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Abstract

In this paper, we investigate the threshold phenomenon between extinction and propagation in
fractional Laplacian diffusion equations for a class of compactly supported initial data. We provide
the first quantitative estimates on the threshold when the reaction nonlinearity is of bistable or
ignition type. We mainly use estimates on the fundamental solutions of fractional Laplacian operators
together with some accurate upper and lower solutions to show that the solution either propagates
or goes extinct.
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1 Introduction
We consider the following reaction-diffusion equation:

∂tu(t, x) + (−∆)αu(t, x) = f(u(t, x)), t > 0, x ∈ R, (1.1)

supplemented with some compactly supported initial data. The operator (−∆)α denotes the fractional
Laplacian of order α ∈ (0, 1) which can be defined by the following singular integral:

(−∆)αu(x) = cαP.V.

(∫
R

u(x)− u(y)

|x− y|1+2α
dy

)
,

where P.V. denotes the Cauchy principal value of the integral. It is well known that the fractional
Laplacian is the generator of a stable Lévy process which models jumps and long-distance interactions
[26], and it is commonly used in population dynamics [8, 10, 21]. In the above equation, the nonlinearity
f will be always assumed to be of bistable or ignition type with f(0) = f(1) = 0. Precise assumptions will
be given later on. When specified to α = 1, the fractional Laplacian reduces to the standard Laplacian,
and equation (1.1) becomes the classical reaction-diffusion equation

∂tu(t, x)−∆u(t, x) = f(u(t, x)), t > 0, x ∈ R. (1.2)

It is well established that such a local equation exhibits a so-called threshold phenomenon. Roughly
speaking, this means that small initial data lead to extinction, whereas large initial data lead to prop-
agation. The study of threshold phenomena for equation (1.2) with ignition type nonlinearity can be
traced back to Kanel [17]. When considering initial data of the form of the characteristic function of an
interval [−L,L] for L > 0, namely

u0(x) = 1[−L,L](x), x ∈ R, (1.3)
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Kanel showed that the long-time behavior of the solution u of the Cauchy problem associated to (1.2)
with u(0, ·) = u0 depends on L and proved that there are two lengths Lext

∗ and Lprop
∗ with 0 < Lext

∗ ≤
Lprop
∗ < +∞ such that 

lim
t→+∞

u(t, x) = 0 uniformly in x ∈ R if L < Lext
∗ ,

lim
t→+∞

u(t, x) = 1 uniformly on compacts if L > Lprop
∗ .

Later on, Aronson and Weinberger [4], Fife and McLeod [13], and Flores [14] extended this phenomenon
to bistable type nonlinearities. Furthermore, Zlatǒs [29] investigated the sharp threshold phenomenon
from extinction to propagation in the ignition and bistable problems. Here, we refer to a sharp threshold
behavior when, for any strictly increasing family of initial data exhibiting extinction for sufficiently
small values of the parameter and propagation for sufficiently large values of the parameter, there is
exactly one member of the family for which neither extinction nor propagation occurs. More precisely,
Zlatǒs considered the asymptotic behavior of (1.2) with ignition or bistable nonlinearity and proved that
Lext
∗ = Lprop

∗ := L∗. In the bistable case, at the threshold value L∗, the corresponding solution of (1.2)
uniformly converges to the unique positive stationary solution that decays to zero at infinity centered
at the origin. Later on, Du and Matano [11] used the zero number argument to extend the result of
Zlatǒs to monotone families of compactly supported initial data. They showed that any nonnegative
bounded solution with compactly supported initial data converges to a stationary solution as t → ∞.
Poláčik [25] studied the threshold solutions and sharp transitions of nonautonomous parabolic equations
in higher-dimensional space. Muratov and Zhong investigated the long time behavior of solutions to
the Cauchy problem in one-dimensional spaces with bistable, ignition, or monostable nonlinearities, and
further extended this result to high-dimensional spaces [23, 24]. More recently, Alfaro, Ducrot, and Faye
[1] provided the first quantitative estimates of the threshold phenomena for (1.2). To be more precise,
they considered initial data in the form of

u0(x) = (θ + ε)1[−L,L](x), x ∈ R, (1.4)

where ε ∈ (0, 1− θ] and θ ∈ (0, 1) is the threshold of the nonlinearity (see Assumption 2.1 below). In the
regime where

∫ 1

0
f(u)du > 0, that is the steady state u = 1 is more stable than the steady state u = 0,

following [29, 11], there exist two lengths Lext
ε and Lprop

ε with 0 < Lext
ε ≤ Lprop

ε < +∞ such that the
solution uεL of (1.2) satisfies

lim
t→+∞

uεL(t, x) = 0 uniformly in x ∈ R if L < Lext
ε ,

lim
t→+∞

uεL(t, x) = 1 uniformly on compacts if L > Lprop
ε .

The key outcome of the study in [1] shows that the lengths Lext
ε and Lprop

ε satisfy, as ε → 0+, the
following asymptotics

0 < lim inf
ε→0+

Lext
ε

ln
(
1
ε

) ≤ lim sup
ε→0+

Lprop
ε

ln
(
1
ε

) < +∞,

indicating that when the threshold is sharp, that is when Lext
ε = Lprop

ε := L?ε, then L?ε ∼ ln
(
1
ε

)
as

ε→ 0+.
Analogues of the above quantitative result have been very recently derived for nonlocal diffusion

equations [2, 6, 7, 20, 27], which are typically used to characterize the movement and interaction of
organisms in non-adjacent spatial locations in the modeling of population dynamics. In this setting,
nonlocal reaction-diffusion equations write

∂tu(t, x) =

∫
R
J(x− y)u(t, y)dy − u(t, x), t > 0, x ∈ R, (1.5)

where J : R→ R is a nonnegative dispersal kernel with
∫
R J(y)dy = 1. Berestycki, Rodríguez [6] and Lim

[20] demonstrated that there are two propagation thresholds for the nonlocal diffusion equation satisfying
sufficiently high step initial data and exponentially bounded kernel functions, while Zhang, Li, and Yang
[27] demonstrated that equation (1.5) with a compactly supported kernel has a sharp threshold between
extinction and propagation. Most notably, Alfaro, Ducrot, and Kang [2] investigated the threshold
phenomenon for the propagation of system (1.5) for compactly supported initial data of the form (1.4).
In the limit ε→ 0+, they derived various asymptotic limits for the corresponding lengths Lext

ε and Lprop
ε
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characterizing the threshold to extinction and propagation respectively for different forms of the kernel
functions. In a slightly different but related direction, Besse et al. [7] studied the asymptotic behavior of
the solution of system (1.5) with bistable type nonlinearity and compactly supported initial conditions.
Using the relationship between the nonlinearity, the kernel functions, and the diffusion coefficient, they
demonstrated that the solutions can either propagate, go extinct or remain pinned [7], meaning that
neither propagation nor extinction occur. We also refer to Andreson et al. [3] who recently studied the
transition between pinning and unpinning for the solutions of nonlocal systems.

As far as we know, for fractional Laplacian equations such as (1.1), there is no such quantitative
estimates of threshold phenomenon in the literature. This paper aims at filling this gap. Specifically,
we consider equation (1.1) supplemented with the one-parameter family of initial data (1.4) indexed
by the two parameters L > 0 and ε > 0, and we shall prove in a first step that for each fixed ε > 0
the solution decays to zero (extinction) when L is small or locally converges to a positive steady state
(persistence) when L is large. Next, in the spirit of [1, 2, 7], we use the upper and lower solution methods,
the comparison principle, and sharp estimates on the fundamental solutions of the fractional Laplacian
diffusion equation to obtain quantitative estimates on the thresholds to extinction and propagation for
the solution of system (1.1). More specifically, our main result is that we provide some estimates of the
threshold values Lext

ε and Lprop
ε as ε→ 0+, namely

0 < C− ≤ lim inf
ε→0+

Lext
ε(

1
ε

) 1
2α

, and lim sup
ε→0+

Lprop
ε(

1
ε ln 1

ε

) 1
2α

≤ C+ < +∞, (1.6)

for two positive constants C± which depend on α ∈ (0, 1) and the nonlinearity f .
We can see from (1.6) that the “main term” is of magnitude

(
1
ε

) 1
2α , but the lower and upper bounds

coincide only up to a logarithmic term. This result is consistent with the nonlocal diffusion equation with
a heavy-tailed kernel function considered by Alfaro et al. [2]. More specifically, if the Fourier transform
of kernel J of equation (1.5) has an expansion Ĵ(ξ) = 1− a|ξ|β + o

(
|ξ|β
)

(0 < β < 2, a > 0), as ξ → 0+,
then the quantitative estimates of the threshold is the same as the one for solutions of the evolution given
by the α = β

2 fractional power of the Laplacian. This is somehow not surprising since nonlocal diffusion
equations with kernel whose Fourier transform enjoys the above expansion are asymptotically close, in
the limit t→ +∞, to the fractional Laplacian equation of order α = β

2 (see for instance [9]). Let us finally
note that it is still an open problem to prove that the transition between propagation and extinction is
sharp in the fractional Laplacian case studied here, that is Lext

ε = Lprop
ε for each ε ∈ (0, 1− θ].

2 Assumptions and main results
We state below our assumptions and main results.

Assumption 2.1 (nonlinearity f) The function f : R→ R is Lipschitz continuous. There is a thresh-
old θ ∈ (0, 1) such that

f(u) = 0,∀u ∈ (−∞, 0] ∪ {θ} ∪ [1,∞),

and

f(u) > 0,∀u ∈ (θ, 1), and

 f(u) < 0,∀u ∈ (0, θ), (Bistable Case),
or
f(u) = 0,∀u ∈ (0, θ), (Ignition Case).

(2.1)

In the bistable case, we further require ∫ 1

0

f(s)ds > 0.

Moreover, in both cases, we require that there are r− > 0 and δ ∈ (θ, 1) such that

f(u) ≥ r−(u− θ), ∀u ∈ [0, δ] .

Notice that, for r > 0, the usual cubic bistable nonlinearity

f(u) = ru(u− θ)(1− u)1(0,1)(u), u ∈ R,

satisfies the Assumption 2.1 as soon as θ < 1
2 , and so does the ignition nonlinearity

f(u) = r(u− θ)(1− u)1(θ,1)(u), u ∈ R.
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Now, for ε ∈ (0, 1− θ] and L > 0, we consider the family of initial data φεL given by

φεL(x) := (θ + ε)1(−L,L)(x), x ∈ R. (2.2)

We denote by uεL = uεL(t, x) the unique mild solution of (1.1) starting from the initial datum φεL. Then
this family of solutions enjoys the so-called threshold property.

Proposition 2.1 (Threshold property) Let α ∈ (0, 1) and Assumption 2.1 hold. For each ε ∈ (0, 1−
θ], there exist two lengths L̃ε > 0 and L̂ε > 0 such that

lim
t→+∞

uεL(t, x) =

{
0 uniformly in R, if 0 < L < L̃ε,

1 locally uniformly in R, if L > L̂ε.

Now using this and similarly as [1, 2], for each ε ∈ (0, 1− θ], we define the quantities

Lext
ε := sup

{
L > 0 : lim

t→+∞
uεL(t, x) = 0 uniformly on R

}
,

and
Lprop
ε := inf

{
L > 0 : lim

t→+∞
uεL(t, x) = 1 locally uniformly on R

}
.

We now state our main result.

Theorem 1 (Quantitative estimates of the thresholds) Let α ∈ (0, 1) and Assumption 2.1 hold.
Then there exist two constants 0 < C− < C+ such that

C− ≤ lim inf
ε→0+

Lext
ε(

1
ε

) 1
2α

, and lim sup
ε→0+

Lprop
ε(

1
ε ln 1

ε

) 1
2α

≤ C+,

where the constant C− can be chosen as

C− :=

√
θ

αr+Cα
, with r+ := sup

u∈(θ,1]

f(u)

u− θ
> 0,

with the constant Cα > 1 is defined in (3.6), and C+ = C+(α, θ, r−).

The organization of this work is as follows. We give some preliminary results in section 3. In section
4, we prove the propagation threshold property from Proposition 2.1. Sections 5 and 6 are dedicated to
provide the quantitative estimates on the extinction and propagation threshold respectively.

3 Preliminary
In this section, we introduce some notations and basic results regarding the existence of solutions to

the Cauchy problem. We also give a comparison principle for the fractional Laplacian diffusion equation,
which is essential to prove the threshold phenomenon. Then, as a direct application, we prove the
existence of the extinction threshold.

3.1 Notations and basic results
Let 0 < α < 1 and consider the Cauchy problem{

∂tu(t, x) + (−∆)αu(t, x) = f(u(t, x)), t > 0, x ∈ R ,
u(0, x) = u0(x), x ∈ R ,

(3.1)

with initial datum u0 ∈ L∞(R). Then, mild solutions u ∈ L∞((0,∞)× R) to the problem (3.1) satisfy

u(t, x) =

∫
R
Pt(x− y)u0(y)dy +

∫ t

0

∫
R
Pt−s(x− y)f(u(s, y))dyds, a.e. in (0,∞)× R, (3.2)
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where Pt ∈ C∞((0,∞)× R) is the fractional heat kernel, defined as follows

Pt(x) =
1

t
1
2α

P

(
x

t
1
2α

)
, (3.3)

and
P (x) :=

1

2π

∫
R

eix·ξe−|ξ|
2α

dξ. (3.4)

Furthermore, it follows from [5, 18] that there exists Cα > 1 such that

C−1α
1 + |x|1+2α

≤ P (x) ≤ Cα
1 + |x|1+2α

, x ∈ R. (3.5)

Thus, for t > 0, x ∈ R, one has

C−1α

t
1
2α (1 + |t− 1

2αx|1+2α)
≤ Pt(x) ≤ Cα

t
1
2α (1 + |t− 1

2αx|1+2α)
. (3.6)

The formula (3.6) of the estimation of fractional heat kernel Pt(x) will play an essential role in deriving
some estimates of the threshold for the fractional Laplacian diffusion equation.

From [8] (see also [19, 28]), we know that for each u0 ∈ L∞(R) there exists a unique mild global in
time solution of (3.1) with

u ∈ L∞((0, T )× R), ∀T > 0 .

Throughout this work, we always assume that the constant Cα > 1 is defined in (3.6). Now we state
a comparison principle of the fractional Laplace equation, which plays an important role in the study of
threshold phenomena, see [8, 12, 28]. For the sake of completeness, we outline its proof.

Proposition 3.1 (Comparison principle) Let α ∈ (0, 1) and T > 0. Assume that u,w ∈ L∞((0, T )×
R) are mild solution of the Cauchy problems{

∂tu(t, x) + (−∆)αu(t, x) = f(u(t, x)), (t, x) ∈ (0, T )× R,
u(0, x) = u0(x), x ∈ R,

(3.7)

and {
∂tw(t, x) + (−∆)αw(t, x) = g(w(t, x)), (t, x) ∈ (0, T )× R,
w(0, x) = w0(x), x ∈ R,

(3.8)

where f, g : R→ R are Lipschitz continuous with f ≤ g on R. If u0, w0 ∈ L∞(R) are such that

u0 ≤ w0, a.e. on R,

then
u ≤ w, a.e. on (0, T )× R.

Proof. Let λ > max(Lip(f),Lip(g)) and set

U(t, x) = eλtu(t, x), W (t, x) = eλtw(t, x). (3.9)

Since u and w are mild solutions of (3.7) and (3.8), we can easily get from [8] that U and W are mild
solutions of {

∂tU + (−∆)αU = f̃(t, U), in (0, T )× R,
U(0, x) = u0(x),

(3.10)

and {
∂tW + (−∆)αW = g̃(t,W ), in (0, T )× R,
W (0, x) = w0(x),

with f̃(t, ζ) := λζ + eλtf
(
e−λtζ

)
and g̃(t, ζ) defined similarly. Clearly, f̃(t, ζ) ≤ g̃(t, ζ) for all ζ. By the

definition of λ, both functions f̃ and g̃ are nondecreasing in ζ. Indeed, for ζ1 ≤ ζ2 and t > 0, one has

f̃(t, ζ1)− f̃(t, ζ2) = λ(ζ1 − ζ2) + eλt
[
f
(
e−λtζ1

)
− f

(
e−λtζ2

)]
≤ (λ− Lip(f))(ζ1 − ζ2) ≤ 0.
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For a given function u0 ∈ L∞(R) and t > 0, we define

Ttu0(x) := (Pt ∗ u0)(x) =

∫
R
Pt(x− y)u0(y)dy,

where Pt ∈ C∞((0,∞)× R) is defined in (3.3). Clearly, the family Tt of bounded linear contractions of
L∞(R) is a semigroup. Note that U ∈ L∞((0, T )× R) is a mild solution of (3.10) if

U(t, x) =

∫
R
Pt(x− y)u0(y)dy +

∫ t

0

∫
R
Pt−s(x− y)f̃(s, U(s, y))dyds,

= Ttu0(x) +

∫ t

0

Tt−sf̃(s, U(s, y))dyds,

almost everywhere in (0, T )× R, and similarly for W and g̃.
Consider the iteration scheme:

Un+1(t, ·) = Ttu0(x) +

∫ t

0

Tt−sf̃(s, Un(s, y))dyds,

and similarly for Wn and g̃. The scheme for the Un converges to the limit U , and the scheme for the Wn

converges to the limit W .
We now employ a standard induction argument to show that Un ≤Wn on (0, T )× R for all n. Let

U0(t, ·) = Ttu0(·) and W0(t, ·) = Ttw0(·).

Since Tt is a positive semigroup on L∞(R) and u0(·) ≤ w0(·), then U0 ≤ W0 on (0, T ) × R. Suppose
Un ≤Wn on (0, T )× R, then

Un+1(t, ·) = Ttu0(x) +

∫ t

0

Tt−sf̃ (s, Un(s, ·)) ds ≤ Ttw0(x) +

∫ t

0

Tt−sf̃ (s,Wn(s, ·)) ds

≤ Ttw0(x) +

∫ t

0

Tt−sg̃ (s,Wn(s, ·)) ds = Wn+1(t, ·),

which completes the induction step. Taking the limit, this implies that U ≤W and therefore also u ≤ w
on (0, T )× R. This proves the proposition.

We also present a variant of the above comparison principle.

Proposition 3.2 Let α ∈ (0, 1), T > 0 and f be Lipschitz. Assume that u, v ∈ L∞([0, T )×R) are mild
subsolution and supersolution respectively, that is

u(t, x) ≤
∫
R
Pt(x− y)u(0, y)dy +

∫ t

0

∫
R
Pt−s(x− y)f(u(s, y))dyds, (0, T )× R,

and

v(t, x) ≥
∫
R
Pt(x− y)v(0, y)dy +

∫ t

0

∫
R
Pt−s(x− y)f(v(s, y))dyds, (0, T )× R,

and satisfy u(0, ·) ≤ v(0, ·) on R, then u ≤ v on [0, T )× R.

3.2 Existence of the extinction threshold L̃ε

In this section, under Assumption 2.1 on the nonlinearity f , we prove the existence of the extinction
threshold L̃ε. Let us consider uεL the unique mild solution of (1.1) starting from the initial datum φεL.
From the previous comparison principle, since ε ∈ (0, 1− θ], we obtain that

0 ≤ uεL(t, x) ≤ 1, t > 0, x ∈ R.

Upon denoting M := supu∈[0,1] f(u) > 0, we obtain

0 ≤ uεL(t, x) ≤ (θ + ε)

∫ L

−L
Pt(x− y)dy +M

∫ t

0

∫
R
Pt−s(x− y)dyds, t > 0, x ∈ R.
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Since for each t > 0, we have
∫
R Pt(x)dx =

∫
R P (x)dx = 1 by definition of P , we further get

0 ≤ uεL(t, x) ≤ 2LCα(θ + ε)

t
1
2α

+Mt.

As a consequence, at t = t0 := θ
2M , we get

0 ≤ uεL(t0, x) ≤ 2LCα(θ + ε)

t
1
2α
0

+
θ

2
.

Then, we can set Lε := θ
4Cα(θ+ε)

(
θ

2M

) 1
2α > 0, and for each 0 < L < Lε, one has

0 ≤ uεL(t0, x) < θ, x ∈ R.

The final step of the proof consists in checking that the solution{
∂tw(t, x) + (−∆)αw(t, x) = f(w(t, x)), t > 0, x ∈ R,
w(0, x) = γ, x ∈ R,

(3.11)

with 0 < γ < θ satisfies
w(t, x) −→

t→+∞
0 uniformly in x ∈ R.

Indeed, this follows from the fact that the solution w of the above Cauchy problem (3.11) is constant
in space and that the solution of the ODE problem w′ = f(w) with w(0) = γ ∈ (0, θ) converges
asymptotically to zero thanks to the bistability property of f . Comparing the solution for t ≥ t0 to the
problem (3.11) implies that

∀x ∈ R, lim
t→+∞

uεL(t, x) = 0.

4 Propagation threshold
This section is devoted to the proof of the propagation threshold result of Proposition 2.1. We first

recall some known properties regarding traveling front solutions associated to (1.1) in the bistable case.
By a traveling front solution, we refer to the couple (U, c) with c ∈ R and profile U solution of{

cU ′ + (−∆)αU = f(U), x ∈ R,
U(−∞) = 0, U(+∞) = 1,

(4.1)

such that u(t, x) = U(x+ ct). Gui and Zhao [16] have proved the existence and uniqueness of such trav-
eling fronts for the fractional Laplacian diffusion equation with bistable type, together with asymptotic
properties for U0, as shown in Theorem 2 below (see [22, 15] for related results in the case of an ignition
nonlinearity).

Theorem 2 ([16]) If α ∈ (0, 1), f ∈ C2(R) be a bistable nonlinearity, i.e., condition (2.1) holds, then
there exists a unique c0 and profile U0 (up to translations) solving (4.1). Furthermore, c0 > 0 and U0 is
monotone increasing. Moreover, there exists some constants B > A > 0 such that

A

|x|1+2α
≤ U ′0(x) ≤ B

|x|1+2α
, ∀|x| ≥ 1.

As a consequence, we have U ′0 ∈ Lp(R) for any 1 ≤ p ≤ ∞, and

A

x2α
≤ 1− U0(x) ≤ B

x2α
, ∀x > 1 and

A

|x|2α
≤ U0(x) ≤ B

|x|2α
, ∀x < −1.

We shall first prove the following result whose proof is largely inspired by the pioneering works of Fife
and McLeod [13]. See also [2, 7] for similar results in the case of nonlocal reaction-diffusion equations.

Proposition 4.1 (Propagation threshold in the bistable case) Let α ∈ (0, 1) and f ∈ C2(R) be
a bistable nonlinearity satisfying Assumption 2.1. Then, for each ε ∈ (0, 1− θ], there exists L̂ε > 0 large
enough such that for each L > L̂ε the solution uεL starting from φεL propagates in the sense that

lim
t→+∞

uεL(t, x) = 1 locally uniformly for x ∈ R. (4.2)
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Proof. We consider (c, U) is an increasing traveling wave solution to (1.1) with c > 0 given by Theorem 2,
namely, (c, U) is the solution of the following equation:{

cU ′ + (−∆)αU = f(U), x ∈ R,
U(−∞) = 0, U(+∞) = 1.

(4.3)

We aim at showing that, for any ε ∈ (0, 1 − θ], there exists L > 0 large enough such that propagation
occurs for uεL the solution to (1.1) starting from (2.2).

Let us consider the function u given by

u(t, x) := U+(t, x) + U−(t, x)− 1− q(t)

with U±(t, x) := U(ξ±(t, x)), where ξ±(t, x) take the form

ξ+(t, x) = x+ ct− ξ(t), ξ−(t, x) = ξ+(t,−x) = −x+ ct− ξ(t).

Here q = q(t) and ξ = ξ(t) are functions to be determined later to ensure that u is a sub-solution to
(1.1).

From the above and the U -equation of (4.3), we straightforwardly compute, for t > 0, x ∈ R,

Nu(t, x) :=∂tu(t, x) + (−∆)αu(t, x)− f(u(t, x))

=− ξ′(t)[U ′(ξ+(t, x)) + U ′(ξ−(t, x))] + f(U+(t, x)) + f(U−(t, x))

− f(U+(t, x) + U−(t, x)− 1− q(t))− q′(t).
(4.4)

Before going further, let us introduce some notation. Denote β := θ + ε ∈ (θ, 1] the fixed height of the
step initial data.

Fix two constants 1− β < q0
2 < q1

2 < 1− θ such that

θ < 1− q1
2
< 1− q0

2
< β

and define the function Φ, continuous on R× [0,+∞), as

Φ(u, s) =


f(u− s)− f(u)

s
, if s > 0,

−f ′(u), if s = 0.

Moreover, for 0 < s ≤ q1
2
, we have θ < 1 − q1

2
≤ 1 − s < 1, so that Φ(1, s) > 0. Note that Φ(1, 0) =

−f ′(1) > 0. There exists µ > 0 such that Φ(1, s) ≥ 2µ for 0 ≤ s ≤ q1
2 . By continuity, there exists a

δ > 0 such that
Φ(u, s) ≥ µ, for 1− δ ≤ u ≤ 1 and 0 ≤ s ≤ q1

2
.

It then follows that

f(u− s)− f(u) ≥ µs, ∀1− δ ≤ u ≤ 1, and 0 ≤ s ≤ q1
2
. (4.5)

Last, we fix b > 0 large enough so that

f(u) ≤ b(1− u), ∀0 ≤ u ≤ 1. (4.6)

We select
q(t) =

q0
2

1

(1 + µ0t)2α
, t ≥ 0, (4.7)

where µ0 > 0 will be determined later. Next, we divide the proof into three cases according to the value
of α.
First case: α ∈ (1/2, 1). We set

ξ(t) = −ξ0 + η(t), ∀t ≥ 0, (4.8)

where ξ0 > 0 and η is to be selected below with the properties

η(0) = 0, η′(t) > 0, η(t) ≤ η0 ≤ ξ0, t > 0, (4.9)
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where the constant η0 > 0. By the definition of ξ(t) and (4.9), we get that ξ(t) = η(t)− ξ0 ≤ 0.
We aim at reaching Nu(t, x) ≤ 0,∀x ∈ R, t > 0. Since both u(t, x) and Pt(x) are symmetric, it is

sufficient to work with x ≥ 0. Since U ′ > 0, we have, for all x ≥ 0, t > 0,

1− U+(t, x) + q(t) = 1− U(x+ ct− ξ(t)) + q(t).

According to Theorem 2, there exists B > 0 such that

1− U+(t, x) = 1− U(x+ ct− ξ(t)) ≤ B

(x+ ct− ξ(t))2α
, α ∈

(
1

2
, 1

)
,∀x > 1. (4.10)

It follows from (4.8), (4.9) and (4.10) that

1

(x+ ct− ξ(t))2α
≤ 1

(−ξ(t))2α
=

1

(ξ0 − η(t))2α
≤ 1

(ξ0 − η0)2α
. (4.11)

Recall that q(t) = q0
2

1
(1+µ0t)2α

, t ≥ 0. Furthermore, we choose s0 := ξ0 − η0 > 1 large enough such that

1− U+(t, x) ≤ B

(ξ0 − η0)2α
=

B

s2α0
≤ q0

2
. (4.12)

Using (4.7) and (4.12), we have that

0 ≤ 1− U+(t, x) + q(t) ≤ q0
2

+ q(t) ≤ q0
2

+
q0
2

= q0. (4.13)

Below we complete the construction of the sub-solution by investigating the sign of Nu(t, x) for x ≥ 0,
t > 0. To do so, recalling that δ > 0 was chosen above for (4.5) to hold, we split our analysis according
to the value of U−(t, x).

For 1− δ ≤ U−(t, x) ≤ 1, using (4.5) and (4.13), we have that

f(U−(t, x))− f(U−(t, x)− (1− U+(t, x) + q(t))) ≤ −µ(1− U+(t, x) + q(t)). (4.14)

Plugging this into (4.4), using U ′ > 0, ξ′(t) > 0, (4.6), (4.10) and (4.11), we have

Nu(t, x) ≤− µ(1− U+(t, x) + q(t)) + b(1− U+(t, x))− q′(t)

=(b− µ)(1− U(x+ ct− ξ(t)))− µq0
2

1

(1 + µ0t)2α
+ αq0µ0

1

(1 + µ0t)1+2α

≤(b− µ)
B

(x+ ct− ξ(t))2α
− µq0

2

1

(1 + µ0t)2α
+ αq0µ0

1

(1 + µ0t)1+2α

≤ 1

(1 + µ0t)2α

(
B(b− µ)(1 + µ0t)

2α

(x+ ct− ξ(t))2α
− µq0

2
+ αq0µ0

)
.

(4.15)

Since (4.8), (4.9) and x ≥ 0, we get that

1

(x+ ct− ξ(t))2α
≤ 1

(ct− ξ(t))2α
≤ 1

(ct+ ξ0 − η0)2α
=

1

(ct+ s0)2α
. (4.16)

Thus, combining (4.15) and (4.16), we obtain that

Nu(t, x) ≤ 1

(1 + µ0t)2α

(
B(b− µ)

(
1 + µ0t

ct+ s0

)2α

− µq0
2

+ αq0µ0

)
.

Let
g(t) =

1 + µ0t

ct+ s0
,

we can see that g′(t) < 0 if µ0 <
c
s0
. Thus, we have that

g(t) < g(0) =
1

s0
,∀t > 0. (4.17)
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Using (4.15) and (4.17), we have that

Nu(t, x) ≤ 1

(1 + µ0t)2α

(
B(b− µ)

s2α0
− µq0

2
+ αq0µ0

)
≤ 0,

by taking s0 > max

{
1,
(

µq0
2B(b−µ)

)2α}
and µ0 ≤ min

{
c

s0
,
µ

2α
− B(b− µ)

αq0s2α0

}
.

We consider the case 0 ≤ U−(t, x) ≤ δ. Let us recall that f ∈ C2(R) and f ′(0) < 0. Therefore,
up to modify f on (−∞, 0) (which is harmless for the problem under consideration since solutions are
nonnegative), we may assume that there are µ̃, and δ̃ > 0 such that

f ′(u) ≤ −µ̃, ∀u ∈ (−∞, δ̃].

Also, up to reducing µ and δ appearing in (4.5) if necessary, we may assume 0 < δ < δ̃ and 0 < µ ≤ µ̃.
As a result,

f(u)− f(u− s) =

∫ u

u−s
f ′(σ)dσ ≤ −µs, ∀ −∞ < u ≤ δ, s ≥ 0.

From this we deduce (4.14) and conclude as in the first case.
We are thus left with δ ≤ U−(t, x) ≤ 1 − δ. If we denote κ > 0 the Lipschitz constant of f on the

interval [δ − q1, 1− δ], we deduce from δ ≤ U−(t, x) ≤ 1− δ and (4.13) that

f(U−(t, x))− f(U−(t, x)− (1− U+(t, x) + q(t))) ≤ κ(1− U+(t, x) + q(t)). (4.18)

From (4.6), we have
f(U+(t, x)) ≤ b(1− U+(t, x)). (4.19)

Moreover, for δ ≤ U−(t, x) ≤ 1− δ, we have

U ′(ξ+(t, x)) + U ′(ξ−(t, x)) ≥ U ′(ξ−(t, x)) ≥ min
U−1(δ)≤|z|≤U−1(1−δ)

U ′(z) := ν > 0. (4.20)

Plugging (4.18), (4.20) and (4.19) into (4.4), we deduce that

Nu(t, x) ≤− νξ′(t) + (κ+ b)(1− U+(t, x)) + κq(t)− q′(t)

=− νη′(t) + (κ+ b)(1− U(x+ ct− ξ(t))) +
κq0
2

1

(1 + µ0t)2α
+ αq0µ0

1

(1 + µ0t)1+2α

≤− νη′(t) +
B(κ+ b)

(x+ ct− ξ(t))2α
+
κq0
2

1

(1 + µ0t)2α
+ αq0µ0

1

(1 + µ0t)1+2α
.

(4.21)

Using (4.21) and (4.16) again, we obtain that

Nu(t, x) ≤ −νη′(t) +
1

(1 + µ0t)2α

(
B(κ+ b)

(
1 + µ0t

ct+ s0

)2α

+
κq0
2

+
αq0µ0

1 + µ0t

)
. (4.22)

We select η(t) solution of

η′(t) =
1

ν(1 + µ0t)2α

(
B(κ+ b)

(
1 + µ0t

ct+ s0

)2α

+
κq0
2

+
αq0µ0

1 + µ0t

)
> 0.

That is we set

η(t) =
(κ+ b)B

ν

∫ t

0

1

(cz + s0)2α
dz +

κq0
2ν

∫ t

0

1

(1 + µ0z)2α
dz +

αq0µ0

ν

∫ t

0

1

(1 + µ0z)1+2α
dz.

Thus we have that η(t) ≤ η(+∞),∀t ≥ 0. We estimate η(+∞) as follows:

η(+∞) =
(κ+ b)B

ν

∫ +∞

0

1

(cz + s0)2α
dz +

κq0
2ν

∫ +∞

0

1

(1 + µ0z)2α
dz +

αq0µ0

ν

∫ +∞

0

1

(1 + µ0z)1+2α
dz.

(4.23)
Since α ∈

(
1
2 , 1
)
, we can see that (4.23) is integrable. It follows from (4.23) that

η(+∞) =
(κ+ b)Bs1−2α0

κν(2α− 1)c
+

κq0
2(2α− 1)νµ0

+
αq0
2αν

:= η0. (4.24)
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With s0, µ0 and η0 chosen as above, we may now set ξ0 = η0 + s0, such that plugging (4.24) into (4.22),
we reach

Nu(t, x) ≤ 0, x ≥ 0.

As a consequence, based on the symmetry of the problem, we have obtained that Nu(t, x) ≤ 0 for all
(t, x) ∈ (0,+∞)× R. On the one hand, for |x| ≤ L, we have that

u(0, x) = U(x+ ξ0) + U(−x+ ξ0)− 1− q0
2
< 1− q0

2
< β = (θ + ε)1(−L,L)(x).

On the other hand, since U(−∞) = 0, for |x| ≥ L, we obtain that

u(0, x) = U(x+ ξ0) + U(−x+ ξ0)− 1− q0
2
< U(−L+ ξ0)− q0

2
< 0,

if L = L(ξ0) > 0 is large enough. As a consequence, for such a large L > 0,

u(0, x) ≤ (θ + ε)1(−L,L)(x), x ∈ R.

By comparison principle (here u is a subsolution in the strong sense and thus a mild subsolution), we
obtain that

u(t, x) ≤ uεL(t, x), ∀t > 0, x ∈ R.

Since u(t, x) satisfies (4.2), so does uεL. Thus we have completed the proof in this case.
Second case: α ∈ (0, 1/2). We can choose

η(t) =
γ0

η0(1− 2α)

[
(1 + η0t)

1−2α − 1
]
, ∀t ≥ 0,

such that one has η(0) = 0 and
η′(t) =

γ0
(1 + η0t)2α

> 0,

where γ0 > 0 and η0 > 0 needs to be fixed appropriately.
We define ξ(t) as

ξ(t) = −ξ0 + min
t≥0

(
ct

2
− η(t)

)
+ η(t), ∀t ≥ 0,

with ξ0 > 0 to be fixed later. Let us remark that since ct/2−η(t) = t
(
c/2− η(t)

t

)
> 0 for t large enough,

the above minimum is well defined and non positive. Next, we remark that

ct− ξ(t) =
ct

2
+
ct

2
− η(t)−min

t≥0

(
ct

2
− η(t)

)
︸ ︷︷ ︸

≥0

+ξ0 >
ct

2
+
ξ0
2
>
ξ0
2
> 0,

for all t ≥ 0.
With q(t) defined as previously, for 1− δ ≤ U−(t, x) ≤ 1, one gets

Nu(t, x) ≤− µ(1− U+(t, x) + q(t)) + b(1− U+(t, x))− q′(t)

≤(b− µ)
B

(ct− ξ(t))2α
− µq0

2

1

(1 + µ0t)2α
+ αq0µ0

1

(1 + µ0t)1+2α

≤ 1

(1 + µ0t)2α

[
4αB(b− µ)

(
1 + µ0t

ct+ ξ0

)2α

− µq0
2

+ αq0µ0

]

≤ 1

(1 + µ0t)2α

[
4αB(b− µ)

ξ2α0
− µq0

2
+ αq0µ0

]
,

where the last inequality holds upon choosing µ0 < c/ξ0. As a consequence, if one fixes

ξ0 >

(
41+αB(b− µ)

µq0

)1/2α

, 0 < µ0 < min

(
c

ξ0
,
µ

4α

)
,
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then Nu(t, x) < 0. The case 0 ≤ U−(t, x) ≤ δ can be handled similarly. We are thus left with
δ ≤ U−(t, x) ≤ 1 − δ. Still denoting by κ > 0 the Lipschitz constant of f on [δ − q1, 1 − δ], we
compute

Nu(t, x) ≤− νξ′(t) + (κ+ b)(1− U+(t, x)) + κq(t)− q′(t)

≤− νη′(t) +
B(κ+ b)

(ct− ξ(t))2α
+
κq0
2

1

(1 + µ0t)2α
+ αq0µ0

1

(1 + µ0t)1+2α

≤− ν γ0
(1 + η0t)2α

+
4αB(κ+ b)

(ct+ ξ0)2α
+
κq0
2

1

(1 + µ0t)2α
+ αq0µ0

1

(1 + µ0t)1+2α

≤ 1

(1 + η0t)2α

[
−νγ0 + 4αB(κ+ b)

(
1 + η0t

ct+ ξ0

)2α

+
(κq0

2
+ αq0µ0

)( 1 + η0t

1 + µ0t

)2α
]
.

Upon choosing 0 < η0 < min

(
c

ξ0
, µ0

)
, we get

Nu(t, x) ≤ 1

(1 + η0t)2α

[
−νγ0 +

4αB(κ+ b)

ξ2α0
+
κq0
2

+ αq0µ0

]
,

and thus we can fix γ0 > 0 as

γ0 >
1

ν

(
4αB(κ+ b)

ξ2α0
+
κq0
2

+ αq0µ0

)
.

Then, the end of the proof follows similar lines as in the previous case.
Third case: α = 1/2. We take

η(t) =
γ0
η0

ln(1 + η0t), ∀t ≥ 0,

such that η(0) = 0 and
η′(t) =

γ0
1 + η0t

> 0,

where γ0 > 0 and η0 > 0 needs to be fixed appropriately. We define ξ(t) as

ξ(t) = −ξ0 + η(t), ∀t ≥ 0,

with ξ0 > 0 to be fixed appropriately. In fact, since
η(t)

t
→ 0 as t→ +∞, similar computations as above

shows that Nu(t, x) < 0 holds also in that case, and the proof follows.

We can now turn to the proof of Proposition 2.1. In the bistable case, since f is Lipschitz continuous
on [0, 1], we can use a small C2 modification from below of the nonlinearity and construct a suitable sub-
solution converging to 1 for L large enough by Proposition 4.1 above. Hence, the existence of L̂ε follows
from the comparison principle for the bistable case, and thus for the ignition case due to comparison
arguments.

5 Quantitative estimate on the extinction threshold
In this section, we provide a quantitative extinction result for the system (1.1) with initial data (2.2).

We obtain an asymptotic estimates (as ε→ 0+) of the size L such that the solution uεL(t, x) goes extinct
at large time. For it, we consider the following problem:{

∂tw + (−∆)αw = g(w), t > 0, x ∈ R,
w(0, x) = (θ + ε)1(−L,L)(x), x ∈ R,

(5.1)

where ε > 0, L > 0 and
g(u) := r+(u− θ)+.

Here r+ > 0 and θ > 0 are given and fixed parameters, and the subscript + is used to denote the positive
part of a real number. We start with a criterion for extinction.
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Proposition 5.1 (Extinction criterion) Let α ∈ (0, 1), r+ > 0 and θ > 0 be fixed. Consider the time

Tε :=
1

r+
ln

1

ε
. (5.2)

Then for any 0 < γ ≤
√

θ

αr+Cα
, there exists ε0 > 0 small enough such that, for each ε ∈ (0, ε0) and for

each 0 < L < γ
(
1
ε

) 1
2α , the solution w = w(t, x) to (5.1) satisfies

sup
x∈R

w(Tε, x) ≤ θ,

and is going to extinction at large times.

Proof. Consider v = v(t, x) the solution to the Cauchy problem{
∂tv + (−∆)αv = 0, t > 0, x ∈ R,
v(0, x) = w(0, x), x ∈ R.

Then v(t, ·) = (θ + ε)Pt(·) ∗ 1(−L,L)(x), where the fractional heat kernels Pt(x) defined in (3.3). Thus
for all t > 0, we have

V (t) := ‖v(t, ·)‖L∞(R) = (θ + ε)

∫
|x|<L

Pt(x)dx.

Following the strategy developed in [1], we now construct a super solution to (5.1) in the formW (t, x) :=
v(t, x)φ(t) with φ(0) = 1 and φ(t) > 0. From Wt + (−∆)αW = vφ′ and the expression of g this requires

φ′(t) ≥ r+
(
φ(t)− θ

v(t, x)

)
+

, ∀(t, x) ∈ (0,+∞)× R,

and thus
φ′(t) ≥ r+

(
φ(t)− θ

V (t)

)
+

, ∀t ∈ (0,+∞).

We choose φ as the solution of the Cauchy problem

φ′(t) = r+
(
φ(t)− θ

V (t)

)
, φ(0) = 1,

that is

φ(t) = er
+t

(
1−

∫ t

0

r+e−r
+s θ

V (s)
ds

)
.

Observe that V (0)φ(0) > θ and denote by T > 0 the first time where V (T )φ(T ) = θ (obviously we
let T = +∞ if such a time does not exist). Then(

φ(t)− θ

V (t)

)
+

= φ(t)− θ

V (t)
, ∀t ∈ [0, T ).

Note that W (0, x) = v(0, x)φ(0) = w(0, x). Thus, it is clear that W (t, x) = v(t, x)φ(t) is a super-solution
to (5.1) on the time interval [0, T ). In particular, if T < +∞, it follows from the comparison principle
that w(T, ·) ≤W (T, ·) ≤ θ, and we are done provided T ≤ Tε, a condition we aim at reaching below.

The condition T < +∞ rewrites as: there exists T > 0 such that FL(T ) = 0 where

FL(t) := θ

(
1− e−r

+t

AL(t)

)
+ ε−

∫ t

0

r+e−r
+s θ

AL(s)
ds = 0,

wherein
AL(t) :=

∫
|x|<L

Pt(x)dx =

∫
|x|<L

1

t
1
2α

P

(
x

t
1
2α

)
dx, (5.3)

and P (x) is defined in (3.4). We claim (see the proof of Claim 5.1 below) that A′L(t) ≤ 0 for all t > 0.
Since

AL(t) =

∫
|x|<L

1

t
1
2α

P

(
x

t
1
2α

)
dx =

∫
|x|< L

t
1
2α

P (x)dx,
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then using (3.4), we have that

AL(0) =

∫
R
P (x)dx =

1

2π

∫
R

∫
R

eix·ξ−|ξ|
2α

dξdx = 1, (5.4)

here we used the equation

ϕ(0) =
1

2π

∫
R

∫
R

eix·ξϕ(ξ)dξdx.

It follows from (5.4) that FL(0) = ε. Next, we claim that

Claim 5.1 A′L(t) ≤ 0 for all t > 0.

Proof of Claim 5.1. Using (5.3), we have that

AL(t) =

∫
|x|<L

1

t
1
2α

P

(
x

t
1
2α

)
dx =

∫
|x|< L

t
1
2α

P (x)dx

=

∫ 0

− L

t
1
2α

P (x)dx+

∫ L

t
1
2α

0

P (x)dx

= 2

∫ L

t
1
2α

0

P (x)dx,

(5.5)

this is because P (x) is a even function ∀x ∈ R. It follows from (5.5) that

A′L(t) = −L
α

1

t
1
2α+1

P

(
L

t
1
2α

)
. (5.6)

By (3.5), we obtain that

P

(
L

t
1
2α

)
> 0, ∀t > 0, L > 0.

This combined with (5.6), we get that

A′L(t) ≤ 0, ∀t > 0.

We complete the proof this Claim.
Thus, using Claim 5.1, we have that F ′L(t) = θe−r

+t A
′
L(t)

A2
L(t)
≤ 0. As a result, since FL(0) = ε and

F ′L(t) ≤ 0, the condition T ≤ Tε is equivalent to requiring FL(Tε) ≤ 0, that is

1 +
ε

θ
≤ r+

∫ Tε

0

e−r
+s

AL(s)
ds+

e−r
+Tε

AL(Tε)
. (5.7)

Note that the right-hand side of the (5.7) is decreasing with respect to L. Using (5.4) and integrating
by parts this is equivalent to

ε

θ
≤ −

∫ Tε

0

e−r
+sA

′
L(s)

A2
L(s)

ds. (5.8)

But, since A′L(s) ≤ 0,∀s > 0 and 0 < AL(s) ≤ 1,∀s > 0, we have that

−
∫ Tε

0

e−r
+sA

′
L(s)

A2
L(s)

ds ≥ −
∫ Tε

0

e−r
+sA′L(s)ds

=
L

α

∫ Tε

0

e−r
+s 1

s
1
2α+1

P

(
L

s
1
2α

)
ds,

(5.9)

which follows from the proof of Claim 5.1 that

A′L(t) = −L
α

1

t
1
2α+1

P

(
L

t
1
2α

)
, t > 0.

14



Using (3.5) and (5.9), we have that

−
∫ Tε

0

e−r
+sA

′
L(s)

A2
L(s)

ds ≥ L

αCα

∫ Tε

0

e−r
+s 1

s
1
2α+1

1

1 + |s− 1
2αL|1+2α

ds

=
L

αCα

∫ Tε

0

e−r
+s 1

s
1
2α+1

1

1 + (s−
1
2αL)1+2α

ds.

We select

Lε = γ

(
1

ε

) 1
2α

(5.10)

for some γ > 0 to be chosen later. Next, we aim at proving that (5.8) with L = Lε, is satisfied for ε > 0
small enough. To do so, set

Gε :=
Lε
αCα

∫ Tε

0

e−r
+s 1

s
1
2α+1

1

1 + (s−
1
2αLε)1+2α

ds.

Hence, we only need to show that
Gε ≥

ε

θ
. (5.11)

Let z =
s

L2α
ε

, then we have that

Gε =
1

αCα

∫ Tε
L2α
ε

0

e−r
+zL2α

ε
1

1 + z1+
1
2α

dz.

Since function f(x) =
1

1 + x1+
1
2α

,∀x ≥ 0 is monotonically decreasing, we have that

Gε ≥
1

αCα

1

1 +
(
Tε
L2α
ε

)1+ 1
2α

∫ Tε
L2α
ε

0

e−r
+zL2α

ε dz

=
1

αr+Cα

1

1 +
(
Tε
L2α
ε

)1+ 1
2α

1− e−r
+Tε

L2α
ε

.

(5.12)

Recalling Tε =
1

r+
ln

1

ε
and subtituting (5.10) into (5.12), we have that

Gε ≥
ε(1− ε)
αr+γ2Cα

1

1 +
(
Tε
L2α
ε

)1+ 1
2α

.

To show (5.11), we only need to prove that

1− ε
αr+γ2Cα

1

1 +
(
Tε
L2α
ε

)1+ 1
2α

≥ 1

θ
. (5.13)

Indeed, by the definitions of Tε and Lε, we have that

Tε
L2α
ε

→ 0 as ε→ 0,

thus (5.13) holds, as 0 < γ ≤
√

θ
αr+Cα

and ε small enough. This completes the proof of Proposition 5.1.

We can now conclude the first part of the proof of Theorem 1.

Proof of Theorem 1 – Extinction threshold. By Assumption 2.1, uεL is a sub-solution of system (5.1)
with r+ > 0 given by

r+ := sup
u∈(θ,1]

f(u)

u− θ
.
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It follows from Proposition 5.1 and the comparison principle that for each ε ∈ (0, ε0) and for each
0 < L < γ

(
1
ε

) 1
2α , one has

∀x ∈ R, lim
t→+∞

uεL(t, x) = 0,

with 0 < γ ≤
√

θ
αr+Cα

. And thus, we deduce that

C− ≤ lim inf
ε→0+

Lext
ε(

1
ε

) 1
2α

,

where C− =
√

θ
αr+Cα

.

6 Quantitative estimate on the propagation threshold
We fix r− > 0 and θ ∈ (0, 1), and define the linear function

g̃(w) := r−(w − θ).

For ε > 0 and L > 0, we consider w = w(t, x) the solution of the Cauchy problem{
∂tw + (−∆)αw = g̃(w), t > 0, x ∈ R,
w(0, x) = (θ + ε)1(−L,L)(x), x ∈ R.

(6.1)

We start with a criterion for non-extinction for the solutions of the above Cauchy problem.

Proposition 6.1 (Non-extinction criterion) Let α ∈ (0, 1), r− > 0 and θ ∈ (0, 1) be fixed. Let
θ < η′ < η < 1 be given. Consider the time

Tε =
1

r−
ln
η − θ
ε

.

Let γ >
(
Cα(η−θ)
α(η−η′)

) 1
2α

be given. Then for any 0 < k < 1 −
(

Cα(η−θ)
γ2αα(η−η′)

) 1
1+2α

, there exists ε0 > 0 small

enough such that, for each ε ∈ (0, ε0) and for each L > Lε := γ
(

1
r−ε ln 1

ε

) 1
2α . The solution w = w(t, x)

of (6.1) satisfies
min
|x|≤kLε

w (Tε, x) ≥ η′.

Proof. Notice that the solution w(t, x) is explicitly given by

w(t, x) = θ + er
−t (v(t, x)− θ) , (6.2)

where v = v(t, x) denotes the solution of the linear equation

∂tv + (−∆)αv = 0, t > 0, x ∈ R,

starting from v(0, x) = w(0, x) = (θ + ε)1(−L,L)(x). From the comparison principle v(t, x) ≤ (θ + ε) for
all t > 0 and x ∈ R, and thus for all 0 < t ≤ Tε, we have that

w(t, x) ≤ θ +
η − θ
ε

(θ + ε− θ) = η, ∀x ∈ R.

Note that v = v(t, x) is given by

v(t, x) = (θ + ε)Pt(·) ∗ 1(−L,L)(x)

= (θ + ε)

∫
|y|<L

1

t
1
2α

P

(
x− y
t

1
2α

)
dy

= (θ + ε)

[
1−

∫
|y|≥L

1

t
1
2α

P

(
x− y
t

1
2α

)
dy

]
.

(6.3)
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The last equality follows from the property that
∫
R Pt(x)dx = 1 for all t > 0. Plugging (6.3) into (6.2)

and using (3.5), we deduce that

w(t, x) = θ + er
−t

(
ε− (θ + ε)

∫
|y|≥L

1

t
1
2α

P

(
x− y
t

1
2α

)
dy

)

≥ θ + er
−t

(
ε− (θ + ε)

∫
|y|≥L

Cα

t
1
2α (1 + |t− 1

2α (x− y)|1+2α)
dy

)
.

(6.4)

We now restrict to x satisfying |x| ≤ kL for k ∈ (0, 1). Since |y| ≥ L ensures that |x| ≤ kL ≤ k|y|
and |x− y| ≥ (1− k)|y|, we deduce that

max
|x|≤kL

∫
|y|≥L

1

t
1
2α (1 + |t− 1

2α (x− y)|1+2α)
dy ≤ 1

t
1
2α

∫
|y|≥L

1

1 + t−
1+2α
2α (1− k)1+2α|y|1+2α

dy.

Noticing that

1

t
1
2α

∫
|y|≥L

1

1 + t−
1+2α
2α (1− k)1+2α|y|1+2α

dy =
1

1− k

∫
|z|≥ (1−k)L

t
1
2α

1

1 + |z|1+2α
dz,

we obtain for each |x| ≤ kL that

w(t, x) ≥ θ + er
−t

ε− (θ + ε)
Cα

1− k

∫
|z|≥ (1−k)L

t
1
2α

1

1 + |z|1+2α
dz


At t = Tε = 1

r− ln η−θ
ε and θ + ε ≤ 1, we deduce that

w(Tε, x) > θ + (η − θ)

1− Cα(θ + ε)

(1− k)ε

∫
|z|≥ (1−k)L

T

1
2α
ε

1

1 + |z|1+2α
dz

 . (6.5)

We now select

Lε := γ

(
1

r−ε
ln

1

ε

) 1
2α

> 0,

for some constant γ > 0 that will be fixed later. In view of (6.5), it is enough to conclude the proof to
reach

θ + (η − θ)

1− Cα(θ + ε)

(1− k)ε

∫
|z|≥ (1−k)Lε

T

1
2α
ε

1

1 + |z|1+2α
dz

 ≥ η′
for 0 < ε� 1, that is,

Iε :=

∫
|z|≥ (1−k)Lε

T

1
2α
ε

1

1 + |z|1+2α
dz ≤ (1− k)(η − η′)

Cα(η − θ)
ε, (6.6)

since θ + ε ≤ 1. Let X :=
(1− k)Lε

T
1
2α
ε

, we have that

Iε = 2

∫ +∞

X

1

1 + z1+2α
dz ≤ 2

∫ +∞

X

1

z1+2α
dz =

1

α
X−2α.

In order to prove (6.6), we only need to show that

X−2α ≤ α(1− k)(η − η′)
Cα(η − θ)

ε, 0 < ε� 1. (6.7)
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Recalling X =
(1− k)Lε

T
1
2α
ε

, Lε := γ

(
1

r−ε
ln

1

ε

) 1
2α

and Tε =
1

r−
ln η−θ

ε , we have that

X−2α =
Tε

(1− k)2αL2α
ε

=
1

(1− k)2αγ2α

ln
η − θ
ε

ln
1

ε

ε ∼ 1

(1− k)2αγ2α
ε, as ε→ 0.

Thus we have (6.7) holds, provided that

Cα(η − θ)
γ2αα(η − η′)

< (1− k)1+2α,

which holds true since γ >
(
Cα(η−θ)
α(η−η′)

) 1
2α

and 0 < k < 1 −
(

Cα(η−θ)
γ2αα(η−η′)

) 1
1+2α

. This completes the proof
of Proposition 6.1.

We can now conclude the second part of the proof of Theorem 1.
Proof of Theorem 1 – Propagation threshold. From Assumption 2.1, we get the existence of r− > 0 and
δ ∈ (θ, 1), such that we have

f(w) ≥ g̃(w), ∀w ∈ (−∞, δ),

where g̃(w) = r−(w − θ). Let 0 < β < δ − θ be given small enough so that we can define a Lipschitz
continuous function f̃ : R→ R such that f̃ ≤ f ,

f̃(w) =

{
f(w), w ∈ (−∞, θ) ∪ [δ,∞),

r−(w − θ), w ∈ (θ, θ + β),

and f̃ satisfies Assumption 2.1. Denote w̃ = w̃(t, x) the solution to

∂tw̃ + (−∆)αw̃ = f̃(w̃),

starting from w̃(0, x) = φεL(x), so that w̃(t, x) ≤ uεL(t, x) from the comparison principle. Consider the
time Tε = 1

r− ln β
ε . For 0 < ε ≤ β, we know from the proof of Proposition 6.1 (setting η = θ + β) that

w̃ ≤ θ + β ≤ δ on [0, Tε]× R. Since

f̃(w) ≥ g̃(w), w ∈ (θ, θ + β),

it follows from Proposition 6.1 that, for any given m ∈ (0, 1) and β′ ∈ (0, β), there exists ε0 > 0 such
that for all ε ∈ (0, ε0) and L > Lε, we obtain that

uεL(Tε, x) ≥ w̃(Tε, x) ≥ (θ + β′)1(−mLε,mLε)(x),

with Lε = γ
(

1
r−ε ln 1

ε

) 1
2α and γ >

(
Cαβ

α(β−β′)(1−k)1+2α

) 1
2α

.
From Proposition 2.1 applied to ε = β′, we know that Lprop

β′ < +∞ exists, that is for ` > Lprop
β′ the

solution to (1.1) with initial data (θ + β′)1[−`,`](x) propagates. As a result, for ε > 0 small enough so
that mLε > Lprop

β′ , we have uεL(Tε + t, x) → 1 as t → +∞ locally uniformly in x ∈ R and therefore

uεL(t, x)→ 1 as t→ +∞ locally uniformly in x ∈ R. We have proved that, for Lε = γ
(

1
r−ε ln 1

ε

) 1
2α , one

has Lprop
ε ≤ Lε for ε > 0 small enough. This completes the proof of Theorem 1.
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