Erratum to: Quantitative estimates of the threshold phenomena for propagation in reaction diffusion equations*

Matthieu Alfaro ${ }^{\dagger}$, Arnaud Ducrot ${ }^{\ddagger}$, and Grégory Faye ${ }^{\S}$

We are very grateful to Grégoire Nadin for bringing the following issue in the work [1] to our attention : since it lacks regularity, the function $w=w(t, x)$ defined in (3.5) cannot be the solution to the reaction diffusion equation (3.2).

Nevertheless, by replacing Assumption 1.1 in [1] by the slightly stronger Assumption 0.1, our results remain valid.

Assumption 0.1 (Nonlinearity f). Let Assumption 1.1 of [1] hold. In the bistable case, assume further that there are $r^{-}>0$ and $\delta^{-} \in(\theta, 1)$ such that

$$
\begin{equation*}
f(u) \geq r^{-}(u-\theta), \forall u \in\left[0, \delta^{-}\right] . \tag{0.1}
\end{equation*}
$$

By requiring (0.1) to hold on $\left[0, \delta^{-}\right]$(and not only on $\left[\theta, \delta^{-}\right]$as in (1.8) in [1]), we can replace the piecewise linear function $h=h(w)$ in (3.1) by the linear function $h(w)=r^{-}(w-\theta)$. In other words $r_{0}=r^{-}$and, now, $w=w(t, x)$ in (3.5) is the solution to the reaction diffusion equation (3.2). The rest of the proof is exactly the same.

Last, notice that, despite the additional requirement (0.1), the usual cubic bistable nonlinearity $(r>0)$

$$
f(u)=r u(u-\theta)(1-u) \mathbf{1}_{(0,1)}(u),
$$

[^0]
[^0]: *Submitted to the editors DATE.
 Funding: M. Alfaro is supported by the ANR I-SITE MUSE, project michel 170544IA (n° ANR IDEX-0006).
 ${ }^{\dagger}$ Université de Rouen Normandie, CNRS, Laboratoire de Mathématiques Raphaël Salem, Saint-Etienne-duRouvray, France \& BioSP, INRAE, 84914, Avignon, France. (matthieu.alfaro@univ-rouen.fr).
 ${ }^{\ddagger}$ Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France (arnaud.ducrot@univlehavre.fr).
 ${ }^{\S}$ IMT, UMR 5219, Université de Toulouse, UPS-IMT, F-31062 Toulouse Cedex 9, France (gregory.faye@math.univ-toulouse.fr).

