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31062 Toulouse Cedex, France

(Communicated by Chongchun Zeng)

Abstract. We prove the multidimensional stability of planar traveling waves

for scalar nonlocal Allen-Cahn equations using semigroup estimates. We show

that if the traveling wave is spectrally stable in one space dimension, then it is
stable in n-space dimension, n ≥ 2, with perturbations of the traveling wave

decaying like t−(n−1)/4 as t→ +∞ in Hk(Rn) for k ≥
[
n+1
2

]
.

1. Introduction. We consider the scalar nonlocal Allen-Cahn equation

∂tu(x, t) = −u(x, t) +

∫
Rn
K(x− y)u(y, t)dy + f(u(x, t)) :

= −u(x, t) +K ∗x u(x, t) + f(u(x, t)) (1)

where u ∈ R, (x, t) ∈ Rn×R+ and f is a smooth function of bistable type with three
zeros, 0, 1 and a ∈ (0, 1). A prototypical example for f is the cubic nonlinearity
of form fcu(u) := u(1− u)(u− a). Here K ∈ L1(R) is a nonnegative function with∫
Rn K(x)dx = 1 and that is even with respect to each variable. A traveling wave

ϕ(ξ) is a smooth function of the variable ξ = e ·x−ct, for e ∈ Sn−1 and some c ∈ R,
which is a solution of (1) satisfying the limits lim

ξ→−∞
ϕ(ξ) = 1 and lim

ξ→+∞
ϕ(ξ) = 0.

Without loss of generality, we suppose that e = (1, 0, . . . , 0). In the moving frame
x = (ξ, z) ∈ R× Rn−1, equation (1) can be written as

∂tu(x, t)− c∂ξu(x, t) = −u(x, t) +

∫
Rn
K(x− y)u(y, t)dy + f(u(x, t)) (2)

such that the traveling wave ϕ(ξ) is a stationary solution of (2). If we define
K0 : R→ R as

K0(ξ) =

∫
Rn−1

K(ξ, z)dz (3)
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2 GRÉGORY FAYE

then (ϕ, c) satisfies

−cϕ̇(ξ) = −ϕ(ξ)+

∫
R
K0(ξ−ζ)ϕ(ζ)dζ+f(ϕ(ξ)), lim

ξ→−∞
ϕ(ξ) = 1 and lim

ξ→+∞
ϕ(ξ) = 0, (4)

where ˙ stands for d
dξ and ϕ is decreasing.

Main assumptions. Throughout the paper, we will assume the following hypothe-
ses for f and K which ensure the existence and uniqueness (modulo translation) of
a solution (ϕ, c) to (4), see [3].

Hypothesis (H1) We suppose that the nonlinearity f satisfies the following prop-
erties:

(i) f ∈ C∞(R);
(ii) f(u) = 0 precisely when u ∈ {0, a, 1};

(iii) f ′(0) < 0, f ′(1) < 0 and f ′(a) > 0.

Note that we only need f ∈ C2(R) to obtain the existence result of [3] and here
we require more regularity to obtain uniform bounds on the nonlinear terms in our
stability analysis.

Hypothesis (H2) We suppose that the kernel K satisfies the following properties:

(i) K ≥ 0, is even with respect to each variable;
(ii) K ∈W 1,1(Rn);

(iii)
∫
Rn K(x)dx = 1,

∫
Rn ‖x‖K(x)dx <∞ and

∫
Rn ‖x‖

2K(x)dx <∞;

(iv) K̂(k) = 1− d0‖k‖2 + o(‖k‖2) as k→ 0 with d0 > 0.

Here, W k,p(Rn) denotes the Sobolev space with its usual norm and we use the

notation Hk(Rn) := W k,2(Rn). The symbol K̂ denotes the Fourier transform of K
defined as

K̂(k) =

∫
Rn
K(x)e−ik·xdx, k ∈ Rn.

The first assumption is natural from a modeling point of view while the second and
third assumptions are required to ensure the existence of traveling wave solution ϕ
to equation (4). The third and forth assumptions also imply that

∀j ∈ J1, nK

∫
Rn
xjK(x)dx = 0 and d0 =

1

2n

∫
Rn
‖x‖2K(x)dx > 0.

Furthermore, as −1 + K̂(k) ∼ −d0‖k‖2 for k→ 0, in the long wavelength limit, the
linear operator u 7→ −u+K∗u approaches the Laplacian d0∆Rn and we recover the
classical Allen-Cahn equation. Remark that in the short wavelength limit we have

−1 + K̂(k) ∼ −1 for ‖k‖ → ∞ such that u 7→ −u + K ∗ u is a bounded operator
which is a very different feature from the Laplacian. Note that with Hypothesis
(H2) for the kernel K we recover all the hypotheses of [3] for K0.

In this paper, we are concerned with determining the stability of the traveling
wave ϕ. We are thus let to study the spectral properties of the linear operator L

L : H1(Rn) −→ L2(Rn)
u 7−→ −u+K ∗x u+ c d

dξ + f ′(ϕ)u.
(5)

It is natural to assume that the wave ϕ is linearly stable in one space dimension to
get stability in higher in space dimensions. In fact, it is consequence of Hypotheses
(H1) and (H2) on f and K. First, define the linear operator L0 associated to
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equation (4)

L0 : H1(R) −→ L2(R)
u 7−→ −u+K0 ∗ξ u+ c d

dξ + f ′(ϕ)u.
(6)

and its adjoint operator L∗0
L∗0 : D(L∗0) ⊂ L2(R) −→ L2(R)

u 7−→ −u+K0 ∗ξ u− c d
dξ + f ′(ϕ)u.

(7)

Lemma 1.1 ([2, 6]). Suppose that Hypotheses (H1) and (H2) are satisfied, then

(i) 0 is an algebraic simple eigenvalue of L0 with negative eigenfunction ϕ′;
(ii) there exists γ0 > 0 such that σess(L0) ⊂ {λ | |<(λ)| < −γ0};

(iii) there exists a unique negative solution ψ ∈ H1(R) which solves L∗0ψ = 0 with∫
R ϕ
′(ξ)ψ(ξ)dξ = 1.

Since the eigenvalue zero is isolated, there exists a spectral projection operator,
P, onto the null space of L0 given by

Pu =
1

2πi

∫
Γ

(L0 − λ)
−1
udλ, (8)

where Γ is a simple closed curve in the complex plane enclosing the zero eigenvalue.
If 〈·, ·〉 denotes the scalar product on L2(R) then we can write P as

Pu(ξ, z) = 〈ψ, u〉(z)ϕ′(ξ) :=

(∫
R
ψ(ξ)u(ξ, z)dξ

)
ϕ′(ξ). (9)

We define the operator Q as Qu := u− Pu.

Main result. We can now state our main result. The perturbation of the wave will
be written as

u(x, t) := ϕ(ξ − ρ(z, t)) + v(ξ − ρ(z, t), z, t) (10)

where ρ : Rn−1 → R ∈ Hk(Rn−1) and v : Rn → R ∈ Hk(Rn) is in the range of the
operator L0 that is Pv = 0. And we set

E0 := ‖v0‖W 1,1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).

Theorem 1.2. Let n ≥ 2 and k ≥
[
n+1

2

]
. Suppose that Hypotheses (H1) and

(H2) are satisfied. There exists C > 0 such that if E0 is sufficiently small, then the
traveling wave solution ϕ of equation (2) is stable in the sense that the perturbation
(ρ, v) given in (10) satisfies the decay estimates for all t ≥ 0

‖v(t)‖Hk(Rn) ≤ C(1 + t)−
n−1
4 −1E0, (11a)

‖ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n−1
4 E0, (11b)

‖∇z · ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n+1
4 E0, (11c)

where ∇z = (∂x2
, · · · , ∂xn).

Note that Theorem 1.2 is well known in the case of local diffusion, namely when
the nonlocal term −u+K∗xu in equation (1) is replaced by the standard Laplacian
∆ =

∑n
i=1 ∂

2
xi on Rn. Xin [18] was the first to prove these results in dimension

n ≥ 4 in the local case. His results were then extended to the remaining dimensions
n = 2, 3 in [14] and generalized to systems of bistable reaction-diffusion equations
by Kapitula [13]. Our strategy of proof will be similar to as [18, 13] where semigroup
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estimates for the associated linearized operator are used to prove the multidimen-
sional stability of the traveling wave ϕ. It is important to remark that in dimension
n ≥ 4, these semigroup estimates are sufficient to prove Theorem 1.2. For the re-
maining dimensions n = 2, 3, the proof essentially relies on the decomposition of the
perturbation as written in (10) which basically allows one to split the problem into
two parts. One part controls the drift of the perturbations along the translates of
the wave and another part which controls the remaining part of the perturbations
and will decay faster in time. Although our proof will follow the strategy devel-
oped in [18, 13], we still have to deal with the nonlocal nature of our equations.
In our case, we use point-wise Green’s functions estimates to obtain sharp decay
estimates of the linear part of our linearized operator. These types of estimates
are reminiscent of the ones obtained by Hoffman and coworkers [11] in the study
of multi-dimensional stability of planar traveling of lattice differential equations,
which are discrete version of equation (1). In the nonlocal setting, using super- and
sub- solution technique, Chen [5] has been able to prove the uniform multidimen-
sional stability of the traveling wave ϕ of equation (1). As a direct consequence,
our Theorem 1.2 generalizes Chen’s result.

An application. This present work was initially motivated by the study of Bates
and Chen [1] where they prove a multidimensional stability result for a slightly
different multidimensional nonlocal Allen-Cahn equation. Their idea was to consider
a generalization of the Laplacian in n-dimension for which, each component ∂2

xi of ∆
is approximated by the convolution operator −u+J ∗xi u. They obtain an equation
of form

∂tu =

n∑
i=1

(−u+ J ∗xi u) + f(u), (12)

with

J ∗xi u(x) :=

∫
R
J (y)u(x1, · · · , xi − y, · · · , xn)dy.

The kernel J satisfies the following Hypothesis.

Hypothesis (H3) We suppose that the kernel J satisfies the following properties:

(i) J ≥ 0, is even;
(ii) J ∈W 1,1

η (R) for η > 0.

Here W 1,1
η (R) denotes the exponentially weighted function space defined as

W 1,1
η (R) :=

{
u ∈W 1,1(R) | eη|·|u ∈ L1(R) and eη|·|∂xu ∈ L1(R)

}
.

A direct consequence of Hypothesis (H3) is that Ĵ (k) = 1− d0k
2 + o(k2) as k → 0

for d0 > 0. In this setting, the traveling wave ϕ is solution of (4) with K0 = J
and the linearized operator L0 has the same expression as in equation (6) and thus
Lemma 1.1 is also verified provided that f satisfies Hypothesis (H1).

To study the stability of the traveling wave ϕ, we work with the same decompo-
sition

u(x, t) = ϕ(ξ − ρ(z, t)) + v(ξ − ρ(z, t),x, t), t ≥ 0, (13)

with ρ : Rn−1 → R ∈ Hk(Rn−1) and v : Rn → R ∈ Hk(Rn) is in the range of the
operator L0 that is Pv = 0. We also set

Ẽ0 := ‖v0‖L1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).

As a bi-product of our proof, we obtain the following result.
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Theorem 1.3. Let n ≥ 2 and k ≥
[
n+1

2

]
. Suppose that Hypotheses (H1) and

(H3) are satisfied. There exists C > 0 such that if Ẽ0 is sufficiently small, then the
traveling wave solution ϕ of equation (12) is stable in the sense that the perturbation
(ρ, v) given in (13) satisfies the decay estimates for all t ≥ 0

‖v(t)‖Hk(Rn) ≤ C(1 + t)−
n+1
2 Ẽ0, (14a)

‖ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n−1
4 Ẽ0, (14b)

‖∇z · ρ(t)‖Hk(Rn−1) ≤ C(1 + t)−
n+1
4 Ẽ0. (14c)

Note that Bates and Chen [1] only proved Theorem 1.3 in dimension n ≥ 4
and thus our result generalizes their analysis to the remaining dimensions n =
2, 3. Compared to Theorem 1.2, we obtain a sharper decay of v component of the
perturbation. This is a consequence of the fact that the projection P commutes
with each linear operator −u+ J ∗xi u for i = 2 · · ·n.

Outline. The paper is organized in three parts. In section 2, we prove Theorem
1.2 in dimension n ≥ 4. In the following section we study the semigroup associated
to the linear operator L and derive estimates crucial for our nonlinear stability
analysis. Finally, in section 4, we prove Theorem 1.2 for the remaining dimensions
n = 2, 3 and Theorem 1.3 is proved in section 5.

2. Stability in high dimension. In this section, we give a simple proof of Theo-
rem 1.2 in the high-dimensional case n ≥ 4, following ideas that have been developed
for the multidimensional local Allen-Cahn equations [18, 13] and then, generalized
to reaction-diffusion systems for example [10]. The main ingredient of the proof is an
estimate (see (18)) for the linearized evolution operator L which will be established
in the following section 3.

We consider a solution u(x, t) = ϕ(ξ) + v(x, t) of (1) which satisfies the equation

∂tv(x, t) = Lv(x, t) +H(v(x, t)), (15)

where

H(v) := f(ϕ+ v)− f(ϕ)− f ′(ϕ)v. (16)

The Cauchy problem associated to equation (15) with initial condition v0 ∈ Hk(Rn)
∩ L1(Rn), with k ≥ n + 1 and n ≥ 4 is locally well-posed in Hk(Rn). This is
equivalent to say that for any v0 ∈ Hk(Rn)∩L1(Rn) there exists a time T > 0 such
that (15) as a unique mild solution in Hk(Rn) defined on [0, T ] satisfying v(0) = v0.
The integral formulation of (15) is given by

v(t) = SL(t)v0 +

∫ t

0

SL(t− s)H(v(s))ds, (17)

where SL is the semigroup associated to the linear operator L. Anticipating the
estimates derived in the following sections (see (39)), there exist positive constants
C and θ such that

‖SL(t)v‖Hk(Rn) ≤ C
(

(1 + t)−
n−1
4 ‖v‖L1(Rn) + e−θt‖v‖Hk(Rn)

)
. (18)

The nonlinear contribution H(v) is at least quadratic in v close to the origin. As a
consequence, we can find a positive nondecreasing function κ : R+ → R+ such that,
for all t ∈ [0, T ],

|H(v)| ≤ κ(R)|v|2, for |v| ≤ R.
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Let T∗ > 0 be the maximal time of existence of a solution v ∈ Hk(Rn) with initial
condition v0 ∈ Hk(Rn) ∩ L1(Rn). For t ∈ [0, T∗) we define

Φ(t) = sup
0≤s≤t

(1 + s)
n−1
4 ‖v(s)‖Hk(Rn).

Using estimate (18) directly into the integral formulation (17) yields

‖v(t)‖Hk(Rn) ≤ ‖SL(t)v0‖Hk(Rn) +

∫ t

0

‖SL(t− s)H(v(s))‖Hk(Rn)ds

. (1 + t)−
n−1
4 ‖v0‖L1(Rn) + e−θt‖v0‖Hk(Rn)

+ κ(Φ(t))

∫ t

0

(1 + t− s)−
n−1
4 ‖v(s)‖2Hk(Rn)ds

+ κ(Φ(t))

∫ t

0

e−θ(t−s)‖v(s)‖2Hk(Rn)ds.

Here, and throughout the paper we use the notation A . B whenever A ≤ κB for
κ > 0 a constant independent of time t. From Lemma A.1, there exist constants
C1 > 0 and C2 > 0 so that∫ t

0

(1 + t− s)−
n−1
4 (1 + s)−

n−1
2 ds ≤ C1(1 + t)−

n−1
4 ,∫ t

0

e−θ(t−s)(1 + s)−
n−1
2 ds ≤ C2(1 + t)−

n−1
4 .

Note that the first inequality is a consequence of our careful choice of n. Indeed,
this inequality is only true for n−1

4 > 1
2 (n ≥ 4). Then, for all t ∈ [0, T∗) we have

Φ(t) ≤ C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
+ C̃0κ(Φ(t))Φ(t)2,

for some positive constants C0 and C̃0. Suppose that the initial condition v0 is
small enough so that

2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1 and 4C0C̃0κ(1)

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1,

then
Φ(t) ≤ 2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
< 1,

for all t ∈ [0, T∗). This implies that the maximal time of existence is T∗ = +∞ and
the solution v of (15) satisfies:

sup
t≥0

(1 + t)
n−1
4 ‖v(t)‖Hk(Rn) ≤ 2C0

(
‖v0‖L1(Rn) + ‖v0‖Hk(Rn)

)
.

3. Linear estimates. We first start this section by deriving the nonlinear prob-
lem that we will be solving in the next section and then derive estimates of the
corresponding linear parts.

3.1. Setup of the problem. We represent each solution u(x, t) of (2) through the
decomposition

u(x, t) := ϕ(ξ − ρ(z, t)) + v(ξ − ρ(z, t), z, t) (19)

where ρ : Rn−1 → R ∈ H1(Rn−1) and v : Rn → R ∈ H1(Rn). Note that the
perturbation v can be written as

v(x, t) = u(ξ + ρ(z, t), z, t)− ϕ(ξ),

and v is in range of L0 such that Pv = 0. Note that such a decomposition (10) is
always possible. Indeed, suppose that w ∈ Hk(Rn) is given and small enough. In
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order to use the decomposition (10), we need to find a unique pair (ρ(w), v(w)) ∈
Hk(Rn−1)×Hk(Rn) with Pv = 0 that satisfies

ϕ+ w = Tρ · (ϕ+ v) ,

where Tρ ·ϕ(ξ) = ϕ(ξ−ρ) and Tρ ·v(ξ, z, t) = v(ξ−ρ, z, t). Reproducing the standard
argument of Kapitula in [13], we use Taylor’s theorem to write

ϕ− T−ρ · ϕ = −ρ
∫ 1

0

Tsρ · ϕ′ds,

so that we obtain the equivalent equation

T−ρ · w = v − ρ
∫ 1

0

Tsρ · ϕ′ds.

Taking the inner product with ψ the eigenfunction of the adjoint operator L∗0 asso-
ciated to the zero eigenvalue yields

〈T−ρ · w,ψ〉 = −ρ
〈∫ 1

0

Tsρ · ϕ′ds, ψ
〉
.

Here, we have used the fact that we look for solution v so such that Pv = 0. We
can then define the functional F : Hk(Rn)×Hk(Rn−1)→ Hk(Rn−1) by

F (w, ρ) = 〈T−ρ · w,ψ〉+ ρ

〈∫ 1

0

Tsρ · ϕ′ds, ψ
〉
,

with F (0, 0) = 0 and Fréchet derivative DρF (0, 0) = id where id is the identity
operator. By the implicit function theorem with have on a neighborhood of (0, 0)
the existence of ρ(w) such that F (w, ρ(w)) = 0. We then apply the projection Q to

the equation T−ρ · w = v − ρ
∫ 1

0
Tsρ · ϕ′ds and obtain

v = QT−ρ(w) · w +Q
(
ρ(w)

∫ 1

0

Tsρ(w) · ϕ′ds
)
,

which clearly admits a solution v(w) with Pv(w) = 0. As a conclusion, all suffi-
ciently small perturbation can be written as in equation (10).

We can now substitute the Ansatz (19) into (2) to get the evolution equation:

−∂tρϕ̇ρ− cϕρ+∂tvρ− c∂ξvρ−∂tρ∂ξvρ = −ϕρ− vρ+K∗xϕρ+K∗x vρ+f(ϕρ+ vρ),

with ϕρ = ϕ(· − ρ) and vρ = v(· − ρ, ·, ·). As ϕ is solution of (4), we obtain:

(∂t − L) v = (∂t − L) (ρϕ̇) +H(v) +N (ρ, v) +R(ρ, v) (20)

where the nonlinear term H has been defined in (16), R(ρ, v) := ∂tρ∂ξv and the
remaining term N is split into two different parts

N (ρ, v) := N1(ρ) +N2(ρ, v), (21)

where

N1(ρ)(x, t) :

=

∫
Rn
K(x− x′)ϕ (ξ′ + ρ(z, t)− ρ(z′, t)) dξ′dz′ −

∫
Rn
K(x− x′)ϕ(ξ′)dξ′dz′

−
∫
Rn
K(x− x′)ϕ̇(ξ′) (ρ(z, t)− ρ(z′, t)) dξ′dz′, (22)
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and

N2(ρ, v)(x, t) :=

∫
Rn
K(x− x′)v (ξ′ + ρ(z, t)− ρ(z′, t), z′, t) dξ′dz′

−
∫
Rn
K(x− x′)v(ξ′, z′, t)dξ′dz′. (23)

One can check that the third term of N1(ϕ, ρ) is actually L(ρϕ̇) as

L(ρϕ̇) = −ρϕ̇+K ∗x (ρϕ̇) + cρϕ̈+ f ′(ϕ)ρϕ̇

= K ∗x (ρϕ̇)− ρK0 ∗ ϕ̇

= −
∫
Rn
K(x− x′)ϕ̇(ξ′) (ρ(z, t)− ρ(z′, t)) dξ′dz′.

Finally, if we denote SL(t) the semigroup generated by the linear operator L,
applying Duhamel’s formula to (20), we obtain

v(t) =SL(t)v0 + ρ(t)ϕ̇− SL(t)(ρ0ϕ̇)

+

∫ t

0

SL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) ds.

As v is in the range of L0, we must have

v(t) =QSL(t)v0 −QSL(t)(ρ0ϕ̇)

+

∫ t

0

QSL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) ds, (24a)

ρ(t) =〈SL(t)(ρ0ϕ̇− v0), ψ〉

−
∫ t

0

〈SL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) , ψ〉ds. (24b)

In the following sections, we will derive estimates on SL(t).

3.2. Study of SL(t). We consider the initial value problem

∂tu = Lu, u( · , 0) = u0 ∈ Hk(Rn), (25)

which has the solution u(ξ, z, t) = SL(t)u0(ξ, z). From its definition, L can be
written as

L = L0 +A,
where the operator A is defined as

Au := −K0 ∗ξ u+K ∗x u, u ∈ L2(Rn). (26)

Let û represent the Fourier transform of u in z:

û(ξ, k̃, t) =

∫
Rn−1

u(ξ, z, t)e−iz·k̃dz

so that (25) is transformed into

∂tû(ξ, k̃, t) = L0û(ξ, k̃, t) + B(k̃)û(ξ, k̃, t),

where

B(k̃)û(ξ, k̃) := −K̂n−1(0n−1) ∗ξ û(ξ, k̃) + K̂n−1(k̃) ∗ξ û(ξ, k̃),

with

K̂n−1(ξ, k̃) :=

∫
Rn−1

K(x)e−iz·k̃dz.
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We have used the fact that K̂n−1(ξ,0n−1) = K0 by definition. We readily note that

for each k̃ ∈ Rn−1, the operator

L(k̃) : H1(R) −→ L2(R)

u 7−→ L0u+ B(k̃)u

defines a C0 semigroup with L(0n−1) = L0.

Lemma 3.1. The family of operators L(k̃) satisfies the following properties.

(i) Near k̃ = 0n−1, the only eigenvalue λ is a smooth function of k̃ and the

expression of λ(k̃) reads:

λ(k̃) = −A‖k̃‖2 + o
(
‖k̃‖3

)
, (27)

with A := d0 〈K0 ∗ξ ϕ′, ψ〉.
(ii) σ

(
L(k̃)

)
⊂ {<(λ) < 0}, for k̃ 6= 0n−1.

Proof. For the first property (i), we apply perturbation theory to the linear

operator L(k̃) for k̃ near zero. To this end, we define

F : Rn−1 × C ×H1
⊥(R) −→ L2(R)

(k̃, λ, w) 7−→
(
L(k̃)− λ

)
(ϕ̇+ w),

where H1
⊥(R) =

{
u ∈ H1(R) | 〈u, ϕ̇〉 = 0

}
. Applying the implicit function theorem,

we see that there exist a small neighborhood of the origin and smooth functions

λ(k̃) and w(k̃) such that F(k̃, λ(k̃), w(k̃)) = 0 on that neighborhood. We denote

q(k̃) = ϕ̇ + w(k̃). Similarly for the adjoint operator L∗(k̃), we have a smooth

continuation of ψ given by q∗(k̃) so that

〈q(k̃), q∗(k̃)〉 = 1.

Differentiating F(k̃, λ(k̃), w(k̃)) = 0 with respect to k̃j , for any j, we find

∂k̃jλ(0) = ∂k̃j

(
〈B(k̃)ϕ′, ψ〉

)
k̃=0n−1

= 0.

Indeed, if ` ∈ R, we have that

B̂(k̃)u(`) =

∫
R
B(k̃)u(ξ)e−ξ`dξ

=
(
−K̂(`,0n−1) + K̂(`, k̃)

)
û(`)

∼ −d0‖k̃‖2û(`)

as ‖k̃‖ → 0. Similarly, we find that for any j and l,

∂2
k̃j k̃l

λ(0) = 0.

Finally, for any j, we have that

∂2
k̃j k̃j

λ(0) = −2d0 〈K0 ∗ξ ϕ′, ψ〉 ,

which gives the desired expansion.
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For the second property (ii), we have just seen that λ(k̃) 6= 0 for small values of

k̃. For any u ∈ H1(R) we have that

〈L(k̃)u, u〉 = −〈u, u〉+ 〈K̂n−1(k̃) ∗ξ u, u〉+ 〈f ′(ϕ)u, u〉

≤

(
−1 + K̂n−1(0, k̃) + sup

ϕ∈[0,1]

f ′(ϕ)

)
〈u, u〉.

As K̂n−1(0, k̃) → 0 as ‖k̃‖ → ∞, there exist M > 0 and cM > 0 so that for all

‖k̃‖ ≥M ,

−1 + K̂n−1(0, k̃) + sup
ϕ∈[0,1]

f ′(ϕ) < −cM .

This implies that <(λ) < −cM < 0 for all λ ∈ σ(L(k̃)) with ‖k̃‖ ≥ M . For the
region in-between, compactness and local robustness of the spectrum ensure that

σ
(
L(k̃)

)
⊂ {<(λ) < 0}.

Based on Lemma 3.1, there exists ε > 0, so that λ(k̃) is a simple eigenvalue

of L(k̃) in ‖k̃‖ ≤ 2ε. As a consequence, there exists a smooth spectral projection

operator, P(k̃), given by

P(k̃)u =
1

2πi

∫
Γ

(
L(k̃)− λ

)−1

udλ, (28)

where Γ is a simple closed curve in the complex plane enclosing the zero eigenvalue.

More conveniently, we write P(k̃) as

P(k̃)u(ξ) =

(∫
R
q∗(k̃, ξ)u(ξ)dξ

)
q(k̃, ξ) := 〈q∗(k̃), u〉q(k̃), ‖k̃‖ ≤ 2ε. (29)

Following some ideas developed in [17, 12] for viscous conservation laws, we in-

troduce a smooth cutoff function χ(k̃) that is identically one for ‖k̃‖ ≤ ε and

identically zero for ‖k̃‖ ≥ 2ε. We can then split the solution operator SL(t)u0 into
a low-frequency part

SIL(t)u0(ξ, z) :=
1

(2π)n−1

∫
Rn−1

eik̃·zeL(k̃)t
[
χ(k̃)P(k̃)û0(ξ, k̃)

]
dk̃ (30)

and the associated high-frequency part

SIIL (t)u0(ξ, z) :=
1

(2π)n−1

∫
Rn−1

eik̃·zeL(k̃)t
[(

id− χ(k̃)P(k̃)
)
û0(ξ, k̃)

]
dk̃, (31)

where id denotes the identity. One can easily check that we have SL(t) = SIL(t) +
SIIL (t).

3.2.1. Low-frequency bounds. We introduce the Green kernel associated with SIL(t)
as

GI(x, t;x′) := SIL(t)δx′(x), (32)

where x = (ξ, z) and x′ = (ξ′, z′).

Proposition 1. The Green kernel GI satisfies

GI(x, t;x′) =
1

(2π)n−1

∫
Rn−1

eik̃·(z−z
′)χ(k̃)eλ(k̃)tq(k̃, ξ)q∗(k̃, ξ′)dk̃. (33)
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Proof. First of all, through a direct computation, we have

δ̂x′(ξ, k̃) =

∫
Rn−1

e−ik̃·zδ(ξ′,z′)(ξ, z)dz = e−ik̃·z
′
δξ′(ξ).

Using the properties of the spectral projection P(k̃), we further have

P(k̃)δ̂x′(ξ, k̃) = q∗(k̃, ξ′)q(k̃, ξ).

Finally, noticing that eL(k̃)tq(k̃, ξ) = eλ(k̃)tq(k̃, ξ), we obtain the desired formula.

Proposition 2. The low-frequency Green function GI(x, t;x′) of (32) can be de-

composed as GI(x, t;x′) := ϕ̇(ξ)Ψ(z−z′, t; ξ′)+G̃I(x, t;x′), for which the following
estimates hold:

sup
ξ′
‖Ψ(·, t; ξ′)‖L2(Rn−1) . (1 + t)−

n−1
4 , (34a)

sup
ξ′
‖Ψ(·, t)‖Hk(Rn−1) . (1 + t)−

n−1
4 −

|α|
2 , (34b)

sup
x′
‖G̃I(·, t;x′)‖L2(Rn) . (1 + t)−

n−1
4 −1, (34c)

sup
x′
‖G̃I(·, t;x′)‖Hk(Rn) . (1 + t)−

n−1
4 −

|α|+2
2 . (34d)

for α ∈ Zn−1
+ with |α| ≤ k. Moreover, PG̃I(x, t;x′) = 0.

Proof. The idea of the proof is based on the remark that for ‖k̃‖ ≤ 2ε, the smooth

eigenfunctions q(k̃, ξ) and q∗(k̃, ξ) have an expansion of the form

q(k̃, ξ) = ϕ̇(ξ) +O
(
‖k̃‖2

)
,

q∗(k̃, ξ′) = ψ(ξ′) +O
(
‖k̃‖2

)
.

This leads us to introduce an auxiliary function Ψ̃(z, t) of the form

Ψ̃(z, t) :=
1

(2π)n−1

∫
Rn−1

eik̃·zχ(k̃)eλ(k̃)tdk̃,

so that we formally have

GI(x, t;x′)−ϕ̇(ξ)ψ(ξ′)Ψ̃(z−z′, t) =
1

(2π)n−1

∫
Rn−1

eik̃·(z−z
′)χ(k̃)eλ(k̃)tO

(
‖k̃‖2

)
dk̃.

(35)
On the one hand, a simple Fourier transform computation shows that

1

(2π)n−1

∫
Rn−1

eik̃·(z−z
′)e−A‖k̃‖

2tdk̃ = (4πAt)
−n−1

2 exp

(
−‖z− z′‖2

4At

)
,

where A = d0 〈K0 ∗ξ ϕ′, ψ〉, which directly gives us bounds for Ψ̃(·, t) that are similar
to the standard diffusive bounds satisfied for the heat equations:

‖Ψ̃(·, t)‖L2(Rn−1) . (1 + t)−
n−1
4 , (36a)

‖Ψ̃(·, t)‖Hk(Rn−1) . (1 + t)−
n−1
4 −

|α|
2 , (36b)
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for α ∈ Zn−1
+ with |α| ≤ k. On the other hand, because of the presence of terms of

the form ‖k̃‖2e−A‖k̃‖2t in the rest term of equation (35), the decay rate is improved

by factor (1 + t)−1 so that we have the following estimates for G̃I := GI − ϕ̇ψΨ̃.

sup
x′
‖G̃I(·, t;x′)‖L2(Rn) . (1 + t)−

n−1
4 −1, (37a)

sup
x′
‖G̃I(·, t;x′)‖Hk(Rn) . (1 + t)−

n−1
4 −

|α|
2 −1, (37b)

for α ∈ Zn−1
+ with |α| ≤ k. Now, we can define Ψ(z− z′, t; ξ′) as

Ψ(z− z′, t; ξ′) :=
1

(2π)n−1

∫
Rn−1

eik̃·zχ(k̃)eλ(k̃)tq∗(k̃, ξ′)〈q(k̃, ·), ψ〉k̃ (38)

and set G̃I(x, t;x′) := GI(x, t;x′)− ϕ̇(ξ)Ψ(z− z′, t; ξ′). And all the estimates (34)
are readily obtained from (36) and (37).

Proposition 3. The linear operator SIL(t) satisfies the decay estimate∥∥SIL(t)u
∥∥
Hk(Rn)

. (1 + t)−
n−1
4 ‖u‖L1(Rn).

Furthermore, we have∥∥QSIL(t)u
∥∥
Hk(Rn)

. (1 + t)−
n−1
4 −1‖u‖L1(Rn).

Proof. The proof of the proposition easily follows from the estimates (34) by first
noticing that

SIL(t)u(x) =

∫
Rn

GI(x, t;x′)u(x′)dx′, x ∈ Rn,

and ∫
Rn

∣∣SIL(t)u(x)
∣∣2 dx ≤

(
sup
x′
‖GI(·, t;x′)‖L2(Rn)

)2(∫
Rn
|u(x′)|dx′

)2

.

The estimates in Hk(Rn) are obtained via similar computations. Finally, we recall
the decomposition of GI(x, t;x′) implies that

QGI(x, t;x′) = G̃I(x, t;x′),

which completes the proof of the proposition.

3.2.2. High-frequency bounds. We now study the high-frequency bounds associated
to SIIL (t). By definition, we have

SIIL (t)u(ξ, z) :=
1

(2π)n−1

∫
Rn−1

eik̃·zeL(k̃)t
[(

id− χ(k̃)P(k̃)
)
û(ξ, k̃)

]
dk̃,

where P(k̃) is such that∫
R

∣∣∣eL(k̃)t
[(

id− χ(k̃)P(k̃)
)
û(ξ, k̃)

]∣∣∣2 dξ ≤ e−2θt
∥∥∥u(·, k̃)

∥∥∥2

L2(R)
,

where θ > 0 is a positive constant which depends only on ε. Then, using Parseval’s
inequality, one obtains ∥∥SIIL (t)u

∥∥
L2(Rn)

. e−θt ‖u‖L2(Rn) ,

from which one can deduce Hk(Rn)-estimates.
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Proposition 4. The linear operator SIIL (t) satisfies the decay estimate∥∥SIIL (t)u
∥∥
Hk(Rn)

. e−θt‖u‖Hk(Rn).

As a conclusion, combining Proposition 3 and 4, we arrive at the linear estimate
for semigroup SL(t) of L. For u ∈ Hk(Rn), we have

‖SL(t)u‖Hk(Rn) . (1 + t)−
n−1
4 ‖u‖L1(Rn) + e−θt‖u‖Hk(Rn). (39)

As a consequence of our analysis, we also have

‖QSL(t)u‖Hk(Rn) . (1 + t)−
n−1
4 −1‖u‖L1(Rn) + e−θt‖u‖Hk(Rn), (40)

and

‖∇z · SL(t)u‖Hk(Rn) . (1 + t)−
n−1
4 −

1
2 ‖u‖L1(Rn) + t−

1
2 e−θt‖u‖Hk(Rn). (41)

4. Nonlinear stability in dimension 2 and 3. In this section, we prove Theorem
1.2 for the remaining dimensions 2 and 3.

4.1. Some nonlinear estimates. We first give estimates on the nonlinear terms
that appear in our system (24). More precisely, we will prove the following lemma.

Lemma 4.1. Let k ≥
[
n+1

2

]
. There exists a δ > 0 such that for any v ∈ Hk(Rn)

and ρ ∈ Hk+1(Rn−1) with ‖v‖Hk(Rn) ≤ δ, ‖ρ‖Hk(Rn−1) ≤ δ and ‖∇z ·ρ‖Hk(Rn−1) ≤ δ
we have

‖H(v)‖L1(Rn) , ‖H(v)‖Hk(Rn) ≤ C ‖v‖
2
Hk(Rn) , (42a)

‖N1(ρ)‖L1(Rn) , ‖N1(ρ)‖Hk(Rn) ≤ C ‖∇z · ρ‖2Hk(Rn−1) , (42b)

‖N2(ρ, v)‖L1(Rn) , ‖N2(ρ, v)‖Hk(Rn) ≤ C ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) , (42c)

‖R(ρ, v)‖L1(Rn) , ‖R(ρ, v)‖Hk(Rn)

≤ C
(
‖v‖2Hk(Rn) + ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) + ‖∇z · ρ‖2Hk(Rn−1)

)
.

(42d)

Proof. Throughout the proof we will use that from Sobolev embedding we have

‖uv‖Hk(Rn) ≤ C ‖u‖Hk(Rn) ‖v‖Hk(Rn) and ‖u‖L∞(Rn) ≤ C ‖u‖Hk(Rn) .

Note that in order to obtain the nonlinear estimates (42), we will only use the above
Sobolev embedding and Taylor’s theorem together with the fact that both f and ϕ
are smooth with the a priori bounds on v and ρ. As the proofs of each estimate are
almost similar, we will present only the key points.

• For H(v). We use Taylor’s formula to write

H(v) = f(ϕ+ v)− f(ϕ)− f ′(ϕ)v = v2

∫ 1

0

(1− s)f ′′(ϕ+ sv)ds. (43)

As ϕ and v are both bounded, we have

‖H(v)‖L1(Rn) ≤ C ‖v‖
2
Hk(Rn) and ‖H(v)‖L2(Rn) ≤ C ‖v‖

2
Hk(Rn) .

In order to obtain the Hk(Rn) bound, we take the successive derivatives of
H(v) with respect to x. To illustrate the computations, we present only the
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computations for the derivative with respect to ξ. Taking the partial derivative
of (43) yields

∂ξH(v) =2v∂ξv

∫ 1

0

(1− s)f ′′(ϕ+ sv)ds+ v3

∫ 1

0

s(1− s)f ′′′(ϕ+ sv)ds

+ v2ϕ̇

∫ 1

0

(1− s)f ′′′(ϕ+ sv)ds.

Now, since ϕ̇ is bounded, we have

‖∂ξH(v)‖L2(Rn) ≤ C
(
‖v‖2Hk(Rn) + ‖v‖3Hk(Rn)

)
.

Finally, as f and ϕ are both smooth and as ϕ(k) is bounded for all k, we can
continue the above procedure for as many spatial derivatives as necessary and
thus obtain the desired estimate.

• For N1(ρ). From the definition of N1 in (22), we have that

N1(ρ)(x, t)

=

∫
Rn
K(x− x′)

(
ρ(z, t)− ρ(z′, t)

)2(∫ 1

0

(1− s)ϕ̈
(
ξ′ + s

(
ρ(z, t)− ρ(z′, t)

))
ds

)
dξ′dz′,

from which we further note that

ρ(z, t)− ρ(z′, t) = (z− z′)

∫ 1

0

∇z · ρ(z′ + τ(z− z′), t)dτ.

As a consequence,

‖N1(ρ)‖L1(Rn) ≤
1

2
‖ϕ̈‖L∞(R) ‖∇z · ρ‖2L2(Rn−1)

∫
Rn

z2K(x)dξdz,

≤ C ‖∇z · ρ‖2Hk(Rn−1) .

Here we have used the fact ϕ is a smooth function and that ϕ̈(ξ) → 0 as
ξ → ±∞ to conclude that ϕ̈ ∈ L∞ and that∣∣∣∣∫ 1

0

(1− s)ϕ̈ (ξ′ + s (ρ(z, t)− ρ(z′, t))) ds

∣∣∣∣ ≤ 1

2
‖ϕ̈‖L∞(R).

• For N2(ρ, v). From the definition of N2 in (23), we have that

N2(ρ, v)(x, t)

=

∫
Rn
K(x− x′) (ρ(z, t)− ρ(z′, t))

∫ 1

0

∂ξv(ξ + s (ρ(z, t)− ρ(z′, t)) , z′, t)dξ′dz′.

Using Cauchy-Schwarz inequality directly yields

‖N2(ρ, v)‖L1(Rn) ≤ C ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) ,

and the other estimates follow easily.
• For R(ρ, v). For the last estimates on R(ρ, v), we project equation (20) along
ψ so that we obtain

−〈Av, ψ〉 = ∂tρ (1 + 〈∂ξv, ψ〉)− 〈A(ρϕ̇), ψ〉+ 〈H(v) +N (ρ, v), ψ〉.

Provided that ‖v‖Hk(Rn) is small enough we can write

∂tρ =
1

1 + 〈∂ξv, ψ〉
(−〈Av, ψ〉+ 〈A(ρϕ̇), ψ〉 − 〈H(v) +N (ρ, v), ψ〉) . (44)
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Then, multiplying the above equation by ∂ξv and integrating over Rn, one
obtains the desired estimate

‖R(ρ, v)‖L1(Rn) . ‖v‖
2
Hk(Rn) + ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) + ‖∇z · ρ‖2Hk(Rn−1) .

Remark 1. Note that the evolution equation (44) that we obtained for ρ is equiva-
lent to equation (24b) that was previously derived, provided that ‖v‖Hk(Rn) is small

enough.

4.2. Proof of Theorem 1.2. We can now turn to the proof of our main Theorem
1.2. We first augment the system (24) with an additional equation for ω := ∇z · ρ,
so that we have the system of equations

v(t) = QSL(t)v0 −QSL(t)(ρ0ϕ̇)

+

∫ t

0

QSL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) ds, (45a)

ρ(t) = 〈SL(t)(ρ0ϕ̇− v0), ψ〉

−
∫ t

0

〈SL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) , ψ〉ds, (45b)

ω(t) = 〈SL(t)(ω0ϕ̇−∇z · v0), ψ〉

−
∫ t

0

∇z · 〈SL(t− s) (H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))) , ψ〉ds. (45c)

In the above equation, we used the fact that ∇z ·SL(t)f = SL(t)∇z ·f and set w0 :=
∇z · ρ0. We now define the Banach space X := Hk(Rn)×Hk(Rn−1)×Hk(Rn−1).
Using standard semigroup theory, we obtain the following existence result for the
system (45).

Lemma 4.2. Suppose that the initial condition for (45) satisfies (v0, ρ0, ω0) ∈ X
for k ≥

[
n+1

2

]
. Then, there exists T > 0 such that there exists a unique solution to

(45) with (v(t), ρ(t), ω(t)) ∈ X for all t ∈ [0, T ).

Let T∗ > 0 be the maximal time of existence of a solution (v, ρ, ω) ∈ X with
initial condition v0 ∈ Hk(Rn) ∩W 1,1(Rn), and ρ, ω0 ∈ Hk(Rn−1) ∩ L1(Rn−1). For
t ∈ [0, T∗) we define

Φv(t) := sup
0≤s≤t

(1 + s)
n−1
4 +1‖v(s)‖Hk(Rn),

Φρ(t) := sup
0≤s≤t

(1 + s)
n−1
4 ‖ρ(s)‖Hk(Rn−1),

Φω(t) := sup
0≤s≤t

(1 + s)
n+1
4 ‖ω(s)‖Hk(Rn−1)

and

E0 := ‖v0‖W 1,1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).

Estimate for the v component. We apply our semigroup estimates to the first equa-
tion of system (45) to obtain

‖v(t)‖Hk(Rn)

. (1 + t)−
n−1
4 −1E0 + e−θtE0
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+

∫ t

0

e−θ(t−s) ‖H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))‖Hk(Rn) ds

+

∫ t

0

(1 + t− s)−
n−1
4 −1 ‖H(v(s)) +N (ρ(s), v(s)) +R(ρ(s), v(s))‖L1(Rn) ds

. (1 + t)−
n−1
4 −1E0 + e−θtE0

+

∫ t

0

e−θ(t−s)
(
‖v(s)‖2Hk(Rn) + ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn)

)
ds

+

∫ t

0

e−θ(t−s) ‖ω(s)‖2Hk(Rn−1) ds+

∫ t

0

(1 + t− s)−
n−1
4 −1 ‖v(s)‖2Hk(Rn) ds

+

∫ t

0

(1 + t− s)−
n−1
4 −1

(
‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds.

We can now use the definition of Φv, Φρ and Φω to obtain the inequality

‖v(t)‖Hk(Rn)

. (1 + t)−
n−1
4 −1E0 + e−θtE0 + Φ2

v(t)

∫ t

0

e−θ(t−s)(1 + s)−
n−1
2 −2ds

+ Φv(t)Φρ(t)

∫ t

0

e−θ(t−s)(1 + s)−
n−1
2 −1ds+ Φ2

ω(t)

∫ t

0

e−θ(t−s)(1 + s)−
n+1
2 ds

+ Φ2
v(t)

∫ t

0

(1 + t− s)−
n−1
4 −1(1 + s)−

n−1
2 −2ds

+ Φ2
ω(t)

∫ t

0

(1 + t− s)−
n−1
4 −1(1 + s)−

n+1
2 ds

+ Φv(t)Φρ(t)

∫ t

0

(1 + t− s)−
n−1
4 −1(1 + s)−

n−1
2 −1ds.

We can now use the estimates of the Lemma A.1 to rewrite the above inequalities
as

‖v(t)‖Hk(Rn)

. (1 + t)−
n−1
4 −1E0 + e−θtE0 + Φ2

v(t)(1 + t)−
n−1
2 −2 + Φv(t)Φρ(t)(1 + t)−

n−1
2 −1

+ Φ2
ω(t)(1 + t)−

n+1
2 + Φ2

v(t)(1 + t)−
n−1
4 −1 + Φv(t)Φρ(t)(1 + t)−

n−1
4 −1

+ Φ2
ω(t)(1 + t)−

n−1
4 −1.

As a consequence, there exists a constant Cv > 0 such that for all t ∈ [0, T∗) we
have

Φv(t) ≤ Cv
(
E0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
. (46)

Estimate for the ρ component. We repeat the procedure of the previous paragraph
for the ρ component of system (45) to obtain

‖ρ(t)‖Hk(Rn−1)

. (1 + t)−
n−1
4 E0 + e−θtE0

+

∫ t

0

e−θ(t−s)
(
‖v(s)‖2Hk(Rn) + ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn)

)
ds
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+

∫ t

0

e−θ(t−s) ‖ω(s)‖2Hk(Rn−1) ds+

∫ t

0

(1 + t− s)−
n−1
4 ‖v(s)‖2Hk(Rn) ds

+

∫ t

0

(1 + t− s)−
n−1
4

(
‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds

. (1 + t)−
n−1
4 E0 + e−θtE0 + Φ2

v(t)(1 + t)−
n−1
2 −2 + Φv(t)Φρ(t)(1 + t)−

n−1
2 −1

+ Φ2
ω(t)(1 + t)−

n+1
2 + Φ2

v(t)

∫ t

0

(1 + t− s)−
n−1
4 (1 + s)−

n−1
2 −2ds

+ Φv(t)Φρ(t)

∫ t

0

(1 + t− s)−
n−1
4 (1 + s)−

n−1
2 −1ds

+ Φ2
ω(t)

∫ t

0

(1 + t− s)−
n−1
4 (1 + s)−

n+1
2 ds

. (1 + t)−
n−1
4 E0 + e−θtE0 + Φ2

v(t)(1 + t)−
n−1
2 −2 + Φv(t)Φρ(t)(1 + t)−

n−1
2 −1

+ Φ2
ω(t)(1 + t)−

n+1
2 + Φ2

v(t)(1 + t)−
n−1
4 + Φv(t)Φρ(t)(1 + t)−

n−1
4

+ Φ2
ω(t)(1 + t)−

n−1
4 .

As a consequence, there exists a constant Cρ > 0 such that for all t ∈ [0, T∗) we
have

Φρ(t) ≤ Cρ
(
E0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
. (47)

Estimate for the ω component. Finally, for the ω component, we obtain using the
same technique

‖ρ(t)‖Hk(Rn−1)

. (1 + t)−
n+1
4 E0 + t−

1
2 e−θtE0 +

∫ t

0

(t− s)−
1
2 e−θ(t−s) ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) ds

+

∫ t

0

(t− s)−
1
2 e−θ(t−s)

(
‖v(s)‖2Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds

+

∫ t

0

(1 + t− s)−
n+1
4

(
‖v(s)‖2Hk(Rn) + ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds

. (1 + t)−
n+1
4 E0 + t−

1
2 e−θtE0 + Φ2

v(t)(1 + t)−
n−1
2
−2− 1

2 + Φv(t)Φρ(t)(1 + t)−
n−1
2
−1− 1

2

+ Φ2
ω(t)(1 + t)−

n+1
2
− 1

2 + Φ2
v(t)(1 + t)−

n+1
4 + Φv(t)Φρ(t)(1 + t)−

n+1
4 + Φ2

ω(t)(1 + t)−
n+1
4 .

As a consequence, there exists a constant Cω > 0 such that for all t ∈ [0, T∗) we
have

Φω(t) ≤ Cω
(
E0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
. (48)

Conclusion of the proof of Theorem 1.2. We can now define

Φ(t) := Φv(t) + Φρ(t) + Φω(t).

From inequalities (46), (47) and (48), we have that there exists a constant C > 0
such that for all t ∈ [0, T∗) we have

Φ(t) ≤ C
(
E0 + Φ2(t)

)
,

from which it can be deduced that if E0 is small enough, then Φ(t) ≤ CE0 for all
t ∈ [0, T∗). This implies that the maximal time of existence T∗ = +∞ and that the
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solution (v, ρ, ω) of system (45) satisfies:

sup
t≥0

(1 + t)
n−1
4 +1‖v(t)‖Hk(Rn) ≤ CE0,

sup
t≥0

(1 + t)
n−1
4 ‖ρ(t)‖Hk(Rn−1) ≤ CE0,

sup
t≥0

(1 + t)
n+1
4 ‖ω(t)‖Hk(Rn−1) ≤ CE0.

5. Extension to the Bates and Chen model. In this section, we modify our
method to prove the multidimensional stability of traveling front solution for the
Bates and Chen’s model discussed in the introduction. In this case, the traveling
wave ϕ is solution of (4) with K0 = J . One of the key feature in that case is the
fact that the projection P now commutes with linearized operator Lbc
Lbc : H1(Rn) −→ L2(Rn)

u 7−→ −u+ J ∗ξ u+ c d
dξ + f ′(ϕ)u+

n∑
j=2

(
−u+ J ∗xj u

)
. (49)

As a consequence, with our Ansatz of form

u(x, t) := ϕ(ξ − ρ(z, t)) + v(ξ − ρ(z, t), z, t)

where ρ : Rn−1 → R ∈ H1(Rn−1) and v : Rn → R ∈ H1(Rn) with Pv = 0, we
obtain the equation

−∂tρϕ̇+ ∂tv = Lbcv − ϕ̇An−1ρ+H(v) + Ñ (ρ, v) +R(ρ, v),

where H and R were defined in the previous section and

An−1v =

n∑
j=2

(
−u+ J ∗xj u

)
,

Ñ (ρ, v) = Ñ1(ρ) + Ñ2(ρ, v),

with

Ñ1(ρ)(z, t)

=

n∑
i=2

(∫
R
J (y)ϕ(ξ + ρ(z, t)− ρ(x2, · · · , xi − y, · · · , xn, t))dy

)

+ ϕ̇(ξ)

n∑
i=2

(∫
R
J (y)ρ(x2, · · · , xi − y, · · · , xn, t)dy

)
,

Ñ2(ρ, v)(x, t)

=

n∑
i=2

(∫
R
J (y)v(ξ + ρ(z, t)− ρ(x2, · · · , xi − y, · · · , xn, t), x2, · · · , xi − y, · · · , xn, t)dy

)

+

n∑
i=2

(∫
R
J (y)v(ξ, x2, · · · , xi − y, · · · , xn, t)dy

)
.

Using the projection P, we obtain the system

∂tv = Lbcv +Q
(
H(v) + Ñ (ρ, v) +R(ρ, v)

)
, (50a)

(1 + 〈∂ξv, ψ〉)∂tρ = An−1ρ− 〈H(v) + Ñ (ρ, v), ψ〉. (50b)
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Note that Lbc = L0 +An−1 with

L0v = −u+ J ∗ξ u+ c
d

dξ
+ f ′(ϕ)u,

and that ψ ∈ H1(R) is such that L∗0ψ = 0 and
∫
R ϕ̇(ξ)ψ(ξ)dξ = 1, L∗0 being the

adjoint of L0.
As long as ‖v‖Hk(Rn) remains small, we can rewrite the second equation of system

(50) as

∂tρ = An−1ρ−
1

1 + 〈∂ξv, ψ〉

(
〈∂ξv, ψ〉An−1ρ+ 〈H(v) + Ñ (ρ, v), ψ〉

)
:

= An−1ρ+M(ρ, v).

Setting ω := ∇z · ρ, we finally obtain the initial value problem

∂tv = Lbcv +Q
(
H(v) + Ñ (ρ, v) +R(ρ, v)

)
, (51a)

∂tρ = An−1ρ+M(ρ, v), (51b)

∂tω = An−1ω +∇z · M(ρ, v), (51c)

v(0) = v0, ρ(0) = ρ0, ω(0) = ω0. (51d)

5.1. Linear and nonlinear estimates. In this section, we derive linear estimates
for the semigroups generated by the linear operators Lbc and An−1 together with
estimates for the nonlinear terms.

5.1.1. Study of SLbc(t). We consider the initial value problem

∂tu = Lbcu, u( · , 0) = u0 ∈ Hk(Rn), (52)

which has the solution u(ξ, z, t) = SLbc(t)u0(ξ, z). Taking the Fourier transform in
z on both side of (52) yields

∂tû(ξ, k̃, t) = L0û(ξ, k̃, t) +

n−1∑
j=1

(
−1 + Ĵ (k̃j)

)
û(ξ, k̃, t), k̃ =

(
k̃1, · · · , k̃n−1

)
.

(53)
Setting SL0

(t) to represent the semigroup generated by L0, the solution of (52) are
given by

u(x, t) =
1

(2π)n−1

∫
Rn−1

eik̃zSL0
(t)e

∑n−1
j=1 (−1+Ĵ (k̃i))tû0(ξ, k̃, t)dk̃.

By Lemma 1.1, there exists γ0 > 0 such that

‖SL0(t)Qu‖L2(Rn) . e−γ0t‖Qu‖L2(Rn).

Note that the linear problem (52) is homogeneous in z so that SLbc(t) can be differ-
entiated with respect to xj , j = 2 . . . n. Estimates for the ξ derivative follow from
the regularity of solution (53). As a consequence, we have obtained the following
Lemma.

Lemma 5.1. The semigroup generated by the linear operator Lbc satisfies the decay
estimate

‖SLbc(t)Qu‖Hk(Rn) . e−γ0t‖Qu‖Hk(Rn).
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5.1.2. Study of SAn−1(t). The study of semigroup generated by An−1 has already
been done in [1, 4] and we only quote their results.

Lemma 5.2. The semigroup generated by the linear operator An−1 satisfies the
decay estimate

‖SAn−1
(t)u‖Hk(Rn−1) . (1 + t)−

n−1
4 ‖u‖L1(Rn−1) + e−θt‖u‖Hk(Rn−1),

‖∇z · SAn−1
(t)u‖Hk(Rn−1) . (1 + t)−

n−1
4 −

1
2 ‖u‖L1(Rn−1) + t−

1
2 e−θt‖u‖Hk(Rn−1).

5.2. Nonlinear estimates. One can easily check that similar estimates as the one

presented in Lemma 4.1 hold for the nonlinear terms Ñ1(ρ) and Ñ2(ρ, v). More
precisely, we have the following Lemma.

Lemma 5.3. Let k ≥
[
n+1

2

]
. There exists a δ > 0 such that for any v ∈ Hk(Rn)

and ρ ∈ Hk+1(Rn−1) with ‖v‖Hk(Rn) ≤ δ, ‖ρ‖Hk(Rn−1) ≤ δ and ‖∇z ·ρ‖Hk(Rn−1) ≤ δ
we have ∥∥∥Ñ1(ρ)

∥∥∥
L1(Rn)

,
∥∥∥Ñ1(ρ)

∥∥∥
Hk(Rn)

. ‖∇z · ρ‖2Hk(Rn−1) , (54a)∥∥∥Ñ2(ρ, v)
∥∥∥
L1(Rn)

,
∥∥∥Ñ2(ρ, v)

∥∥∥
Hk(Rn)

. ‖ρ‖Hk(Rn−1) ‖v‖Hk(Rn) , (54b)

‖M(ρ, v)‖L1(Rn−1) , ‖M(ρ, v)‖Hk(Rn−1) . ‖v‖
2
Hk(Rn) + ‖∇z · ρ‖2Hk(Rn−1)

+ ‖∇z · ρ‖2Hk(Rn−1) . (54c)

Proof. Most of the proof is similar to that of Lemma 4.1 and is thus omitted.
We only present, part of the computations for the estimate of the nonlinear term

Ñ1(ρ). For each element of the sum in Ñ1(ρ), we use Taylor’s formula and obtain

Ñ1(ρ)(z, t)

=

n∑
j=2

∫
R
J (y)

(
ρ(z, t)− T jy · ρ(z, t)

)2(∫ 1

0

(1− s)ϕ̈
(
ξ + ρ(z, t)− T jy · ρ(z, t)

)
ds

)
dy,

with T jy · ρ(z, t) = ρ(x2, ·, xj − y, ·, xn). Now, we note that

ρ(z, t)− T jy · ρ(z, t) = y

∫ 1

0

∂xjρ(z′ + τy)dτ.

As a consequence,

‖N1(ρ)‖L1(Rn) ≤
∫
R |ϕ̈|
2
‖∇z · ρ‖2L2(Rn−1)

∫
R
y2J (y)dy,

≤ C ‖∇z · ρ‖2Hk(Rn−1) .

Here we have used the fact that ϕ̈ is exponentially localized which is a direct con-
sequence of the fact that J ∈W 1,1

η (R) [7].

5.3. Proof of Theorem 1.3. We can now conclude the proof of Theorem 1.3. By
the variation of constants formula, the solution to (51) can be written as
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v(t) = SLbc(t)v0 +

∫ t

0

SLbc(t− s)Q
(
H(v(s)) + Ñ (ρ(s), v(s)) +R(ρ(s), v(s))

)
ds,

(55a)

ρ(t) = SAn−1(t)ρ0 +

∫ t

0

SAn−1(t− s)M(ρ(s), v(s))ds, (55b)

ω(t) = SAn−1(t)ω0 +

∫ t

0

∇z · SAn−1(t− s)M(ρ(s), v(s))ds. (55c)
In the last component of the above system, we used the fact that ∇z · SAn−1

(t)f =
SAn−1

(t)∇z · f . Once again, using standard semigroup theory, we obtain the local
existence of solutions for the system (55) for initial condition (v0, ρ0, ω0) ∈ X . Thus,
let T∗ > 0 be the maximal time of existence of a solution (v, ρ, ω) ∈ X with initial
condition v0 ∈ Hk(Rn)∩L1(Rn), and ρ, ω0 ∈ Hk(Rn−1)∩L1(Rn−1). For t ∈ [0, T∗)
we define

Φv(t) := sup
0≤s≤t

(1 + s)
n+1
2 ‖v(s)‖Hk(Rn),

Φρ(t) := sup
0≤s≤t

(1 + s)
n−1
4 ‖ρ(s)‖Hk(Rn−1),

Φω(t) := sup
0≤s≤t

(1 + s)
n+1
4 ‖ω(s)‖Hk(Rn−1)

and
Ẽ0 := ‖v0‖L1(Rn) + ‖v0‖Hk(Rn) + ‖ρ0‖W 1,1(Rn−1) + ‖ρ0‖Hk+1(Rn−1).

Only the estimates for the v component will significantly changed and thus we only
present the details of the computations in that case and let the ρ and ω estimates to
the reader. Note that in that case, we obtain similar estimates as the one presented
by Kapitula in the local setting [13]. By applying the semigroup estimates derived
in the previous section, we obtain

‖v(t)‖Hk(Rn)

. e−γ0tE0 +

∫ t

0

e−γ0(t−s)
∥∥∥∥Q(H(v(s)) + Ñ (ρ(s), v(s)) +R(ρ(s), v(s))

∥∥∥
Hk(Rn)

)
ds

. e−γ0tE0

+

∫ t

0

e−γ0(t−s)
(
‖v(s)‖2Hk(Rn) + ‖ρ(s)‖Hk(Rn−1) ‖v(s)‖Hk(Rn) + ‖ω(s)‖2Hk(Rn−1)

)
ds

. e−γ0tE0 + Φ2
v(t)

∫ t

0

e−γ0(t−s)(1 + s)−(n+1)ds

+ Φv(t)Φρ(t)

∫ t

0

e−γ0(t−s)(1 + s)−
3n+1

4 ds+ Φ2
ω(t)

∫ t

0

e−γ0(t−s)(1 + s)−
n+1
2 ds

. e−γ0tE0 + Φ2
v(t)(1 + t)−(n+1) + Φv(t)Φρ(t)(1 + t)−

3n+1
4 + Φ2

ω(t)(1 + t)−
n+1
2 .

As a consequence, reproducing similar computations for ρ and ω, one can find three
constants Cv > 0, Cρ > 0 and Cω > 0 such that for all t ∈ [0, T∗) we have

Φv(t) ≤ Cv
(
Ẽ0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
,

Φρ(t) ≤ Cρ
(
Ẽ0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
,

Φω(t) ≤ Cω
(
Ẽ0 + Φ2

v(t) + Φv(t)Φρ(t) + Φ2
ω(t)

)
.
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Using similar arguments to that of Theorem 1.2, we conclude that the maximal
time of existence T∗ = +∞ and that the solution (v, ρ, ω) of system (55) satisfies:

sup
t≥0

(1 + t)
n+1
2 ‖v(t)‖Hk(Rn) ≤ CẼ0,

sup
t≥0

(1 + t)
n−1
4 ‖ρ(t)‖Hk(Rn−1) ≤ CẼ0,

sup
t≥0

(1 + t)
n+1
4 ‖ω(t)‖Hk(Rn−1) ≤ CẼ0.

6. Discussion.
Summary of main results. In this paper, we have proved the multidimensional
stability of planar traveling waves for scalar nonlocal Allen-Cahn equation (1) using
semigroup estimates. More precisely, we have shown that if the traveling wave is
spectrally stable in one space dimension, then it is stable in n-space dimension,
n ≥ 2, with perturbations of the wave decaying like t−(n−1)/4 as t→ +∞ in Hk(Rn)
for k ≥

[
n+1

2

]
. We have also obtained similar results by applying our method to

a model proposed by Bates and Chen [1] generalizing to dimensions 2 and 3 their
results.

Beyond smooth and small perturbations. One interesting avenue of future work is
to investigate the multidimensional stability of planar traveling waves for equation
(1) under weaker assumptions for the perturbations. For example, in the local
case, Matano et al. have recently shown that [15] the multidimensional stability of
planar traveling waves with possibly large initial perturbations that only decay at
space infinity. It would be interesting to see if their techniques can adapted to our
nonlocal setting.

Generalization to other Kernel. One of our key technical assumption for the
kernel K is the Taylor expansion of its Fourier transform close to the origin. Namely,
we have supposed

K̂(k) = 1− d0‖k‖2 + o(‖k‖2), as k→ 0.

A natural extension would be to study kernels with different Taylor expansion such
as for example

K̂(k) = 1− d0‖k‖s + o(‖k‖s), as k→ 0,

with possibly 0 < s < 2. Then one could conjecture that if the traveling wave
is spectrally stable in one space dimension, then it is stable in n-space dimension,
n ≥ 2, with perturbations of the wave decaying like t−(n−1)/(2s) as t → +∞ in
Hk(Rn) for k ≥

[
n+1

2

]
. We let this question as an open problem.

Generalization to other nonlocal problems. Recently, Miller and Zeng [16]
have shown similar results in dimension n ≥ 4 for an integrodifference equation of
the form

uj+1 = K ∗x g(uj), j ∈ N, (56)

with a Gaussian kernel K and a smooth nonlinearity. This type of equation belongs
to the class of problems where the convolution term appears into the equation in
a nonlinear fashion as it is often the case in physical or biological models. Within
this class of problems, let for example mention the continuum neuronal model [9]

∂tu = −u+K ∗x S(u) (57)
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where the smooth nonlinear function S is such that −u+S(u) is of bistable type, or
the continuum limit of an interacting particle system with Glauber dynamics and
Kac potential [8]

∂tu = −u+ tanh (βK ∗x u+ h) , (58)

where β > 1 and h > 0. For both of these last two models (57) and (58), one
can prove the existence and spectral stability of a traveling wave solution for the
one dimensional problem [9, 8, 2]. As a consequence, under the same Hypothesis
(H2) for the kernel, it should be straightforward to adapt our proof of Theorem
1.2 to show that if equations (56), (57) and (58) admit a traveling wave that is
spectrally stable in one space dimension, then it is stable in n-space dimension,
n ≥ 2, with perturbations of the wave decaying like t−(n−1)/4 as t → +∞ in
Hk(Rn) for k ≥

[
n+1

2

]
.

Appendix A. Some estimates. The following lemma can be proved by direct
computations, see [18].

Lemma A.1. Suppose α, β, γ > 0, then

1.
∫ t/2

0
(1 + t− s)−β(1 + s)−γds . (1 + t)−α, if α ≤ β, α ≤ β + γ − 1, γ 6= 1 or

if α < β, α ≤ β + γ − 1, γ = 1;

2.
∫ t
t/2

(1 + t− s)−β(1 + s)−γds . (1 + t)−α, if α ≤ γ, α ≤ β + γ − 1, β 6= 1 or

if α < γ, α ≤ β + γ − 1, β = 1;

3.
∫ t

0
e−β(t−s)(1 + s)−γds . (1 + t)−γ .

REFERENCES

[1] P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves

for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45–57.

[2] P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations,
SIAM J. Math. Anal., 38 (2006), 116–126.

[3] P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for
phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105–136.

[4] E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equa-

tions, J. Math. Pures Appl., 86 (2006), 271–291.
[5] F. Chen, Uniform stability if multidimensional travelling waves for the nonlocal Allen-Cahn

equation, Electronic Journal of Differential Equations, 10 (2003), 109–113.

[6] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evo-
lution equations, Advences in Differential Equations, 2 (1997), 125–160.
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