
Introduction to mesoscopic models of visual
cortical structures

Grégory Faye and Olivier Faugeras

NeuroMathComp Laboratory, INRIA, Sophia Antipolis, CNRS, ENS Paris, France

M2 MVA / M2 Maths-Bio
28 September, 2011

http://www-sop.inria.fr/members/Olivier.Faugeras/MVA/MMN11
gregory.faye@inria.fr



Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Outline

1 Structure of primary visual cortex (V1)
Anatomy
Retinotopy
Cortical layers organization

2 Functional architecture of V1

3 Neural fields models

4 Applications

G. Faye / O. Faugeras 2 / 64



Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Anatomy of the visual cortex
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Retinotopy
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Cortical layers organization of V1 (Purves et al)
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Optical imaging: methods
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Results for orientation (Bosking et al 97)
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Hypercolumns of orientation in V1

Ben Sahar and Zucker 2004.

G. Faye / O. Faugeras 9 / 64



Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Hypercolumns of orientation in V1

Ben Sahar and Zucker 2004.

G. Faye / O. Faugeras 10 / 64



Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

Intra-cortical connections in V1: anisotropy?

Bosking et al 97 (Tree shrew).

Lund et al 03 (Macaque).
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Other cortical maps: ocular dominance, direction of
motion etc...

Hubener et al 97 (Cat).

Diogo et al 03 (area MT of Monkey).
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Other cortical maps: ocular dominance, direction of
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Visual cortex: summary

The cortex is a folded sheet of width 2cm.

It has a layered structure (6) and is retinotopically organized (the
mapping between the visual field and the cortical coordinates is
approximatively log-polar).

From the LGN the information is transmitted to the visual cortex (back
of the head) mostly to the area V1.

Where does the information go after V1? Mainly: V2,V4, MT, MST...
(there are 30 visual areas that are different by their architecture,
connectivity or functional properties)

V1 is spatially organized in columns that share the same preferred
functional properties (orientation, ocular dominance, spatial frequency,
direction of motion, color etc...)

Existence of particular points: pinwheels (all orientations are represented).

Local excitatory/inhibitory connections are homogeneous, whereas
long-range connections (mainly excitatory neurons) are patchy,
modulatory and anisotropic.
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Local models for n interacting neural masses

each neural population i is described by its average membrane potential
Vi (t) or by its average instantaneous firing rate νi (t) with
νi (t) = Si (Vi (t)), where Si is sigmoidal:

Si (x) =
Sim

1 + e−σi (x−θi )

σi is the nonlinear gain and θi is the threshold,

a single action potential from neurons in population j , is seen as a
post-synaptic potential PSPij (t − s) by neurons in population i (s is the
time of the spike hitting the synapse and t the time after the spike)

the number of spikes arriving between t and t + dt is νj (t)dt, then the
average membrane potential of population i is:

Vi (t) =
X

j

Z t

t0

PSPij (t − s)Sj (Vj (s))ds

νi (t) = Si

 X
j

Z t

t0

PSPij (t − s)νj (s)ds

!
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The voltage-based model

post-synaptic potential has the same shape no matter which presynaptic
population caused it, this leads to

PSPij (t) = wij PSPi (t)

wij is the average strength of the post-synaptic potential and if wij > 0
(resp. wij < 0) population j excites (resp. inhibts) population i

if we assume that PSPi (t) = e−t/τi H(t) or equivalently

τi
dPSPi (t)

dt
+ PSPi (t) = δ(t)

we end up with a system of ODEs:

τi
dVi (t)

dt
+ Vi (t) =

X
j

wij Sj (Vj (t)) + I i
ext(t).

We rewrite in vector form:

V̇(t) = −LV(t) + WS(V(t)) + Iext(t)
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The activity-based model

the same shape of a PSP depends only on the presynaptic cell, this leads
to

PSPij (t) = wij PSPj (t)

we also suppose that PSPj (t) = e−t/τj H(t) and we end up with a system
of ODEs:

τi
dAi (t)

dt
+ Ai (t) = Si

 X
j

wij Aj (t) + I i
ext(t)

!
.

We rewrite in vector form:

Ȧ(t) = −LA(t) + S(WA(t) + Iext(t))
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Neural fields models

idea: combine local models to form a continuum of neural fields

Ω ⊂ Rd , d = 1, 2 is a part of the cortex

we note V(r, t) (resp. A(r, t)) the state vector at point r of Ω

we introduc the n × n matrix function W(r, r′, t)

Voltage neural fields equation

dV(r, t)

dt
= −LV(r, t) +

Z
Ω

W(r, r′, t)S(V(r′, t))dr′ + Iext(r, t) (1)

Activity neural fields equation

dA(r, t)

dt
= −LA(r, t) + S

„Z
Ω

W(r, r′, t)A(r′, t)dr′ + Iext(r, t)

«
(2)
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Remarks
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Remarks

when d = 1, most widely studied because of its relative mathematical
simplicity but of limited biological interest

when d = 2, the more intersting from a biological point of view (the
thickness is neglected), recieved less interest because of the
computational difficulty

unbounded domains: Ω = Rd raise some mathematical questions and
unrealistic (always used)

number of populations: n = 1 or 2

the sigmoid function can be approximated by a Heaviside function

W(r, r′, t) is often chosen symmetric and translation invariant:

W(r, r′, t) = W(r − r′, t)

in the case n = d = 1, the connectivity function has a “Mexican-hat
shape”

features can be taken into account: V(r, θ, t) in the case of orientation
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Cauchy problem

Ω is an open bounded set of Rd . We define F = L2(Ω,Rn) (Hilbert space).
We can rewrite equation (1) in a compact form (function V(t) is thought of as
a mapping V : R+ → F):(

dV

dt
= −LV + R(t,V) t > 0

V(0) = V0 ∈ F
(3)

The nonlinear operator R is defined by:

R(t,V(r, t)) =

Z
Ω

W(r, r′, t)S(V(r′, t))dr′ + Iext(r, t) ∀r ∈ Ω

Theorem (Existence and uniqueness of a solution)

If the following two hypotheses are satisfied:

1 W ∈ C(R+, L∞(Ω2,Rn)) and is uniformly bounded in time,

2 the external input Iext ∈ C(R+,F)

then for any function V0 ∈ F there is a unique solution V defined on R+ and
continuously differentiable of the initial value problem (3).
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Elements of proof

1 for all t > 0, R(t, ·) : F → F (well-posedness of the problem)

2 R : (t,V)→ R(t,V) is continuous in (t,V)

3 ‖R(t,V1)−R(t,V2)‖F ≤ DSm supt∈R+ ‖W(t)‖F‖V1 −V2‖F for all t > 0
and V1,V2 ∈ F , where DSm = supi=1...n supx∈R |S ′i (x)| (Lipschitz
continuity of R with respect to its second argument, uniformly with
respect to the first)

4 application of the Cauchy Lipschitz theorem in Banach spaces
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More properties for the nonlinearity

Lemma

If W ∈ C(R+, L∞(Ω2,Rn)), then R satisfies the following properties:

1 ∀q ∈ N, R(t, ·) ∈ Cq(L∞(Ω,Rn), L∞(Ω,Rn)) and
DqR(t,V0) = W(t)S(q)(V0)

2 R(t, ·) is a compact operator for all t > 0.

1 if it exists:
DqR(t,V0)[U1, · · · , Uq] = W(t)

(
S(q)(V0)(U1 · · ·Uq)

)
DqR(t,V0) is well defined because U1 · · ·Uq ∈ L∞(Ω, Rn)

‖DqR(t,V0)[U1, · · · , Uq]‖L∞(Ω,Rn)

≤ |Ω|
∥∥∥W(t)S(q)(V0)

∥∥∥
L∞(Ω2,Rn)

‖U1 · · ·Uq‖L∞(Ω,Rn)

2 direct application of Arzelà-Ascoli theorem
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G. Faye / O. Faugeras 54 / 64



Structure of primary visual cortex (V1) Functional architecture of V1 Neural fields models Applications

More properties for the nonlinearity

Lemma

If W ∈ C(R+, L∞(Ω2,Rn)), then R satisfies the following properties:

1 ∀q ∈ N, R(t, ·) ∈ Cq(L∞(Ω,Rn), L∞(Ω,Rn)) and
DqR(t,V0) = W(t)S(q)(V0)

2 R(t, ·) is a compact operator for all t > 0.

1 if it exists:
DqR(t,V0)[U1, · · · , Uq] = W(t)

(
S(q)(V0)(U1 · · ·Uq)

)
DqR(t,V0) is well defined because U1 · · ·Uq ∈ L∞(Ω, Rn)

‖DqR(t,V0)[U1, · · · , Uq]‖L∞(Ω,Rn)

≤ |Ω|
∥∥∥W(t)S(q)(V0)

∥∥∥
L∞(Ω2,Rn)

‖U1 · · ·Uq‖L∞(Ω,Rn)

2 direct application of Arzelà-Ascoli theorem
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Ring Model of orientation: facts
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Ring Model of orientation: mechanism
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Ring Model of orientation: equation

We consider the following equation:

τ
∂V (θ, t)

∂t
= −V (θ, t) +

Z π/2

−π/2

J(θ − θ′)S(µV (θ′))
dθ′

π
+ εI (θ) (4)

where τ is a temporal synaptic contanst (τ = 1ms), J(θ − θ′) is a connectivity
function (excitatory/inhibitory) and S is the sigmoidal function:

S(x) =
1

1 + exp(−x + κ)
,

I (θ) is an input coming from the LGN given by:

I (θ) = 1− β + β cos(2(θ − θaff ))

Without loss of generality we take θaff = 0. Moreover, we take the simplest
possible connectivity function:

J(θ) = −1 + J1 cos(2θ), J1 > 0
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Ermentrout-Cowan model

We consider the following equation:

τ
∂

∂t
a(r, t) = −a(r, t) +

Z
R2

w(r|r′)S(µa(r′, t))dr′ (5)

where τ is a temporal synaptic contanst (τ = 1ms), w(r|r′) = w(‖r − r′‖) is a
connectivity function (excitatory/inhibitory) and S is the sigmoidal function:

S(x) =
1

1 + exp(−x + κ)
− 1

1 + exp(κ)
,

We choose a “Mexican-hat” connectivity function:

w(x) =
A1

σ1
e
− x2

σ2
1 − A2

σ2
e
− x2

σ2
2 (6)
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Patterns of the Ermentrout-Cowan model

V1 Visual field
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Bresslof-Cowan-Golubitsky-Thomas-Wiener model

We consider the following equation:

τ
∂

∂t
a(r, θ, t) = −a(r, θ, t) +

Z
R2

Z π/2

−π/2

w(r, θ|r′, θ′)S(µa(r′, θ′, t))dr′
dθ′

π
(7)

with

S(x) =
1

1 + exp(−x + κ)
− 1

1 + exp(κ)
,

and
w(r, θ|r′, θ′) = J(θ − θ′)δr,r′ + β(1− δr,r′)wlat(r − r′, θ)

for β = 0, we recover the Ring Model of orientation

if a(r, θ, t) is independent of θ we recover the Ermentrout-Cowan model

we will try to infer some properties from the case β = 0 to the case
0 < β � 1 and in the same time we will use similar method as for the
Ermentrout-Cowan model
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Geometric visual hallucinations
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