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© Spatial range shift via dispersal
@ Climatic niche shift via in situ adaptation
Parmesan (2006), Lavergne et al. (2010), Hoffmann & Sgrd (2011), Bellard et al. (2012)
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Effects of dispersal and feedbacks
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Response to climate shift in animals: spatial range shift

Pease et al. (1989), Kirkpatrick & Barton (1997), Barton (2001), Polechova et al. (2009),
Bridle et al. (2010), Duputié et al. (2012)
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Response to climate shift in animals: spatial range shift

Pease et al. (1989), Kirkpatrick & Barton (1997), Barton (2001), Polechova et al. (2009),
Bridle et al. (2010), Duputié et al. (2012)
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Response to climate change with pollen dispersal?

Hu & He (2006), Lopez et al. (2008), Aguilée et al. (2013)

Dispersal
seeds/®/6 S\seeds + pollen

®/6
Demography Adaptation

o Will a plant species shift its spatial range or its climatic niche?

@ How pollen does affect the maximal sustainable rate of climate
change?
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Outline of the model

A quantitative genetic model for population size n(x, t) and mean
phenotype Z(x, t) with:
o Linear spatial gradient 0(x, t) with slope b shifting in time at speed
v

optimal
phenotype

o Seed dispersal o2 and pollen dispersal af, (Gaussian kernel)
o Pollen is not limiting
o Feedbacks between demography and adaptation

Two strong assumptions:

@ Global density dependence

@ Constant genetic variance V;
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Change in population size n(x, t) and mean phenotype

Z(x, t)

Following Pease et al. (1989), Kirkpatrick & Barton (1997), Polechova et al. (2009), Duputié
et al. (2012):

O¢n = effect of dispersal + effect of adaptation
0:z = effect of dispersal + effect of demography
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Effect of dispersal on population size n(x, t)

Random walk for seed only (pollen not limiting)

f(x, t) = P(a given seed is at location x at time t)
ls = P(seed moves left)

rs = P(seed moves right)

0t = small time interval

s Is
i I/\i’/\ i i
X-6x X X+6x

f(x,t+0t) = rsf(x —ox,t) + Lf(x +dx,t) + (1 — rs — k) f(x,t)
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Effect of dispersal on population size n(x, t)

Random walk for seed only (pollen not limiting)

Using Taylor approximation:
f(x,t+dt) =

gO@J%ﬁx@ﬂ&ﬂ+®@2

Ox xf(x,t) + o(5x)3>

+ls <f(x, t) + 0x Oxf(x,t) + (‘S;OZ)aX,Xf(x, t) + o(5x)3>
+(1 = 1 — L)f(x, )
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Effect of dispersal on population size n(x, t)

Random walk for seed only (pollen not limiting)

Using Taylor approximation:
f(x,t+dt) =

gO@J%ﬁx@ﬂ&ﬂ+®@2

Ox xf(x,t) + o(5x)3>

+ls <f(x, t) + 0x Oxf(x,t) + (‘S;OZ)aX,Xf(x, t) + o(5x)3>
+(1 = 1 — L)f(x, )

Assuming unbiased dispersal (ks = rs = ms):

f(x,t+d0t) — f(x,t) (0x)?

B o(6x)3
ot AT

ot

Ox xf(x,t) +
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Effect of dispersal on population size n(x, t)

Random walk for seed only (pollen not limiting)

Taking the limit when dx — 0 and 6t — O:

o2
Oif(x,t) = fﬁx,xf(x, t)

. 5x)?
lim 2ms( )
5x—0,6t—0 ot

where 02 =
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Effect of dispersal on population size n(x, t)

Random walk for seed only (pollen not limiting)

Taking the limit when dx — 0 and 6t — O:

o2
Oif(x,t) = 75(‘9X,Xf(x, t)

2 : (0x)
$= lim m
3x—0,0t—0 ot

where o

Same reasoning true for all seeds, thus:

.
Oen(x, t) = fax,xn(x, t)
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Effect of dispersal on mean phenotype Z(x, t)

Random walk for seed and pollen

g(x, t) = phenotype of a new born individual at ¢ in x
I, = P(a pollen grain moves left)
rp = P(a pollen grain moves right)

A new born individual in x can originate from:
o a seed dispersing from x — dx; phenotype = g(x — dx, t)
@ a seed dispersing from x + dx; phenotype = g(x + dx, t)
@ an ovule in x fertilized by pollen dispersing from x — dx;
g(X — 5X7 t) + g(X7 t)
2
an ovule in x fertilized by pollen dispersing from x + §x;
g(x+0x,t) +g(x, t)
2

phenotype =

phenotype =
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Effect of dispersal on mean phenotype Z(x, t)

Random walk for seed and pollen

Weighting each event by local population density:
g(x,t+dt) =

rsg(x — ox, t)n(x — 0x, t) + kg(x + dx, t)n(x + 0x, t)
+rp—g(x_§x’;)+g(x’t) n(x — ox,t) + /p—g(x+5x L) re(t) n(x + 0x, t)
+(1—r—Ik—r—l)eg(x, t)n(x,t)

rsn(x — 0x, t) + kkn(x + x, t) + rpn(x — x, t) + l,n(x + 0x, t)
+(1—rs— bk —ry — )n(x, t)
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Effect of dispersal on mean phenotype Z(x, t)

Random walk for seed and pollen

Assuming unbiased dispersal (k = ry = mg and [, = r, = m;,) and

m
denoting my = mg + 713:

g(x,t+dt) — g(x,t) =

mi((g(x — 0x, t) — g(x, t))n(x — 6x) + (g(x + 6x, t) — g(x, t))n(x + 6x))
(ms + my)(n(x — dx,t) + n(x + ox,t)) + (1 —2ms — 2my)n(x, t)
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Effect of dispersal on mean phenotype Z(x, t)

Random walk for seed and pollen

Using Taylor approximation of g and n:

g(x,t+ot) —g(x,t)

ot

X 2
mt(%t)ax,xg(x t) n(x, t) 4+ 2my (55) 0xg(x, t) Oxn(x, t) + o(dx)3
(ms+ mp)(n(x = 5x, ) + n(x + x, 1)) + (1 = 2m, — 2m, )n(x. t)



Model
000000000e000000

Effect of dispersal on mean phenotype Z(x, t)

Random walk for seed and pollen

Taking the limit when dx — 0 and 6t — O:

2

deg(x,t) = %&mg(x, t) + 020xg(x, t) Oy log(n(x, t))

h 2 _ 241,204 52— i 9 (9x)?
where of = 0g + 50, an inéx—)({?t—)O my, 5t
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Effect of dispersal on mean phenotype Z(x, t)

Random walk for seed and pollen

Taking the limit when dx — 0 and 6t — O:

2
o
org(x,t) = 7t8X7Xg(x, t) 4 020,g(x, t) dx log(n(x, t))
2
2_ 2,12 2 _ : (6x)
where of = o5 + 50, and o, = 6X_)I(|£;f_}()2mp 5t

Same reasoning true for all births, thus:

2
OnZ(x, t) = -0 xZ(x, 1) + 07 0E(x, 1) Oxlog(n(x, 1))



Model
0000000000e00000

Effect of adaptation on population size n(x, t)

Oen(x, t) = n(x, t)F(x, t, Z)
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Effect of adaptation on population size n(x, t)

Oen(x, t) = n(x, t)F(x, t, Z)

where F(x, t, Z) is the mean growth rate

F(x, t,2) = ry (1 _ @)

Density-dependent /1\(”)

growth rate
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Effect of adaptation on population size n(x, t)

Oen(x, t) = n(x, t)F(x, t, Z)

where F(x, t, Z) is the mean growth rate

F(x,t,2) = no (1 — %)

Density-dependent /\

growth rate
Global density-

dependance
A= f n(x’, t) dx’
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Effect of adaptation on population size n(x, t)

Oen(x, t) = n(x, t)F(x, t, Z)

where F(x, t, Z) is the mean growth rate

o A (E(t) — 0(x, 1))
F(x,t,2) = no (1—;) — V.

Density-dependent /\Evolutionary load, j

growth rate i.e. maladaptation
Global density- O(x,t) = b(x — vt)
dependance,

)\fxtdx
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Effect of adaptation on population size n(x, t)

Oen(x, t) = n(x, t)F(x, t, Z)

where F(x, t, Z) is the mean growth rate

F(x,t,2) = fo (1 _ %) (1) = 0(x, 1))

2V, 2V, \
Density-dependent /\Evolutionary load, j Phenotypic load

N

growth rate i.e. maladaptation
Global density- O(x,t) = b(x — vt)
dependance
A= [n(X, t)dx Ve
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Effect of demography on mean phenotype z(x, t)

7 V.,
Ty =294+ 057 P < R=-28§
e e s 0 0, Vp
Z v e e e e .’,f: . |[slope
§E(P) c e eooe ;/. o Vy/V, N
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Change in population size n(x, t)

Following Pease et al. (1989), Kirkpatrick & Barton (1997), Polechova et al. (2009), Duputié
et al. (2012):

8tn =
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Change in population size n(x, t)

Following Pease et al. (1989), Kirkpatrick & Barton (1997), Polechova et al. (2009), Duputié
et al. (2012):

0.2

Oin = 758X,Xn

o Seed dispersal (diffusion) /
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Change in population size n(x, t)

Following Pease et al. (1989), Kirkpatrick & Barton (1997), Polechova et al. (2009), Duputié
et al. (2012):

2

orn = 0758X,Xn + nr

o Seed dispersal (diffusion) /

@ Population growth

with
_ A (z-6)? Vo
" ro(l_F) 2V, 2V,

Density —/ Evolutionary load } Phenotypic! load

dependence
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Change in mean phenotype Z(x, t)

Following Pease et al. (1989), Kirkpatrick & Barton (1997), Polechova et al. (2009), Duputié
et al. (2012):

81—2 -
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Change in mean phenotype Z(x, t)

Following Pease et al. (1989), Kirkpatrick & Barton (1997), Polechova et al. (2009), Duputié
et al. (2012):

2
8z = %ax,xz + 02 0% Oy log(n)

@ Seed and pollen dif®

@ Seed and pollen asymmetrical dispersal

: S22, 1.2
Total dispersal: of = o5 + 507
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Change in mean phenotype Z(x, t)

Following Pease et al. (1989), Kirkpatrick & Barton (1997), Polechova et al. (2009), Duputié
et al. (2012):

2
0z = %@,xf + of 0xZ Oxlog(n) + Vg O:F

@ Seed and pollen dif®

@ Seed and pollen asymmetrical dispersal

@ Response to selection

Total dispersal: 02 = 02 + %a

2
p
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Rescaled equations

Following Kirkpatrick & Barton (1997):

Os
T = Ryt
K = ki

)\ro
/\:?Z
Z:\n/Rovs
N:?
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Rescaled equations

After rescaling, only 4 parameters:

1 2
o v = —2— = contribution of pollen to dispersal

o V= vas% speed of climate change

o A= % adaptive potential
e B=5»b

slope of the optimal gradient

Ro \/2V

oTN = 8X,XN + NR
1
= Z
or 1= 73x,x + 1

E 78XZ 8)( Iog(N) —A 82R

with R=1-A—-3(Z-0)%and © = B(X — VT)
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The 3 solutions of the model

o Extinction of the population

@ Invasion of the whole space

Population density

At equilibrium

Space
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The 3 solutions of the model

o Extinction of the population

@ Invasion of the whole space

@ A travelling wave

Population density
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N(X,T) = Nopexp <—(X — . L“)2>

2V,
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With pollen: spatial range shift and climatic niche shift

Let's assume there is a solution with spatial range shift and climatic
niche shift:

(X = CT —Ly)?

N(X,T)= N -
(X, 7) 0 efj(/?\/n )
Spatial range shift at speed C
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With pollen: spatial range shift and climatic niche shift

Let's assume there is a solution with spatial range shift and climatic
niche shift:

N(X,T) = Nopexp <—(X — . L“)2>

2V,

Spatial range shift at speed C

Z(X,T)=S(X - CT —L,)
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With pollen: spatial range shift and climatic niche shift

Let's assume there is a solution with spatial range shift and climatic
niche shift:

N(X,T) = Nopexp <—(X — . L“)2>

2V,

Spatial range shift at speed C

Z(X, T)=S(X - CT —L,)+ DT

Ecological niche shift at speed D \_/
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With pollen: spatial range shift and climatic niche shift

Such solution indeed exists with:

S = sign(B)

n

BIV2- A1)

4
C=r""7—
Lt Bz
%4

"Bz 4 Ay
_ ABVy

T BV2+ Ay
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With pollen: spatial range shift and climatic niche shift

optimal phenotype:
slope B, speed V

Now:
0
Space
Later: .
optimal phenotype
0 slope B, speed V

_..-~"Space
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With pollen: spatial range shift and climatic niche shift

V, = size of the
range

C = speed of
spatial range shift:
different from
climate

optimal phenotype:

Density, speed C slo‘pe B, speed V

Now:
0
Space
Density, speed C
Later: 5 :
; optimal phenotype
0 W slope B, speed V
_..-~"Space

= spatial range shift
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With pollen: spatial range shift and climatic niche shift

V, = size of the
range

C = speed of
spatial range shift:
different from
climate

S = slope of the
realized phenotype

optimal phenotype:

; lope B, speed V
Density, speed C s g
NOW' : /."
reatized phenotype:
~“Slope S, speed C
0
Space
Density, speed C
Later: : .
optimal phenotype
0 W slope B, speed V
: rgaﬁééd phenotype:
~--"Slope S, speed C

_..-~"Space

= spatial range shift
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With pollen: spatial range shift and climatic niche shift

V, = size of the
range

C = speed of
spatial range shift:
different from
climate

S = slope of the
realized phenotype

L, = maladaptation
at the core of the
range

Now:

Later:

optimal phenotype:

Density, speed C slo‘pe B, speed V

rgaffiéd phenotype:
~“Slope S, speed C

Space
Density, speed C

optimal phenotype
W slope B, speed V

rgaﬁééd phenotype:
~--"Slope S, speed C

Lz ,."""

_..-~"Space

= spatial range shift
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With pollen: spatial range shift and climatic niche shift

V, = size of the
range

C = speed of
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C = speed of
spatial range shift:
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Effect of pollen (v) on the features of the travelling wave
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o Better adaptation at the  Speedc ™
core (|L,|) <~ Space

@ Slower wave (C)
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Maximal sustainable rate of climate change

1 L2
Sustainable climate change if A=1— — — — >0, i.e. if:

Vi 2

crit __ A B|V?2 A
V<V t_2(1+|8|77)\/1—%+5(1—7)

o Positive effect of better adaptation at the core (|L,|)
o Negative effect of smaller range size (V)

e
o

Critical speed
1.9

@
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Relative pollen dispersal distance

Pollen dispersal may allow to persist under faster climate changes than
without pollen dispersal
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Robustness of the results

Two strong assumptions to relax:
@ Density dependence: global — local

@ Genetic variance: constant — evolving
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With local density dependence: methods
Global density dependence

by R\ YA
F(X,t,f):fo <1_k _(Z 9) . VP

Local density dependence>

o n(x, t) (z—-02 V,
r(x,t,z2)=r [1— p v v

@ Resolution of the equations with numerical
integration

o Parameters value as estimated for Sitka
spruce (Picea sitchensis) (Mimura and Aitken,
2007; Aitken et al., 2008)
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With local density dependence: results are robust

Maximal sustainable rate of climate change:
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With local density dependence: results are robust

A travelling wave with spatial range shift and ecological niche shift:

Blue = later R Blue = later
n '
o g - —
3 g _—
c Z\ o
© © g !
° c
5 287 :
=R 2 |
K c 94
g - = -
S |
o ! f
T T T T T T
-40 -20 0 20 -40 -20 0 20
Distance u=x-vt Distance u=x-vt

Possibly asymmetrical travelling wave (more individuals at the leading
edge)
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With local density dependence: results are robust
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o Faster travelling wave

@ Pollen still decreases the speed of the travelling wave (and magnifies
the climatic niche shift)
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With local density dependence: results are robust
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= relative pollen dispersal distance relative pollen dispersal distance relative pollen dispersal distance

o Faster travelling wave

@ Pollen still decreases the speed of the travelling wave (and magnifies
the climatic niche shift)

@ Quite small quantitative effect
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Robustness of the results
00000@0000

With evolving genetic variance: methods

o

Genotype centered model

O¢n(x, t, g ) = dispersal + births + deaths

Explicit model of genes inheritance

o
@ Local density dependence
@ Numerical resolution

o

Parameters value as estimated for Sitka spruce
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With evolving genetic variance: results are robust

Maximal sustainable rate of climate change:

Fixed genetic variance Evolving genetic variance
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With evolving genetic variance: results are robust

An equilibrium genetic variance is reached:
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@ Lower genetic variance at the very edges

@ Slightly lower genetic variance at the core
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With evolving genetic variance: results are robust

The equilibrium genetic variance slightly decreases with the relative
pollen dispersal distance:
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With evolving genetic variance: results are robust
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o Qualitative effect of pollen dispersal unchanged

@ Quantitative effect quite small
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Take Home Messages (for biologists)

@ Genetic effect of pollen dispersal and feedbacks with demography:
worsens adaptation at the margins but improves adaptation at the
core

@ Response to climate change in plants: spatial range shift and
climatic niche shift

@ Pollen dispersal slows the spatial range shift and magnifies the
climatic niche shift

@ Pollen dispersal may allow to persist under faster climate changes

@ Conclusions robust to the strongest assumptions of the model
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Take Home Messages (for mathematicians)

@ Analytical results are best for biological interpretation
o Biologists often use numerical results to relax strong assumptions

@ Don’t you want to work with me?
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