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1. Continuous attractor models of parametric WM
2. Multi-item working memory: interacting bumps

3. Neural field model of memory-guided search
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Multi-item WM: Working memory Is limited by “space”
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Recall error increases with item number
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d Slots b Equal resources

R there is a debate about whether
\ or not WM has a “finite capacity”

]\ (Zhang and Luck 2008: Bays and Husein 2008)
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Bump attractor models of working memory
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Explicit solutions for Heaviside firing rate

set firing rate nonlinearity (21, 22] = {2|U(z) = 0}
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o) (2 /o w(y)dy (2h) bump half-width

for w(z) = A(1— |$|)e—|w| > 1V (2h) = 2Ahe 2" = ¢ solved with numerical
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A: two branches of solutions: wide & marginally stable, narrow & unstable
B: bump solutions widen as the strength of coupling is increased
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Nonequilibrium dynamics via interface equations

. can show interfaces u(x;(t),t) = 0
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In the absence of noise, bumps
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to obtain interface equations

active region
A(t) = |z1(2), 22(t)] U [23(2), 24(2)]

interface eqns will
now track 4 edges

a(t) =xz3(t) = —z2(¢) . . 1 . B B
for symmetrically b(t) = z4(t) = —a1(2) alt) = a(t) 0 = W(b(t) - a(t)) + W(2a(t)) — Wa(t) +b(¢))],
initiated bumps ~ a(t) = as(t) = —aa(t) ;v _ 1 B B )
30 = () = ety | "\ = By VW) —alt)) =6+ W2D(E) = Wlalt) + b())
18000 Aj there is a critical
2 distance bump
ém f centroids can start
+ 20 apart and not be
0 attracted A€
3 -2 -1 0 1 2 3 XL




Stochastic interface equations for noise-driven bumps
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Stochastic interface equations for noise-driven bumps

assuming static gradient daz, = a=" (6 — W(ws — 21) + W(ws — 21) — W(aa — 21)) dt — VedZ(w1,1) |,
and considering the

_ | day = —a~! [(9 CW(zy — 31) + Wz — 29) — Wz — 22)) dt — VeBdZ (s, t)]
stochastic neural field . .
and similar equations for x3 & x4
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Performance on a two-item working memory task
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Multiple interacting bumps: Interface equations

active region is given by the union of N finite intervals

effective neural
field equation

stochastic
interface eqns
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Performance in multi-item working memory task
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we expect performance to worsen as the number
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strength of synaptic connectivity in the network



Summary and conclusions
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Memory-guided search: examples
A

It is, of course, an indispensable part of a
scrivener's business to verify the accuracy of his
copy, word by word. Where there are two or
more scriveners in an office, they assist each
other in this examination, one reading from the
copy, the other holding the original. It is a very
dull, wearisome, and lethargic affair. I can
readily imagine that to some sanguine
temperaments it would be altogether intolerable.
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area of detail 10 yards i ) nest

(ECOT)
(Kilpatrick & Poll 2017)



Search strategies

(A)

(Hills et al 2015)

(B)

e A: fixate on salient images
e B: inhibition-of-return

e C. exploration bias

eD: “lawnmower” or

“boustrophedonic” strategy



Neural field model of memory-guided search
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Stationary solutions depend on input from position layer
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Stationary solutions depend on input from position layer

can the memory layer remember visited locations? analyze stationary solns for v(t) =0

a,b lateral inhibitory

bump interfaces wy(z) = (1~ |z[)e™!"

c,d locally excitatory
front interfaces e~ ol
wp(x) = Iy 5

e_|x_y|

reflects spatial heterogeneity of
2 cortical regions encoding position

threshold conditions 5y \

(self-consistency): =" g ol "\ <10 g
Ula) = U(b) = by, | ~_ c\' 5 \’

Qomm == e - y— , . O omm  wmm - — — ) S

— —_— O_JL_ np— L

Q (C) = Q(d) — Qq, 0 01 02 0.3(9 04 05 06 0 0.2 ) 0.4 0.6 0 02 0.4 0.6
q q eq

wy(z,y) = |1 + o cos(ny)] -

A

15+

evaluated to produce D E F

bifurcation plots iﬁA/_

u(x,t)
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Critical input to propagate the front forward
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A 0.2 front interface B 200 C 200

1
0.15 150 150
< 0.1 + 100 + 100
0.05 S0 50
0 0 0
2 4 6 -20 -10 0 10 20 -20 -10 0 10 20
bump position A, L x

require that Iy > I§ which can be determined by simplifying the threshold equations

e 2no sin(nd®) —ncos(nd®) where d° is the location of the right front interface
" a(n?+1) e—ald®—al —e—ald*=bl gt the saddle-node bifurcation

stability is determined by projecting the associated eigenvalue problem to the interfaces

u(z,t) = U(x) + (z,1), q(z,t) = Q) + é(x,1)

A 16(0) = 50 [ (O)(@) + 0 — 0], °
A 160) = 0 [0~ @)a) +wa (O] o
A\ 1)0(e) = 7et (e, I(E) + ey e o), o
A+ 1)p(d) = vew,(d, ©)plc) + vawy(d, d)p(d), 2 02
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Low-dimensional dynamics via interface methods

] 0 has dynamics determined by where
idea: u; = —u —I—/ wy(x —y)H (u(y,t) — 0, )dy Y w(z;(£),£) = O, y

— 0

U +u = / wy (r — y)dy — v(t) / w!, (x — y)dy, with active regions
Ay (1) A (1)

Ault) = (o (8),24(0),
wta= [ i [ e Au(0) = (A-(0), 4(1)

. t
derive dynamics Ay =S(A4) +C(AL) +G(AL — Ay) where A, (t) = / v(s)ds
: ) . 0
ofinterfaces: A = S(A_) — C(AL) - G(A_ — A,) is centroid of bump position
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Memory-guided control of search
motor system guides search according to control feedback v(t) = x(u(z,t), q(x, 1))

consider Tyx(t) = 2(H(u —0y),H(q —04))(x+ — x(t)) — (H(u — 0.))(x— — x(t))

leads to v(t) = vo in novel environments, v(t) — v1 in searched environments



Memory-guided control of search
motor system guides search according to control feedback v(t) = x(u(z,t), q(x, 1))

consider Tyx(t) =2(H(u —0y), H(q —04))(x+ — x(t)) — (H(u — 6.))(x- — x(1))
leads to v(t) = vo in novel environments, v(t) — v1 in searched environments

on a single track with a hidden target  waiting time to discover 24— pt
while over target P

A NP
probability of finding on L T
@j 1% a single visit Py = (1+ pT)e
&
om 00 .



Memory-guided control of search
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Inhibition of return in radial arm mazes
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Inhibition of return in radial arm mazes

memory population per arm

q;(t) = —q;(t) + H(g; — b4) + I;(t)




Inhibition of return in radial arm mazes
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memory population per arm

q;(t) = —q;(t) + H(g; — b4) + I;(t)

compare random arm selection search strategy to inhibition of return for N arms
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Inhibition of return in radial arm mazes

memory population per arm

q;(t) = —q;(t) + H(g; — by) + I;(t)

compare random arm selection search strategy to inhibition of return for N arms
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Extensions to two-dimensions
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Extensions to two-dimensions
A B T =90
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Conclusions

spatiotemporal patterns of
neural activity can track current
and visited locations
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interface equations estimate IOR has little advantage only advantageous on
low-dimensional dynamics along 1D tracks more complex domains
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