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Abstract

We establish in this paper the logarithmic Bramson correction for Fisher-KPP equations on

the lattice Z. The level sets of solutions with step-like initial conditions are located at position

c∗t − 3
2λ∗

ln t + O(1) as t → +∞ for some explicit positive constants c∗ and λ∗. This extends

a well-known result of Bramson in the continuous setting to the discrete case using only PDE

arguments. A by-product of our analysis also gives that the solutions approach the family of

logarithmically shifted traveling front solutions with minimal wave speed c∗ uniformly on the

positive integers, and that the solutions converge along their level sets to the minimal traveling

front for large times.
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1 Introduction

We consider the following Cauchy problem
d

dt
uj(t) = uj−1(t)− 2uj(t) + uj+1(t) + f(uj(t)), t > 0, j ∈ Z,

uj(0) = u0
j , j ∈ Z,

(1.1)

for some nontrivial bounded initial sequence (u0
j )j∈Z ∈ `∞(Z). Throughout, we let `∞(Z) denote

the Banach space of bounded valued sequences indexed by Z and equipped with the norm:

‖u‖`∞(Z) := sup
j∈Z
|uj | .

∗Corresponding author: gregory.faye@math.univ-toulouse.fr
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Fur future reference, we also let `q(Z) with 1 ≤ q < +∞ denote the Banach space of sequences

indexed by Z such that the `q(Z) norm, defined for u : Z→ C by

‖u‖`q(Z) :=

∑
j∈Z
|uj |q

1/q

,

is finite. Here the reaction term f ∈ C 2([0, 1]) is assumed to be of Fisher-KPP type, that is

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, and 0 < f(u) ≤ f ′(0)u for all u ∈ (0, 1).

Without loss of generality, we extend f linearly on (−∞, 0)∪ (1,+∞). Throughout, we will further

assume that the nontrivial initial sequence (u0
j )j∈Z ∈ `∞(Z) satisfies

0 ≤ u0
j ≤ 1, ∀j ∈ Z, and u0

j = 0, j ≥ J,

for some integer J ∈ Z. The solution uj(t) to (1.1) is classical for t > 0 in the sense that (uj)j∈Z ∈
C 1((0,∞), `∞(Z)) ∩ C 0([0,∞), `∞(Z)) and verifies 0 < uj(t) < 1 for each t > 0 and j ∈ Z thanks

to the strong maximum principle which applies in the discrete setting.

The Cauchy problem (1.1) can be interpreted as the discrete version of the standard spatially-

extended Fisher-KPP equation{
∂tu = ∂2

xu+ f(u), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1.2)

for some step-like initial datum 0 ≤ u0 ≤ 1 with u0 6≡ 0 and u0(x) = 0 for x ≥ A with A ∈ R.

Such discrete and continuous equations arise in many mathematical models in biology, ecology,

epidemiology or genetics, see e.g. [8, 23, 31, 40], and u typically stands for the density of a

population. Much is known regarding the long time asymptotics of the solutions to (1.2) and a

famous result due to Aronson-Weinberger [3] states that the solutions have asymptotic spreading

speed c∗ = 2
√
f ′(0). That is

lim
t→+∞

min
|x|≤ct

u(t, x) = 1, for all c ∈ (0, c∗),

and

lim
t→+∞

max
x≥ct

u(t, x) = 0, for all c > c∗.

In the celebrated papers [10, 11], Bramson obtained sharp asymptotics of the location of the

level sets of u(t, x) through probabilistic arguments using the relationship between the classical

Fisher-KPP equation (1.2) and branching Brownian motion. More precisely, for any m ∈ (0, 1),

if xm(t) := sup {x ∈ R | u(t, x) ≥ m} denotes the leading edge of the solution u at level m, then

Bramson proved that

xm(t) = c∗t−
3

2λ∗
ln t+ σm + o(1), as t→ +∞, (1.3)
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for some shift σm depending on m and the initial datum with λ∗ := c∗/2. There is a long history of

works [31, 32, 39] regarding the large time behavior for the solutions of the Cauchy problem (1.2)

dating back to the pioneer work of Kolmogorov, Petrovskii and Piskunov which relate spreading

properties of the solutions to the convergence towards a selected traveling front solution, often

referred to as the critical pulled front. Indeed for (1.2), it is well-known [3, 31] that there exist

traveling front solutions of the form ϕc(x − ct) where 0 < ϕc < 1 with limits ϕc(−∞) = 1 and

ϕc(+∞) = 0 if and only if c ≥ c∗ = 2
√
f ′(0). Furthermore the profiles ϕc are decreasing, unique

up to translations and verify

ϕ′′c + cϕ′c + f(ϕc) = 0. (1.4)

On the other hand, the logarithmic shift in KPP type equations has been much revisited in the

recent years. Most notably, we mention the recent developments [6, 12, 27, 34, 35] which recover and

extend Bramson’s results using PDE arguments, or the extensions of his work using the connection

with branching Brownian motion and branching random walks [1, 2, 37]. As postulated in [20], the

logarithmic shift has a universal character and has been retrieved in several other contexts: Fisher-

KPP equations with nonlocal diffusion [25, 38] and nonlocal interactions [9], in a periodic medium

[28] or in more general monostable reaction-diffusion equations [24]. It is also intimately linked to

the selection of pulled fronts, and we refer to the recent work [4] and references therein. In this

work, we show that the Bramson logarithmic correction also holds in the discrete setting of (1.1)

rigorously justifying some formal asymptotic results from [21]. Apart from its own mathematical

interest, our motivation for investigating the Bramson logarithmic shift for (1.1) also stems from our

recent works [7, 8] on SIR epidemic models set on graphs where the discrete Fisher-KPP equation

naturally arises for a specific choice of the nonlinearity f . In this modeling context, a precise

description of the long time dynamics of the solutions is of importance to sharply describe the

spatial spread of an epidemic outbreak.

Main results. From [29, 40], we know that the solutions uj(t) to (1.1) satisfy the following

spreading property:

lim
t→+∞

min
j≤ct

uj(t) = 1, for all c ∈ (0, c∗), (1.5)

and

lim
t→+∞

max
j≥ct

uj(t) = 0, for all c > c∗. (1.6)

Here, the spreading speed c∗ > 0 is uniquely defined as

c∗ := min
λ>0

eλ − 2 + e−λ + f ′(0)

λ
. (1.7)

Let us note that there is a unique λ∗ > 0 where the above minimum is attained so that the couple

(c∗, λ∗) is solution of the nonlinear problem{
c∗λ∗ = eλ∗ − 2 + e−λ∗ + f ′(0),

c∗ = eλ∗ − e−λ∗ .
(1.8)
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Indeed, as in the continuous case, the spreading speed c∗ is also the threshold to the existence of

traveling front solutions to (1.1). More precisely, combining the results from [13–16, 41] for each

c ≥ c∗, there exists a unique (up to translation) monotone front Uc ∈ C 1(R) solution of{
0 = cU ′c(x) + Uc(x+ 1)− 2Uc(x) + Uc(x− 1) + f(Uc(x)), x ∈ R,

Uc(−∞) = 1, Uc(+∞) = 0, 0 < Uc < 1.
(1.9)

We normalize the minimal traveling front profile Uc∗ , according to its asymptotic behavior at +∞.

More precisely, using the result of [13], we normalize Uc∗ so as to satisfy asymptotically

Uc∗(x)

xe−λ∗x
−→
x→+∞

1. (1.10)

As previously explained, our aim is to provide sharp asymptotics of the level sets of uj(t). We

define for any m ∈ (0, 1) and for each t ∈ (0,+∞) the quantity

jm(t) := sup {j ∈ Z | uj(t) ≥ m} .

Our main result is the following.

Theorem 1. Let c∗ > 0 and λ∗ > 0 be defined in (1.7) and (1.8). For each m ∈ (0, 1) there exist

C > 1 and T > 1, such that

jm(t) ∈ Z ∩
[
c∗t−

3

2λ∗
ln t− C, c∗t−

3

2λ∗
ln t+ C

]
, t ≥ T.

The above Theorem 1 is closely related to some results obtained on discrete-time branching random

walks [1, 2] where the Bramson logarithmic correction is known to greater precision, that is up to

o(1) error as in (1.3). As explained in [25, Appendix A], the connection between continuous in time

branching random walks and the Fisher-KPP equation with nonlocal diffusion can be established

when the reaction f takes a special form and the kernel defining the nonlocal diffusion is a Borel

probability measure. Let us finally insist on the fact that the Bramson logarithmic shift proved in

[25, Theorem 1.1] for nonlocal Fisher-KPP equations includes the diffusion measure δ1 − 2δ0 + δ−1

studied here. However, our main Theorem 1 allows to handle slightly more general initial conditions

than the Heaviside step data considered in [25]. Most notably, the core of our proof greatly differs

from [25] where key estimates for the long time behavior of the linear Dirichlet problem are proved

using probabilistic arguments via a Feynman-Kac representation.

Combining the above Theorem 1 with the spreading property (1.5), we get that

lim inf
t→+∞

(
min

0≤j≤c∗t− 3
2λ∗

ln t−C
uj(t)

)
−→ 1 as C → +∞, (1.11)

since uj(t) → 1 as t → +∞ locally uniformly in j. Furthermore, using that lim
j→+∞

uj(t) = 0 for

each t ≥ 0, we also deduce that

lim sup
t→+∞

(
max

j≥c∗t− 3
2λ∗

ln t+C
uj(t)

)
−→ 0 as C → +∞. (1.12)
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The limits (1.11) and (1.12) show that the region in the lattice where the solution uj(t) is bounded

away from 0 and 1 is located around the position c∗t − 3
2λ∗

ln t and has a bounded width in the

limit t→ +∞.

Refining the arguments of Theorem 1, one can actually prove that the solution uj(t) approaches

the family of shifted traveling fronts Uc∗

(
j − c∗t+ 3

2λ∗
ln t+ ζ

)
uniformly in j ≥ 0. Our second

main result reads as follows.

Theorem 2. Let c∗ > 0 and λ∗ > 0 be defined in (1.7) and (1.8). There exist a constant C > 0

and a function ζ : (0,+∞)→ R with |ζ(t)| ≤ C such that

lim
t→+∞

sup
j≥0

∣∣∣∣uj(t)− Uc∗ (j − c∗t+
3

2λ∗
ln t+ ζ(t)

)∣∣∣∣ = 0. (1.13)

Furthermore, for every m ∈ (0, 1) and every sequence (tn, jn)n∈N such that tn → +∞ as n→ +∞
and jn = jm(tn) for all n ∈ N, there holds

uj+jn(t+ tn)→ Uc∗(j − c∗t+ U−1
c∗ (m)) locally uniformly in (t, j) ∈ R× Z,

where U−1
c∗ denotes the inverse of the function Uc∗.

Strategy of proof. The strategy of our proof is inspired by the PDE arguments that were

developed recently in the continuous setting [27]. The take home message from [27] is that the

long time dynamics of (1.2) can be read out from the solutions of the linearized problem around

the unstable state u = 0 with a Dirichlet boundary condition at x = c∗t. Indeed, these solutions

can be compared to the critical front ϕc∗ , appropriately shifted to the position c∗t− 3
2λ∗

ln t, in the

diffusive regime of the linearized equation, that is, for all x ∈ [c∗t, c∗t + ϑ
√
t] and for any ϑ > 0.

One of the main difficulty in our analysis comes from the discrete nature of our equation such that

the above argument has to be largely adapted. Our starting point is also the linearized equation

around the unstable state 0. We first perform, in the linearized equation of rj(t), the change of

variable rj(t) = e−λ∗(j−c∗t)wj(t) for some new sequence (wj(t))j∈Z which solves

d

dt
wj(t) = eλ∗ (wj−1(t)− 2wj(t) + wj+1(t))− c∗(wj+1(t)− wj(t)), t > 0, j ∈ Z.

Solutions of the above equation starting from some initial sequence (w0
j )j∈Z ∈ `∞(Z) are given

through the representation formula

wj(t) =
∑
`∈Z

Gj−`(t)w
0
` , t > 0, j ∈ Z,

where (Gj(t))j∈Z stands for the temporal Green’s function (see (3.3) below for a precise definition).

The key step of the analysis is to obtain sharp pointwise estimates on the temporal Green’s function.

We establish that Gj(t) behaves like a Gaussian profile centered at j = c∗t for all |j − c∗t| ≤ ϑtα

for any ϑ > 0, α ∈ (0, 1) and t > 1. Actually, we prove a sharper result, which is of independent

interest, by showing that the temporal Green’s function can be decomposed as a universal Gaussian
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profile plus some reminder term which can be bounded and which also satisfies a generalized

Gaussian estimate. We refer to Proposition 4.1 for a precise statement. Let us note that similar

generalized Gaussian bounds have been recently derived for discrete convolution powers [17–19]

and are reminiscent of so-called local limit theorems in probability theory [36]. Owing to this sharp

estimate on the temporal Green’s function, we manage in a second step to construct appropriate

sub and super solutions which allow us to precisely locate any level sets of the solutions to (1.1). For

this part, we take benefit from the new results obtained by one of the authors [38] in the continuous

setting with nonlocal diffusion. Let us finally emphasize that our analysis of the temporal Green’s

function does not rely on Fourier analysis but rather on a spatial point of view through the Laplace

inversion formula by defining each Gj(t) as

∀ t > 0, ∀j ∈ Z, Gj(t) =
1

2πi

∫
Γ
eνtGj(ν)dν,

where Γ ⊂ C is some well-chosen contour in the complex plane and (Gj(ν))j∈Z ∈ `2(Z) is the

associated spatial Green’s function (see (3.5) below for a precise definition).

Compared to Bramson’s result in the continuous setting, our main Theorem 1 only captures the

logarithmic correction up to some O(1) terms as t→ +∞. We expect that our logarithmic expan-

sion could be refined along the lines of [34, 35] with convergence to a single traveling front solution.

We leave it for a future work.

Outline. The rest of the paper is mainly dedicated to the proof of Theorem 1. For expository

reasons, instead of focusing directly on it, we first revisit in Section 2 the continuous case and

provide an alternate proof of the Bramson’s logarithmic correction up to some O(1) terms as

t → +∞. Compared to [27], the novelty of this alternate proof, which takes its inspiration from

the nonlocal continuous case [38], is to solely focus on the linearized problem around the unstable

state u = 0 with a Dirichlet boundary condition at x = c∗t without relying on self-similar variables.

Indeed, the use of self-similar variables for the discrete Fisher-KPP equation is prohibited. Then, in

Section 3, we study the linearized problem for the discrete Fisher-KPP equation and, in a first step,

we prove a generalized Gaussian bound for the associated temporal Green’s function. In a second

step, we provide in Section 4 a sharp asymptotic expansion for the temporal Green’s function in

the sub-linear regime which will be crucial to the proof of Theorem 1. Finally, in Section 5 we

provide the lower and upper bounds in our main Theorem 1 following the strategy presented in

the continuous case. In the last Section 6, we study the convergence to the logarithmically shifted

minimal front and prove Theorem 2.

Notations. Throughout the manuscript, we will use the notation f . g whenever f ≤ Cg for

some universal constant C > 0 independent of t and x or j. Furthermore, for two functions f(t)

and g(t), we use the notation f(t)� g(t) whenever f(t)
g(t) → 0 as t→ +∞, while we use f(t) ∼ g(t)

whenever f(t)
g(t) → C as t→ +∞ for some universal constant C > 0.
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2 An alternative proof of the logarithmic Bramson correction in

the continuous case

In this section, we revisit [27] and propose an alternative proof of the logarithmic Bramson correc-

tion in the continuous case. More precisely, the purpose of this section is to prove the following

result.

Proposition 2.1. Let u be the solution of the Cauchy problem (1.2) starting from some step-like

initial datum 0 ≤ u0 ≤ 1 with u0 6≡ 0 and u0(x) = 0 for x ≥ A with A ∈ R. Then, there exist

−∞ < b < a < +∞ and η ∈ (0, 1/2) such that for any ε > 0 very small, there exists T0 > 1 large

enough such that

(1− ε)ϕc∗
(
x− c∗t+

3

2λ∗
ln t+ a

)
≤ u(t, x) ≤ (1 + ε)ϕc∗

(
x− c∗t+

3

2λ∗
ln t+ b

)
, (2.1)

uniformly in 1 ≤ x − c∗t + 3
2λ∗

ln t ≤ tη for all t ≥ T0, where c∗ = 2
√
f ′(0), λ∗ = c∗/2 and the

minimal traveling front ϕc∗ solution of (1.4) is normalized such that

ϕc∗(x)

xe−λ∗x
−→
x→+∞

1 .

A direct consequence of the above proposition is that for each m ∈ (0, 1), there exists C > 0 such

that

xm(t) ∈
[
c∗t−

3

2λ∗
ln t− C, c∗t−

3

2λ∗
ln t+ C

]
, as t→ +∞,

where xm(t) denotes the leading edge of the solution u at level m. Moreover, it is worth to note

that, based on (2.1), the argument for the large time convergence of the solutions to the family of

shifted traveling fronts as well as of the solutions along their level sets to the profile of the minimal

traveling front in Theorem 1.2 of [27] can be simplified by applying this time directly the Liouville

type result Theorem 3.5 of [5] instead of using Lemma 4.1 in [27].

2.1 Preliminaries

In a first step, we establish upper and lower barriers for a variant v (see (2.2) below) of the solution

u, by using the solution for the linear equation (2.5) for t sufficiently large and x ∈ R ahead of the

position x − c∗t ≈ 0 albeit with a small shift. These upper and lower bounds will play a crucial

role in showing a refined estimate on the expansion of the level sets of u in the sequel.

Set

v(t, x) = eλ∗(x−c∗t)u(t, x). (2.2)

This leads to {
vt − vxx + c∗vx +R(t, x; v) = 0, t > 0, x ∈ R,

v(0, x) = v0(x) = eλ∗xu0(x), x ∈ R,
(2.3)
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in which the nonlinear term R(t, x; s) has the following precise form

R(t, x; s) := f ′(0)s− eλ∗(x−c∗t)f
(
e−λ∗(x−c∗t)s

)
≥ 0 (2.4)

for s ∈ R and for (t, x) ∈ (0,+∞) × R, due to the assumption on f that 0 < f(s) ≤ f ′(0)s for

s ∈ (0, 1) and due to the linear extension of f in (−∞, 0)∪(1,+∞). One then has that R(t, x; v) ≥ 0

for (t, x) ∈ (0,+∞) × R. Note that the change of function (2.2) is motivated by our forthcoming

study of the discrete case where it is not possible to write the equation in a moving frame due to

the discrete nature of the problem.

Let us now consider the linear equation

(∂t − L)w := wt − wxx + c∗wx = 0, t > 0, x ∈ R. (2.5)

It is easy to see that the function p(t, y) = w(t, y + c∗t) satisfies pt − pyy = 0 for t > 0, y ∈ R. We

impose an odd and compactly supported initial datum p0 6≡ 0 in R with p0 ≥ 0 on [0,∞), then it

follows that

w(t, y + c∗t) = p(t, y) =
1√
4πt

∫ +∞

0

(
e−

(y−z)2
4t − e−

(y+z)2

4t

)
p0(z)dz, t > 0, y ∈ R. (2.6)

In particular, one has p(t, y) > 0 for t > 0 and y > 0, and the following asymptotic behavior holds

true:

p(t, y) ∼ ye− y
2

4t t−
3
2 , as t→ +∞,

for −
√
t ≤ y ≤

√
t. This then implies that w(t, x) changes its sign exactly at x − c∗t = 0, i.e.,

w(t, x) > 0 for t > 0 and x ∈ R with x − c∗t > 0, whereas w(t, x) < 0 for t > 0 and x ∈ R with

x− c∗t < 0. Moreover,

w(t, x) ∼ (x− c∗t)e−
(x−c∗t)2

4t t−
3
2 , as t→ +∞, (2.7)

for −
√
t ≤ x− c∗t ≤

√
t.

We are now in position to take advantage of w(t, x) in the constructions of the upper and lower

barriers for v.

2.2 Upper barrier for v

We start with the construction of a supersolution to (2.3) for all t large enough and x ∈ R ahead

of x − c∗t ≈ 0 by following the strategy recently proposed in [38] for the continuous setting with

nonlocal diffusion, which is itself reminiscent of the strategy used in [27]. Ideally, the solution v

of (2.3) would be controlled from above by the function w solution of the linear equation (2.5)

starting from an odd, nontrivial and compactly supported initial condition, since it is an actual

supersolution by construction. However, as the initial condition is chosen to be odd, the function

w(t, x) is negative for t > 0 and x − c∗t < 0 which prevents us from readily comparing the two

functions. The key observation from [38], very much in the spirit of Fife & McLeod [22], is that
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we can add a cosine perturbation to w which will eventually enable us to compare v with this new

supersolution slightly to the left of x− c∗t = 0.

Consider now δ ∈ (0, 1/3), that will be as small as needed. We now look for a barrier of v(t, x) from

above for t large enough and x ∈ R ahead of x− c∗t = −tδ. To do so, we construct a supersolution

for (2.3) in the form

v(t, x) = ξ(t)w(t, x) +
1

(1 + t)
3
2
−β

cos

(
x− c∗t
(1 + t)α

)
1{x∈R | −tδ≤x−c∗t≤ 3π

2
(1+t)α}, (2.8)

for t large enough and x ∈ R with x − c∗t ≥ −tδ, where the unknown ξ(t) ∈ C 1 is assumed to be

positive and bounded in (0,+∞), and ξ
′
(t) ≥ 0 in (0,+∞), α ∈ (1/3, 1/2) and β > 0, all of which

will be chosen in the course of investigation. Note that δ < α. Let us now check that v(t, x) is a

supersolution of (2.3) for t large enough and x ∈ R with x− c∗t ≥ −tδ.
First of all, we look at the region {x ∈ R | x − c∗t ≥ 3π

2 (1 + t)α} for all t large enough, in which

v(t, x) = ξ(t)w(t, x). It is obvious to see that (∂t−L)v(t, x) = ξ
′
(t)w(t, x) ≥ 0 since w(t, x) > 0 for

all t ≥ 0 in this area and since we assume that ξ
′
(t) ≥ 0 for t > 0. It remains to discuss the region

{x ∈ R | − tδ ≤ x− c∗t ≤ 3π
2 (1 + t)α} for all large times. We divide it into three zones:

R1 :=
{
x ∈ R | − tδ ≤ x− c∗t ≤ 1

}
, R2 :=

{
x ∈ R | 1 ≤ x− c∗t ≤

π

4
(1 + t)α

}
,

R3 :=

{
x ∈ R | π

4
(1 + t)α ≤ x− c∗t ≤

3π

2
(1 + t)α

}
.

In region R1. There holds

−tδ
(1 + t)α

≤ x− c∗t
(1 + t)α

≤ 1

(1 + t)α
.

Thanks to (2.7), one gets

− 1

(1 + t)
3
2
−δ

. w(t, x) .
1

(1 + t)
3
2

for all t large enough.

Notice that w(t, x) can be negative in this area, therefore the cosine perturbation needs to play a

role here. We first require that β > δ > 0 so that the cosine term will be the dorminant term, that

is,

v(t, x) ∼ 1

(1 + t)
3
2
−β

> 0 for all t large enough. (2.9)

Moreover, a straightforward computation gives that, for t large enough,

(∂t − L)(ξ(t)w(t, x)) = ξ
′
(t)w(t, x) & − ξ

′
(t)

(1 + t)
3
2
−δ
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and

(∂t − L)

(
1

(1 + t)
3
2
−β

cos

(
x− c∗t
(1 + t)α

))

=
β − 3

2

(1 + t)
5
2
−β

cos

(
x− c∗t
(1 + t)α

)
+

1

(1 + t)
3
2
−β

(
c∗

(1 + t)α
+
α(x− c∗t)
(1 + t)α+1

)
sin

(
x− c∗t
(1 + t)α

)
+

1

(1 + t)
3
2
−β+2α

cos

(
x− c∗t
(1 + t)α

)
− c∗

(1 + t)
3
2
−β+α

sin

(
x− c∗t
(1 + t)α

)
∼ 1

(1 + t)
3
2
−β+2α

.

Therefore, in order to ensure that (∂t−L)v(t, x) ≥ 0 for t large enough in this region, it suffices to

impose the condition

1

(1 + t)
3
2
−β+2α

� ξ
′
(t)

(1 + t)
3
2
−δ

for all t large enough, (2.10)

namely,

0 ≤ ξ′(t)� 1

(1 + t)2α+δ−β for all t large enough. (2.11)

In region R2. There holds
1

(1 + t)α
≤ x− c∗t

(1 + t)α
≤ π

4
.

We notice that w(t, x) is positive for all t > 0 in this region, as is the cosine perturbation. Since

ξ(t) is assumed a priori to be a bounded positive function in (0,+∞), one has that v(t, x) > 0 for

all t > 0 in this region and

(∂t − L)(ξ(t)w(t, x)) = ξ
′
(t)w(t, x) ≥ 0

for all t > 0 in this region, thanks to ξ
′
(t) ≥ 0 in (0,+∞). Moreover, by the same calculation as

the previous region, one also obtains in R2 that

(∂t − L)

(
1

(1 + t)
3
2
−β

cos

(
x− c∗t
(1 + t)α

))
∼ 1

(1 + t)
3
2
−β+2α

> 0 for t large enough.

Consequently, there obviously holds (∂t − L)v(t, x) ≥ 0 for t large enough in region R2.

In region R3. There holds
π

4
≤ x− c∗t

(1 + t)α
≤ 3π

2
.

It is worth to note that the cosine perturbation may be negative in this area. Moreover, following

an analogous procedure as in preceding cases, it follows that

(∂t − L)(ξ(t)w(t, x)) = ξ
′
(t)w(t, x) ∼ ξ

′
(t)

(1 + t)
3
2
−α
≥ 0 for t large enough,

10



and

(∂t − L)

(
1

(1 + t)
3
2
−β

cos

(
x− c∗t
(1 + t)α

))
≥ −1

(1 + t)
3
2
−β+2α

for t large enough.

To ensure that v(t, x) > 0 and (∂t − L)v(t, x) ≥ 0 for t large enough in this region, we require this

time α > β and

ξ
′
(t)

(1 + t)
3
2
−α
� 1

(1 + t)
3
2
−β+2α

for t large enough. (2.12)

Conclusion. Gathering (2.11) and (2.12), we should impose

1

(1 + t)3α−β � ξ
′
(t)� 1

(1 + t)2α+δ−β for all t large enough.

This is possible so long as δ < α, which is exactly what we have assumed. Let us take

ξ
′
(t) ∼ 1

(1 + t)3α−2β
and ξ(t) = 1− 1

(1 + t)3α−2β−1
for t ≥ 0.

Due to our assumption that the function ξ(t) is positive and bounded in (0,+∞), it suffices to

require 3α− 2β − 1 > 0. Hence, we can fix δ ∈ (0, 1/4) very small, then there exist α ∈ (1/3, 1/2)

and β > 0 such that 3α− 2β > 2α + δ − β. To be more precise, the parameters δ, β, α are chosen

such that

0 < δ < β < min

(
α− δ, 3α− 1

2

)
< α <

1

2
. (2.13)

As a consequence, there exists T0 > 0 large enough such that c∗T0 − T δ0 > A (recall that A ∈ R is

beyond the support of u0) and such that (∂t−L)v(t, x) ≥ 0 for t ≥ T0 and x ∈ R with x−c∗t ≥ −tδ.
Therefore, it immediately follows from (2.4) that (∂t−L)v(t, x)+R(t, x; v) ≥ 0 for t ≥ T0 and x ∈ R
with x− c∗t ≥ −tδ. On the other hand, we have v(t, x) > 0 for t ≥ T0 and x ∈ R with x ≥ c∗t− tδ.
Hence, there holds v(T0, x) > 0 = eλ∗xu0(x) = v(0, x) for all x − c∗T0 ≥ −T δ0 . For x − c∗t = −tδ,
we observe that v(t − T0, x) = eλ∗(x−c∗(t−T0))u(t − T0, x) ≤ eλ∗(c∗T0−tδ) since 0 ≤ u(t, x) ≤ 1 for

all t ≥ 0 and x ∈ R, while v(t, x) ∼ (1 + t)−3/2+β for t ≥ T0 by (2.9), up to increasing T0. Then,

there is T1 > T0 sufficiently large such that eλ∗(c∗T0−tδ) < (1 + t)−3/2+β for all t ≥ T1, which will

yield that v(t, x) > v(t − T0, x) at x − c∗t = tδ for all t ≥ T1. On the other hand, one can choose

K > 0 large enough such that K(1 + t)−3/2+β > eλ∗(c∗T0−tδ), that is, Kv(t, x) > v(t − T0, x) at

x− c∗t = tδ for t ∈ [T0, T1). Therefore, there holds Kv(t, x) > v(t− T0, x) for all t ≥ T0 and x ∈ R
with x − c∗t = −tδ. We then conclude that Kv(t, x) is a supersolution of (2.3) for all t ≥ T0 and

x ∈ R with x− c∗t ≥ −tδ. The strong maximum principle implies that

Kv(t+ T0, x) > v(t, x) for t ≥ 0, x− c∗t > −tδ. (2.14)

2.3 Lower barrier for v

Let δ, β and α be fixed as in (2.13). The idea is to estimate v(t, x) ahead of x− c∗t = tδ. To do so,

let us construct a lower barrier as follows:

v(t, x) = max
(
0, ξ(t)w(t, x)

)
(2.15)
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for t > 0 and x ∈ R, where we assume that the unknown ξ(t) ∈ C 1 is positive and bounded

away from 0 in (0,+∞) and satisfies ξ′(t) ≤ 0 in (0,+∞), which will be made clear in the sequel.

Remember that w(t, x) > 0 for t > 0 and x ∈ R with x− c∗t > 0, whereas w(t, x) < 0 for t > 0 and

x ∈ R with x− c∗t < 0. We then derive that v ≡ 0 for t > 0 and x− c∗t ≤ 0, and v = ξ(t)w(t, x)

for t > 0 and x − c∗t > 0. Let now identify that v(t, x) is a generalized subsolution of (2.3) for

t > 0 and x ∈ R.

It is sufficient to look at the region {(t, x) ∈ (0,+∞) × R : x > c∗t}. We first claim that, there is

C > 0 sufficiently large such that

e−λ∗(x−c∗t)w(t, x) ≤ C(1 + t)−3/2, (2.16)

for t > 0 and x − c∗t > 0. Indeed, it follows from (2.7) that there exist t0 large enough and

C > 0 large enough such that (2.16) is true for t ≥ t0 and 0 < x − c∗t ≤
√
t. Since w(t, x) is a

bounded function for t > 0 and x ∈ R, we derive that, up to increasing C, (2.16) holds true for

t ∈ [0, t0] and 0 < x − c∗t ≤
√
t. In a similar way, we see that, by increasing C if needed, there

holds e−λ∗(x−c∗t)w(t, x) < e−λ∗
√
tw(t, x) ≤ C(1 + t)−3/2 for t ≥ 0 and x− c∗t >

√
t. Therefore, our

claim (2.16) is proved for t > 0 and x− c∗t > 0. On the other hand, since f ∈ C 2([0, 1]), there exist

M > 0 and s0 ∈ (0, 1) such that f(s) − f ′(0)s ≥ −Ms2 for s ∈ [0, s0). Eventually, let us require

ξ(t) to solve

ξ′(t) = −CMξ2(t)(1 + t)−3/2, for t > 0, (2.17)

starting from ξ(0) = ξ
0
> 0 which is set very small such that ξ

0
w(t, x) < s0 for t > 0 and x−c∗t > 0.

We then note that ξ(t) is positive and uniformly bounded from above and below such that

0 <
ξ

0

1 + 2ξ
0
CM

≤ ξ(t) ≤ ξ
0
< +∞ for t ≥ 0.

Moreover, for t > 0 and x− c∗t > 0, the function v(t, x) = ξ(t)w(t, x) satisfies

(∂t − L)v(t, x) +R(t, x; v) = ξ′(t)w(t, x) + f ′(0)v(t, x)− eλ∗(x−c∗t)f(e−λ∗(x−c∗t)v(t, x))

≤ ξ′(t)w(t, x) +Me−λ∗(x−c∗t)ξ2(t)(w(t, x))2

=
(
−CMξ2(t)(1 + t)−3/2 +Mξ2(t)e−λ∗(x−c∗t)w(t, x)

)
w(t, x) ≤ 0,

thanks to (2.16) and (2.17).

Since v(1, x) = eλ∗(x−c∗)u(1, x) > 0 in R and since ξ
0
w(0, x) = ξ

0
p0 is bounded and compactly

supported in (0,+∞), there exists κ > 0 very small such that κv(0, x) < v(1, x) in R. Therefore,

κv(t, x) is a subsolution of (2.3) for all t ≥ 0 and x ∈ R. By the strong maximum principle, we

then conclude that

κv(t− 1, x) < v(t, x) for t ≥ 1, x ∈ R. (2.18)

2.4 Proof of Proposition 2.1

We have shown in the previous sections that the function v, solution of (2.3), has an upper barrier

and a lower barrier given respectively by (2.8) and (2.15). We are now in position to prove Propo-
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sition 2.1. The proof is based on the comparison between t
3
2 v and a variant of the shifted critical

KPP traveling front with logarithmic correction in a well-chosen moving zone |x − c∗t| ≤ tη with

certain small η for all large times. Set

V (t, x) = t
3
2 v(t, x) for t ≥ 1, x ∈ R,

then we observe that V slovesVt − Vxx + c∗Vx − 3
2tV + R̂(t, x;V ) = 0, t > 1, x ∈ R,

V (1, x) = v(1, x), x ∈ R.
(2.19)

with nonnegative term R̂ given explicitly by

R̂(t, x; s) := f ′(0)s− eλ∗(x−c∗t+
3

2λ∗
ln t)f

(
e−λ∗(x−c∗t+

3
2λ∗

ln t)s
)
, t ≥ 1, x ∈ R, s ∈ R. (2.20)

Let δ, β, α be chosen as in (2.13). We notice that β < 1/4. Fix now

η = β + ι < α (2.21)

for ι > 0 small enough.

Step 1: Upper bound. From (2.14), we deduce that Kt
3
2 v(t+T0, x) > V (t, x) for t large enough

and x− c∗t ≥ −tδ, with v given in (2.8). Define a function ψ(t, x) by

ψ(t, x) = eλ∗(x−c∗t+
3

2λ∗
ln t)ϕc∗

(
x− c∗t+

3

2λ∗
ln t+ b

)
for t large enough, |x−c∗t+

3

2λ∗
ln t| ≤ tη,

where b ∈ R is fixed such that ψ(t, x) ≥ Kt
3
2 v(t + T0, x) for t large enough and x ∈ R with

x− c∗t+ 3
2λ∗

ln t = tη. Substituting ψ into the equation of V yields∣∣∣∣ψt − ψxx + c∗ψx −
3

2t
ψ + R̂(t, x;ψ)

∣∣∣∣ =
3

2λ∗t
eλ∗(x−c∗t+

3
2λ∗

ln t)

∣∣∣∣ϕ′c∗ (x− c∗t+
3

2λ∗
ln t+ b

)∣∣∣∣ . t−(1−η)

for t large enough and |x−c∗t+ 3
2λ∗

ln t| ≤ tη. Now, set s := (V − ψ)+, where we use the convention

that a+ = max(0, a). We are then led to the following problem
st − sxx + c∗sx − 3

2ts+Q(t, x; s) . t−(1−η), |x− c∗t+ 3
2λ∗

ln t| ≤ tη,
s(t, x) = O

(
t

3
2 e−λ∗t

η)
, x− c∗t+ 3

2λ∗
ln t = −tη,

s(t, x) = 0, x− c∗t+ 3
2λ∗

ln t = tη,

(2.22)

for t large enough. Here, Q(t, x; s) = 0 if s = 0; otherwise,

Q(t, x; s) = R̂(t, x;V )− R̂(t, x;ψ)

= f ′(0)s− eλ∗(x−c∗t+
3

2λ∗
ln t)
(
f(e−λ∗(x−c∗t+

3
2λ∗

ln t)V )− f(e−λ∗(x−c∗t+
3

2λ∗
ln t)ψ)

)
= f ′(0)s− d(t, x)s ≥ 0,
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in which d(t, x) is continuous and bounded in L∞ norm by f ′(0) since 0 < f(s) ≤ f ′(0)s for

s ∈ (0, 1). We claim that, there holds

lim
t→+∞

sup
x∈R, |x−c∗t+ 3

2λ∗
ln t|≤tη

s(t, x) = 0. (2.23)

We use a comparison argument to verify this. Define

s(t, x) =
1

tλ
cos

(
x− c∗t
tγ

)
for t large enough and |x− c∗t+

3

2λ∗
ln t| ≤ tη,

with 0 < η < 1/4 < γ < 1/3 such that 2γ + η < 1 and with 0 < λ < 1− 2γ − η. One observes that

s(t, x) ∼ t−λ � t
3
2 e−λ∗t

η
for t large enough and x ∈ R with |x − c∗t + 3

2λ∗
ln t| ≤ tη. Moreover, it

follows from a direct computation that

st − sxx + c∗sx −
3

2t
s ∼ 1

t2γ+λ
� 1

t1−η
for t large enough and |x− c∗t+

3

2λ∗
ln t| ≤ tη,

thanks to the choice of the parameters η, γ and λ. Since Q(t, x; s) ≥ 0, one concludes that s(t, x)

is a supersolution of (2.22) for t large enough and x ∈ R with |x − c∗t + 3
2λ∗

ln t| ≤ tη. Our claim

(2.23) is then reached by noticing that

lim
t→+∞

sup
x∈R, |x−c∗t+ 3

2λ∗
ln t|≤tη

s(t, x) = 0.

Then, it follows that V (t, x) ≤ ψ(t, x) + o(1) uniformly in x ∈ R with |x − c∗t + 3
2λ∗

ln t| ≤ tη as

t→ +∞. Hence,

u(t, x) ≤ ϕc∗
(
x− c∗t+

3

2λ∗
ln t+ b

)
+ o(1)e−λ∗(x−c∗t+

3
2λ∗

ln t) (2.24)

uniformly in 1 ≤ x− c∗t+ 3
2λ∗

ln t ≤ tη as t→ +∞.

Step 2: Lower bound. The proof of this part is similar to Step 1. We sketch it for the sake of

completeness. Thanks to (2.18), we have that κt
3
2 v(t− 1, x) < V (t, x) for t ≥ 1 and x ∈ R, where

v(t, x) is given in (2.15). Define a function φ(t, x) by

φ(t, x) = eλ∗(x−c∗t+
3

2λ∗
ln t)ϕc∗

(
x− c∗t+

3

2λ∗
ln t+ a

)
for t large enough, |x−c∗t+

3

2λ∗
ln t| ≤ tη.

Here, we fix a ∈ R such that φ(t, x) ≤ κt 3
2 v(t− 1, x) for t large enough and x− c∗t+ 3

2λ∗
ln t = tη.

It is also noticed that a > b.

Analogously to the previous step, substituting φ into the equation of V yields∣∣∣∣φt − φxx + c∗φx −
3

2t
φ+ R̂(t, x;φ)

∣∣∣∣ . t−(1−η)
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for t large enough and |x− c∗t+ 3
2λ∗

ln t| ≤ tη. Set z := (V − φ)−, where we follow the convention

that a− = max(0,−a). Then, the function z satisfies
zt − zxx + c∗zx − 3

2tz +H(t, x; z) . t−(1−η), |x− c∗t+ 3
2λ∗

ln t| ≤ tη,
z(t, x) = O

(
t

3
2 e−λ∗t

η)
, x− c∗t+ 3

2λ∗
ln t = −tη,

z(t, x) = 0, x− c∗t+ 3
2λ∗

ln t = tη,

(2.25)

for t large enough. Here, H(t, x; z) = 0 when z = 0; otherwise,

H(t, x; z) = R̂(t, x;V )− R̂(t, x;ϕ)

= f ′(0)z − eλ∗(x−c∗t+
3

2λ∗
ln t)
(
f(e−λ∗(x−c∗t+

3
2λ∗

ln t)V )− f(e−λ∗(x−c∗t+
3

2λ∗
ln t)ϕ)

)
= f ′(0)z − h(t, x)z ≥ 0,

in which h(t, x) is continuous and bounded in L∞ norm by f ′(0) since 0 < f(s) ≤ f ′(0)s for

s ∈ (0, 1). Following the proof of (2.23) in Step 1, one can show that

lim
t→+∞

sup
x∈R, |x−c∗t+ 3

2λ∗
ln t|≤tη

z(t, x) = 0. (2.26)

This implies that V (t, x) ≥ φ(t, x) + o(1) uniformly in |x− c∗t+ 3
2λ∗

ln t| ≤ tη as t→ +∞, whence

u(t, x) ≥ ϕc∗
(
x− c∗t+

3

2λ∗
ln t+ a

)
+ o(1)e−λ∗(x−c∗t+

3
2λ∗

ln t), (2.27)

uniformly in 1 ≤ x− c∗t+ 3
2λ∗

ln t ≤ tη as t→ +∞.

Step 3: Conclusion. Gathering (2.24) and (2.27), along with the asymptotics of ϕc∗ , it follows

that for any small ε > 0, there exists T > 0 sufficiently large such that

(1− ε)ϕc∗
(
x− c∗t+

3

2λ∗
ln t+ a

)
≤ u(t, x) ≤ (1 + ε)ϕc∗

(
x− c∗t+

3

2λ∗
ln t+ b

)
uniformly in 1 ≤ x− c∗t+ 3

2λ∗
ln t ≤ tη for all t ≥ T . We have therefore achieved the conclusion of

Proposition 2.1.

3 The linearized problem on Z

One of the key message from Section 2 in the continuous case is that solutions w(t, x) of the linear

equation (2.5) starting from odd and compactly supported initial conditions play a crucial role in

designing accurate upper and lower barriers for the full nonlinear problem. In fact, the asymptotic

expansion (2.7) is the corner stone of the proof. We will dedicate all our efforts to proving an

equivalent expansion in the discrete case. More precisely, we consider the linearized problem
d

dt
rj(t) = rj−1(t)− 2rj(t) + rj+1(t) + f ′(0)rj(t), t > 0, j ∈ Z,

rj(0) = r0
j , j ∈ Z,

(3.1)
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for some nontrivial bounded initial sequence (r0
j )j∈Z ∈ `∞(Z). First, we perform the change of

variable rj(t) = e−λ∗(j−c∗t)wj(t) for some new sequence (wj(t))j∈Z, which now satisfies

d

dt
wj(t) = eλ∗ (wj−1(t)− 2wj(t) + wj+1(t))− c∗(wj+1(t)− wj(t)), t > 0, j ∈ Z. (3.2)

And we recall that (c∗, λ∗) are defined through (1.8).

Our aim in this section is to study the temporal Green’s function (Gj(t))j∈Z which is the solution of

(3.2) starting from the initial sequence δ which is defined as δj = 1 if j = 0 and δj = 0 otherwise,

that is
d

dt
Gj(t) = eλ∗ (Gj−1(t)− 2Gj(t) + Gj+1(t))− c∗(Gj+1(t)− Gj(t)), t > 0, j ∈ Z.

Gj(0) = δj , j ∈ Z.
(3.3)

The motivation for studying the temporal Green’s function (Gj(t))j∈Z stems from the fact that

solutions to (3.2), starting from some initial sequence (w0
j )j∈Z ∈ `∞(Z), can be represented as

wj(t) =
∑
`∈Z

Gj−`(t)w
0
` , ∀t > 0, ∀j ∈ Z.

Unlike the continuous case, there does not exist an explicit representation formula for the temporal

Green’s function (Gj(t))j∈Z. Nevertheless, we will obtain pointwise estimates for each t > 1 and

j ∈ Z, see Propositions 3.9 and 4.1. Roughly speaking, in a first step, we will prove in Proposition 3.9

that for |j − c∗t| > θ∗t the temporal Green’s function is both exponentially localized in space and

time, whereas for |j − c∗t| ≤ θ∗t it behaves as a Gaussian profile centered at j = c∗t, for t large

enough and some universal constant θ∗ > 0. However, such a generalized Gaussian estimate will

not be enough to obtain an equivalent asymptotic expansion of (2.7) in our discrete setting. We

thus need to refine our asymptotics and this is the key result of Proposition 4.1 where we provide

a full asymptotic expansion of the temporal Green’s function up to Gaussian corrections of order

t−3/2. We really enforce that this result is of independent interest and should be compared to

existing results in the fully discrete case for discrete convolution powers [17–19] and to local limit

theorems in probability theory [36]. Eventually, we will show in Section 4.2 how sharp asymptotics

of wj(t) emanating from odd and finitely supported initial data can be derived from this improved

result.

3.1 The spatial Green’s function

The starting point of our approach is the study of the so-called spatial Green’s function which we

now introduce. Let L denote the operator acting on a sequence r = (rj)j∈Z as

∀j ∈ Z, (L r)j := eλ∗ (rj−1 − 2rj + rj+1)− c∗(rj+1 − rj), (3.4)

then its spectrum on `2(Z) is given by the parametrized closed curve

σ(L ) =
{
eλ∗
(
e−iξ − 2 + eiξ

)
− c∗(e−iξ − 1) | ξ ∈ [−π, π]

}
.
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�(L )

U

C\U

Figure 1: Illustration of the geometry of the spectrum σ(L ) (dark red curve) in the complex plane C. The

curve σ(L ) is an ellipse that touches the imaginary axis only at the origin and is located in the left half

plane otherwise. The resolvent set of L is composed of two open regions: the so-called exterior U and the

interior C\U (blue shaded region) which is the region enclosed by σ(L ).

This is a direct a consequence of the Wiener-Levy theorem, see [33], which characterizes invertible

elements of `1(Z) for the convolution. Indeed, L can naturally be written as a convolution product

(L r)j =
∑
`∈Z

a`rj−`,

with the sequence (a`)`∈Z ∈ `1(Z) defined as

a−1 = eλ∗ − c∗, a0 = −2eλ∗ + c∗, a1 = eλ∗ , with aj = 0 for |j| ≥ 2.

For each ν ∈ σ(L ), we have Re(ν) =
(
eλ∗ + e−λ∗

)
(cos(ξ)− 1) ≤ 0 and Im(ν) =

(
eλ∗ − e−λ∗

)
sin(ξ)

such that σ(L ) is an ellipse that touches the imaginary axis only at the origin and is located in

the left half plane otherwise. Since σ(L ) is a closed curve in the complex plane, the resolvent set

of L , defined as C\σ(L ), is given by the union of two open sets which we refer to as the interior

and the exterior sets. The interior set is the region enclosed by σ(L ), while the exterior, denoted

by U , is the complementary region which at least contains the set {ν ∈ C | Re(ν) ≥ 0} \{0}. We

refer to Figure 1 for an illustration of the geometry of σ(L ) in the complex plane.

For each ν ∈ U , we can define the spatial Green’s function as the sequence G(ν) ∈ `2(Z) solution

of

(νId−L )G(ν) = δ, (3.5)

where we recall that the sequence δ is defined as δj = 1 if j = 0 and δj = 0 otherwise, and that we

have denoted Id the identity operator acting on `2(Z). Anticipating with the forthcoming section,

we already remark that Gj(t) can be represented through the inverse Laplace formula

Gj(t) =
1

2πi

∫
Γ
eνtGj(ν)dν, ∀ t > 0, ∀j ∈ Z,

where Γ ⊂ U is some well-chosen contour in the complex plane. The key point of the analysis of the

remaining of this section will be to obtain pointwise estimates on Gj(ν) which will eventually lead
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to pointwise estimates for Gj(t). To do so, we introduce the vector Wj(ν) = (Gj−1(ν),Gj(ν))T

for j ∈ Z such that the above relation (3.5) rewrites

Wj+1(ν) = A(ν)Wj(ν)− eλ∗δje, j ∈ Z, (3.6)

where e := (0, 1)T and the matrix A(ν) is given by

A(ν) :=

(
0 1

−e2λ∗ ν+eλ∗+e−λ∗

e−λ∗

)
.

The eigenvalues of the above matrix are given by

ρ±(ν) =
ν + eλ∗ + e−λ∗

2e−λ∗
±

√
(ν + eλ∗ + e−λ∗)

2 − 4

2e−λ∗
. (3.7)

For each ν ∈ U , we readily remark that we have the spectral splitting |ρ+(ν)| > 1 and |ρ−(ν)| < 1.

With these notations in hands, we start to estimate the spatial Green’s function away from the

tangency point at the origin.

Lemma 3.1 (Local bounds). For each ν ∈ U , there exist C, δ, β > 0 depending on ν such that

|Gj(ν)| ≤ Ce−β|j|, ∀ ν ∈ Bδ(ν), ∀ j ∈ Z.

Proof. We let ν ∈ U be fixed. We know that the matrix A(ν) above is well defined and holomorphic

in a sufficiently small neighborhood of ν. Since we have an explicit expression of the two eigenvalues

of the matrix A(ν), we trivially have a consistant splitting for all ν close to ν. We define Es,u(ν) the

stable/unstable subspaces of A(ν) for all ν close to ν. As a consequence, for δ > 0 small enough,

we have the decomposition

C2 = Es(ν)⊕ Eu(ν), ∀ ν ∈ Bδ(ν).

And we denote πs,u(ν) the associated projectors, which are given by contour integrals. For instance,

we have

πs(ν) =
1

2πi

∫
γ
(zI2 − A(ν))−1dz,

where γ is a contour that encloses the stable eigenvalue ρ−(ν) and I2 ∈ M2(R) is the 2 × 2

identity matrix. A similar formula holds for πu(ν), with this time a contour that encloses the

unstable eigenvalue ρ+(ν). This shows that πs,u(ν) depends holomorphically on ν in Bδ(ν) and,

consequently, the stable and unstable subspaces Es,u(ν) also depend holomorphically on ν in Bδ(ν),

see [30]. Up to taking δ even smaller, we can ensure that any ν ∈ Bδ(ν) lies in the exterior U of

the resolvent set of L , hence there exists a unique sequence (Wj(ν))j∈Z ∈ `2(Z) solution to (3.6).

Since the dynamics of the iteration (3.6) for such ν has a hyperbolic dichotomy [18], the solution to

(3.6) is given by integrating either from j to +∞, or from −∞ to j − 1, depending on whether we

compute the unstable or stable components of the vector Wj(ν). As a consequence, we can easily

obtain the stable and unstable components of each Wj(ν) for j ∈ Z as

πs(ν)Wj(ν) = −eλ∗
j−1∑
`=−∞

δ`ρ−(ν)j−1−`πs(ν)e, j ∈ Z,
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for the stable component, and

πu(ν)Wj(ν) = eλ∗
∞∑
`=0

δj+`ρ+(ν)−1−`πu(ν)e, j ∈ Z,

for the unstable one. It is important to note that the sequence δ has only one nonzero coefficient

at j = 0. Hence, we deduce that

πs(ν)Wj(ν) =

{
0 for j ≤ 0,

−eλ∗ρ−(ν)j−1πs(ν)e for j ≥ 1,

while

πu(ν)Wj(ν) =

{
0 for j ≥ 1,

eλ∗ρ+(ν)−1+jπu(ν)e for j ≤ 0.

Next, we remark that there exists β > 0 such that

∀ ν ∈ Bδ(ν), |ρ−(ν)| ≤ e−β, and |ρ+(ν)| ≥ eβ.

As a consequence, we have

∀ ν ∈ Bδ(ν) |πs(ν)Wj(ν)| ≤
{

0 for j ≤ 0,

Ce−β(j−1) for j ≥ 1,
(3.8)

while

∀ ν ∈ Bδ(ν) |πu(ν)Wj(ν)| ≤
{

0 for j ≥ 1,

Ceβ(j+1) for j ≤ 0,
(3.9)

where C > 0 is a uniform bound on Bδ(ν) of |eλ∗πs,u(ν)e|. Finally, adding (3.8) and (3.9) concludes

the proof of the lemma, since the spatial Green’s function Gj(ν) is the second coordinate of the

vector Wj(ν) ∈ C2.

Lemma 3.2 (Bounds at infinity). There exist a radius R > 1 and two constants C > 0 and κ > 0

such that {ν ∈ C | |ν| ≥ R} ⊂ U and

∀ |ν| ≥ R, ∀ j ∈ Z, |Gj(ν)| ≤ Ce−κ|j|.

Proof. The proof is similar to Lemma 3.1 and simply relies on the fact that from their definition

(3.7) we have

lim
|ν|→+∞

|ν| |ρ−(ν)| = eλ∗ and lim
|ν|→+∞

|ρ+(ν)|
|ν| = eλ∗ ,

together with our expression for πs,u(ν)Wj(ν) when ν ∈ U .

Next, we recall that σ(L ) is tangent to the imaginary axis at the origin. This translates to

ρ−(0) = 1 with ρ+(0) = e2λ∗ > 1. For |ν| → 0, we also note that ρ−(ν) has the following expansion

ρ−(ν) = 1− ν

c∗
+

ν2

c3
∗e
−λ∗ +O

(
|ν|3
)
. (3.10)
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It is thus important to examine the behavior of the spatial Green’s function close to the origin.

Let us remark that the spatial Green’s function is well-defined in Bδ(0) ∩U for any radius δ > 0.

Our goal is to extend holomorphically Gj(ν) to a whole neighborhood of ν = 0 which amounts

to passing through the essential spectrum of L , see [18, 42] for a similar argument in different

contexts.

Lemma 3.3 (Bounds close to the origin). There exist some ε > 0 and constants C > 0 and ω > 0

such that for any j ∈ Z, the component Gj(ν) defined on Bε(0)∩U extends holomorphically to the

whole ball Bε(0) with respect to ν, and the holomorphic extension (still denoted by Gj(ν)) satisfies

the bounds

∀ ν ∈ Bε(0), ∀ j ≤ 0, |Gj(ν)| ≤ Ce−ω|j|,

and

∀ ν ∈ Bε(0), ∀ j ≥ 1,

∣∣∣∣Gj(ν)− 1

c∗
e$(ν)j

∣∣∣∣ ≤ CeRe($(ν))j |ν|,

where

$(ν) := ln(ρ−(ν)) = − ν
c∗

+
cosh(λ∗)

c3
∗

ν2 +O
(
|ν|3
)
, ∀ ν ∈ Bε(0), (3.11)

is holomorphic in the ball Bε(0).

Proof. Most ingredients are similar to the ones we already used in the proof of Lemma 3.1. We

just need to adapt our notation, since the hyperbolic dichotomy of A(ν) does not hold any longer

in a whole neighborhood of the origin ν = 0. We readily see that ρ−(ν) extends holomorphically

to a neighborhood of ν = 0, with corresponding eigenvector

E0(ν) :=

(
1

ρ−(ν)

)
∈ C2,

which also depends holomorphically on ν in a neighborhood of ν = 0. Note that E0(ν) contributes

to the stable subspace of A(ν) for those ν ∈ U close to ν = 0 but the situation is less clear as ν

passes the essential spectrum. Nevertheless, we still have the decomposition

C2 = E0(ν)⊕ Eu(ν), ∀ ν ∈ Bε(0),

for a sufficiently small ε > 0. We denote by π0(ν) and πu(ν) the holomoprhic projectors associated

with the above decomposition. We readily see that for each ν ∈ Bε(0) ∩ U , we can reuse the

expressions derived in Lemma 3.1 to write

π0(ν)Wj(ν) = −eλ∗
j−1∑
`=−∞

δ`ρ−(ν)j−1−`π0(ν)e, j ∈ Z,

and

πu(ν)Wj(ν) = eλ∗
∞∑
`=0

δj+`ρ+(ν)−1−`πu(ν)e, j ∈ Z.
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The unstable component πu(ν)Wj(ν) obviously extends holomorphically to the whole ball Bε(0),

as a consequence, we get

|πu(ν)Wj(ν)| ≤ Ce−ω|j|, ∀ ν ∈ Bε(0), ∀ j ≤ 0,

for appropriate constants C > 0 and ω > 0. We now focus on the vector π0(ν)Wj(ν) and readily

remark that it also extends holomorphically to the whole ball Bε(0), and we deduce that

∀ ν ∈ Bε(0), Gj(ν) = 〈π0(ν)Wj(ν), e〉C2 =

{
0 for j ≤ 0,

Ψ(ν)e$(ν)j for j ≥ 1,
(3.12)

where we have set

Ψ(ν) := −eλ∗ 〈π
0(ν)e, e〉C2

e$(ν)
, ∀ ν ∈ Bε(0). (3.13)

Note that eventually upon reducing the size of ε, we can always ensure that $(ν) = ln(ρ−(ν)) is

holomorphic on Bε(0), and thus Ψ is also holomorphic on Bε(0) with Ψ(0) = 1
c∗
> 0. Indeed, the

projection π0(ν) can be expressed as

π0(ν) =
1

ρ+(ν)− ρ−(ν)

〈
· ,
(
ρ+(ν)

−1

)〉
C2

(
1

ρ−(ν)

)
,

such that

Ψ(0) = −eλ∗〈π0(0)e, e〉C2 =
eλ∗

e2λ∗ − 1
=

1

c∗
> 0.

Here, we denoted by 〈·, ·〉C2 the usual scalar product on C2.

Recalling that σ(L ) is an ellipse tangent to the imaginary axis at the origin, with ε > 0 fixed in

Lemma 3.3, there exist γε > 0 and ωε ∈ (0, π/2) such that the sector
{
γε + ν ∈ C | | arg(ν)| ≤ π

2 + ωε
}

is contained in U and its boundary intersects ∂Bε(0) twice in the left-half plane. We then denote

Sε,R :=
{
γε + ν ∈ C | | arg(ν)| ≤ π

2
+ ωε

}
∩ (BR(0)\Bε(0)),

with R > 1 defined Lemma 3.2, and readily remark that Sε,R ⊂ U .

Lemma 3.4 (Intermediate bounds). For R > 1 and ε > 0 fixed in Lemma 3.2 and Lemma 3.3

respectively, there exist C > 0 and β0 > 0 such that

∀ ν ∈ Sε,R, |Gj(ν)| ≤ C
{
e−β0|j|, for j ≤ 0,

1, for j ≥ 1.

Proof. By construction, the set Sε,R is a compact domain of C. As a consequence, we can obtain

uniform constants from Lemma 3.1 by using a simple compactness argument.
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3.2 The temporal Green’s function

In this section, we study the temporal Green’s function (Gj(t))j∈Z solution of (3.3) starting from

the initial sequence δ. We use the inverse Laplace transform to express (Gj(t))j∈Z as the following

contour integral

∀ t > 0, ∀j ∈ Z, Gj(t) =
1

2πi

∫
Γ
eνtGj(ν)dν,

where Γ ⊂ C is some well-chosen contour in the complex plane which does not intersect the spectrum

of L . For example, one can take the sectorial contour Γ = {γ0 − γ1|ξ|+ iξ | ξ ∈ R} for some well

chosen γ0,1 > 0. Our aim is to obtain pointwise bounds on Gj(t) for t ≥ 1 and our main technique

is to deform the contour Γ in the complex plane in order to obtain sharp asymptotics. Note that we

allow the deformed contour to depend eventually on j and t. We will divide the analysis into several

cases. We will first show that the pointwise temporal Green’s function Gj(t) decays exponentially

in time and space whenever j − c∗t is sufficiently large and t ≥ 1 whereas for j ≈ c∗t we will

prove that the pointwise temporal Green’s function Gj(t) has a generalized Gaussian estimate. Let

us note that the choice of the contours are rather standard, and we refer to [18, 42] for similar

computations in different settings.

3.2.1 Exponential pointwise estimates away from j ≈ c∗t

In the next lemmas, we show that the pointwise temporal Green’s function Gj(t) decays exponen-

tially in time and space whenever j − c∗t is sufficiently large and t ≥ 1.

Lemma 3.5. There exists a constant L > 4R/κ with R > 1 chosen in Lemma 3.2, such that for

|j| > Lt and t ≥ 1, one has the estimate

|Gj(t)| ≤ Ce−κ1t−κ2|j|,

for some C > 0 and κ1,2 > 0.

Proof. We let |j| > Lt and t ≥ 1. We recall the estimate of Lemma 3.2

∀|ν| ≥ R, ∀ j ∈ Z, |Gj(ν)| ≤ Ce−κ|j|.

Let L > 4R/κ and we take the contour which is defined as

Γ = {2R− δ|ξ|+ iξ | ξ ∈ R} ,

with 0 < δ <
√

3 small enough such that |ν| > R for all ν ∈ Γ. As a consequence, we obtain that∣∣∣∣ 1

2πi

∫
Γ
eνtGj(ν)dν

∣∣∣∣ ≤ Ce2Rt−κ|j|
∫ ∞

0
e−δξtdξ ≤ C0

e2Rt−κ|j|

t
.

Since |j| > Lt, we have that

2Rt− κ|j| <
(

2R− κL

2

)
︸ ︷︷ ︸

<0

t− κ

2
|j|,
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and the result follows.

From now on, we will always assume that |j| ≤ Lt and t ≥ 1. We first deal with the case where

j ≤ 0.

Lemma 3.6. There are some C > 0 and β1,2 > 0 such that for any −Lt ≤ j ≤ 0 with t ≥ 1, one

has the bound

|Gj(t)| ≤ Ce−β1t−β2|j|.

Proof. We consider Γ as the union of Γ1 and Γ2 where Γ1 is a vertical line within the ball Bε(0)

and Γ2 is given as Γ2 = {−δ|ξ|+ iξ | ξ ∈ R, |ξ| ≥ ξ∗}. More precisely, there exists η ∈ (0, ε) small

enough such that −η±i
√
ε2 − η2 ∈ U . We define Γ1 =

{
−η + iξ | ξ ∈ R, |ξ| ≤

√
ε2 − η2

}
⊂ Bε(0)

and δ = η√
ε2−η2

with ξ∗ =
√
ε2 − η2 in the definition of Γ2. We have∣∣∣∣ 1

2πi

∫
Γ1

eνtGj(ν)dν

∣∣∣∣ ≤ Ce−ηt−ω|j|,
using the estimate on Gj(ν) from Lemma 3.3. We denote Γin2 = Γ2 ∩ BR(0) and Γout2 = Γ2\Γin2 .

On Γin2 , we use Lemma 3.4 ∣∣∣∣∣ 1

2πi

∫
Γin2

eνtGj(ν)dν

∣∣∣∣∣ ≤ C

t
e−ηt−β0|j|,

and on Γout2 we use the bound of Lemma 3.2 to get∣∣∣∣∣ 1

2πi

∫
Γout2

eνtGj(ν)dν

∣∣∣∣∣ ≤ C

t
e−ηt−β|j|.

Actually, the above estimate can be easily extended for j ∈ Z with 1 ≤ j ≤ (c∗ − θ)t for any

θ ∈ (0, c∗).

Lemma 3.7. For all θ ∈ (0, c∗), there exist C > 0 and β1,2 > 0 such that for all 1 ≤ j ≤ (c∗ − θ)t
with t ≥ 1 such that (c∗ − θ)t ≥ 1, one has the bound

|Gj(t)| ≤ Ce−β1t−β2|j|.

Proof. We consider the same contours as in the previous Lemma. On Γout2 , we have the exact same

estimates since the spatial Green’s function enjoys the same pointwise bound. On Γin2 , we note

that we have ∣∣∣∣∣ 1

2πi

∫
Γin2

eνtGj(ν)dν

∣∣∣∣∣ ≤ C

t
e−ηt,

and as j ≤ (c∗ − θ)t we have −ηt ≤ −η
2 t−

η
2(c∗−θ) |j|. The main difference, is that now, on Γ1, we

have

∀ν ∈ Γ1, |Gj(ν)| ≤ CeRe($(ν))j ,
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from Lemma 3.3. We denote by Γ±1 the portion of Γ1 where Re($(ν)) is respectively positive and

negative. On Γ−1 , we readily obtain∣∣∣∣∣ 1

2πi

∫
Γ−1

eνtGj(ν)dν

∣∣∣∣∣ ≤ Ce−ηt.
Next, from the expansion (3.11), we get that

∀ν ∈ Bε(0), Re($(ν)) = −Re(ν)

c∗
+

cosh(λ∗)

c3
∗

(
Re(ν)2 − Im(ν)2

)
+O(|ν|3),

such that we can solve Re($(ν)) = 0 for Re(ν) as a function of Im(ν) and we get

Re($(ν)) = 0⇔ Re(ν) = −cosh(λ∗)

c2
∗

Im(ν)2 +O(|Im(ν)|3) for ν ∈ Bε(0).

This implies that there exists β0 > 0 such that

|Im(ν)| ≤ β0
√
η, ν ∈ Γ+

1 .

We deduce that

Re($(ν)) ≤ η

c∗
+ β1η

3/2,

for some β1 > 0 and any ν ∈ Γ+
1 . As a consequence, we can derive the following bound

−ηt+ jRe($(ν)) ≤ ηt
(
−1 +

j

c∗t
+ β1

√
ηj

t

)
≤ ηt

(
− θ

c∗
+ β1(c∗ − θ)

√
η

)
.

We can always reduce η such that β1(c∗ − θ)√η < θ
2c∗

and we get∣∣∣∣∣ 1

2πi

∫
Γ+

1

eνtGj(ν)dν

∣∣∣∣∣ ≤ Ce− ηθ
2c∗

t.

3.2.2 Generalized Gaussian estimate

We are thus now led to study the case where (c∗ − θ)t ≤ j ≤ Lt with t ≥ 1 and the main result of

this section is a generalized Gaussian estimate for the Green’s function which reads as follows. Let

us already note that the large constant L > 0 from Lemma 3.5 can be fixed large enough such that

it further verifies L > c∗, which we assume throughout the sequel.

Lemma 3.8 (Generalized Gaussian estimate). For all θ ∈ (0, c∗), there exist two constants C > 0

and β > 0 such that for any (c∗− θ)t ≤ j ≤ Lt with j ∈ Z and t ≥ 1, the temporal Green’s function

satisfies the estimate

|Gj(t)| ≤
C√
t

exp

(
−β (j − c∗t)2

t

)
.
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�(L )

Figure 2: Illustration of the geometry of the family of parametrized curved Γp within the ball Bε(0) for

different values of p ∈ [−η/2, ιε], adapted from [18]. The extremal curves are given when p = −η/2 to the

left (magenta curve) and when p = ιε to the right (light blue curve) where 0 < ιε < ε is precisely defined

such that Γp with p = ιε intersects the line −η + iR on the boundary of Bε(0). The dashed dark red curve

represents the spectrum σ(L ).

Before proceeding with the proof, we need to introduce some notations. First, from Lemma 3.3,

one can find ε∗ > 0 and two constants 0 < β∗ < cosh(λ∗) < β∗ such that for each ε ∈ (0, ε∗) there

exist constants C > 0 and ω > 0 such that

∀ν ∈ Bε(0), |Gj(ν)| ≤
{

Ce−ω|j|, j ≤ 0,

CeRe($(ν))j , j ≥ 1,

together with the bound

Re($(ν)) ≤ − 1

c∗
Re(ν) +

β∗

c3
∗

Re(ν)2 − β∗
c3
∗

Im(ν)2, ∀ν ∈ Bε(0), (3.14)

where $ is holomorphic in Bε(0) and given in Lemma 3.3. Note that the bound (3.14) and the

existence of the constants 0 < β∗ < cosh(λ∗) < β∗ directly come from the expansion (3.11) of $.

Note also that β∗, β
∗ only depend on ε∗ > 0 and are uniform in ε ∈ (0, ε∗). Next, following the

strategy developed in [18, 42], we introduce a family of parametrized curves of the form

Γp :=

{
Re(ν)− β∗

c2
∗

Re(ν)2 +
β∗
c2
∗

Im(ν)2 = ψ(p) | − η ≤ Re(ν) ≤ p
}
, (3.15)

with ψ(p) := p− β∗

c2∗
p2. We readily note that the curve Γp intersects the real axis at ν = p. We now

explain how we select η > 0 and p > −η in the above definition of Γp.

First, for each ε ∈ (0, ε∗), we denote by νε, νε ∈ ∂Bε(0) ∩ σ(L ) and let Re(νε) = −ηε < 0. Then,

we fix η > 0 such that the curve Γp with p = 0 intersects the line −η + iR inside the open ball

Bε(0) and readily note that η ∈ (0, ηε). And next, we denote ιε ∈ (0, ε) the unique real number

such that Γp with p = ιε intersects the line −η+ iR precisely on the boundary of Bε(0) with η fixed
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previously. Finally, we also introduce

ζ :=
j − c∗t

2t
and γ :=

j

t

β∗

c2
∗
> 0,

and the specific value of p in the definition of Γp is fixed depending on the ratio ζ/γ as follows

p :=


ζ
γ , if − η

2 ≤
ζ
γ ≤ ιε,

ιε, if ζ
γ > ιε,

−η
2 , if ζ

γ < −
η
2 .

The geometry of the family of parametrized curves Γp is illustrated in Figure 2 for different values

of p. Note that with our careful choice of parametrization, we have that Γp with p = 0 (dark blue

curve in Figure 2) lies to the right of the spectral curve with tangency at the origin.

Let us remark that the motivation for introducing such quantities comes from our above estimate

on the Green’s function. Indeed, for all ν ∈ Γp ⊂ Bε(0) and any j ≥ 1, we have

jRe($(ν)) ≤ j
(
− 1
c∗

Re(ν) + β∗

c3∗
Re(ν)2 − β∗

c3∗
Im(ν)2

)
= j

(
−ψ(p)

c∗

)
= j

c∗

(
−p+ β∗

c2∗
p2
)

= −tp+ t
c∗

(
−2ζp+ γp2

)
= −tp− tζ2

c∗γ
+ t

c∗
γ
(
p− ζ

γ

)2
. (3.16)

Our precise choice of p, which depends on the ratio ζ/γ, will always allow us to control the above

terms. Furthermore, since we consider here the range (c∗ − θ)t ≤ j ≤ Lt, we readily have that

− θ
2 ≤ ζ ≤ L−c∗

2 , and our generalized Gaussian estimate will come from those ζ ≈ 0.

Before proceeding with the analysis, we make two final claims that will be useful in the course of

the proof of Lemma 3.8.

1. We note that for each ν ∈ Γp, with Γp defined in (3.15), there exists some constant c? > 0

such that

Re(ν) ≤ p− c?Im(ν)2. (3.17)

Indeed, since the function ψ, defined as ψ(p) = p − β∗

c2∗
p2, satisfies ψ′(0) = 1, there exists

c0 > 0 such that one has ψ′(p) ≤ c0 for each p ∈ [−η, ε]. This implies that for each ν ∈ Γp we

have

−β∗
c2
∗

Im(ν)2 = ψ(Re(ν))− ψ(p) = −
∫ p

Re(ν)
ψ′(t)dt ≥ c0(Re(ν)− p),

which gives (3.17) with c? = β∗
c2∗c0

.

2. Up to further reducing the size of ε∗ > 0, a direct application of the implicit function theorem

demonstrates that there exists a smooth function Φ : (−ε∗, ε∗) × (−ε∗, ε∗) → R and some

C > 0 such that for any ε ∈ (0, ε∗) and p ∈ (−ε, ε), the curve Γp can be parametrized as

Γp = {ν ∈ Bε(0) | Re(ν) = Φ(Im(ν), p)} ,
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Figure 3: Illustration of the contour used in the case −η2 ≤
ζ
γ ≤ ιε when (c∗ − θ) ≤ j ≤ Lt with t ≥ 1. The

contour is composed of Γout− ∪ Γin− ∪ Γp ∪ Γin+ ∪ Γout+ . The contours Γin± are the portions of the line −η + iR
which lie inside Bε(0) (light blue curves) while the contours Γout± are half lines lying in the resolvent set U

with |Im(ν)| ≥
√
ε2 − η2 (green curves). Finally, Γp is defined in (3.15) and intersects the real axis at p

(blue curve).

with

Re(ν) = p− β∗

c2
∗

Im(ν)2 +O
(
|Im(ν)|3 + |p|3

)
, (3.18)

together with ∣∣∣∣∂Φ(Im(ν), p)

∂Im(ν)

∣∣∣∣ ≤ C, for each |Im(ν)| ≤ ε and |p| ≤ ε.

We are now ready to prove Lemma 3.8.

Proof of Lemma 3.8. Throughout, we have (c∗ − θ) ≤ j ≤ Lt with t ≥ 1 and for each ε ∈ (0, ε∗)

the constant η ∈ (0, ηε) has been fixed as explained above. We divide the analysis into three cases

depending on the ratio ζ/γ.

Case: −η
2 ≤

ζ
γ ≤ ιε. We will consider a contour Γ which is the union of three contours given by

Γp with p = ζ/γ, together with Γin and Γout which are defined as follows. We refer to Figure 3

for a geometrical illustration. The contour Γin is composed of the two portions of the segment

Re(ν) = −η which lie inside the ball Bε(0), that is

Γin = Γin− ∪ Γin+ =
{
−η + iξ | −

√
ε2 − η2 ≤ ξ ≤ −ξ∗

}
∪
{
−η + iξ | ξ∗ ≤ ξ ≤

√
ε2 − η2

}
,
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with

ξ∗ :=

√
c2
∗
β∗

(ψ(p)− ψ(−η)) > 0.

On the other hand, the contour Γout is taken of the form

Γout = Γout− ∪ Γout+ =
{
−δ0 + δ1ξ + iξ | ξ ≤ −

√
ε2 − η2

}
∪
{
−δ0 − δ1ξ + iξ | ξ ≥

√
ε2 − η2

}
,

for two constants δ0 > 0 and δ1 > 0 chosen such that Γout ⊂ U and Γout± intersect Γin± exactly on

∂Bε(0). The later condition implies that δ0 = η − δ1

√
ε2 − η2, and then one can take 0 < δ1 <

η√
ε2−η2

as small as required such that both δ0 > 0 and Γout ⊂ U are verified. As a consequence,

we have that

Gj(t) =
1

2πi

∫
Γζ/γ

eνtGj(ν)dν +
1

2πi

∫
Γin

eνtGj(ν)dν +
1

2πi

∫
Γout

eνtGj(ν)dν,

and we have to estimate the above three integrals. We start with the first one, which is the one that

will produce the desired Gaussian estimate. For each ν ∈ Γp ⊂ Bε(0), we know from (3.16)-(3.17)

that

tRe(ν) + jRe($(ν)) ≤ t (Re(ν)− p)− tζ2

c∗γ
+

t

c∗
γ

(
p− ζ

γ

)2

≤ −c?Im(ν)2t− tζ2

c∗γ
+

t

c∗
γ

(
p− ζ

γ

)2

such that, with p = ζ/γ, we obtain that

tRe(ν) + jRe($(ν)) ≤ −c?Im(ν)2t− ζ2

γ

t

c∗
.

As a consequence, we have∣∣∣∣∣ 1

2πi

∫
Γζ/γ

eνtGj(ν)dν

∣∣∣∣∣ .
∫

Γζ/γ

etRe(ν)+jRe($(ν))|dν|

. e
− ζ

2

γ
t
c∗

∫
Γζ/γ

e−c?Im(ν)2t|dν|

. e
− ζ

2

γ
t
c∗

∫ ξ∗

−ξ∗
e−c?ξ

2tdξ

.
e
− ζ

2

γ
t
c∗√
t

.

Finally, we remark that

−ζ
2

γ

t

c∗
= −(j − c∗t)2

4t

1

γc∗
≤ −(j − c∗t)2

4t

c∗
Lβ∗

,

since (c∗ − θ)β
∗

c2∗
≤ γ ≤ Lβ∗

c2∗
as (c∗ − θ)t ≤ j ≤ Lt, and we have obtained the desired Gaussian

estimate.
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Next, for all ν = −η + iξ ∈ Γin ⊂ Bε(0) and j ≥ 1 we have that

jRe($(ν)) ≤ j
(
− 1

c∗
Re(ν) +

β∗

c3
∗

Re(ν)2 − β∗
c3
∗

Im(ν)2

)
= j

(
−ψ(−η)

c∗
− β∗
c3
∗
ξ2

)

= j

−ψ(p)

c∗
− β∗
c3
∗

(
ξ2 − ξ2

∗
)︸ ︷︷ ︸

≥0

 ≤ j (− p

c∗
+
β∗

c3
∗
p2

)
,

since ψ(−η) + β∗
c2∗
ξ2
∗ = ψ(p) by definition of ξ∗ > 0. Thus, we have

tRe(ν) + jRe($(ν)) ≤ −ηt+ j

(
− p

c∗
+
β∗

c3
∗
p2

)
=

t

c∗

[
−(η + p)c∗ − 2ζp+ γp2

]
≤ −η

2
t− t

c∗

ζ2

γ
,

since −η/2 ≤ ζ/γ = p in this case. As a consequence, we obtain an estimate of the form∣∣∣∣ 1

2πi

∫
Γin

eνtGj(ν)dν

∣∣∣∣ . e
− η

2
t− t

c∗
ζ2

γ .

This term can be subsumed into the previous Gaussian estimate.

For the remaining contribution on Γout, we further split it into two parts Γout = Γout1 ∪ Γout2 where

Γout1 := Γout∩BR(0) and Γout2 is the complementary part. It follows from Lemma 3.2 and Lemma 3.4

that ∣∣∣∣∣ 1

2πi

∫
Γout1

eνtGj(ν)dν

∣∣∣∣∣ . e−δ0t,∣∣∣∣∣ 1

2πi

∫
Γout2

eνtGj(ν)dν

∣∣∣∣∣ . e−δ0t−κj
∫ +∞

R
e−δ1ξtdξ︸ ︷︷ ︸
≤C
t

.

It only remains to check that a temporal exponential can be subsumed into a Gaussian estimate.

Indeed, using the definition of ζ and γ together with the fact we supposed that −η
2 ≤

ζ
γ ≤ ιε, we

can always find a constant κ0 > 0 such that

κ0
(j − c∗t)2

t
≤ t.

Case: ζ
γ > ιε. The contour Γ is decomposed into Γp ∪ Γout with

Γout = Γout− ∪ Γout+ =
{
−δ0 + δ1ξ + iξ | ξ ≤ −

√
ε2 − η2

}
∪
{
−δ0 − δ1ξ + iξ | ξ ≥

√
ε2 − η2

}
,

for two constants δ0 > 0 and δ1 > 0 chosen as in the previous case. This time for Γp we select

p = ιε. Note that for each ν ∈ Γιε ⊂ Bε(0), we have from (3.16)-(3.17)

tRe(ν) + jRe($(ν)) ≤ −c?Im(ν)2t+
t

c∗

(
−2ζp+ γp2

)
= −c?Im(ν)2t+

t

c∗

(
−2ζιε + γι2ε

)
.
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But as ζ
γ > ιε, we get in particular that ζ > γιε > 0 such that

−2ζιε + γι2ε < −γι2ε < 0,

and thus ∣∣∣∣∣ 1

2πi

∫
Γιε

eνtGj(ν)dν

∣∣∣∣∣ . e−
t
c∗
γι2ε

√
t

.

Now, since ζ
γ > ιε, we get that 2γιεt < 2ζt = j − c∗t ≤ (L − c∗)t, and thus there exists some

constant κ1 > 0 such that
(j − c∗t)2

t2
≤ κ1,

which shows that the above exponential decaying in time bound can be subsumed into a Gaussian

estimate. The estimate on Γout is similar as in the previous case and we get∣∣∣∣ 1

2πi

∫
Γout

eνtGj(ν)dν

∣∣∣∣ ≤
∣∣∣∣∣ 1

2πi

∫
Γout1

eνtGj(ν)dν

∣∣∣∣∣+

∣∣∣∣∣ 1

2πi

∫
Γout2

eνtGj(ν)dν

∣∣∣∣∣ . e−δ0t,

which can once again be subsumed into a Gaussian estimate.

Case: ζ
γ < −

η
2 . Once again we divide the contour Γ into Γp ∪ Γin ∪ Γout with p = −η

2 , and Γin

and Γout defined as previously. This time, for all ν ∈ Γ− η
2
⊂ Bε(0), we have

tRe(ν) + jRe($(ν)) ≤ −c?Im(ν)2t+
t

c∗

(
−2ζp+ γp2

)
≤ −c?Im(ν)2t+

t

c∗

(
ηζ + γ

(η
2

)2
)
.

Note that this time ζ < −ηγ/2, and we have

ηζ + γ
(η

2

)2
< −γ η

2

4
,

thus ∣∣∣∣∣∣ 1

2πi

∫
Γ− η2

eνtGj(ν)dν

∣∣∣∣∣∣ . e−
t
c∗
γ η

2

4

√
t

.

And once again we can conclude by noticing that −θt ≤ j − c∗t ≤ −ηγt due to ζ < −ηγ/2, and

the above exponential decaying in time bound can be subsumed into a Gaussian estimate.

Next, for all ν ∈ Γin ⊂ Bε(0), we have

tRe(ν) + jRe($(ν)) ≤ t

c∗

[
−(η + p)c∗ − 2ζp+ γp2

]
=

t

c∗

[
−η

2
c∗ + ζη + γ

(η
2

)2
]

< −η
2
t− t

c∗
γ
η2

4
,
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and we obtain an estimate of the form∣∣∣∣ 1

2πi

∫
Γin

eνtGj(ν)dν

∣∣∣∣ . e−
η
2
t− t

c∗
γ η

2

4 .

This term can be subsumed into a Gaussian estimate. Finally, the contribution along Γout can be

handled as previously. This concludes the proof of the Lemma.

As a conclusion, summarizing all the above lemmas, we have obtained the following intermediate

result.

Proposition 3.9 (Pointwise estimates). There are constants θ∗ > 0, βi > 0 for i = 1, 2, 3 and

C > 0 such that the temporal Green’s function G (t) satisfies the following pointwise estimates:

• for |j − c∗t| > θ∗t and t ≥ 1, one has

|Gj(t)| ≤ C exp (−β1t− β2|j|) ;

• for |j − c∗t| ≤ θ∗t and t ≥ 1, one has

|Gj(t)| ≤
C√
t

exp

(
−β3
|j − c∗t|2

t

)
.

The above proposition ensures in particular that there exists a constant C > 0, such that

√
t ‖G (t)‖`∞(Z) + ‖G (t)‖`1(Z) ≤ C, t ≥ 1.

This in turn implies that any solution of the linear problem (3.2) starting from a compactly sup-

ported initial condition satisfies

|wj(t)| =
∣∣∣∣∣∑
`∈Z

Gj−`(t)w
0
`

∣∣∣∣∣ ≤ C√
t
‖w0‖`1(Z), t ≥ 1, j ∈ Z. (3.19)

It turns out that such an estimate will not be enough in the forthcoming analysis leading to the

proof of Theorem 1. It is the purpose of the next section to refine our pointwise estimates for

|j − c∗t| ≤ θ∗t and t large enough.

4 Refined pointwise estimates in the sub-linear regime

From the study conducted in the previous section and Lemma 3.8, we expect that Gj(t) behaves

like a Gaussian profile around j ≈ c∗t for all j ∈ Z ∩ [(c∗ − θ∗)t, (c∗ + θ∗)t]. It is actually possible

to refine our analysis and prove that Gj(t) can be decomposed as a universal Gaussian profile plus

some reminder term which can be bounded and also satisfies a Gaussian estimate. To do so, we

work in the asymptotic regime where for any fixed ϑ > 0 and α ∈ (0, 1) the time t is large and

|j − c∗t| ≤ ϑtα. Before stating our main result, we introduce the normalized Gaussian profile:

G(x) :=
1√
2π
e−

x2

2 , x ∈ R,
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Figure 4: Numerical illustrations of Proposition 4.1. Left. We plot ln(En) (blue crosses), where En is defined

in (4.3), as a function of ln(tn) for each n = 1, · · ·N . We compare ln(En) to its linear regression (dark red

curve). The slope is found to be ' −1.5033 which gives a 0.2% error compared to the theoretical value − 3
2 .

Right. We compare P̃nj (blue circles), defined in (4.4), to P
(

j−c∗t√
2 cosh(λ∗)t

)
(dark red curve) at time t = 400.

In the computations, we used f ′(0) = 1 giving (c∗, λ∗) ' (2.0734, 0.9071) together with L = 1000, ∆t = 0.01

and N = 40001.

and we define the following odd cubic polynomial function P : R 7→ R

P(x) :=
c∗

24 cosh(λ∗)2

(
−3x+ x3

)
. (4.1)

Proposition 4.1 (Refined asymptotic). For any ϑ > 0 and α ∈ (0, 1), there is some T0 > 1 such

that for each j ∈ Z with |j − c∗t| ≤ ϑtα and t ≥ T0, one can decompose the temporal Green’s

function as follows

Gj(t) = Hj(t) + Rj(t), (4.2)

where the principal part Hj(t) is defined as

Hj(t) :=

[
1√

2 cosh(λ∗)t
+

1

t
P
(

j − c∗t√
2 cosh(λ∗)t

)]
G
(

j − c∗t√
2 cosh(λ∗)t

)
,

and with a Gaussian bound on the remainder term Rj(t)

|Rj(t)| ≤
C

t3/2
exp

(
−β (j − c∗t)2

t

)
,

for some uniform constants C > 0 and β > 0.

We illustrate in Figure 4 our main result of Proposition 4.1. We numerically solved (3.2) starting

from the initial sequence δ to approximate the temporal Green’s functions (Gj(t))j∈Z for t ≥ 1. We

used a Runge-Kutta method of order 4 to discretize in time the evolution equation (3.2) with fixed

time step ∆t > 0, and the spatial domain was taken to J−L,LK1 for some given integer L ≥ 1.

1Here, we used the notation JA,BK to denote the set of all integers between A ∈ Z and B ∈ Z with A ≤ B.
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And we denote by G̃ n
j the approximation of Gj(t) at time t = tn = n∆t for each j ∈ J−L,LK and

n = 1, · · ·N . Let En be defined as

En := sup
j∈J−L,LK

∣∣∣G̃ n
j −Hj(tn)

∣∣∣ , n = 1, · · ·N. (4.3)

Then En represents a numerical approximation of supj∈Z |Rj(tn)| which is of the order O
(
t
−3/2
n

)
by Proposition 4.1. In the left panel of Figure 4, we show that ln(En) is a linear function of ln(tn)

whose slope is found to be ' −1.5033 which compares very well with the theoretical value −3
2 . In

the right panel, we recover the universal nature of the profile P. More precisely, we compare P̃nj ,

defined as

P̃nj := tn

[
G̃ n
j −

1√
2 cosh(λ∗)tn

G
(

j − c∗tn√
2 cosh(λ∗)tn

)]
G
(

j − c∗tn√
2 cosh(λ∗)tn

)−1

, j ∈ J−L,LK,

(4.4)

to P
(

j−c∗tn√
2 cosh(λ∗)tn

)
as a function of j−c∗tn√

2 cosh(λ∗)tn
at fixed tn and observe a very good match

confirming numerically the universal nature of our formula (4.1) for P.

4.1 Proof of Proposition 4.1

We first explain the strategy of the proof. We are going to write Gj(t) as

Gj(t) =
1

2πi

∫
Γin

eνtGj(ν)dν +
1

2πi

∫
Γout

eνtGj(ν)dν,

where Γin is a contour within the ball Bε(0) and Γout ⊂ {ν ∈ C | Re(ν) ≤ −η} is some contour of

the form
{
−δ0 − δ1|ξ|+ iξ | ξ ∈ R, |ξ| ≥

√
ε2 − η2

}
for well-chosen δ0,1 > 0 and where η ∈ (0, ε)

can be chosen as in the proof of Lemma 3.8. Throughout, we assume Γin ∩ Γout = {ν0, ν0} with

|ν0| = ε and Re(ν0) = −η. As a consequence, for t large enough, we have |j − c∗t| ≤ ϑtα ≤ θ∗t and

the proof of Lemma 3.8 gives∣∣∣∣ 1

2πi

∫
Γout

eνtGj(ν)dν

∣∣∣∣ ≤ C

t
e−

ηε
2
t ≤ C̃

t3/2
exp

(
−β (j − c∗t)2

t

)
.

As a consequence, we are led to prove that∣∣∣∣ 1

2πi

∫
Γin

eνtGj(ν)dν −Hj(t)

∣∣∣∣ ≤ C

t3/2
exp

(
−β (j − c∗t)2

t

)
,

whenever |j − c∗t| ≤ ϑtα and t large enough. For all ν ∈ Bε(0), we recall from (3.12) that for j ≥ 1

one has

Gj(ν) = Ψ(ν)e$(ν)j ,

where Ψ is defined in (3.13) and is holomorphic on Bε(0) and Ψ(0) = 1
c∗
> 0. In fact, simple

computation gives

Ψ(ν) = −eλ∗ 〈π
0(ν)e, e〉
e$(ν)

=
eλ∗

ρ+(ν)− ρ−(ν)
=

1√
(ν + eλ∗ + e−λ∗)

2 − 4
,
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such that

Ψ(ν) =
1

c∗
− 2 cosh(λ∗)

c3
∗

ν + ν2Ψ̃(ν), ∀ ν ∈ Bε(0),

and Ψ̃ is holomorphic on Bε(0) with |Ψ̃(ν)| ≤ C for each ν ∈ Bε(0). Next, we are going to need an

asymptotic expansion of $(ν) up to quartic order, that is,

$(ν) = − ν
c∗

+
cosh(λ∗)

c3
∗

ν2 − Λ∗
c5
∗
ν3 + ν4Ω(ν), ∀ ν ∈ Bε(0), (4.5)

where Ω is holomorphic on Bε(0) with |Ω(ν)| ≤ C for each ν ∈ Bε(0) and

Λ∗ := 2 +
c2
∗
3
> 0. (4.6)

For future reference, we also denote by ϕ(ν) the principal part of $(ν), that is

ϕ(ν) := − ν
c∗

+
cosh(λ∗)

c3
∗

ν2, ∀ ν ∈ Bε(0).

Finally, we remark that β∗, β∗ > 0 in (3.14) can always be taken larger and smaller respectively

such that we can also ensure that

Re($(ν)) +
|Λ∗|
c5
∗
|ν|3 + |ν|4|Ω(ν)| ≤ −Re(ν)

c∗
+
β∗

c3
∗

Re(ν)2 − β∗
c3
∗

Im(ν)2, ν ∈ Bε(0). (4.7)

With all these notations in hands, we will decompose Gj(ν) as follows

Gj(ν) =

(
1

c∗
− 2 cosh(λ∗)

c3
∗

ν − jΛ∗
c6
∗
ν3

)
eϕ(ν)j + ν2Ψ̃(ν)e$(ν)j − 2

cosh(λ∗)

c3
∗

ν
(
e$(ν)j − eϕ(ν)j

)
+

1

c∗

[
e
−j Λ∗

c5∗
ν3+jν4Ω(ν) −

(
1− jΛ∗

c5
∗
ν3 + jν4Ω(ν)

)]
eϕ(ν)j +

j

c∗
ν4Ω(ν)eϕ(ν)j ,

valid for each ν ∈ Bε(0) and j ≥ 1.

We now introduce the following integrals which will contribute as error terms

E 1
j (t) :=

1

2πi

∫
Γin

eνtν2Ψ̃(ν)e$(ν)jdν,

E 2
j (t) :=

1

2πi

∫
Γin

eνtν
(
e$(ν)j − eϕ(ν)j

)
dν,

E 3
j (t) :=

1

2πi

∫
Γin

eνt
[
e
−j Λ∗

c5∗
ν3+jν4Ω(ν) −

(
1− jΛ∗

c5
∗
ν3 + jν4Ω(ν)

)]
eϕ(ν)jdν,

E 4
j (t) :=

1

2πi

∫
Γin

eνtν4Ω(ν)eϕ(ν)jdν.

More precisely, we have the following lemma.

Lemma 4.2. For any ϑ > 0 and α ∈ (0, 1), there is some T0 > 1 such that for each j ∈ Z with

|j − c∗t| ≤ ϑtα and t ≥ T0 one has∣∣∣E k
j (t)

∣∣∣ ≤ C

t3/2
exp

(
−β (j − c∗t)2

t

)
, k = 1, · · · , 4 ,

for some uniform constants C > 0 and β > 0.
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Proof. Recalling our notation

ζ =
j − c∗t

2t
, and γ =

j

t

β∗

c2
∗
,

we can always ensure that ζ/γ ∈ (−η/2, ιε) since we consider t large enough and |j−c∗t| ≤ ϑtα with

α ∈ (0, 1). Here ιε > 0 is the unique real number such that Γp defined in (3.15) with p = ιε intersects

the line −η + iR on the boundary of Bε(0) with η ∈ (0, ηε) and where ηε > 0 is defined as in the

proof of Lemma 3.8. Then, in each E k
j (t) with k = 1, · · · , 4, we decompose Γin as Γin = Γζ/γ ∪ Γ1

with

Γ1 =
{
−η + iξ | −

√
ε2 − η2 ≤ ξ ≤ −ξ∗ and ξ∗ ≤ ξ ≤

√
ε2 − η2

}
,

and

ξ∗ =

√
c2
∗
β∗

(ψ(ζ/γ)− ψ(−η)) > 0.

Study of E 1
j (t). First, we can bound E 1

j (t) by

∣∣E 1
j (t)

∣∣ . ∫
Γζ/γ

eRe(ν)t|ν|2eRe($(ν))j |dν|+
∫

Γ1

eRe(ν)t|ν|2eRe($(ν))j |dν|

.
∫

Γζ/γ

eRe(ν)t

(
ζ2

γ2
+ |Im(ν)|2

)
eRe($(ν))j |dν|+

∫
Γ1

eRe(ν)t
(
η2 + |Im(ν)|2

)
eRe($(ν))j |dν|.

Using similar computations as in the proof of Lemma 3.8, we find

ζ2

γ2

∫
Γζ/γ

eRe(ν)teRe($(ν))j |dν| . 1

γ2

( |j − c∗t|√
t

)2 e−β0
|j−c∗t|2

t

t3/2
.
e−β0

|j−c∗t|2
2t

t3/2
,

∫
Γζ/γ

|Im(ν)|2 eRe(ν)teRe($(ν))j |dν| . e
− ζ

2

γ
t
c∗

∫
Γζ/γ

|Im(ν)|2 e−c?Im(ν)2t|dν|︸ ︷︷ ︸
≤ C

t3/2

.
e−β0

|j−c∗t|2
t

t3/2
.

Let us note that in the first estimate, we used the fact that for each integer m ≥ 1 one can always

find some constant Cm > 0 such that xme−β0x2 ≤ Cme−
β0
2
x2

for any x ≥ 0.

Finally, the remaining contribution in E 1
j (t) along Γ1 gives

∫
Γ1

eRe(ν)t
(
η2 + |Im(ν)|2

)
eRe($(ν))j |dν| . e

− η
2
t− ζ

2

γ
t
c∗ .

e−β0
|j−c∗t|2

t

t3/2
.

Study of E 2
j (t). To handle the next error term E 2

j (t), we will use the fact that

∣∣∣e$(ν)j − eϕ(ν)j
∣∣∣ ≤ Cj|ν|3ej

(
Re($(ν))+

|Λ∗|
c5∗
|ν|3+|ν|4|Ω(ν)|

)
, ν ∈ Bε(0),
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together with our estimates (4.7) and (3.17) to get∣∣∣∣∣ 1

2πi

∫
Γζ/γ

eνtν
(
e$(ν)j − eϕ(ν)j

)
dν

∣∣∣∣∣ . j

∫
Γζ/γ

( |ζ|4
γ4

+ |Im(ν)|4
)
e
tRe(ν)+j

(
Re($(ν))+

|Λ∗|
c5∗
|ν|3+|ν|4|Ω(ν)|

)
|dν|

. je
− ζ

2

γ
t
c∗

∫
Γζ/γ

( |ζ|4
γ4

+ |Im(ν)|4
)
e−c?Im(ν)2t|dν|

. j

( |ζ|4√
t

+
1

t9/2

)
e
− ζ

2

γ
t
c∗ .

Next, we remark that

j

( |ζ|4√
t

+
1

t9/2

)
=
j

t

(( |j − c∗t|
2
√
t

)4 1

t3/2
+

1

t7/2

)
,

which then implies that∣∣∣∣∣ 1

2πi

∫
Γζ/γ

eνtν
(
e$(ν)j − eϕ(ν)j

)
dν

∣∣∣∣∣ . e−β0
|j−c∗t|2

t

t3/2
.

Similarly, the contribution along Γ1 gives a Gaussian estimate with an exponential in time decaying

factor leading to ∣∣∣∣ 1

2πi

∫
Γ1

eνtν
(
e$(ν)j − eϕ(ν)j

)
dν

∣∣∣∣ . je
− η

2
t− ζ

2

γ
t
c∗ .

e−β0
|j−c∗t|2

t

t3/2
,

where we simply used that |ν|4 ≤ ε2 since Γ1 ⊂ Bε(0) and that

je−
η
2
t =

j

t
te−

η
2
t .

1

t3/2
,

for t large enough and |j − c∗t| ≤ ϑtα.

Study of E 4
j (t). Before proceeding with E 3

j (t), we first treat E 4
j (t) since the computations are

very close to the previous case. Indeed, for each ν ∈ Γin, we use that∣∣∣eνtν4Ω(ν)eϕ(ν)j
∣∣∣ ≤ C|ν|4eRe(ν)teRe(ϕ(ν))j ,

such that we deduce∣∣∣∣∣ 1

2πi

∫
Γζ/γ

eνtν4Ω(ν)eϕ(ν)jdν

∣∣∣∣∣ .
∫

Γζ/γ

( |ζ|4
γ4

+ |Im(ν)|4
)
etRe(ν)+jRe(ϕ(ν))|dν|

. e
− ζ

2

γ
t
c∗

∫
Γζ/γ

( |ζ|4
γ4

+ |Im(ν)|4
)
e−c?Im(ν)2t|dν|

.

( |ζ|4√
t

+
1

t9/2

)
e
− ζ

2

γ
t
c∗ .

e−β0
|j−c∗t|2

t

t3/2
.

The contribution along Γ1 is treated as usual.
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Study of E 3
j (t). Finally, for the last term E 3

j (t), we use that∣∣∣∣e−j Λ∗
c5∗
ν3+jν4Ω(ν) −

(
1− jΛ∗

c5
∗
ν3 + jν4Ω(ν)

)∣∣∣∣ ≤ Cj2|ν|6ej
|Λ∗|
c5∗
|ν|3+j|ν|4|Ω(ν)|

, ν ∈ Bε(0),

together with

Re(ϕ(ν)) +
|Λ∗|
c5
∗
|ν|3 + |ν|4|Ω(ν)| ≤ −Re(ν)

c∗
+
β∗

c3
∗

Re(ν)2 − β∗
c3
∗

Im(ν)2, ν ∈ Bε(0),

to obtain that ∣∣∣∣∣ 1

2πi

∫
Γζ/γ

eνt
[
e
−j Λ∗

c5∗
ν3+jν4Ω(ν) −

(
1− jΛ∗

c5
∗
ν3 + jν4Ω(ν)

)]
eϕ(ν)jdν

∣∣∣∣∣
. j2

∫
Γζ/γ

( |ζ|6
γ6

+ |Im(ν)|6
)
e
tRe(ν)+j

(
Re(ϕ(ν))+

|Λ∗|
c5∗
|ν|3+|ν|4|Ω(ν)|

)
|dν|

. j2e
− ζ

2

γ
t
c∗

∫
Γζ/γ

( |ζ|6
γ6

+ |Im(ν)|6
)
e−c?Im(ν)2t|dν|

. j2

( |ζ|6√
t

+
1

t13/2

)
e
− ζ

2

γ
t
c∗ .

Finally, we note that

j2 |ζ|6√
t

=

(
j

t

)2( |j − c∗t|
2
√
t

)6 1

t3/2
,

such that we eventually get ∣∣E 3
j (t)

∣∣ . e−β0
|j−c∗t|2

t

t3/2
,

by, once again, noticing that the contribution along Γ1 can be subsumed into the one obtained

along Γζ/γ .

Next, we move on with the analysis of the leading order terms. We define

I 1
j (t) :=

1

c∗

1

2πi

∫
Γin

eνteϕ(ν)jdν,

I 2
j (t) := −2 cosh(λ∗)

c3
∗

1

2πi

∫
Γin

eνtνeϕ(ν)jdν,

I 3
j (t) := −Λ∗

c6
∗

1

2πi

∫
Γin

eνtjν3eϕ(ν)jdν.

In order to evaluate the above three integrals, we introduce some new contours

Γd :=

{
z − i

√
ε2 − η2 | − η ≤ z ≤ ζ

γ

}
, Γu :=

{
z + i

√
ε2 − η2 | − η ≤ z ≤ ζ

γ

}
and

Γi :=

{
ζ

γ
+ iξ | |ξ| ≤

√
ε2 − η2

}
,
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Figure 5: Illustration of the geometry of the contour Γin = Γd ∪ Γu ∪ Γi ⊂ Bε(0) used in the computation of

the integrals I k
j (t) for k = 1, 2, 3.

with this time ζ = j−c∗t
2t and γ = j

t
cosh(λ∗)

c2∗
. We choose t large enough such that

−η
2
≤ ζ

γ
≤ η

2
,

which is always possible since |ζ| ≤ ϑ
2t1−α and t is taken large enough. In the following, we will

write Γin = Γd ∪ Γu ∪ Γi ⊂ Bε(0) and we refer to Figure 5 for an illustration.

Lemma 4.3. For any ϑ > 0 and α ∈ (0, 1), there is some T0 > 1 such that for each j ∈ Z with

|j − c∗t| ≤ ϑtα and t ≥ T0 one can decompose I 1
j (t) as

I 1
j (t) =

 1√
2t cosh(λ∗)

+
1

2tc∗

−( j − c∗t√
2 cosh(λ∗)t

)
+

(
j − c∗t√

2 cosh(λ∗)t

)3
G( j − c∗t√

2 cosh(λ∗)t

)

+ R̃1
j (t),

with ∣∣∣R̃1
j (t)

∣∣∣ ≤ C

t3/2
exp

(
−β (j − c∗t)2

t

)
,

for some uniform constants C > 0 and β > 0.

Proof. We first compute

1

c∗

1

2πi

∫
Γi

eνteϕ(ν)jdν =
1

c∗

1

2π
exp

(
−(j − c∗t)2

4tc∗γ

)∫ √ε2−η2

−
√
ε2−η2

e−
tγ
c∗
ξ2

dξ

=
1

2π
√
tγc∗

exp

(
−(j − c∗t)2

4tc∗γ

)∫ √ε2−η2
√

tγ
c∗

−
√
ε2−η2

√
tγ
c∗

e−z
2
dz.
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Since |j − c∗t| ≤ ϑtα, we have that

1√
tγc∗

=
1√

t cosh(λ∗)

(
1− 1

2

j − c∗t
tc∗

+O

((
j − c∗t
t

)2
))

,

together with ∣∣∣∣e− (j−c∗t)2
4tc∗γ − e−

(j−c∗t)2
4t cosh(λ∗) − (j − c∗t)3

4t2 cosh(λ∗)c∗
e
− (j−c∗t)2

4t cosh(λ∗)

∣∣∣∣ . 1

t
e−β

(j−c∗t)2
t ,

for some β > 0 and t large enough. Next we remark that

∫
R
e−z

2
dz −

∫ √ε2−η2
√

tγ
c∗

−
√
ε2−η2

√
tγ
c∗

e−z
2
dz = 2

∫ +∞

√
ε2−η2

√
tγ
c∗

e−z
2
dz,

for which we can use estimate of the complementary error function erfc(x) := 2
∫ +∞
x e−z

2
dz which

satisfies for x > 1

erfc(x) ≤ e−x
2

x
.

As consequence, for t large enough such that
√
ε2 − η2

√
tγ
c∗
> 1, one has∣∣∣∣∣∣

∫
R
e−z

2
dz −

∫ √ε2−η2
√

tγ
c∗

−
√
ε2−η2

√
tγ
c∗

e−z
2
dz

∣∣∣∣∣∣ . 1√
t
e−βt,

for some β > 0.

Using the above computations, we see that

1

c∗

1

2πi

∫
Γi

eνteϕ(ν)jdν =
1√

4πtγc∗
e
− (j−c∗t)2

4tc∗γ − 1

π
√
tγc∗

e
− (j−c∗t)2

4tc∗γ

∫ +∞

√
ε2−η2

√
tγ
c∗

e−z
2
dz︸ ︷︷ ︸

:=R1
j (t)

,

with ∣∣R1
j (t)

∣∣ . 1

t3/2
e−β

(j−c∗t)2
t .

Next, we also see that if we define

R2
j (t) :=

1√
4πtγc∗

e
− (j−c∗t)2

4tc∗γ − 1√
4πt cosh(λ∗)

(
1− 1

2

j − c∗t
tc∗

+
(j − c∗t)3

4t2 cosh(λ∗)c∗

)
e
− (j−c∗t)2

4t cosh(λ∗) ,

then for t large enough we have that∣∣R2
j (t)

∣∣ . 1

t3/2
e−β

(j−c∗t)2
t ,

and

1

c∗

1

2πi

∫
Γi

eνteϕ(ν)jdν =
1√

4πt cosh(λ∗)

(
1− 1

2

j − c∗t
tc∗

+
(j − c∗t)3

4t2 cosh(λ∗)c∗

)
e
− (j−c∗t)2

4t cosh(λ∗) +R1
j (t)+R2

j (t).
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Finally, we rewrite the above leading order terms as

Aj(t) :=
1√

4πt cosh(λ∗)
exp

(
− (j − c∗t)2

4t cosh(λ∗)

)
=

1√
2t cosh(λ∗)

G
(

j − c∗t√
2 cosh(λ∗)t

)
,

Bj(t) := −1

2

1√
4πt cosh(λ∗)

j − c∗t
tc∗

e
− (j−c∗t)2

4t cosh(λ∗) +
1√

4πt cosh(λ∗)

(j − c∗t)3

4t2 cosh(λ∗)c∗
e
− (j−c∗t)2

4t cosh(λ∗)

=
1

2tc∗

−( j − c∗t√
2 cosh(λ∗)t

)
+

(
j − c∗t√

2 cosh(λ∗)t

)3
G( j − c∗t√

2 cosh(λ∗)t

)
,

such that we have the decomposition

I 1
j (t) = Aj(t) + Bj(t) + R1

j (t) + R2
j (t) +

1

c∗

1

2πi

∫
Γu∪Γd

eνteϕ(ν)jdν.

To conclude the study of I 1
j (t), it remains to evaluate the integrals on Γd,u. We only treat the

case Γd since the other integral can be handled similarly. We need to bound

1

2πi

∫
Γd

eνteϕ(ν)jdν =
1

2πi

∫ ζ
γ

−η
e
t
(
z−i
√
ε2−η2

)
e
ϕ
(
z−i
√
ε2−η2

)
j
dz

and upon setting ξε :=
√
ε2 − η2 we have

t(z − iξε) + ϕ (z − iξε) j = iξε

(
−t+

j

c∗

)
− j cosh(λ∗)

c3
∗

ξ2
ε +

t

c∗

(
−2ζz + γz2

)
− 2ijξε

cosh(λ∗)

c3
∗

z.

As a consequence,∣∣∣∣ 1

2πi

∫
Γd

eνteϕ(ν)jdν

∣∣∣∣ . exp

(
− t

c∗
γξ2
ε −

t

c∗

ζ2

γ

)∫ ζ
γ

−η
e
t
c∗
γ
(
z− ζ

γ

)2

dz

. exp

(
− t

c∗
γξ2
ε −

t

c∗

ζ2

γ
+

t

c∗
γ

(
η +

ζ

γ

)2
)
.

Finally, we note that

−ξ2
ε +

(
η +

ζ

γ

)2

= −ε2 + η2 +

(
η +

ζ

γ

)2

≤ −ε2 + η2 +

(
3

2
η

)2

< 0,

since for fixed ε > 0, we can always choose η > 0 small enough such that the above strict inequality

holds. Thus we get ∣∣∣∣ 1

2πi

∫
Γd

eνteϕ(ν)jdν

∣∣∣∣ . 1

t3/2
e−β

(j−c∗t)2
t .

We now turn our attention to I 2
j (t).
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Lemma 4.4. For any ϑ > 0 and α ∈ (0, 1), there is some T0 > 1 such that for each j ∈ Z with

|j − c∗t| ≤ ϑtα and t ≥ T0 one can decompose I 2
j (t) as

I 2
j (t) = − 1

tc∗

(
j − c∗t√

2 cosh(λ∗)t

)
G
(

j − c∗t√
2 cosh(λ∗)t

)
+ R̃2

j (t),

with ∣∣∣R̃2
j (t)

∣∣∣ ≤ C

t3/2
exp

(
−β (j − c∗t)2

t

)
,

for some uniform constants C > 0 and β > 0.

Proof. We first compute

1

c∗

1

2πi

∫
Γi

eνtνeϕ(ν)jdν =
1

c∗

1

2π
exp

(
−(j − c∗t)2

4tc∗γ

)∫ √ε2−η2

−
√
ε2−η2

(
ζ

γ
+ iξ

)
e−

tγ
c∗
ξ2

dξ

=
1

2π
√
tγc∗

ζ

γ
exp

(
−(j − c∗t)2

4tc∗γ

)∫ √ε2−η2
√

tγ
c∗

−
√
ε2−η2

√
tγ
c∗

e−z
2
dz

=
ζ

γ
(Aj(t) + Bj(t)) +

ζ

γ

(
R1
j (t) + R2

j (t)
)
.

For t large enough, it is enough to remark that

ζ

γ
= c∗

j − c∗t
2t cosh(λ∗)

(
1 +O

(
j − c∗t
tc∗

))
,

such that

1

c∗

1

2πi

∫
Γi

eνtνeϕ(ν)jdν =
c∗

2t cosh(λ∗)

(
j − c∗t√

2 cosh(λ∗)t

)
G
(

j − c∗t√
2 cosh(λ∗)t

)
+ R3

j (t),

where

R3
j (t) :=

(
ζ

γ
− c∗

j − c∗t
2t cosh(λ∗)

)
Aj(t) +

ζ

γ
Bj(t) +

ζ

γ

(
R1
j (t) + R2

j (t)
)

with ∣∣R3
j (t)

∣∣ . 1

t3/2
e−β

(j−c∗t)2
t .

Similarly to the previous case, the integrals on Γd,u produce terms which can be subsumed into the

above Gaussian estimate.

Finally, we study the last integral I 3
j (t).

Lemma 4.5. For any ϑ > 0 and α ∈ (0, 1), there is some T0 > 1 such that for each j ∈ Z with

|j − c∗t| ≤ ϑtα and t ≥ T0 one can decompose I 3
j (t) as

I 3
j (t) =

−Λ∗
4tc∗ cosh(λ∗)2

−3

(
j − c∗t√

2 cosh(λ∗)t

)
+

(
j − c∗t√

2 cosh(λ∗)t

)3
G( j − c∗t√

2 cosh(λ∗)t

)
+ R̃3

j (t),

with ∣∣∣R̃3
j (t)

∣∣∣ ≤ C

t3/2
exp

(
−β (j − c∗t)2

t

)
,

for some uniform constants C > 0 and β > 0.
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Proof. As usual, the main contribution will come from the integration along Γi and we have

1

2πi

∫
Γi

eνtjν3eϕ(ν)jdν =
j

2π
exp

(
−(j − c∗t)2

4tc∗γ

)∫ √ε2−η2

−
√
ε2−η2

(
ζ

γ
+ iξ

)3

e−
tγ
c∗
ξ2

dξ

=
j

2π
exp

(
−(j − c∗t)2

4tc∗γ

)∫ √ε2−η2

−
√
ε2−η2

[(
ζ

γ

)3

+ 3i

(
ζ

γ

)2

ξ − 3
ζ

γ
ξ2 − iξ3

]
e−

tγ
c∗
ξ2

dξ

=
j

2π
exp

(
−(j − c∗t)2

4tc∗γ

)∫ √ε2−η2

−
√
ε2−η2

[(
ζ

γ

)3

− 3
ζ

γ
ξ2

]
e−

tγ
c∗
ξ2

dξ.

This time, for t large enough, we have

j

(
ζ

γ

)3

= c∗t

(
1 +

j − c∗t
c∗t

)(
c∗

j − c∗t
2t cosh(λ∗)

)3(
1 +O

(
j − c∗t
tc∗

))
,

which gives that

j

2π

(
ζ

γ

)3

exp

(
−(j − c∗t)2

4tc∗γ

)∫ √ε2−η2

−
√
ε2−η2

e−
tγ
c∗
ξ2

dξ =
c5
∗

4t cosh(λ∗)2

(
j − c∗t√

2 cosh(λ∗)t

)3

G
(

j − c∗t√
2 cosh(λ∗)t

)
+ R4

j (t),

with ∣∣R4
j (t)

∣∣ . 1

t3/2
e−β

(j−c∗t)2
t .

Regarding the last term, we note first that

∫ √ε2−η2

−
√
ε2−η2

ξ2e−
tγ
c∗
ξ2

dξ =
1(

tγ
c∗

)3/2

∫ √ε2−η2
√

tγ
c∗

−
√
ε2−η2

√
tγ
c∗

z2e−z
2
dz

= − 1(
tγ
c∗

)3/2

√
ε2 − η2

√
tγ

c∗
e−

tγ
c∗ (ε

2−η2) +
1

2
(
tγ
c∗

)3/2

∫ √ε2−η2
√

tγ
c∗

−
√
ε2−η2

√
tγ
c∗

e−z
2
dz.

As a consequence, we have that

−3
ζ

γ

j

2π
e
− (j−c∗t)2

4tc∗γ

∫ √ε2−η2

−
√
ε2−η2

ξ2e−
tγ
c∗
ξ2

dξ = −3
ζ

γ

j

4π
(
tγ
c∗

)3/2
e
− (j−c∗t)2

4tc∗γ

∫ √ε2−η2
√

tγ
c∗

−
√
ε2−η2

√
tγ
c∗

e−z
2
dz + R5

j (t),

with ∣∣R5
j (t)

∣∣ . 1

t3/2
e−β

(j−c∗t)2
t .

Finally, we remark that

j
ζ

γ

1(
tγ
c∗

)3/2
=

c5
∗

2t cosh(λ∗)5/2

j − c∗t√
t

(
1 +O

(
j − c∗t
tc∗

))
,
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for t large enough such that we readily obtain that

−3
ζ

γ

j

4π
(
tγ
c∗

)3/2
e
− (j−c∗t)2

4tc∗γ

∫ √ε2−η2
√

tγ
c∗

−
√
ε2−η2

√
tγ
c∗

e−z
2
dz = − 3c5

∗
4t cosh(λ∗)2

j − c∗t√
2 cosh(λ∗)t

G
(

j − c∗t√
2 cosh(λ∗)t

)

+ R6
j (t),

with ∣∣R6
j (t)

∣∣ . 1

t3/2
e−β

(j−c∗t)2
t .

Similarly to the previous case, the integrals on Γd,u produce terms which can be subsumed into the

above Gaussian estimate.

Conclusion. We can now put together the results that we have obtained. In a first step, we

managed to decompose Gj(t) as

Gj(t) = I 1
j (t) + I 2

j (t) + I 3
j (t) + E 1

j (t) + E 2
j (t) + E 3

j (t) + E 4
j (t) +

1

2πi

∫
Γout

eνtGj(ν)dν,

and proved that∣∣E 1
j (t)

∣∣+
∣∣E 2
j (t)

∣∣+
∣∣E 3
j (t)

∣∣+
∣∣E 4
j (t)

∣∣+

∣∣∣∣ 1

2πi

∫
Γout

eνtGj(ν)dν

∣∣∣∣ . 1

t3/2
e−β

(j−c∗t)2
t

Next, we see that if we set

Hj(t) :=
1√

2t cosh(λ∗)
G
(

j − c∗t√
2 cosh(λ∗)t

)
− 3

(
1

2tc∗
− Λ∗

4tc∗ cosh(λ∗)2

)(
j − c∗t√

2 cosh(λ∗)t

)
G
(

j − c∗t√
2 cosh(λ∗)t

)

+

(
1

2tc∗
− Λ∗

4tc∗ cosh(λ∗)2

)(
j − c∗t√

2 cosh(λ∗)t

)3

G
(

j − c∗t√
2 cosh(λ∗)t

)
,

then using Lemma 4.3, Lemma 4.4 and Lemma 4.5

I 1
j (t) + I 2

j (t) + I 3
j (t) = Hj(t) + R̃1

j (t) + R̃2
j (t) + R̃3

j (t),

with ∣∣∣R̃1
j (t)

∣∣∣+
∣∣∣R̃2

j (t)
∣∣∣+
∣∣∣R̃3

j (t)
∣∣∣ . 1

t3/2
e−β

(j−c∗t)2
t .

As a consequence, we have that

Rj(t) := Gj(t)−Hj(t) = R̃1
j (t)+R̃2

j (t)+R̃3
j (t)+E 1

j (t)+E 2
j (t)+E 3

j (t)+E 4
j (t)+

1

2πi

∫
Γout

eνtGj(ν)dν

satisfies

|Rj(t)| ≤
C

t3/2
exp

(
−β (j − c∗t)2

t

)
,

for some uniform constants C > 0 and β > 0. Finally, we see that Hj(t) can be factored into the

following condensed formula

Hj(t) =

[
1√

2t cosh(λ∗)
+

1

t
P
(

j − c∗t√
2 cosh(λ∗)t

)]
G
(

j − c∗t√
2 cosh(λ∗)t

)
, t > 0, j ∈ Z.
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where the polynomial function P is given in (4.1). Indeed, with the expression of Λ∗ in (4.6), we

readily see that
1

2c∗
− Λ∗

4c∗ cosh(λ∗)2
=

c∗
24 cosh(λ∗)2

.

This concludes the proof of Proposition 4.1.

4.2 Sharp asymptotics from odd compactly supported initial conditions

Now, recalling our notation for the linear operator L given by

(L r)j = eλ∗ (rj−1 − 2rj + rj+1)− c∗(rj+1 − rj), j ∈ Z,

we let wj(t) be the solution of the linear Cauchy problem

d

dt
wj(t)− (Lw(t))j = 0, t > 0, j ∈ Z, (4.8)

with a nontrivial, odd and compactly supported initial condition w0
j for j ∈ Z in the sense that

w0
j = −w0

−j ≥ 0 ∀j ≥ 0, w0
j = 0 ∀j ≥ Jw + 1,

for some positive Jw ≥ 1. Then, wj(t) can be written in the form

wj(t) =

Jw∑
`=1

(Gj−`(t)− Gj+`(t))w
0
` , t > 0, j ∈ Z.

Now, from Proposition 4.1, for t ≥ T0 and each |j − c∗t| ≤ ϑtα with ϑ > 0 and α ∈ (0, 1), we have

that the temporal Green’s function Gj±`(t) can be decomposed as

Gj±`(t) =

[
1√

2 cosh(λ∗)t
+

1

t
P
(

j ± `− c∗t√
2 cosh(λ∗)t

)]
G
(

j ± `− c∗t√
2 cosh(λ∗)t

)
+ Rj±`(t),

with

|Rj±`(t)| ≤
C

t3/2
exp

(
−β (j ± `− c∗t)2

t

)
.

Therefore

wj(t) =
1√

2t cosh(λ∗)

Jw∑
`=1

(
G
(

j − `− c∗t√
2 cosh(λ∗)t

)
− G

(
j + `− c∗t√
2 cosh(λ∗)t

))
w0
`

+
1

t

Jw∑
`=1

(
P
(

j − `− c∗t√
2 cosh(λ∗)t

)
G
(

j − `− c∗t√
2 cosh(λ∗)t

)
− P

(
j + `− c∗t√
2 cosh(λ∗)t

)
G
(

j + `− c∗t√
2 cosh(λ∗)t

))
w0
`

+

Jw∑
`=1

(Rj−`(t)−Rj+`(t))w
0
` .

By Proposition 4.1, we have the bound∣∣∣∣∣
Jw∑
`=1

(Rj−`(t)−Rj+`(t)) v
0
`

∣∣∣∣∣ . 1

t3/2
exp

(
−β0

(j − c∗t)2

t

)( Jw∑
`=1

w0
`

)
,
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for some β0 > 0. Next we remark that for |j − c∗t| ≤ ϑtα and as t→ +∞

exp

(
−(j − `− c∗t)2

4t cosh(λ∗)

)
− exp

(
−(j + `− c∗t)2

4t cosh(λ∗)

)
= exp

(
−(j − c∗t)2 + `2

4t cosh(λ∗)

)(
e

`(j−c∗t)
2t cosh(λ∗) − e−

`(j−c∗t)
2t cosh(λ∗)

)
= exp

(
−(j − c∗t)2 + `2

4t cosh(λ∗)

)[
`(j − c∗t)
t cosh(λ∗)

+O

((
(j − c∗t)

t

)3
)]

.

As a consequence for |j − c∗t| ≤ ϑtα, we get

1√
2t cosh(λ∗)

Jw∑
`=1

(
G
(

j − `− c∗t√
2 cosh(λ∗)t

)
− G

(
j + `− c∗t√
2 cosh(λ∗)t

))
w0
`

∼ 1√
4πt cosh(λ∗)

j − c∗t
t cosh(λ∗)

exp

(
− (j − c∗t)2

4t cosh(λ∗)

)( Jw∑
`=1

`w0
`

)
,

as t→ +∞. Now, restricting ourselves to the diffusive regime α ∈ (0, 1/2], we get that the remaining

contributions coming from the difference of the terms in P
(

j±`−c∗t√
2 cosh(λ∗)t

)
G
(

j±`−c∗t√
2 cosh(λ∗)t

)
are of

higher order. Indeed, in that case, we get

Jw∑
`=1

(
P
(

j − `− c∗t√
2 cosh(λ∗)t

)
G
(

j − `− c∗t√
2 cosh(λ∗)t

)
− P

(
j + `− c∗t√
2 cosh(λ∗)t

)
G
(

j + `− c∗t√
2 cosh(λ∗)t

))
w0
`

∼ −C∗
j − c∗t
t3/2

exp

(
− (j − c∗t)2

4t cosh(λ∗)

)( Jw∑
`=1

`w0
`

)
,

as t→ +∞ for some universal constant C∗ > 0. In summary, we have proved the following lemma.

Lemma 4.6. The solution (wj(t))j∈Z of the linear Cauchy problem (4.8) starting from an odd,

nontrivial and compactly supported sequence (w0
j )j∈Z ∈ `∞(Z) satisfies, for |j − c∗t| ≤ ϑtα with

α ∈ (0, 1/2] and any ϑ > 0, the asymptotic expansion

wj(t) ∼
1

cosh(λ∗)3/2
√

4π

j − c∗t
t3/2

( ∞∑
`=1

`w0
`

)
as t→ +∞. (4.9)

In particular, for any ϑ > 1 there exists some large time t0(ϑ) > 0 such that

wj(t) > 0 for all t ≥ t0 and 1 ≤ j − c∗t ≤ ϑ
√
t. (4.10)

Note that the above Lemma 4.6 gives a precise information on the solution (wj(t))j∈Z of the linear

Cauchy problem (4.8) starting from an odd, nontrivial and compactly supported sequence at the

diffusive scale. For the construction of the upper barrier in the forthcoming section, we will need

a control of the solution beyond this diffusive regime. This is the purpose of the next lemma.
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Lemma 4.7. Let (wj(t))j∈Z be the solution of the linear Cauchy problem (4.8) starting from a

nontrivial, bounded, compactly supported sequence (w0
j )j∈Z 6≡ 0 with w0

j = 0 for all |j| ≥ J for some

J ≥ 2. Then, for each A > 1, there exists ηA > 0 such that

|wj(t)| ≤ ‖w0‖`∞(Z)e
−A
(
j−J−c∗t√

t+1
−ηA

)
, t > 0, j − J − c∗t ≥ ηA

√
t+ 1.

Proof. Let ξ ∈ R be given and define the sequence r :=
(
eξj
)
j∈Z. For each j ∈ Z, we have

(L r)j =
(
eλ∗
(
eξ − 2 + e−ξ

)
− c∗

(
eξ − 1

))
eξj =

[
−c∗ξ + cosh(λ∗)ξ

2 (1 + ω(ξ))
]
eξj ,

where ω : R 7→ R is an analytic function with ω(0) = 0. Next, for A > 1, we define wj(t) according

to

wj(t) = ‖w0‖`∞(Z)e
−A
(
j−J−c∗t√

t+1
−ηA

)
, t ≥ 0, j ∈ Z,

where ηA > 2 is set to

ηA := 2 cosh(λ∗)A
(
1 + ‖ω‖L∞([−A,0])

)
.

As a consequence, upon denoting η = j−J−c∗t√
t+1

, we obtain that

d

dt
wj(t)− (Lw(t))j =

A

(t+ 1)

(
η

2
− cosh(λ∗)A

(
1 + ω

(
− A√

t+ 1

)))
wj(t), t > 0, j ∈ Z,

from which we deduce that

d

dt
wj(t)− (Lw(t))j ≥ 0, t > 0, j ≥ ζ(t),

where we have set ζ(t) := J + c∗t + ηA
√
t+ 1. We now check that we can apply the maximum

principle from Proposition A.1 to get that wj(t) ≤ wj(t) for all j ≥ ζ(t) and t > 0. First, at time

t = 0, since w0
j = 0 for j ≥ J , we get that

w0
j = 0 ≤ wj(0) = ‖w0‖`∞(Z)e

−A(j−J−ηA), j ≥ ζ(0)− 1 = J + ηA − 1 > J.

Then, since the solution of the linear Cauchy problem (4.8) satisfies wj(t) ≤ ‖w0‖`∞(Z) for all t ≥ 0

and j ∈ Z, we get that

wj(t) ≤ ‖w0‖`∞(Z) ≤ wj(t), for each ζ(t)− 1 ≤ j ≤ ζ(t), t > 0.

From Proposition A.1, we obtain that wj(t) ≤ wj(t) for all j ≥ ζ(t) and t > 0, as claimed. By

linearity of equation (4.8), it is easy to check that −wj(t) is a subsolution implying that we also

have −wj(t) ≤ wj(t) for j ≥ ζ(t) and t > 0. This concludes the proof of the lemma.

5 Logarithmic delay of the position for the level sets

The aim of this section is to prove Theorem 1 which shows the logarithmic delay on the expansion

of the level sets of the solution. To start with, we set

vj(t) := eλ∗(j−c∗t)uj(t), t > 0, j ∈ Z,
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such that the sequence (vj(t))j∈Z is now a solution to the following modified lattice Fisher-KPP

equation d
dtvj(t) = eλ∗ (vj−1(t)−2vj(t) + vj+1(t))−c∗(vj+1(t)− vj(t))−Rj(t; vj(t)), t > 0, j ∈ Z,

vj(0) = v0
j = eλ∗ju0

j , j ∈ Z.
(5.1)

Here, the nonlinear term Rj(t; s) is defined as

Rj(t; s) := f ′(0)s− eλ∗(j−c∗t)f(e−λ∗(j−c∗t)s), (5.2)

for s ∈ R and (t, j) ∈ (0,+∞)×Z. We remark thatRj(t; s) ≥ 0 for all s ∈ R and (t, j) ∈ (0,+∞)×Z.

This directly comes from our standing assumptions that 0 < f(s) ≤ f ′(0)s for s ∈ (0, 1) and the

fact that we extended linearly f for u ∈ (−∞, 0)∪ (1,+∞). We readily notice that Rj(t; vj(t)) ≥ 0

for (t, j) ∈ (0,+∞)× Z.

5.1 Upper and lower bounds for vj(t)

In this section, we provide upper and lower barriers for the function vj(t) for t sufficiently large

and j ∈ Z ahead of the position j − c∗t ≈ 0.

5.1.1 Upper barrier for vj(t)

We start with the construction of a supersolution to (5.1) for all t large enough and j ∈ Z ahead of

j−c∗t ≈ 0 by following the strategy we developed in Section 2. More precisely, consider δ ∈ (0, 1/3),

that will be as small as needed. We will estimate vj(t) ahead of j−c∗t = −tδ. To do so, we construct

a supersolution for (5.1) as follows:

vj(t) := ξ(t)wj(t)+
1

(1 + t)
3
2
−β

cos

(
j − c∗t
(1 + t)α

)
1{j∈Z | −tδ−1≤j−c∗t≤ 3π

2
(1+t)α}+Ξ

(
j − c∗t√

1 + t

)
, (5.3)

for t large enough and j ∈ Z with j− c∗t ≥ −tδ−1, where the unknown ξ(t) ∈ C 1 is assumed to be

positive and bounded in (0,+∞), and ξ
′
(t) ≥ 0 in (0,+∞). Here, (wj(t))j∈Z is the solution of the

linear Cauchy problem (4.8) starting from an odd, nontrivial and compactly supported sequence

(w0
j )j∈Z ∈ `∞(Z). The other parameters α ∈ (1/3, 1/2) and β > 0 will be determined in the course

of investigation. The function Ξ : R+ → R+ is defined as

Ξ(η) := 2‖w0‖`∞(Z)Γ (η) e−a(η−η2), η ≥ 0,

with a > 1 and Γ ≥ 0 a smooth non decreasing cut-off function that satisfies Γ(x) = 0 for x ∈ [0, η1]

and Γ(x) = 1 for x ≥ η2 with 0 < η1 < η2. Note that the cut-off function Γ can be constructed so

as to ensure that

‖Γ′‖L∞[η1,η2] ≤
C1

η2 − η1
, and ‖Γ′′‖L∞[η1,η2] ≤

C2

(η2 − η1)2
,
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for two positive constants C1,2 > 0 independent of η1 and η2. The parameters η1, η2 > 0 and a > 1

need to be properly chosen and will be fixed along the proof.

Our aim is now to prove that vj(t) is a supersolution of (5.1) for t large enough and j ∈ Z with

j − c∗t ≥ −tδ. For notational convenience, we define the following sequence

pj(t) :=
1

(1 + t)
3
2
−β

cos

(
j − c∗t
(1 + t)α

)
, t > 0, j ∈ Z. (5.4)

The key point of the forthcoming computations will be to verify that the action of the linear operator

L on the above cosine perturbation and the function Ξ is well behaved within the range of interest.

As we have already seen in Section 2 for the continuous setting, the cosine perturbation is designed

in such a way to compensate for the lack of positivity of wj(t) within the range −tδ−1 ≤ j−c∗t ≤ 0.

On the other hand, the exponential correction introduced with Ξ will compensate for our lack of

information regarding the positivity of wj(t) beyond the diffusive scale. We conjecture that it may

be possible to directly prove that wj(t) > 0 for all j−c∗t ≥ 1 and t large enough, but this is beyond

the scope of the present paper.

We divide the half-space j − c∗t ≥ −tδ with j ∈ Z and t large enough into five different zones

R1 :=
{
j ∈ Z | − tδ ≤ j − c∗t ≤ 1

}
, R2 :=

{
j ∈ Z | 1 ≤ j − c∗t ≤

π

4
(1 + t)α

}
,

R3 :=

{
j ∈ Z | π

4
(1 + t)α ≤ j − c∗t ≤

3π

2
(1 + t)α

}
,

R4 :=

{
j ∈ Z | 3π

2
(1 + t)α ≤ j − c∗t ≤ η1(1 + t)

1
2

}
,

R5 :=
{
j ∈ Z | j − c∗t ≥ η1(1 + t)

1
2

}
.

We point out that the interfaces of each zone require rather delicate analysis, due to the nonlocal

feature of the equation (5.1).

In region R1. There holds

−tδ
(1 + t)α

≤ j − c∗t
(1 + t)α

≤ 1

(1 + t)α
.

Due to δ < α and due to the asymptotics (4.9) of wj(t), we get that

pj(t) ∼
1

(1 + t)
3
2
−β

and − 1

(1 + t)
3
2
−δ

. wj(t) .
1

(1 + t)
3
2

for t large enough.

Therefore the cosine perturbation will enable vj(t) to be positive in this region. To be specific, we

first require that β > δ > 0, so that the cosine term plays a dominant role here, namely,

vj(t) ∼
1

(1 + t)
3
2
−β

> 0 for t large enough. (5.5)

Moreover, a straightforward computation gives that, for t large enough,

d

dt
(ξ(t)wj(t))−

(
L [ξ(t)w(t)]

)
j

= ξ
′
(t)wj(t) & −

ξ
′
(t)

(1 + t)
3
2
−δ
.
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Define by j1 the leftmost integer in R1. By double angle formulas, we see for t large enough and

j ∈ R1\ {j1} that

d

dt
pj(t)− (L p(t))j =

β − 3
2

(1 + t)
3
2
−β+1

cos

(
j − c∗t
(1 + t)α

)
+

1

(1 + t)
3
2
−β

(
c∗

(1 + t)α
+ α

j − c∗t
(1 + t)α+1

)
sin

(
j − c∗t
(1 + t)α

)
+

4eλ∗

(1 + t)
3
2
−β

sin2

(
1/2

(1 + t)α

)
cos

(
j − c∗t
(1 + t)α

)
− 2c∗

(1 + t)
3
2
−β

sin

(
1/2

(1 + t)α

)
sin

(
j − c∗t+ 1/2

(1 + t)α

)
∼ 1

(1 + t)
3
2
−β+2α

.

At j = j1, since pj−1(t) = 0 for all t > 0, it follows from the Taylor expansion that

d

dt
pj1(t)− (L p(t))j1 =

β − 3
2

(1 + t)
3
2
−β+1

cos

(
j1 − c∗t
(1 + t)α

)

+
1

(1 + t)
3
2
−β

(
c∗

(1 + t)α
+ α

j1 − c∗t
(1 + t)α+1

)
sin

(
j1 − c∗t
(1 + t)α

)

+

(
eλ∗ cos

(
j1 − c∗t
(1 + t)α

)
− sin

(
j1 − c∗t
(1 + t)α

)
c∗ − eλ∗
(1 + t)α

+O

(
1

(1 + t)2α

))
1

(1 + t)
3
2
−β

∼ 1

(1 + t)
3
2
−β

for t large enough.

Therefore, in order to ensure that d
dtvj(t)−(L v(t))j ≥ 0 for t large enough in this region, it suffices

for ξ(t) to satisfy

1

(1 + t)
3
2
−β+2α

� ξ
′
(t)

(1 + t)
3
2
−δ

for t large enough.

We can then require that

0 ≤ ξ′(t)� 1

(1 + t)2α+δ−β for t large enough. (5.6)

In region R2. There holds
1

(1 + t)α
≤ j − c∗t

(1 + t)α
≤ π

4
.

We notice that wj(t) is positive for all t > 0 in this region, as is the cosine perturbation. Since ξ(t)

is assumed a priori to be positive in (0,+∞), one has that the function vj(t) > 0 for all t > 0 in

this region. Moreover,

d

dt
(ξ(t)wj(t))−

(
L [ξ(t)w(t)]

)
j

= ξ
′
(t)wj(t) ≥ 0

for all t > 0 in this region, due to our requirement that ξ
′
(t) ≥ 0 in (0,+∞). By the same calculation

as in region R1, we have the following asymptotics in R2

d

dt
pj(t)− (L p(t))j ∼

1

(1 + t)
3
2
−β+2α

> 0 for t large enough.
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Consequently, there holds d
dtvj(t)− (L v(t))j ≥ 0 for t large enough in region R2.

In region R3. There holds
π

4
≤ j − c∗t

(1 + t)α
≤ 3π

2
.

Notice that the cosine perturbation may be negative in this region. Let j3 be the rightmost integer

in R3. We first look at R3\ {j3}, where it follows from an analogous procedure as in preceding cases

that
d

dt
pj(t)− (L p(t))j ≥

−1

(1 + t)
3
2
−β+2α

for t large enough.

At j3, by noticing that pj3+1(t) = 0 for all t > 0, we derive by using the Taylor expansion that

d

dt
pj3(t)− (L p(t))j3

=
β − 3

2

(1 + t)
3
2
−β+1

cos

(
j3 − c∗t
(1 + t)α

)
+

1

(1 + t)
3
2
−β

(
c∗

(1 + t)α
+ α

j3 − c∗t
(1 + t)α+1

)
sin

(
j3 − c∗t
(1 + t)α

)

− 1

(1 + t)
3
2
−β

(
eλ∗ sin

(
j3 − c∗t
(1 + t)α

)
1

(1 + t)α
+O

(
1

(1 + t)3α

)
− e−λ∗ cos

(
j3 − c∗t
(1 + t)α

))

∼ − e−λ∗

(1 + t)
3
2
−β+α

sin

(
j3 − c∗t
(1 + t)α

)
+

e−λ∗

(1 + t)
3
2
−β

cos

(
j3 − c∗t
(1 + t)α

)
∼ e−λ∗

(1 + t)
3
2
−β+α

for t large enough.

On the other hand, one observes from (4.9) that

wj(t) ∼
1

(1 + t)
3
2
−α

for t large enough.

However, the cosine perturbation may be negative in this area. Therefore, to ensure that vj(t) > 0

and d
dtvj(t)− (L v(t))j ≥ 0 for t large enough in this region, we require this time α > β and

ξ
′
(t)

(1 + t)
3
2
−α
� 1

(1 + t)
3
2
−β+2α

for t large enough. (5.7)

In region R4. We first define j
4

and j4, respectively, as the leftmost and rightmost integers in

region R4. We note that in R4 both the cosine perturbation and the exponential correction Ξ are

identically equal to zero, such that for all t large enough, we have vj(t) = ξ(t)wj(t) > 0 thanks to

(4.10). Now standard computations give that for each j ∈ R4\
{
j

4
, j4

}
that

d

dt
vj(t)− (L v(t))j = ξ

′
(t)wj(t) ≥ 0, for t large enough,

thanks to the nonnegativity assumption of ξ
′
(t) for t > 0. Now at j

4
we have pj

4
(t) = pj

4
+1(t) = 0

together with pj
4
−1(t) ≤ 0, so that we get that

d

dt
vj

4
(t)− (L v(t))j

4
= ξ
′
(t)wj

4
(t)− eλ∗pj

4
−1(t) ≥ 0, for t large enough.
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On the other hand, at j4, we remark that Γ(η) = 0 and Γ
(
η + 1√

1+t

)
> 0 with η = j4−c∗t√

1+t
such

that we obtain that

d

dt
vj4(t)− (L v(t))j4 = ξ

′
(t)wj4(t)− e−λ∗Ξ

(
η +

1√
1 + t

)
.

By definition of the cut-off function, we have that Γ(k)(η1) = 0 for all k ≥ 0, such that

Ξ

(
η +

1√
1 + t

)
= O

(
1

(1 + t)k/2

)
, for any k ≥ 0, and t large,

and thus

d

dt
vj4(t)− (L v(t))j4 = ξ

′
(t)wj4(t) + o

(
ξ
′
(t)wj4(t)

)
≥ 0, for t large enough.

Partial conclusion. Gathering (5.6) and (5.7), we should impose as in the continuous case

1

(1 + t)3α−β � ξ
′
(t)� 1

(1 + t)2α+δ−β for t large enough.

This is possible so long as δ < α, which is exactly what we have assumed. Let us take

ξ
′
(t) ∼ 1

(1 + t)3α−2β
and ξ(t) = 1− 1

(1 + t)3α−2β−1
for t ≥ 0,

which yields that 3α− 2β > 2α+ δ − β, i.e., β < α− δ. Due to our assumption that the function

ξ(t) is positive and bounded in (0,+∞), it suffices to require 3α − 2β − 1 > 0. Hence, we can fix

δ ∈ (0, 1/4) very small, then there exist α ∈ (1/3, 1/2) and β > 0 such that

0 < δ < β < min

(
α− δ, 3α− 1

2

)
< α <

1

2
. (5.8)

In region R5. We now turn our attention to the final region R5 =
{
j ∈ Z | j − c∗t ≥ η1

√
1 + t

}
where one gets contributions from the correction Ξ. We first remark that for all t large enough one

has

0 < vj(t) = ξ(t)wj(t) + Ξ

(
j − c∗t√
t+ 1

)
, η1 ≤

j − c∗t√
t+ 1

≤ η2,

for any choice of 0 < η1 < η2 thanks to Lemma 4.6. We now use Lemma 4.7 and let A > a > 1

such that there exists ηA > 0 for which

|wj(t)| ≤ ‖w0‖`∞(Z)e
−A
(
j−J−c∗t√

t+1
−ηA

)
,

j − J − c∗t√
t+ 1

≥ ηA,

where J = Jω + 1 ≥ 2 is the range of the support of the initial condition. From the proof of

Lemma 4.7, we know that we can take:

ηA = 4 cosh(λ∗)A
(
1 + ‖ω‖L∞([−A,0])

)
,
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for some analytic function ω verifying ω(0) = 0. We can also always assume that t is large enough

such that J√
t+1
≤ ηA. With η2 = 2ηA, we get that

vj(t) ≥ −ξ(t)‖w0‖`∞(Z)e
−A
(
j−J−c∗t√

t+1
−ηA

)
+ 2‖w0‖`∞(Z)e

−a
(
j−c∗t√
t+1
−η2

)

≥ ‖w0‖`∞(Z)

(
−e−(A−a)

(
j−c∗t√
t+1
−η2

)
+ 2

)
e
−a
(
j−c∗t√
t+1
−η2

)
> 0,

j − c∗t√
t+ 1

≥ η2.

As a consequence, from now on we fix η2 > 0 as

η2 := 8 cosh(λ∗)A
(
1 + ‖ω‖L∞([−A,0])

)
, (5.9)

and then chose η1 > 0, depending on a, as

η1 := 3 cosh(λ∗)a. (5.10)

We remark that since 1 < a < A and η2 = 2ηA, we always have

0 < η1 = 3 cosh(λ∗)a < 2η1 < 8 cosh(λ∗)a < 8 cosh(λ∗)A
(
1 + ‖ω‖L∞([−A,0])

)
= η2.

Next, we verify that vj(t) is indeed a supersolution in region R5. We divide it into two subregions:

R1
5 :=

{
j ∈ Z | η1 ≤

j − c∗t√
1 + t

≤ η2

}
, R2

5 :=

{
j ∈ Z | j − c∗t√

1 + t
≥ η2

}
,

and throughout we denote η = j−c∗t√
1+t

.

In region R1
5. What changes in the intermediate range R1

5 is that one gets an extra contribution

from the cut-off function Γ. More precisely, if we denote by j1
5

and j
1
5, respectively, as the leftmost

and rightmost integers in region R1
5. On the one hand, for any j ∈ R1

5\
{
j1

5
, j

1
5

}
we compute:

ea(η−η2)
(
L
[
Γ(η)e−a(η−η2)

])
j

= eλ∗
[
Γ

(
η +

1√
t+ 1

)
e
− a√

t+1 − 2Γ(η) + Γ

(
η − 1√

t+ 1

)
e

a√
t+1

]
− c∗

[
Γ

(
η +

1√
t+ 1

)
e
− a√

t+1 − Γ(η)

]
= eλ∗

[
a2

(t+ 1)
Γ(η) +

1

(t+ 1)
Γ′′(η)− 2a

(t+ 1)
Γ′(η)

]
− c∗

[
1√
t+ 1

Γ′(η) +
1

2(t+ 1)
Γ′′(η)− a√

t+ 1
Γ(η)

]
− c∗

[
a2

2(t+ 1)
Γ(η)− a

(t+ 1)
Γ′(η)

]
+O

(
1

(t+ 1)3/2

)
= − c∗√

t+ 1

[
Γ′(η)− aΓ(η)

]
+

cosh(λ∗)a
2

(t+ 1)
Γ(η) +

cosh(λ∗)

(t+ 1)
Γ′′(η)

− 2 cosh(λ∗)a

(t+ 1)
Γ′(η) +O

(
1

(t+ 1)3/2

)
.
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On the other hand, for any j ∈ R1
5, we have

ea(η−η2)

(
d

dt

[
Γ(η)e−a(η−η2)

])
=
(
Γ′(η)− aΓ(η)

) dη

dt

=
(
Γ′(η)− aΓ(η)

)(
− c∗√

t+ 1
− η

2(t+ 1)

)
.

As a consequence, for any j ∈ R1
5\
{
j1

5
, j

1
5

}
, one has

ea(η−η2)

(
d

dt

[
Γ(η)e−a(η−η2)

]
−
(
L
[
Γ(η)e−a(η−η2)

])
j

)
=

1

(t+ 1)

[
a
(η

2
− a cosh(λ∗)

)
Γ(η) +

(
2 cosh(λ∗)a−

η

2

)
Γ′(η)− cosh(λ∗)Γ

′′(η)
]

+O

(
1

(t+ 1)3/2

)

≥ 1

(t+ 1)

a2 cosh(λ∗)

2
Γ(η) +

(
2 cosh(λ∗)a−

η

2

)
Γ′(η)− cosh(λ∗)Γ

′′(η)︸ ︷︷ ︸
:=Θa(η)

+O

(
1

(t+ 1)3/2

)
.

Since Γ′(η) > 0 for η ∈ (η1, η2), we get that

a2 cosh(λ∗)

2
Γ(η) +

(
2 cosh(λ∗)a−

η

2

)
Γ′(η) > 0

for all η ∈ (η1, 4 cosh(λ∗)a] with η1 = 3 cosh(λ∗)a. And since we have

‖Γ′′‖L∞[η1,η2] ≤
C2

(η2 − η1)2
≤ C2

(5 cosh(λ∗)a)2 ,

we get that Θa(η) > 0 for all η ∈ (η1, 4 cosh(λ∗)a] provided that a > 1 is large enough. Now, for

η ∈ (4 cosh(λ∗)a, η2), we get that

a2 cosh(λ∗)

2
Γ(η) +

(
2 cosh(λ∗)a−

η

2

)
Γ′(η) ≥ a2 cosh(λ∗)

2
Γ(η) + 2 cosh(λ∗)aΓ′(η)− C1

2(1− η1/η2)
.

And since 2η1 = 6 cosh(λ∗)a < 8 cosh(λ∗)a < η2, we get that

C1

2(1− η1/η2)
≤ C1.

As a consequence, for η ∈ (4 cosh(λ∗)a, η2), we have

Θa(η) ≥ a2 cosh(λ∗)

2
Γ(η) + 2 cosh(λ∗)aΓ′(η)− C1 −

C2

(5 cosh(λ∗)a)2 > 0,

provided that a > 1 is large enough. As a conclusion, we can always find a > 1 large enough such

that Θa(η) > 0 for all η ∈ (η1, η2), this then implies that

d

dt
vj(t)− (L v(t))j ≥ 0, for t large enough,
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in the range j ∈ R1
5\
{
j1

5
, j

1
5

}
. Finally, at the extremal end points of R1

5 we get the following

contributions. First, at j = j1
5
, we observe that

ea(η−η2)
(
L
[
Γ(η)e−a(η−η2)

])
j1
5

= −Γ(η)eλ∗ +
(
eλ∗ − c∗

)[
Γ

(
η +

1√
t+ 1

)
e
− a√

t+1 − Γ(η)

]
= −Γ(η)eλ∗ +O

(
1√
t+ 1

)
,

together with

ea(η−η2)

(
d

dt

[
Γ(η)e−a(η−η2)

])
=
(
Γ′(η)− aΓ(η)

)(
− c∗√

t+ 1
− η

2(t+ 1)

)
= O

(
1√
t+ 1

)
.

As a consequence, we have at j = j1
5

ea(η−η2)

(
d

dt

[
Γ(η)e−a(η−η2)

]
−
(
L
[
Γ(η)e−a(η−η2)

])
j1
5

)
= Γ(η)eλ∗ +O

(
1√
t+ 1

)
≥ 0,

for t large enough, from which we deduce that d
dtvj(t) − (L v(t))j ≥ 0. Similar computations at

the other boundary point j = j
1
5 also yields to d

dtvj(t)− (L v(t))j ≥ 0 for t large enough.

In region R2
5. Once again, we denote by j2

5
the left most integer in region R2

5. In this regime, we

have Γ(η) = 1 such that we get for each j ∈ R2
5\
{
j2

5

}
d

dt
vj(t)− (L v(t))j = ξ

′
(t)wj(t) +

2a‖w0‖`∞(Z)

(t+ 1)

(
η

2
− cosh(λ∗)a

(
1 + ω

(
− a√

t+ 1

)))
e−a(η−η2)

≥
(
−ξ′(t) +

2a

(t+ 1)

(
η2

2
− cosh(λ∗)a

(
1 + ω

(
− a√

t+ 1

))))
‖w0‖`∞(Z)e

−a(η−η2).

By analyticity of the function ω and the fact that ω(0) = 0, we can always ensure that

1 + ω

(
− a√

t+ 1

)
≤ 3

2
, for t large enough.

As a consequence, using the fact that η2 = 2ηA > 8 cosh(λ∗)a, we get

d

dt
vj(t)− (L v(t))j ≥

(
−ξ′(t) +

5a cosh(λ∗)

(t+ 1)

)
‖w0‖`∞(Z)e

−a(η−η2) ≥ 0, for t large enough,

since

ξ
′
(t) ∼ 1

(1 + t)3α−2β
,

with 3α− 2β > 1. Now, at j = j2
5
, we have

ea(η−η2)
(
L
[
Γ(η)e−a(η−η2)

])
j2
5

= −eλ∗ + eλ∗
[
Γ

(
η − 1√

t+ 1

)
e

a√
t+1 − 1

]
= −eλ∗ +O

(
1√
t+ 1

)
,

for t large enough. Then we conclude that d
dtvj(t) − (L v(t))j ≥ 0 is also satisfied at j = j2

5
for t

large enough.
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Final conclusion. First, we set ζ(t) := c∗t − tδ. From the above analysis, one can choose

T0 > 0 sufficiently large such that ζ(T0) − 1 > J (recall that u0
j = 0 for j ≥ J) and such that

d
dtvj(t) − (L v(t))j ≥ 0 for t ≥ T0 and j ∈ Z with j ≥ ζ(t). This together with (5.2) then implies

that d
dtvj(t) − (L v(t))j + Rj(t; vj(t)) ≥ 0 for t ≥ T0 and j ∈ Z with j ≥ ζ(t). Moreover, due

to the choice of T0, we have vj(T0) > 0 = eλ∗ju0
j = vj(0) for j ∈ Z with j ≥ ζ(T0) − 1. For

j ∈ [ζ(t)− 1, ζ(t)), we observe that vj(t − T0) = eλ∗(j−c∗(t−T0))uj(t − T0) ≤ eλ∗(c∗T0−tδ) for t ≥ T0

(since 0 ≤ uj(t) ≤ 1 for all t ≥ 0 and j ∈ Z), while vj(t) ∼ (1 + t)−3/2+β for t ≥ T0 by (5.5), up to

increasing T0. Up to increasing T0 again, we further have (1 + t)−3/2+β > eλ∗(c∗T0−tδ) for all t ≥ T0,

which will yield that vj(t) ≥ vj(t − T0) at j ∈ [ζ(t)− 1, ζ(t)) for all t ≥ T0. We then conclude

that vj(t) is a supersolution of (5.1) for all t ≥ T0 and j ∈ Z with j ≥ ζ(t). It follows from the

comparison principle Proposition A.2 that

vj(t+ T0) ≥ vj(t) for t ≥ 0, j − c∗t ≥ −tδ. (5.11)

5.1.2 Lower barrier for vj(t)

In the special case that f is linear in a small neighborhood of 0, namely, f(s) = f ′(0)s for s ∈ [0, s0),

with s0 ∈ (0, 1) small, we would be able to control vj(t) by some multiple of wj(t) from below.

Nevertheless, the nonlinear term f is not linear in the vicinity of 0 in general, for which we still

hope to manage controlling vj(t) by wj(t). Accordingly, we need to do it in an area where the

nonlinear term is negligible. Let δ, β and α be fixed as in (5.8). The idea is to estimate vj(t) ahead

of j − c∗t = tδ. To do so, let us construct a lower barrier as follows:

vj(t) := ξ(t)w̃j(t)−
1

(1 + t)
3
2
−β

cos

(
j − c∗t
(1 + t)α

)
1{j∈Z | tδ−1≤j−c∗t≤ 3π

2
(1+t)α}, (5.12)

for t large enough and j ∈ Z with 1 < tδ − 1 ≤ j − c∗t, where we assume that the unknown

ξ(t) ∈ C 1 is positive and bounded away from 0 in (0,+∞) and satisfies ξ′(t) ≤ 0 in (0,+∞), which

will be made clear in the sequel. Here w̃j(t) is defined out of wj(t) as follows. We first define

χ(t) = sup {z ≥ 1 | wk(t) > 0 for all 1 ≤ k − c∗t ≤ z}, and set w̃j(t) = wj(t)1{j∈Z | 1≤j−c∗t≤χ(t)}.

Again, we define the sequence p(t) = (pj(t))j∈Z as

pj(t) =
1

(1 + t)
3
2
−β

cos

(
j − c∗t
(1 + t)α

)
, t > 0, j ∈ Z.

Let now verify that vj(t) is a subsolution of (5.1) for t large enough and j ∈ Z with j − c∗t ≥ tδ.

We first note that, since f ∈ C 2([0, 1]), there exist M > 0 and s0 ∈ (0, 1) such that f(s)− f ′(0)s ≥
−Ms2 for s ∈ [0, s0). Gathering this with the linear extension of f on (−∞, 0), one deduces, for t

large enough and j ∈ Z with j − c∗t ≥ tδ,

Rj(t; s) =f ′(0)s− eλ∗(j−c∗t)f(e−λ∗(j−c∗t)s)

=eλ∗(j−c∗t)
(
f ′(0)e−λ∗(j−c∗t)s− f(e−λ∗(j−c∗t)s)

)
,

≤Me−λ∗(j−c∗t)s2 ≤Me−λ∗t
δ
s2
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as long as e−λ∗t
δ
s ∈ (0, s0) for t large enough and j ∈ Z with j − c∗t ≥ tδ, while Rj(t; s) = 0 when

s ≤ 0. We shall require vj(t) to satisfy e−λ∗t
δ
vj(t) < s0 in {j ∈ Z | j− c∗t ≥ tδ} for t large enough,

which is possible due to the asymptotics of wj(t) as well as our assumptions on ξ(t) and on the

parameters.

As proceeded in the previous section, we start with the region {j ∈ Z | j− c∗t ≥ 3π
2 (1 + t)α} where

vj(t) = ξ(t)w̃j(t). From Lemma 4.6 and (4.10), for t large enough, we have that 3π
2 (1 + t)α ≤ χ(t)

such that we define two regions

R1 :=

{
j ∈ Z | 3π

2
(1 + t)α ≤ j − c∗t ≤ χ(t)

}
and R2 := {j ∈ Z | χ(t) < j − c∗t} .

In region R1. By definition, for all j ∈ R1, we have vj(t) = ξ(t)w̃j(t) = ξ(t)wj(t) > 0. Let us

denote j1 the rightmost integer in R1. Then, for all j ∈ R1\ {j1}, we get

d

dt
vj(t)− (L v(t))j +Rj(t; vj(t)) ≤

d

dt
vj(t)− (L v(t))j +Me−λ∗t

δ
(vj(t))

2

= ξ′(t)wj(t) +Me−λ∗t
δ
ξ2(t)(wj(t))

2

=
(
ξ′(t) +Mξ2(t)e−λ∗t

δ
wj(t)

)
wj(t).

Taking into account the boundedness of wj from (3.19), we see that

e−λ∗t
δ
wj(t) ≤ C(1 + t)−2, (5.13)

with some C > 0, for all t large enough and j ∈ Z with j − c∗t ≥ tδ. It is then sufficient for ξ(t) to

solve

ξ′(t) = −CMξ2(t)(1 + t)−2 for t > 0. (5.14)

From (5.13) and (5.14), one has that d
dtvj(t) − (L v(t))j +Rj(t; vj(t)) ≤ 0 for t large enough and

j ∈ R1\ {j1}. Now, at j = j1, we first notice that

d

dt
vj1(t)− (L v(t))j1 = ξ′(t)wj1(t) + e−λ∗ξ(t)wj1+1(t) ≤ ξ′(t)wj1(t),

since wj1+1(t) ≤ 0 by definition of χ(t). As a consequence, we deduce that

d

dt
vj1(t)− (L v(t))j1 +Rj1(t; vj1(t)) ≤ 0,

for t large enough.

In region R2. For each j ∈ R2, we first note that vj(t) = 0. Then, we denote j2 the leftmost

integer in R2 and we readily obtain that

d

dt
vj(t)− (L v(t))j +Rj(t; vj(t)) = 0,

for t large enough and all j ∈ R2\ {j2}. Now, at j = j2, we simply have

d

dt
vj2(t)− (L v(t))j2 +Rj2(t; vj2(t)) = −eλ∗ξ(t)wj2−1(t) < 0,
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for t large enough.

Next, we divide the remaining region into two zones:

R3 :=
{
j ∈ Z | tδ ≤ j − c∗t ≤ (1 + t)β

}
and R4 :=

{
j ∈ Z | (1 + t)β ≤ j − c∗t ≤

3π

2
(1 + t)α

}
,

and quickly check that vj(t) is a sub-solution in these regions too, the computations being similar

as in the previous cases.

In region R3. Thanks to our choice of δ, β and α, by requiring ξ(0) > 0 to be sufficiently small,

we derive the following estimate

vj(t) .
j − c∗t
(1 + t)

3
2

− 1

(1 + t)
3
2
−β
≤ 0 for t large enough, (5.15)

which then implies Rj(t; vj(t)) = 0. Since wj(t) > 0 for t large enough in R3 and since ξ′(t) ≤ 0 in

(0,+∞), we have

d

dt
(ξ(t)wj(t))−

(
L [ξ(t)w(t)]

)
j

= ξ′(t)wj(t) ≤ 0 for t large enough.

Moreover, it follows from a direct calculation that

d

dt
pj(t)− (L p(t))j ∼

1

(1 + t)
3
2
−β+2α

for t large enough.

We eventually get, in region R3,

d

dt
vj(t)− (L v(t))j ∼ ξ′(t)wj(t)−

1

(1 + t)
3
2
−β+2α

< 0 for t large enough.

In region R4. If vj(t) ≤ 0, that is, j − c∗t ∼ (1 + t)β, then Rj(t; vj(t)) = 0 and the analysis in

the previous case shows that d
dtvj(t) − (L v(t))j ≤ 0 for t large enough. Now, it is left to discuss

the situation that vj(t) > 0 for t large enough in this area R4. We note here that

0 < vj(t) .
1

(1 + t)
3
2
−α

for t large enough.

It is obvious to see that e−λ∗t
δ 1

(1+t)3−2α � 1

(1+t)
3
2−β+2α

for t large enough, which will imply

e−λ∗t
δ
(vj(t))

2 � 1

(1+t)
3
2−β+2α

for all t large in this area, whence , for t large enough in R4,

d

dt
vj(t)− (L v(t))j +Rj(t; vj(t)) ≤

d

dt
vj(t)− (L v(t))j +Me−λ∗t

δ
(vj(t))

2

∼
ξ′(t)

(1 + t)
3
2
−β
− 1

(1 + t)
3
2
−β+2α

≤ 0.
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Conclusion. We require that ξ(t) is the solution of the ODE (5.14) starting from a sufficiently

small initial datum ξ(0) = ξ
0
> 0. Then, ξ(t) is positive and uniformly bounded from above and

below in [0,+∞) such that

0 <
ξ

0

1 + ξ
0
CM

≤ ξ(t) ≤ ξ
0
< +∞ for t ≥ 0.

There is t0 > 0 large enough such that e−λ∗t
δ 1

(1+t)3−2α < 1

(1+t)
3
2−β+2α

for t ≥ t0 and such that

e−λ∗t
δ
vj(t) < s0 and e−λ∗t

δ
wj(t) ≤ C(1 + t)−2 for all t ≥ t0 and j ∈ Z with j ≥ ζ(t) where we have

set ζ(t) := c∗t+t
δ. Moreover, it follows from above analysis that d

dtvj(t)−(L v(t))j+Rj(t; vj(t)) ≤ 0

for t ≥ t0 and j ∈ Z with j ≥ ζ(t). Now let us prove that, at time t = t0, there is κ > 0 small

enough such that vj(t0 + 1) ≥ κvj(t0) for j ∈ Z with j ≥ ζ(t0). As a matter of fact, we notice that

the sequence function zj(t) := e−f
′(0)twj(t) is the solution of

d

dt
zj(t)− (L z(t))j + f ′(0)zj(t) = 0 t > 0, j ∈ Z, (5.16)

with compactly supported initial value zj(0) = wj(0), while vj(t) satisfies (5.16) with “=” replaced

by “≥”. Moreover, there exists κ1 > 0 small enough such that

vj(1) = eλ∗(j−c∗)uj(1) > κ1wj(0) = κ1zj(0) for j ∈ Z.

The comparison principle immediately yields that vj(t + 1) > κ1e
−f ′(0)twj(t) for all t ≥ 0 and

j ∈ Z. In particular, we have vj(t0 + 1) > κ1e
−f ′(0)t0wj(t0) for j ∈ Z with j ≥ ζ(t0) − 1. We

can then choose κ > 0 small enough such that κ1e
−f ′(0)t0wj(t0) > κξ

0
wj(t0) for j ∈ Z with

j ≥ ζ(t0)−1 and such that particularly κ1e
−f ′(0)t0wj(t0) > κ

(
ξ

0
wj(t0) + (1 + t0)−3/2+β

)
for j ∈ Z

with c∗t0 + π
2 (1 + t0)α ≤ j ≤ c∗t0 + 3π

2 (1 + t0)α. This implies that

vj(t0 + 1) > κvj(t0) for j ∈ Z with j ≥ ζ(t0)− 1.

For j ∈ [ζ(t)− 1, ζ(t)), we have, up to increasing t0 if necessary, κvj(t) < 0 for all t ≥ t0 by (5.15)

and vj(t+ 1) > eλ∗t
δ
uj(t+ 1) > 0 for all t ≥ t0, which implies that vj(t+ 1) > κvj(t) for all t ≥ t0

and j ∈ Z with j ∈ [ζ(t)− 1, ζ(t)). Therefore, κvj(t) is a subsolution of (5.1) for t ≥ t0 and j ∈ Z
with j ≥ ζ(t). The comparison principle Proposition A.2 yields that

vj(t) ≥ κvj(t− 1) for t ≥ t0 + 1, j ∈ Z with j − c∗t ≥ tδ. (5.17)

5.2 Proof of Theorem 1

Using the upper and lower barriers of vj constructed in preceding sections as key ingredients, we

are now in position to prove Theorem 1, which gives a refined estimate, up to O(1) precision, of

the level sets for initially localized solutions uj(t) to (1.1) for large times.
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Proof of Theorem 1. The proof is based on the comparison between vj(t) and a variant of the

shifted minimal traveling front with logarithmic correction for all large times in the moving zone

|j − c∗t| ≤ tη for some small η. Define

Vj(t) = t
3
2 vj(t) for t ≥ 1, j ∈ Z.

Then, Vj(t) satisfies d
dtVj(t) = eλ∗(Vj−1(t)−2Vj(t)+Vj+1(t))−c∗(Vj+1(t)−Vj(t))+ 3

2tVj(t)−R̂j(t;Vj(t)), t > 1, j ∈ Z,

Vj(1) = vj(1), j ∈ Z,

with nonnegative term R̂j(t; s) given explicitly by

R̂j(t; s) := f ′(0)s− eλ∗(j−c∗t+
3

2λ∗
ln t)f(e−λ∗(j−c∗t+

3
2λ∗

ln t)s), t ≥ 1, j ∈ Z, s ∈ R. (5.18)

Let δ, β and α be chosen as in (5.8), which also implies that β < 1/4. Fix now

η = β + ε < α (5.19)

for some ε > 0 small enough.

Step 1: Upper bound. We notice from (5.11) that t
3
2 vj(t + T0) ≥ Vj(t) for t ≥ 0 and j ∈ Z

with j − c∗t ≥ −tδ, with vj(t) given in (5.3). This implies that there exists some constant C > 0

such that, for t large enough,

Vj(t) ≤ t
3
2 vj(t+ T0) ≤ Ctη for ξ(t) < j ≤ ξ(t) + 1,

where we have set ξ(t) := c∗t+ tη − 3
2λ∗

ln t. Define now the sequence ψj(t) by

ψj(t) = eλ∗(j−c∗t+
3

2λ∗
ln t)Uc∗

(
j − c∗t+

3

2λ∗
ln t+ b

)
for ζ(t)− 1 ≤ j ≤ ξ(t) + 1,

for t large enough, with ζ(t) := c∗t − tη − 3
2λ∗

ln t and where b ∈ R is fixed such that ψj(t) ≥
t

3
2 vj(t + T0) for t large enough and ξ(t) < j ≤ ξ(t) + 1. This is always possible thanks to our

normalization for the minimal traveling front Uc∗ in (1.10) which ensures that, for t large enough,

ψj(t) ∼ e−λ∗btη for ξ(t) < j ≤ ξ(t) + 1.

Substituting ψj(t) into the equation of Vj(t) leads to∣∣∣∣ d

dt
ψj(t)− eλ∗ (ψj−1(t)− 2ψj(t) + ψj+1(t)) + c∗ (ψj+1(t)− ψj(t))−

3

2t
ψj(t) + R̂j(t;ψj(t))

∣∣∣∣
=

3

2λ∗t
eλ∗(j−c∗t+

3
2λ∗

ln t)

∣∣∣∣U ′c∗ (j − c∗t+
3

2λ∗
ln t+ b

)∣∣∣∣ . t−(1−η) ,
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for t large enough and j ∈ Z with ζ(t) ≤ j ≤ ξ(t). Now, set sj(t) := (Vj(t)− ψj(t))+, then sj(t)

satisfies 
d
dtsj(t)−(L s(t))j− 3

2tsj(t)+Qj(t;sj(t)). 1
t1−η , ζ(t) ≤ j ≤ ξ(t),

sj(t) = O
(
t

3
2 e−λ∗t

η)
, ζ(t)− 1 ≤ j < ζ(t),

sj(t) = 0, ξ(t) < j ≤ ξ(t) + 1,

(5.20)

for t large enough. Here, Qj(t; sj(t)) = 0 if sj(t) = 0, and otherwise,

Qj(t; sj(t)) = R̂j(t;Vj(t))− R̂j(t;ψj(t))

= f ′(0)sj(t)− eλ∗(j−c∗t+
3

2λ∗
ln t)
(
f(e−λ∗(j−c∗t+

3
2λ∗

ln t)Vj(t))− f(e−λ∗(j−c∗t+
3

2λ∗
ln t)ψj(t))

)
= f ′(0)sj(t)− bj(t)sj(t) ≥ 0,

in which bj is a continuous function, and all bj ’s are bounded in `∞ norm by f ′(0) since 0 < f(s) ≤
f ′(0)s for s ∈ (0, 1). We claim that, there holds

lim
t→+∞

sup
j∈Z, |j−c∗t+ 3

2λ∗
ln t|≤tη

sj(t) = 0. (5.21)

We use a comparison argument to verify this. Define

sj(t) =
1

tλ
cos

(
j − c∗t
tγ

)
for t large enough and ζ(t)− 1 ≤ j ≤ ξ(t) + 1,

with 0 < η < 1/4 < γ < 1/3 such that 2γ + η < 1 and with 0 < λ < 1 − 2γ − η. We notice that

sj(t) ∼ t−λ � t
3
2 e−λ∗t

η
for t large enough and j ∈ Z with ζ(t)− 1 ≤ j ≤ ξ(t) + 1. Through a direct

computation, one also gets that, for t large enough and j ∈ Z with ζ(t) ≤ j ≤ ξ(t),

d

dt
sj(t)− (L s(t))j −

3

2t
sj(t) ∼

1

t2γ+λ
� 1

t1−η
.

Since Qj(t; sj(t)) is nonnegative, sj(t) is a supersolution of (5.20) for t large enough and j ∈ Z with

ζ(t) ≤ j ≤ ξ(t). Our claim (5.21) is then reached by noticing that

lim
t→+∞

sup
j∈Z, |j−c∗t+ 3

2λ∗
ln t|≤tη

sj(t) = 0.

Consequently, one gets Vj(t) ≤ ψj(t) + o(1) uniformly in j ∈ Z with |j − c∗t + 3
2λ∗

ln t| ≤ tη as

t→ +∞. This implies

uj(t) ≤ Uc∗
(
j − c∗t+

3

2λ∗
ln t+ b

)
+ o(1)e−λ∗(j−c∗t+

3
2λ∗

ln t), (5.22)

uniformly in j ∈ Z with 1 ≤ j − c∗t+ 3
2λ∗

ln t ≤ tη as t→ +∞.
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Step 2: Lower bound. The proof of this part is similar to Step 1. We sketch it for the sake of

completeness. By virtue of (5.17), we deduce that Vj(t) ≥ κt
3
2 vj(t − 1) for t ≥ t0 + 1 and j ∈ Z

with j − c∗t ≥ tδ, where vj(t) is given in (5.12). We then infer that there exists some constant

C > 0 such that for t large enough,

Vj(t) ≥ κt
3
2 vj(t− 1) ≥ Ctη for ξ(t) < j ≤ ξ(t) + 1.

Define the sequence φj(t) by

φj(t) = eλ∗(j−c∗t+
3

2λ∗
ln t)Uc∗

(
j − c∗t+

3

2λ∗
ln t+ a

)
.

for t large enough and ζ(t) − 1 ≤ j ≤ ξ(t) + 1. Here, we fix a ∈ R such that φj(t) ≤ κt
3
2 vj(t − 1)

for t large enough and ξ(t) < j ≤ ξ(t) + 1. It is also noticed that necessarily a > b. Substituting

φj(t) into the equation of Vj(t) yields∣∣∣∣ d

dt
φj(t)− (L φ(t))j −

3

2t
φj(t) + R̂j(t;φj(t))

∣∣∣∣ . t−(1−η)

for t large enough and j ∈ Z with ζ(t) ≤ j ≤ ξ(t). Set zj(t) := (Vj(t)− φj(t))−, then zj(t) satisfies
d
dtzj(t)−(L z(t))j − 3

2tzj(t)+Hj(t; sj(t)) . 1
t1−η , ζ(t) ≤ j ≤ ξ(t),

zj(t) = O
(
t

3
2 e−λ∗t

η)
, ζ(t)− 1 ≤ j < ζ(t),

zj(t) = 0, ξ(t) < j ≤ ξ(t) + 1,

for t large enough. Here, Hj(t; zj(t)) = 0 when zj(t) = 0; otherwise,

Hj(t; zj(t)) = R̂j(t;Vj(t))− R̂j(t;φj(t))

= f ′(0)zj(t)− eλ∗(j−c∗t+
3

2λ∗
ln t)
(
f(e−λ∗(j−c∗t+

3
2λ∗

ln t)Vj(t))− f(e−λ∗(j−c∗t+
3

2λ∗
ln t)φj(t))

)
= f ′(0)zj(t)− dj(t)zj(t) ≥ 0,

in which dj is a continuous function, and all dj ’s are bounded in `∞ norm by f ′(0) since 0 < f(s) ≤
f ′(0)s for s ∈ (0, 1). Following the proof of (5.21) in Step 1, one can show that

lim
t→+∞

sup
j∈Z, |j−c∗t+ 3

2λ∗
ln t|≤tη

zj(t) = 0.

It then follows that Vj(t) ≥ φj(t) +o(1) uniformly in j ∈ Z with |j− c∗t+ 3
2λ∗

ln t| ≤ tη as t→ +∞,

whence

uj(t) ≥ Uc∗
(
j − c∗t+

3

2λ∗
ln t+ a

)
+ o(1)e−λ∗(j−c∗t+

3
2λ∗

ln t), (5.23)

uniformly in j ∈ Z with 1 ≤ j − c∗t+ 3
2λ∗

ln t ≤ tη as t→ +∞.
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Step 3: Conclusion. Combining (5.22) and (5.23), along with the asymptotics of Uc∗ , it follows

that for any small ε > 0, there exists T > 0 sufficiently large such that

(1− ε)Uc∗
(
j − c∗t+

3

2λ∗
ln t+ a

)
≤ uj(t) ≤ (1 + ε)Uc∗

(
j − c∗t+

3

2λ∗
ln t+ b

)
(5.24)

uniformly in j ∈ Z with 1 ≤ j − c∗t+ 3
2λ∗

ln t ≤ tη for t ≥ T . We therefore conclude that, for every

m ∈ (0, 1), there exists C ∈ R such that

jm(t) ⊂
{
j ∈ Z | c∗t−

3

2λ∗
ln t− C ≤ j ≤ c∗t−

3

2λ∗
ln t+ C

}
for all t large enough.

The proof of Theorem 1 is thereby complete.

6 Convergence to the logarithmically shifted critical pulled front

This section is devoted to the proof of Theorem 2. As an immediate conclusion from Theorem 1,

we know that the transition zone of uj(t) between the two equilibria 0 and 1 is located around the

position c∗t − 3
2λ∗

ln t for t large enough. Also, it is crucial to note that the proof of Theorem 1

shows in particular that uj(t) is indeed sandwiched between two finitely shifted minimal traveling

fronts with logarithmic delay as t → +∞ in a well chosen moving zone. Therefore, the Liouville

type result, Proposition 3.3 of [26], can be directly applied and we then follow the strategy proposed

in the continuous case [27] to accomplish our proof. Finally, throughout the section, for x ∈ R the

integer part of x will be denoted as bxc ∈ Z.

Proof of Theorem 2. Let C > 0 be such that −C < b < a < C with a and b as in (5.24). Assume

by contradiction that (1.13) is not true, then there exist ε > 0 and a sequence (tn)n∈N such that

tn → +∞ as n→ +∞ and

min
|ζ|≤C

sup
j∈Z, j≥0

∣∣∣∣uj(tn)− Uc∗
(
j − c∗tn +

3

2λ∗
ln tn + ζ

)∣∣∣∣ ≥ ε
for all n ∈ N. Since Uc∗(−∞) = 1 and Uc∗(+∞) = 0, together with properties (1.11) and (1.12),

there exists L > 0 such that

min
|ζ|≤C

max
j∈Z, |j|≤L

|uj+jn(tn)− Uc∗(j + ζ)| ≥ ε with jn =

⌊
c∗tn −

3

2λ∗
ln tn

⌋
(6.1)

for all n ∈ N. Up to extraction of a subsequence, the functions (un)j(t) = uj+jn(t + tn) with

jn =
⌊
c∗tn − 3

2λ∗
ln tn

⌋
converge, in C1

loc(R) for each j ∈ Z, to a solution (u∞)j(t) of

d

dt
(u∞)j(t) = (u∞)j−1(t)− 2(u∞)j(t) + (u∞)j+1(t) + f((u∞)j(t)) for (t, j) ∈ R× Z,

such that 0 ≤ (u∞)j(t) ≤ 1 in R× Z. Furthermore, (1.11) and (1.12) imply that

lim
y→+∞

inf
(t,j)∈R×Z,
j≤c∗t−y

(u∞)j(t) = 1, lim
y→+∞

sup
(t,j)∈R×Z,
j≥c∗t+y

(u∞)j(t) = 0. (6.2)
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On the other hand, fix t ∈ R and j ∈ Z with j ≥ 1, we then have j + 3
2λ∗

ln
(
(t+ tn)/tn

)
≥ 1 for n

large enough. Moreover, notice also that t+ tn ≥ 1 and 1 ≤ j + 3
2λ∗

ln
(
(t+ tn)/tn

)
≤ (t+ tn)η for

n large enough, with η chosen in (5.19). Hence, it follows from (5.24) that, for any small ε > 0,

(1− ε)Uc∗
(
j +

3

2λ∗
ln
(
(t+ tn)/tn

)
+ a
)
≤ (un)j+bc∗tc(t) ≤ (1 + ε)Uc∗

(
j +

3

2λ∗
ln
(
(t+ tn)/tn

)
+ b
)

for all n large enough. Therefore,

Uc∗(j + a) ≤ (u∞)j+bc∗tc(t) ≤ Uc∗(j + b) for t ∈ R and j ≥ 1.

Applying the Liouville-type result [26, Proposition 3.3] by taking any positive integer N as the

period, one then gets the existence of z ∈ R such that b ≤ z ≤ a and

(u∞)j(t) = Uc∗(j − c∗t+ z) for (t, j) ∈ R× Z.

Since un converges, up to extraction of a subsequence, to u∞ locally uniformly in R×Z, it follows

in particular that (un)j(0)− Uc∗(j + z)→ 0 uniformly in j ∈ Z with |j| ≤ L, that is,

max
j∈Z, |j|≤L

|uj+jn(tn)− Uc∗(j + z)| → 0 with jn =

⌊
c∗tn −

3

2λ∗
ln tn

⌋
.

Notice that z ∈ [b, a] ⊂ [−C,C], one then gets a contradiction with (6.1). This completes the proof

of (1.13).

Fix now any m ∈ (0, 1) and let (tn)n∈N and (jn)n∈N be sequences of positive real numbers and of

positive integers, respectively, such that tn → +∞ as n→ +∞ and ujn(tn) = m for all n ∈ N. Set

ξn = jn −
⌊
c∗tn −

3

2λ∗
ln tn

⌋
,

Theorem 1 implies that the sequence (ξn)n∈N is bounded and then, up to extraction of a subse-

quence, ξn → ξ0 ∈ Z as n→ +∞. From the argument of (1.13), the functions

(vn)j(t) = uj+jn(t+ tn) with jn = ξn +

⌊
c∗tn −

3

2λ∗
ln tn

⌋
converge, up to another subsequence, locally uniformly in t for all j ∈ Z, to (v∞)j(t) = Uc∗(j−c∗t+
ξ0 + z0) for some z0 ∈ [−C,C]. Since (vn)j=0(0) = ujn(tn) = m, one then has ξ0 + z0 = U−1

c∗ (m).

Therefore, the limit v∞ is uniquely determined and the whole sequence (vn)n∈N then converges to

the traveling wave Uc∗
(
j − c∗t+ U−1

c∗ (m)
)
. The conclusion of Theorem 2 follows.
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A Maximum and comparison principles

We recall that for a given sequence z = (zj)j∈Z, the linear operator L acts on z as

(L z)j = eλ∗
(
zj−1 − 2zj + zj+1

)
− c∗(zj+1 − zj),

where the couple (c∗, λ∗) is solution to (1.8) and satisfies in particular c∗ = eλ∗ − e−λ∗ .

Proposition A.1 (Maximum principle with a single moving boundary). Assume that z(t) =

(zj(t))j∈Z ∈ `∞(Z) satisfies
d
dtzj(t)− (L z(t))j ≤ 0, t > 0, j ≥ ζ(t),

zj(0) ≤ 0, j ≥ ζ(0)− 1,

zj(t) ≤ 0, t > 0, j ∈ [ζ(t)− 1, ζ(t)).

with ζ : R+ → R being a continuous function such that ζ(t) ≥ ζ(0)−1 for all t > 0. Then zj(t) ≤ 0

for t > 0 and j ≥ ζ(t).

Proof of Proposition A.1. From the equation, we derive that (we obey the convention that a+ =

max(0, a))

d

dt
zj(t) + 2 cosh(λ∗)zj(t) ≤ eλ∗z+

j−1(t) + e−λ∗z+
j+1(t) for t > 0, j ≥ ζ(t).

This further implies that

zj(t) ≤ zj(0)e−2 cosh(λ∗)t +

∫ t

0
e−2 cosh(λ∗)(t−s)(eλ∗z+

j−1(s) + e−λ∗z+
j+1(s)

)
ds for t > 0, j ≥ ζ(t).

By applying the boundary condition, we derive

sup
j≥ζ(t)

z+
j−1(t) ≤ sup

j≥ζ(t)
z+
j (t) and sup

j≥ζ(t)
z+
j+1(t) ≤ sup

j≥ζ(t)
z+
j (t) for t > 0,

whence

sup
j≥ζ(t)

(
eλ∗z+

j−1(t) + e−λ∗z+
j+1(t)

)
≤ 2 cosh(λ∗) sup

j≥ζ(t)
z+
j (t) for t > 0.

Together with zj(0) ≤ 0 for j ≥ ζ(t) ≥ ζ(0)− 1 with t > 0, we obtain that

z+
j (t) ≤ 2 cosh(λ∗)

∫ t

0
e−2 cosh(λ∗)(t−s) sup

j≥ζ(s)
z+
j (s)ds for t > 0, j ≥ ζ(t).

Therefore, supj≥ζ(t) z
+
j (t) ≤ 2 cosh(λ∗)

∫ t
0 e
−2 cosh(λ∗)(t−s) supj≥ζ(s) z

+
j (s)ds for t > 0. The Gron-

wall’s inequality implies that supj≥ζ(t) z
+
j (t) = 0 for all t > 0, that is, zj(t) ≤ 0 for t > 0 and

j ≥ ζ(t).

By adaptation of above maximum principle, we have the following comparison principle.
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Proposition A.2 (Comparison principle with a single moving boundary). Assume that (vj(t))j∈Z ∈
`∞(Z) (resp. (vj(t))j∈Z ∈ `∞(Z)) satisfies the equation (5.1) with “=” replaced by “≥” (resp. “≤”)

for t > 0 and j ≥ ζ(t), where the function ζ : R+ → R is continuous such that ζ(t) ≥ ζ(0) − 1.

Moreover, vj(0) ≥ vj(0) for j ≥ ζ(0)− 1 and vj(t) ≥ vj(t) for t > 0 and j ∈ [ζ(t)− 1, ζ(t)). Then,

vj(t) ≥ vj(t) for all t > 0 and j ≥ ζ(t).

We now turn our attention to proving a maximum principle with two moving boundaries.

Proposition A.3 (Maximum principle with two moving boundaries). Assume that z(t) = (zj(t)),

defined for t > 0 and j ∈ [ζ(t)− 1, ξ(t) + 1], satisfies
d
dtzj(t)− (L z(t))j ≤ 0, t > 0, ζ(t) ≤ j ≤ ξ(t),
zj(0) ≤ 0, ζ(0)− 1 ≤ j ≤ ξ(0) + 1,

zj(t) ≤ 0, t > 0, j ∈ [ζ(t)− 1, ζ(t)) ∪ (ξ(t), ξ(t) + 1].

with ζ : R+ → R and ξ : R+ → R being two continuous functions. Then zj(t) ≤ 0 for t > 0 and

ζ(t) ≤ j ≤ ξ(t).

Proof. We assume by contradiction that there exist some t0 > 0 and j0 ∈ [ζ(t0), ξ(t0)] such that

zj0(t0) > 0. We let Ωt0 = [0, t0]× {j ∈ Z | j ∈ [ζ(t), ξ(t)]}. Then, we get the existence of (t∗, j∗) ∈
Ωt0 such that

zj∗(t∗) = max
(t,j)∈Ωt0

zj(t) > 0.

There are two cases. Let us first assume that 0 < t∗ < t0, whence d
dtzj∗(t∗) = 0 and the inequation

gives

−e−λ∗ (zj∗+1(t∗)− zj∗(t∗))− eλ∗ (zj∗−1(t∗)− zj∗(t∗)) ≤ 0.

This implies that zj∗(t∗) = zj∗+1(t∗) = zj∗−1(t∗) = max
(t,j)∈Ωt0

zj(t) > 0 together with d
dtzj∗(t∗) =

d
dtzj∗−1(t∗) = d

dtzj∗+1(t∗) = 0. By induction, if j? denotes the leftmost integer in [ζ(t∗), ξ(t∗)], then

we get that zj?(t∗) = zj?+1(t∗) > 0 and d
dtzj?(t∗) = 0, using once again the inequation, we get that

necessarily 0 < zj?−1(t∗) ≤ 0 since zj?−1(t∗) ∈ [ζ(t∗)− 1, ζ(t∗)), which is impossible. If now t∗ = t0,

we only have that d
dtzj∗(t∗) ≥ 0, but then

0 ≤ d

dt
zj∗(t∗)− e−λ∗ (zj∗+1(t∗)− zj∗(t∗))− eλ∗ (zj∗−1(t∗)− zj∗(t∗)) ≤ 0,

from which we obtain d
dtzj∗(t∗) = 0 with zj∗(t∗) = zj∗+1(t∗) = zj∗−1(t∗) = max

(t,j)∈Ωt0

zj(t) > 0. And

we can repeat the previous arguments to reach a contradiction.

By adaptation of above maximum principle, we have the following comparison principle.

Proposition A.4 (Comparison principle with two moving boundaries). Assume that vj(t) (resp.

vj(t)) satisfies the equation (5.1) with “=” replaced by “≥” (resp. “≤”) for t > 0 and ζ(t) ≤ j ≤
ξ(t), where the functions ζ : R+ → R and ξ : R+ → R are continuous. Moreover, vj(0) ≥ vj(0) for

ζ(0)− 1 ≤ j ≤ ξ(0) + 1 and vj(t) ≥ vj(t) for t > 0 and j ∈ [ζ(t)− 1, ζ(t)) ∪ (ξ(t), ξ(t) + 1]. Then,

vj(t) ≥ vj(t) for all t > 0 and ζ(t) ≤ j ≤ ξ(t).
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Etat Moscou, Ser. Inter. A 1, pp. 1-26, 1937.

[32] K.-S. Lau. On the nonlinear diffusion equation of Kolmogorov, Petrovskii and Piskunov. J.

Diff. Eqs. 59, pp. 44–70, 1985.

[33] D. J. Newman. A simple proof of Wiener’s 1/f theorem. Proc. Amer. Math. Soc., 48:264–265,

1975.

[34] J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. Convergence to a single wave in the Fisher-KPP

equation. Chinese Annals of Mathematics, Series B, 38(2), pp.629-646, 2017.

[35] J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. Refined long-time asymptotics for Fisher-KPP

fronts. Communications in Contemporary Mathematics, 21(07), p.1850072, 2019.

[36] V. V. Petrov. Sums of independent random variables. Ergebnisse der Mathematik und ihrer

Grenzgebiete, Band 82. Springer-Verlag, New York-Heidelberg, 1975.

[37] M. I. Roberts,. A simple path to asymptotics for the frontier of a branching Brownian motion.

The Annals of Probability, 41.5, pp. 3518-3541, 2013.

[38] J.-M. Roquejoffre. Large time behaviour in nonlocal reaction-diffusion equations of the Fisher-

KPP type. arXiv arXiv:2204.12246, 2022.

[39] K. Uchiyama. The behavior of solutions of some nonlinear diffusion equations for large time.

J. Math. Kyoto Univ. 18, pp. 453-508, 1978.

[40] H. Weinberger. Long-time behavior of a class of biological models. SIAM journal on Mathe-

matical Analysis 13.3, pp. 353-396, 1982.

[41] B. Zinner, G. Harris and W. Hudson. Traveling Wavefronts for the Discrete Fisher’s Equation.

Journal of Differential Equations 105, pp. 46-62, 1993.

[42] K. Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock

waves. Indiana Univ. Math. J. 47 , no. 3, pp. 741–871, 1998.

68


	Introduction
	An alternative proof of the logarithmic Bramson correction in the continuous case
	Preliminaries
	Upper barrier for v
	Lower barrier for v
	Proof of Proposition 2.1

	The linearized problem on Z
	The spatial Green's function
	The temporal Green's function
	Exponential pointwise estimates away from jc*t
	Generalized Gaussian estimate


	Refined pointwise estimates in the sub-linear regime
	Proof of Proposition 4.1
	Sharp asymptotics from odd compactly supported initial conditions

	Logarithmic delay of the position for the level sets
	Upper and lower bounds for vj(t)
	Upper barrier for vj(t)
	Lower barrier for vj(t)

	Proof of Theorem 1

	Convergence to the logarithmically shifted critical pulled front
	Maximum and comparison principles

