), t>0, z € (0,1), (A.1)

with inhomogeneous Robin boundary conditions

—dd,v(t,0) + av(t,0) = g(t),
v(t,0) + av(t,0) = g(t) 50 (4.2)
doyv(t, 1) + av(t, 1) = h(t),
and initial condition
v(0,z) = vo(x), =z €]0,1]. (A.3)

We also define

2

K(t,x) := eTiz, t>0,z€R.

4mdt
Proposition A.1. Assume that h,g € €°(Ry,R) and v € C°([0,1],R), then the solution to
(A.1)-(A.2)-(A.3) can be represented as follows

1 t
u(t,z) = /0 K(t,x — y)vo(y)dy + /0 Kt — s,z —1)h(s) + K(t — s,z)g(s)] ds
+ /t [—aK(t — s,z — 1)+ dO,K(t — s,x — 1)]u(s,1)ds (A.4)
0
— / [aC(t — s,2) + dOK(t — s,x)] u(s,0)ds,
0
for allt >0 and x € [0,1].
Proof. Let w € €2((0,+o0) x [0,1],R) and for any ¢ > 0, from (A.1) we have
t ol )
0= /0 /0 w(s,y) (8sv(s,y) — dﬁyv(s,y)) dyds
1 t ol
= [ @ittty w0000 ds— [ [ @als.n) +d0buls.) ols.p)dyds
0 0 JO

t

- d/ (w(s,1)0yv(s, 1) —w(s,0)0yv(s,0))ds + d/ (Oyw(s,1)v(s, 1) — dyw(s,0)v(s,0))ds,
0 0
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for all t > 0 and = € [0,1]. We now specify w to
w(s,y) =K(t+e—s,z—vy),

for e > 0. Note that for all s € [0,¢] and y € [0,1] it satisfies dsw + dd5w = 0. We also note that

1 1
/0 w(t,y)v(t,y)dy = /0 K(e,z —y)o(t,y)dy — ult, z),

while . . .
| we.dy = [ K+ e —putds = [ Kt - puwma

Finally, we simply note that dyw(s,y) = —0,K(t + € — s,z — y), and using the Robin boundary
condition (A.2), we eventually derive (A.4). [

B Comparison principles

Proposition B.1. Let v and p with p; € €*([0,+00),R) and

v; € €°([0, +00) %[0, 1], R), v, 02vj € €°((0,+00)x(0,1),R), and d,v; € €°((0,4+00)x[0, 1], R),

for all j € Z, which satisfy

Op;i(t,z) — dd2vi(t,x) >0, =€ (0,1),
o) — 5 (0)p3(t) > oy, 0) + vy (1.1)]
—d({“)w’l)j (t, 0) + avj (t, 0) > ,Bpj (t),

| d0zv;(t, 1) + av;(t,1) = Bpjv(t),

for allt > 0 and j € Z with some ¢ = (¢j)jez, € LRy, 0°(Z)). Assume that v;(0,x) > 0 and
p;i(0) >0 for all x € [0,1] and j € Z, then vj(t,x) > 0 and p;(t) > 0 for allt > 0, xz € [0,1] and
Jj € Z. If furthermore v(0) # 0 or p(0) # 0, then v;(t,z) > 0 and p;j(t) >0 for allt >0, x € [0,1]
and j € Z.

Proof. Fix T' > 0. By assumption on the sequence c, there exists K > 0 such that
K —c¢j(t) >0, fort € (0,7] and j € Z.

For any v > 0, we define
wj(t,x) = e_7|3|_KtUj(t,:r),
zj(t) = e_“*lj'_Ktpj(t).
Since v and p are assumed to be locally bounded, we have for each ¢t € (0,7, j € Z and = € [0, 1]

that

i(t — 0
w]( 7:6) j—too ’
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The sequences w and z now satisfy

(0,0, (t, ) — dPw;(t, ) + Kw;(t,z) > 0, z e (0,1),
2(t) + (K — ¢j(1)z(t) > a [w;(t,0) + CTwj_1(¢, 1)] ,

/ (B.2)
—dO,w;(t,0) + aw;(t,0) = Bz;(t),
\d@ij(t, 1) + aw;(t,1) > pC; +1zj+1(t)
where the sequence C’] is defined as follows
e, j=1,
C;Y = (B.3)
e’, j<0.

We now let € > 0 and define

2

wi(t, ) = w;(t, v) + ec0to(z=3) ,
)
Z5(t) = 2;(t) + et

for two constants ¢ > 0 and § > 0 that will be fixed later in the proof. Elementary computations

give
Opwi(t, ) — d@gwg(t, r) + Kwj(t, r)

2
= Quw;(t,x) — doFw;(t, x) + Kw;(t,x) + e (g + K — 2d5 — 4d5? <a: — ;) ) oot +0(=3)"

and
/() + (K = ¢(10)2(0) = o [w§(2,0) + CJwf_y (1,1)]
= 25(t) + (K — ¢5(1)2(t) — o [w;(t,0) + CJuy 1 (6, 1)] + € (0+ K — () — a(1+ C) ) e,
together with
—dd,wS(t,0) + aws(t,0) — B5(t) = —ddyw;(t,0) + aw;(t,0) — Bz;(t) + e(ds + a — B)e?* 3,
d0ywi(t, 1) + awj(t, 1) — C1 1 B4 (1) = dOzw;(t, 1) + aw;(t, 1) — C1 11 Bz (1)

+e(dd +a—BC e e+,

As a consequence, we first fix 6 > 0 such that

Be? — «
d 9

o>
and then select o > 0 large enough such that
0+ K —2d5 —dé? >0 and o — a1 +¢7) > 0,
that is

0 > max (2d6 + dé* — K, a1 + e”)).

45



With such a choice, the sequences w* and z° now satisfy

ratwj(t,az) - d@gwj(t,x) + Kwj(t,z) >0, =€ (0,1),
Z;-’(t) + (K — cj(t))zj-(t) -« [wj(t,O) + C;wj_l(t, 1) >0,

—d0yw§(t,0) + awj(t,0) — Bz5(t) > 0
doywi(t, 1) + aws(t, 1) — 5C+1g+1(t)>0a

for all t € (0,T], z € [0,1] and j € Z with

2

w$(0, ) == w;(0,) + e®(®72)" > 0,

25(0) := 2;(0) + ee > 0,

and for each t € (0,7], z € [0,1] and j € Z
2
wi(t,r) — cet3(z=3)" 5 0,
Jj—too
Zi(t) — e > 0.
j—*xoo
As a consequence, there exists some J > 0 such that w§(¢,z) > 0 and zj(¢) > 0 for all ¢ € (0,77,
x € [0,1] and |j| > J. Our aim is to show that this is also true for all |j| < J. By contradiction,
assume that there exists to € (0,71, jo € [—J,J] and z¢ € [0,1] such that w (to,20) = 0 while
w§(t,z) > 0 and zj(t) > 0 for all t € (0,t0], z € [0,1] and j € [—J,J]. If 29 € (0,1), then by

definition we have dyw$ (to, o) < 0 and 02w w$ (to, xo) > 0 such that

0> atw (t07330) da w§ (t07x0) + ijeo (t07x0) > 07

T Jo

which is a contradiction. If zg = 0 then the Hopf Lemma ensures that (%fw;o (to,0) > 0 and the

boundary condition gives

0> —daijo(tg,o) + aw (tg, ) > ﬁzje-o(to) >0,
=0

which is impossible. A similar argument shows that if xyp = 1 one also reaches a contradiction.
Finally, if on the other hand we had assumed that zj,(t9) = 0 while wj(t,z) > 0 and zj(¢) > 0 for
all t € (0,%9], € [0,1] and j € [—J, J], then using the equation satisfied by z;, we find

(to,0) + C]wjo,l(to, 1)| >0,

0> 25 "(to) +(K — c;(t)) Z;-O(to) >« fwjo
~——

<0 =0
which is a contradiction. Let us remark that in the above inequality we have used that wi,_q (to,1) >
0. This holds by definition of (tg,zo,j0) if jo € [-J + 1,J], and if jo = —J, the fact that
we ;4 (to,1) > 0 holds thanks to the definition of J and the fact that w§(¢,z) > 0 for all ¢ € (0,77,
x € [0,1] and |j] > J.
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As a conclusion, we have proved that wj(t,z) > 0 and 25(t) > 0 for all ¢ € (0,77, z € [0,1] and
J € Z. Since € > 0 was left arbitrary by passing to the limit ¢ — 0 we obtain that w;(¢,2) > 0 and
zj(t) >0 for all t € (0,T], z € [0,1] and j € Z, which concludes the first part of the proof.

In order to prove the last part of the proposition, we shall instead prove that if there exists ¢ty € (0, T
and jo € Z such that pj,(to) = 0 or if there exists tg € (0,7, jo € Z and zo € [0, 1] such that
vj, (to, zo) = 0 then p;(t) = 0 and v;(t,z) = 0 for all t € [0,%¢], z € [0,1] and j € Z. If pj,(to) = 0,

then integrating the equation for p;, from ¢ = 0 to tg, we obtain that
t to
0 = pjy(to) = elo” D% p; (0) + a/o el T (1 (5,0) + vy, (s,1)) ds > 0.

As a consequence, we deduce that pj,(0) = 0, v;,(¢,0) = vj,—1(t,1) = 0 for all t € [0,to] and thus
pjo(t) =0 for all t € [0,%p]. But then, the strong maximum principle applied to vj, and vj,—1 gives
that v, (¢,2) = vjo—1(t,z) = 0 for all t € [0,%y] and x € [0,1]. Now, by contradiction, if v # 0 or
p # 0 on [0, tg], without loss of generality, we may assume that there exists p € Z with p > jy and

€ [0, 1] such that v,(0,z,) > 0. By continuity of v, there exists r > 0 such that v,(0, ) > 0 for
all € [0,1] N By(x«). Recalling that v, satisfies

Ovp(t, x) — dd%v,(t, ) >0, x€(0,1),
—d0,vp(t,0) 4+ avy(t,0) > 0
dOyvp(t, 1) + avy(t,1) >0,

since p;(t) > 0 for all j € Z, the strong maximum principle implies that v,(¢,z) > 0 for all ¢ € (0, ¢o]
and x € [0,1]. This, in turn, also implies that

t
pp(t) = elo cp(s)dspp(o) T a/ el (T (vp(s,0) + vp-1(s,1)) ds > 0,
0
for all ¢ € (0,to]. Now, inspecting the equation satisfied by v,_1, we have for all ¢ € (0, ¢] that

Opvp—1(t, ) — dd%v,_1(t,r) >0, z€(0,1),
—d0,vp—1(t,0) + avp,_1(t,0) >0,
dOyvp—1(t,1) + avp_1(t,1) > 0,

vp—1(0,2) >0, z€][0,1].

Once again, the strong maximum principle implies that v,_1(¢,2) > 0 for all t € (0,ty] and = € [0, 1].
By induction, we reach a contradiction since we eventually end up proving that v, (¢t,x) > 0 for
t € (0,t0] and x € [0,1], which is impossible. ]

Proposition B.2. Let v and p with p; € €'([0,+00),R) and

v; € €°([0,+00) %[0, 1], R), yv;, O2vj € €°((0,+00)x(0,1),R), and d,v; € €°((0,+00)x[0, 1], R),
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for all 3 € Z, which satisfy

Ow;(t,x) — dd2vj(t,x) >0, =z € (0,1),
p;(t) = ¢;j()p;(t) = e fv(t,0) + v (2, 1)]
—d0yv;(t,0) + av;(t,0) > Bp;(t),

dazvj (t7 1) + avj (ta 1) > 5Pj+1 (t)a

Wt >0, ((t) < j < (1), (B.5)

for some ¢ = (¢j)jez € LRy, 0°(Z)) and continuous functions ( : Ry — R and £ : R — R.
Assume that vj(0,2) > 0 and pj(0) > 0 for all x € [0,1] and ((0) —1 < j < &(0) + 1 together with
vi(t,z) > 0 and p;j(t) > 0 for allt > 0, z € [0,1] and j € [((t) — 1,{(t)) U (&(),&(t) + 1], then
vj(t,x) > 0 and p;(t) >0 for allt >0, z € [0,1] and ¢(t) < j < (1).

Proof. The proof is a direct adaptation of the proof of the previous proposition. Fix T" > 0. By

assumption on the sequence c, there exists K > 0 such that
K —¢j(t) >0, fort € (0,7) and j € Z.
For any € > 0, we define

2
wi(t,x) = e Klo(t,x) + 2t 0(2=3) ,

25(t) = e K (t) + Eegt'%,

where ¢ > 0 and § > 0 are taken large enough to ensure that w§(¢, z) and 2§(t) satisfy

r@twg(t,a:) — d@%wj(t,x) + Kw;(t,:c) >0, ze€(0,1),
YVt > 07 C(t) S] < g(t)’ Z; (t) + (K B Cj(t))zge‘(t) -G ’LU;(t,O) + w;—l(ta 1):| > 0,
—ddyw(t,0) + aws(t,0) — Bz5(t) > 0

dOyw§(t, 1) + awi(t, 1) — B25,4(t) > 0,

Furthermore, one also has w$(0,z) > 0 and zj(0) > 0 for all z € [0,1] and ¢(0) =1 <j <£(0) +1
together with w(t, z) > 0 and Z5(t) > 0forallt > 0,z € [0,1] and j € [((¢)—1,{(?))U(§(1), () +1].

By contradiction, assume that there exists tg € (0,77, jo € [((t0),&(to)] and zo € [0,1] such that
w$ (to, mo) = 0 while w§(t,z) > 0 and z5(t) > 0 for all ¢ € (0,o], = € [0,1] and j € [((¢),&(?)]. If
xo € (0,1), then by deﬁmtlon we have Oywy; ,(to;z0) < 0 and 02ws (to, zo) > 0 such that

1’]0

0> 8tw;0 (to, xo) — do*ws (to, o) + ijo (to, xo) > 0,

% jo

which is a contradiction. If zg = 0 then the Hopf Lemma ensures that Oijo (to,0) > 0 and the

boundary condition gives

0 > —do,w; (to,0) + awj, (to,0) > B25 (to) > 0,
0
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which is impossible. On the other hand, if g = 1, the boundary condition gives

0> dd,us (o, 1) +aw, (to,0) > B2, 1 (to) > 0,
—_———

<0

which is also impossible. The fact that 2§ (to) > 0 even if jo = £(to) is ensured by the assumption
that 25(¢) > 0 for j € [((¢) — 1,¢(t)) U (&(?),€(t) + 1]. Finally, if we had assumed that z;,(to) =0
while wj(t,z) > 0 and zj(t) > 0 for all t € (0,%0], € [0,1] and j € [((¢),£(t)], then using the

equation satisfied by z;, we find

0> 25,/ (to) +(K — ¢;(t)) 5, (to) > a [w§, (to,0) + w1 (to,1)] > 0.
N—— SN——

<0 =0
Once again, the fact that wjofl(tg, 1) > 0 even if jo = ((tp) comes from the assumption that
w(t,x) > 0 for j € [((t) — 1,¢(t)) U (§(1),&(t) + 1] and all € [0,1].

To conclude the proof one just passes to the limit ¢ — 0. ]

Proposition B.3. Let A > 0 and (N, M) € Z? such that N < M. Consider a sequence w =

(wj)j:N—l,._,,M+1 satisfying
Mwjs1 — 2wj +wj 1) — cw; <0, j=N,..., M,

for some sequence ¢ = (¢j)j=n,. .M satisfying ¢; > 0 for all j € [N,M]. If w; > 0 for j €
{N —1,M + 1} then wj > 0 for all j € [N, M].

Proof. Let us assume first that ¢ = 0 and that A(w;41 —2w; + wj—1) <0 for j=N,..., M. We
claim that w cannot have a minimum on [N, M]. Indeed if jo € [N, M] is such a minimum then
one has

0 < AMwjo+1 — 2wj, + wjp-1) <0,
which is impossible. Assume now that A(wjy1 — 2w; +wj—1) < 0 for j = N,..., M, then we can

define w§ = w; — ee" for € > 0 and v > 0. A direct computation shows that

AMwsiy — 2w +w5_y) = Mwjr1 — 2wj +wj—1) — 2¢(cosh(y) — e <0,

from which we deduce that

inf wj = inf w3,
j=N—1,..,M+1 je{N—1,M+1}

and thus by sending € to 0 we deduce that

inf wj = inf wj.
j=N-1,.. . M+1 jE{N—1,M+1}

As a conclusion, if we further assume that w; > 0 for j € {N —1,M + 1} then w; > 0 for all
j €[N, M].
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Let us now assume that ¢; > 0 for all j € [N, M]. We denote by Q_ := {j € [N, M] | w; < 0} and
Qp={je[N-1,M+1] | w; >0}. We also let

0N ={jeQi|j+1eQ _orj—-1eQ_}.
If Q_ = () then we are done, so we assume that Q_ # (). By assumption, for any j € Q_ one has
AMwjpr — 2w +wj—1) < cjw;j <0,
and we can use the previous step to infer that

inf  w; = inf wj,
FEQ_UN_ jEaN_

which is impossible. Indeed, on the one hand we have that

inf w; < inf w; <0,
JEQ_UHN_ JEQ_

and on the other hand

0< inf w; < inf wj.
JeQy JEIN_

As a conclusion ©_ = () and this concludes the proof of the proposition. |

Proposition B.4. Let A > 0 and (N, M) € Z? such that N < M. Consider two bounded sequence

P = (Bj)ij—l,...,MH and p = (p;)j=N-1,.. .M+1 satisfying

ey =20+ 0, )+ Fp) 20,

APjr1 —2p; +p5-1) + f(p;) <0,

for each j = N,...,M. Ifp; Zgj for j € {N —1,M + 1}, then p, Zﬁjforallj:N,...,M.

Proof. We set A := max (||p||¢=,||plle=) and let K4 > 0 be the Lipschitz constant of f on the
interval [—A, A]. We define f(u) := f(u)+ K su which is nondecreasing on [— A, A] by construction.

Upon setting w; := p; — Py we obtain

with w; > 0 for j € {N —1,M +1}. Once again, we define Q_ = {j € [N, M] | w; <0}, Q4 =
{je[N-1,M+1] |w; >0} and 0Q_ = {j €Qy |j+1€Q_orj—1€Q_}. Let us assume
that Q_ # (. For j € Q_, we obtain

Mwj1 = 2w; +wj—1) — Kaw; < f(5; —w;) = f(p;) <0,

which gives a contradiction thanks to the previous proposition. As a consequence, we necessarily

have Q_ = () which concludes the proof. [ |
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Proposition B.5. Let W = (W;) ez and Q = (Q;) ez with W;,Q; € €1([0,+oc),R) for all j € Z
which satisfy

Wi(t) > =2aW;(t) + B(Q;(t) + Qj41(1)),

Q5(t) > ¢;(1)Q;(t) + a(W(t) + Wj—_1(t)),

with some ¢ = (¢j)jez € L®(R4,€°(Z)). Assume that W;(0) > 0 and Q;(0) > 0 for all j € Z,
then W;(t) > 0 and Q;(t) > 0 for allt > 0 and j € Z. If furthermore W(0) # 0 or Q(0) # 0, then
W;(t) >0 and Q;j(t) > 0 for allt >0 and j € Z.

vVt >0, j€Z, {

Proof. Fix T' > 0. By assumption on the sequence c, there exists K > 0 such that
K —¢j(t) >0, fort € (0,7] and j € Z.
For any v > 0, we define
wj(t) == e WK (1),
q;(t) = e WI=ELQ ().

Since W and Q are assumed to be locally bounded, we have for each t € (0,7] and j € Z that

q]'(t) — 0

j—Eoo

The sequences w and q now satisfy

wh(t) > —20w;(t) + () +C g (1)),
v e { 102 =200 + 500 + 0y 0) )
q;(t) = —(K = ¢j()g;(t) + a(w; (t) + Cfw;j (1)),
with C} defined in (B.3). As in the proof of Proposition B.1, we define
{w;‘-(t) = w;(t) + ee”,
q;(t) == q;(t) + e’
with € > 0 and p > 0 chosen such that
p>max (a(l+e7),8(1+¢€7)—2a).
With such a choice, we readily have that
ws (t) > —2aws(t) + B(g5(t) + C L q5.1 (1)),
Vit € (O,T], ] c Z, { ]E/( ) j( ) B(Eq]( ) ]:rlq]—i-l(’z) ) (B?)
g5 (1) > —(K = ¢;(t))gj(t) + a(wj(t) + Cjwj_ (1)),

with
{wE(O) =w;(0)+€>0,
5(0) := ¢;(0) + ¢ >0,
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and for each t € (0,7] and j € Z

wi(t) — ee? >0,
j—Eoo

‘) — e >0.
qj()j—>:too€e

As a consequence, there exists some J > 0 such that wj(t) > 0 and g¢j(t) > 0 for all t € (0,7]
and [j| > J. Our aim is to show that this is also true for all |j| < J. By contradiction, without
loss of generality, assume that there exists tg € (0,7 and jo € [—J, J] such that ws, (to) = 0 while
w$(t) > 0 and ¢j(t) > 0 for all t € (0,t0] and j € [—J, J]. Then by definition, we also have that
ws,'(to) < 0 such that

0> ws/(to) + 20w (to) — B(g5, (to) + C} 1 d5+1(t0)) > 0,

which is a contradiction. As a consequence, one has w§(t) > 0 and ¢j(t) > 0 for all ¢ € (0,77 and
J € Z. Since € > 0 was left arbitrary by passing to the limit € — 0, we obtain that w;(t) > 0 and
q;j(t) > 0 for all t € (0,T] and j € Z, which concludes the first part of the proof.

In order to prove the last part of the proposition, we shall instead prove that if there exists tg € (0, 7]
and jo € Z such that Wj,(t9) = 0 or Qj,(to) = 0 then W;(t) = 0 and @Q,;(t) = 0 for all ¢ € [0, %]
and j € Z. Without loss of generality, suppose that Wj,(tp) = 0, then we obtain

to
0= Wj (to) = e_QQtOWjO (0) + /8/ e~ 2alto=s) (Qjo (s) + Qjo+1(8)) ds >0,
0

from which we infer that W), (0) = 0 and Qj,(s) = Qj,+1(s) = 0 for all s € [0,¢]. As a consequence,
we deduce that Wj,(s) = 0 for all s € [0,ty]. Now, using the equation satisfied by Q;, and @Qj,+1,
we infer that Wj,—1(s) = 0 and Wj,11(s) =0 for all s € [0,tg]. As a consequence, by induction, we
get that W;(t) =0 and @Q;(t) = 0 for all t € [0,%p] and j € Z, which concludes the proof. [

Proposition B.6. Let W = (W;) ez and Q = (Q;)jez with W;,Q; € €*([0,+00),R) for all j € Z
which satisfy

Wi(t) > —2aW;(t) + B(Q;(t) + Qj41(t)),
Q;(t) = ¢;()Q;(t) + a(W;(t) + W1 (1)),
with some ¢ = (¢;)jez € L¥(R4,0>°(Z)) and continuous functions ( : Ry — R and £ : Ry — R.
Assume that W;(0) > 0 and Q;(0) > 0 for all ((0) —1 < j < £(0) + 1 together with W;(t) > 0

and Q;(t) > 0 for allt > 0 and j € [((t) — 1,{(t)) U (&(1),&(t) + 1], then we have W;(t) > 0 and
Qj(t) >0 for allt >0 and ((t) < j <E(2).

vt >0, ((t) <j<&(@), {

Proof. Fix T' > 0. By assumption on the sequence c, there exists K > 0 such that

K —¢j(t) >0, fort € (0,7] and j € Z.

{wj (t):
q;(t) :

Next, let us define

e_Kth (t) + ee”,
e*KtQj(t) + ee,
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for e > 0 and

p>2max (a, f — ).
As a consequence (w;,q;:) satisfies all the assumptions with strict inequalities and we can argue
as in the previous proof. Without loss of generality, we assume by contradiction that there exists
to € (0,7] and jo € [((f0),&(f0)] N Z such that w§ (to) = 0 while w$(t) > 0 and ¢§(t) > 0 for all
t € (0,to] and ¢(t) < j < &(t). Then by definition, we also have that w¢ '(to) < 0 such that

0> ws,'(to) + 20w, (to) — B(45, (to) + @541 (t0)) > 0,

which is a contradiction. In the above inequality, we crucially used our assumption that w§ (t)>0
for j € (&(t),&(t) + 1]. We can then pass to the limit € — 0 and conclude the proof. [

Proposition B.7. Let (W, Q) and (W, Q) with Ej?QJ’?W%@j € ¢1([0,4+0),R) for all j €
Z be respectively subsolution and supersolution of the asymptotic system (6.6) for t > 0 and
Jj € [C(),.(t)] NZ for some continuous functions ¢ : Ry — R and £ : Ry — R. Assume that

(W,(0),@,(0)) < (W0, @,(0)) for all ¢(0) — 1 < j < €(0) + 1 tagether with (IW,(1),Q, (1)) <
(W;(t),Q;(t) for all t >0 and j € [C(t) —1,¢(t)) U (£(t),&(t) + 1], then we have (Ej(t),gj(t)) <
(W](t),@](t)) for allt >0 and ((t) < j < &(t).

Proof. The proof is a direct consequence of the previous proposition.

References
[1] H. Berestycki, J.-M. Roquejoffre and L. Rossi. The influence of a line of fast diffusion in
Fisher-KPP propagation. J Math Biol, 66 (2013), 743-766.

[2] H. Berestycki, J. M. Roquejoffre and L. Rossi. Travelling waves, spreading and extinction for
Fisher-KPP propagation driven by a line with fast diffusion. Nonlinear Analysis, 137, (2016)
171-189.

[3] C. Besse and G. Faye. Dynamics of epidemic spreading on connected graphs. J. Math. Biol,
82 (2021), 1-52.

[4] C. Besse and G. Faye. Spreading properties for SIR models on homogeneous trees. Bull. Math.
Biol, 83:114 (2021) , pp. 1-27 .

[5] C. Besse, G. Faye, J.-M. Roquejoffre and M. Zhang. The logarithmic Bramson correction for
Fisher-KPP equations on the lattice Z. Trans. Am. Math. Soc. 376 (2023), pp. 8553-8619.

[6] P.C. Bressloff. Local accumulation time for diffusion in cells with gap junction coupling. Phys.
Rev. E, 105(3), (2022) 034404.

[7] Y. Du, B. Lou, R. Peng and M. Zhou. The Fisher-KPP equation over simple graphs: varied
persistence states in river networks. J. Math. Biol., 80(5), (2020) 1559-1616.

53



8]

[9]

[20]

[21]

W. T. L. Fan, W. Hu and G. Terlov. Wave propagation for reaction-diffusion equations on
infinite random trees. Commun. Math. Phys., 384(1), (2021), 109-163.

N. Faria, A. Rambaut, M. Suchard, G. Baele, T. Bedford, M. Ward, A. Tatem, J. Sousa, N.
Arinaminpathy, J. Pepin, D. Posada, M. Peeters, O. Pybus and P. Lemey. HIV epidemiology.
the early spread and epidemic ignition of hiv-1 in human populations. Science, 346 (2014),
56-61.

M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi and A. Rinaldo. Spread
and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures.
Proc. Nat. Acad. Sci., (2020), 10484-10491.

J. Gou and M.J. Ward. Oscillatory dynamics for a coupled membrane-bulk diffusion model
with Fitzhugh-Nagumo membrane kinetics. SIAM J Appl Math, 76(2) (2016), 776-804.

J. Gou, Y.X. Li, W. Nagata and M.J. Ward. Synchronized oscillatory dynamics for a 1-Dmodel
ofmembrane kinetics coupled by linear bulk diffusion. SIAM J Appl Dyn Syst, 14(4) (2015),
2096-2137.

A. Hoffman and M. Holzer. Invasion fronts on graphs: the Fisher-KPP equation on homoge-
neous trees and Erd6és—Réyni graphs. Discrete Contin Dyn Syst B, 24(2) (2019), 671.

C.M. Hale, C. Thomas, et al.. Spatiotemporal heterogeneity in the distribution of chikungunya
and Zika virus case incidences during their 2014 to 2016 epidemics in Barranquilla, Colombia.
Int. J. Environ. Res. Public Health, 16 (2019), 1759.

Y. Jin, R. Peng and J. Shi. Population dynamics in river networks. J. Nonlinear Sci., 29(6),
(2019), 2501-2545.

J. P. Keener and J. Sneyd. Mathematical Physiology I: Cellular Physiology. Springer, New
York, (2009) 2nd edition.

H. Kravitz, C. Durén and M. Brio. A Coupled Spatial-Network Model: A Mathematical
Framework for Applications in Epidemiology. Bull. Math. Biol. 86.11 (2024): 132.

F. Paquin-Lefebvre, W. Nagata and M.J. Ward. Weakly nonlinear theory for oscillatory dy-
namics in a one-dimensional PDE-ODE model of membrane dynamics coupled by a bulk
diffusion field. SIAM J Appl Math, 80(3) (2020), 1520-1545.

O. A Ladyzhenskaja, V.A. Solonnikov and N.N. Ural’ceva. Linear and Quasi-linear Equations
of Parabolic Type. American Mathematical Soc., vol 23, (1968).

M. H. Protter and H.F. Weinberge. Maximum principles in differential equations. Springer
Science & Business Media (2012).

S. V. Ramanan and P. R. Brink. Exact solution of a model of diffusion in an infinite chain or

monlolayer of cells coupled by gap junctions. Biophys. J. 58, 631 (1990).

54



[22] H. Weinberger. Long-time behavior of a class of biological models. SIAM J Math Anal, 13(3)
(1982), 353-396.

95



	Introduction
	The Cauchy problem
	Uniqueness
	Existence

	Long time behavior
	Exponential solutions and linear spreading speed
	Asymptotic spreading
	Upper estimate
	Lower estimate

	Large diffusion limit
	Derivation of the asymptotic limiting system
	Spreading properties of the asymptotic limiting system

	Discussion
	Representation formula
	Comparison principles

