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Figure 1 | Neural basis of working memory. a | Diagram of the monkey brain, with the areas implicated in visuospatial 
working memory (WM)28 — the posterior parietal cortex and the lateral prefrontal cortex — highlighted in green. 
b | Schematic diagram of activity of a single prefrontal neuron during execution of the oculomotor delayed response 
task22. In this task, a monkey is presented with a cue located in a particular area of the visual field. The cue is then removed, 
and the monkey has to wait several seconds (the delay period) before moving its gaze to the location where the cue 
appeared. In this example, the neuron is activated during the presentation of the cue that is located at 90° relative to the 
horizon and continues to discharge during the delay period, in a spatially selective manner. c | Computational modelling 
proposes possible mechanisms for how information is retained in WM. Here, information can be coded in a cell-specific 
manner in excitatory neurons (triangles). Inhibitory cells are symbolized by circles. Activity is maintained through 
recurrent excitation40. Outputs of inhibitory neurons are distributed to all neurons in the network (not shown). d | Activity 
of the neural network, in which the colour represents the level of activity (blue: low activity; red: high activity). The bump of 
activity predicts the remembered location31. In this example, the bump ‘drifts’ such that the recalled location of the cue is 
~30° away from the true location of the presented cue. e | Key areas of the human brain activated in visuospatial WM tasks 
and tasks that require spatially selective attention, including the intraparietal and superior parietal cortex, the posterior 
part of the superior frontal gyrus and the middle frontal gyrus60–63. f | The content of WM can be reconstructed from the 
functional MRI signal in the human parietal cortex during the delay period of a WM task in which subjects remember one 
or two items at different locations (top row). The lower row shows the images reconstructed from brain activity74. Part f is 
adapted with permission from REF. 74, Elsevier.
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horizon and continues to discharge during the delay period, in a spatially selective manner. c | Computational modelling 
proposes possible mechanisms for how information is retained in WM. Here, information can be coded in a cell-specific 
manner in excitatory neurons (triangles). Inhibitory cells are symbolized by circles. Activity is maintained through 
recurrent excitation40. Outputs of inhibitory neurons are distributed to all neurons in the network (not shown). d | Activity 
of the neural network, in which the colour represents the level of activity (blue: low activity; red: high activity). The bump of 
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part of the superior frontal gyrus and the middle frontal gyrus60–63. f | The content of WM can be reconstructed from the 
functional MRI signal in the human parietal cortex during the delay period of a WM task in which subjects remember one 
or two items at different locations (top row). The lower row shows the images reconstructed from brain activity74. Part f is 
adapted with permission from REF. 74, Elsevier.
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recurrent excitation40. Outputs of inhibitory neurons are distributed to all neurons in the network (not shown). d | Activity 
of the neural network, in which the colour represents the level of activity (blue: low activity; red: high activity). The bump of 
activity predicts the remembered location31. In this example, the bump ‘drifts’ such that the recalled location of the cue is 
~30° away from the true location of the presented cue. e | Key areas of the human brain activated in visuospatial WM tasks 
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proposes possible mechanisms for how information is retained in WM. Here, information can be coded in a cell-specific 
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part of the superior frontal gyrus and the middle frontal gyrus60–63. f | The content of WM can be reconstructed from the 
functional MRI signal in the human parietal cortex during the delay period of a WM task in which subjects remember one 
or two items at different locations (top row). The lower row shows the images reconstructed from brain activity74. Part f is 
adapted with permission from REF. 74, Elsevier.

REV IEWS

NATURE REVIEWS | NEUROSCIENCE  ADVANCE ONLINE PUBLICATION | 3

ǟ
ɥ
ƐƎƏƖ

ɥ

�!,(++�-

ɥ
�4 +(2'#12

ɥ
�(,(3#"ƥ

ɥ
�++
ɥ
1(%'32

ɥ
1#2#15#"ƥ

(Constantinidis & Klingberg 2016)
Excitatory 
neuron

Inhibitory neuron

Lateral prefrontal cortex

a  

Computational models

b  

Posterior 
parietal 
cortex

90 °

270 °
315 °

0 °180 °

135 ° 45 °

225 °

D
is

ch
ar

ge
 ra

te

Cue Delay

Response

1 s
Time (s)

90 °

270 °

315 °

180 °

135 ° 45 °

0 °

225 ° 1 s

Discharge rate

Cue Delay Response

90 °

0 °

180 °

270 °

X

Non-human-primate studies

Human studies

c d

e f

Middle 
frontal 
gyrus

Posterior 
superior 
frontal 
gyrus

Intraparietal and 
superior parietal 
cortex

Remember one item

Remember two items

Cue

WM content

Cue

WM content

Figure 1 | Neural basis of working memory. a | Diagram of the monkey brain, with the areas implicated in visuospatial 
working memory (WM)28 — the posterior parietal cortex and the lateral prefrontal cortex — highlighted in green. 
b | Schematic diagram of activity of a single prefrontal neuron during execution of the oculomotor delayed response 
task22. In this task, a monkey is presented with a cue located in a particular area of the visual field. The cue is then removed, 
and the monkey has to wait several seconds (the delay period) before moving its gaze to the location where the cue 
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proposes possible mechanisms for how information is retained in WM. Here, information can be coded in a cell-specific 
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motion direction8–10,15,16,18–21. Rather than exhibiting the abrupt, step 
decline that would be expected on reaching a capacity limit of a fixed 
number of items5, in every case, recall variability has been shown to 
gradually and continuously increase as set size increases (Fig. 1b,c), 
as predicted if working memory resources are shared between items. 
Across a range of studies, this relationship between precision of recall 
and set size has been shown to follow a power law9,11,15,17.

Although the concept of a limited working memory resource 
has considerable explanatory power for behavioral data (discussed 
below), the exact nature of the representational medium remains 
to be established and is an important goal for neurophysiological 
investigation. The majority of electrophysiological and computational 
studies have confined themselves to studying memory for a single 
object. However, understanding the neural effects of increasing set 
size will be crucial for determining the cognitive architecture underly-
ing working memory and distinguishing between competing models 
(Fig. 2b–d). Resource models are already beginning to have an effect 
on systems neuroscience. Animal studies have started to measure 
working memory behaviorally in non-human primates using set  
sizes >1, with testing of resource models in mind22–25. Looking ahead, 
interpretation of such neural data will crucially depend on having a 
sound theoretical framework for behavior. In this review, we focus on 
emerging data from studies that have employed simple visual memo-
randa, as they are the easiest to model and have been used in both 
human and animal studies.

Flexible resource allocation
Flexibility in memory allocation11 represents a crucial distinction 
between competing slot and resource accounts of working memory. 
Rather than being limited to a fixed storage resolution, a growing body 
of evidence indicates that memory resources can be unevenly distrib-
uted so that prioritized items are stored with enhanced precision com-
pared to other objects. Voluntary control over resource allocation has 
been demonstrated by studies in which one stimulus in a memory array 
is indicated as more likely to be selected for test, resulting in a robust 
gain in recall precision for the cued stimulus10,18,26. Critically, this 
recall advantage appears to come with a corresponding cost to other 
stimuli in memory, which are recalled with less precision10,11,26.

These findings are consistent with an unequally distributed, but 
limited, resource: when more resource is devoted to a prioritized item, 

less is available for other objects. Notably, these effects cannot be 
explained simply by biased competition for sensory processing favor-
ing a prioritized item27, for several reasons. First, equivalent find-
ings are observed for stimuli presented one at a time in sequence10, 
eliminating competition in sensory input (Fig. 1d–f). Second, cues 
presented following prolonged examination of a stimulus array are 
of similar effectiveness as those presented before the array26, indicat-
ing that working memory resolution can be changed after the initial 
encoding is complete. Finally, recall precision can be influenced by 
retrospective cues, presented long after the array is extinguished, that 
is, when there is no sensory input available28.

These results indicate that the allocation of limited working  
memory storage can be controlled and updated with changing  
behavioral priorities. Similar recall advantages and costs have been 
observed for objects that are visually salient11,26,29, even when test 
probability is equal, indicating an automatic component to memory  
allocation that might be linked to visual attention. Further evidence  
that resource is associated with allocation of visual attention has 
arisen from demonstration of recall advantages for targets of  
saccades11,29,30 and for targets of covert shifts of attention, as inferred 
from micro-saccades25.

In oculomotor areas, including frontal eye field (FEF) and lateral 
intraparietal area (LIP), neural activity is modulated by both stimulus 
salience and task relevance to produce retinotopic maps of stimulus 
priority31. Such priority maps have been implicated in the guidance 
of visual attention and eye movements, but could also be involved in 
determining how working memory resources are distributed between 
objects. When eye movement sequences are interrupted, the upcom-
ing saccade target is held in memory with high resolution, whereas 
objects that had previously been the focus of attention are represented 
more coarsely11. This allocation may reflect a dual role of working 
memory representations in visual exploration, whereby memory for 
the saccade target is compared with post-saccadic input to correct 
inaccurate eye movements, and a record of attended locations is main-
tained to inhibit re-examination of previously explored locations32.

Sources of noise
Errors in recollection of a stimulus could arise from multiple sources: 
noise in the initial stage of sensory processing, in storing or main-
taining information in a stable state once the sensory input has been 

Figure 1 Evidence from delayed estimation  
challenging the slot model. (a) Example of a  
color delayed-estimation task8. Observers must  
report the color in memory that matches a probed  
location by selecting from a color wheel. (b) The  
distribution of responses relative to the correct  
(target) color depends on the number of items  
in the sample display. (c) Recall variability as  
measured by the standard deviation (SD) of  
error increases gradually and continuously with  
set size. In the item-limit (slot) model, this  
function would be flat up to set size 4. Adapted  
with permission from ref. 9. (d) Example of  
an orientation delayed-estimation task with  
sequential presentation10. Observers must  
report the orientation in memory that matches a  
probed color by adjustment of the probe, using  
a response dial. An item of the cue color (here,  
green) is more likely to be probed than items of  
other colors, making it higher priority for accurate  
storage. (e,f) Response distributions and standard deviation of errors for the orientation estimation task. When an item of the cue color is present in the 
sequence, it is remembered with enhanced precision (lower standard deviation) compared with other items in the sequence. Comparison with trials on which 
the cue color is absent (no cue) shows that uncued items are recalled with lower precision when a cued item is present. Adapted with permission from ref. 10.
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encoding is complete. Finally, recall precision can be influenced by 
retrospective cues, presented long after the array is extinguished, that 
is, when there is no sensory input available28.

These results indicate that the allocation of limited working  
memory storage can be controlled and updated with changing  
behavioral priorities. Similar recall advantages and costs have been 
observed for objects that are visually salient11,26,29, even when test 
probability is equal, indicating an automatic component to memory  
allocation that might be linked to visual attention. Further evidence  
that resource is associated with allocation of visual attention has 
arisen from demonstration of recall advantages for targets of  
saccades11,29,30 and for targets of covert shifts of attention, as inferred 
from micro-saccades25.

In oculomotor areas, including frontal eye field (FEF) and lateral 
intraparietal area (LIP), neural activity is modulated by both stimulus 
salience and task relevance to produce retinotopic maps of stimulus 
priority31. Such priority maps have been implicated in the guidance 
of visual attention and eye movements, but could also be involved in 
determining how working memory resources are distributed between 
objects. When eye movement sequences are interrupted, the upcom-
ing saccade target is held in memory with high resolution, whereas 
objects that had previously been the focus of attention are represented 
more coarsely11. This allocation may reflect a dual role of working 
memory representations in visual exploration, whereby memory for 
the saccade target is compared with post-saccadic input to correct 
inaccurate eye movements, and a record of attended locations is main-
tained to inhibit re-examination of previously explored locations32.

Sources of noise
Errors in recollection of a stimulus could arise from multiple sources: 
noise in the initial stage of sensory processing, in storing or main-
taining information in a stable state once the sensory input has been 

Figure 1 Evidence from delayed estimation  
challenging the slot model. (a) Example of a  
color delayed-estimation task8. Observers must  
report the color in memory that matches a probed  
location by selecting from a color wheel. (b) The  
distribution of responses relative to the correct  
(target) color depends on the number of items  
in the sample display. (c) Recall variability as  
measured by the standard deviation (SD) of  
error increases gradually and continuously with  
set size. In the item-limit (slot) model, this  
function would be flat up to set size 4. Adapted  
with permission from ref. 9. (d) Example of  
an orientation delayed-estimation task with  
sequential presentation10. Observers must  
report the orientation in memory that matches a  
probed color by adjustment of the probe, using  
a response dial. An item of the cue color (here,  
green) is more likely to be probed than items of  
other colors, making it higher priority for accurate  
storage. (e,f) Response distributions and standard deviation of errors for the orientation estimation task. When an item of the cue color is present in the 
sequence, it is remembered with enhanced precision (lower standard deviation) compared with other items in the sequence. Comparison with trials on which 
the cue color is absent (no cue) shows that uncued items are recalled with lower precision when a cued item is present. Adapted with permission from ref. 10.
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motion direction8–10,15,16,18–21. Rather than exhibiting the abrupt, step 
decline that would be expected on reaching a capacity limit of a fixed 
number of items5, in every case, recall variability has been shown to 
gradually and continuously increase as set size increases (Fig. 1b,c), 
as predicted if working memory resources are shared between items. 
Across a range of studies, this relationship between precision of recall 
and set size has been shown to follow a power law9,11,15,17.

Although the concept of a limited working memory resource 
has considerable explanatory power for behavioral data (discussed 
below), the exact nature of the representational medium remains 
to be established and is an important goal for neurophysiological 
investigation. The majority of electrophysiological and computational 
studies have confined themselves to studying memory for a single 
object. However, understanding the neural effects of increasing set 
size will be crucial for determining the cognitive architecture underly-
ing working memory and distinguishing between competing models 
(Fig. 2b–d). Resource models are already beginning to have an effect 
on systems neuroscience. Animal studies have started to measure 
working memory behaviorally in non-human primates using set  
sizes >1, with testing of resource models in mind22–25. Looking ahead, 
interpretation of such neural data will crucially depend on having a 
sound theoretical framework for behavior. In this review, we focus on 
emerging data from studies that have employed simple visual memo-
randa, as they are the easiest to model and have been used in both 
human and animal studies.

Flexible resource allocation
Flexibility in memory allocation11 represents a crucial distinction 
between competing slot and resource accounts of working memory. 
Rather than being limited to a fixed storage resolution, a growing body 
of evidence indicates that memory resources can be unevenly distrib-
uted so that prioritized items are stored with enhanced precision com-
pared to other objects. Voluntary control over resource allocation has 
been demonstrated by studies in which one stimulus in a memory array 
is indicated as more likely to be selected for test, resulting in a robust 
gain in recall precision for the cued stimulus10,18,26. Critically, this 
recall advantage appears to come with a corresponding cost to other 
stimuli in memory, which are recalled with less precision10,11,26.

These findings are consistent with an unequally distributed, but 
limited, resource: when more resource is devoted to a prioritized item, 

less is available for other objects. Notably, these effects cannot be 
explained simply by biased competition for sensory processing favor-
ing a prioritized item27, for several reasons. First, equivalent find-
ings are observed for stimuli presented one at a time in sequence10, 
eliminating competition in sensory input (Fig. 1d–f). Second, cues 
presented following prolonged examination of a stimulus array are 
of similar effectiveness as those presented before the array26, indicat-
ing that working memory resolution can be changed after the initial 
encoding is complete. Finally, recall precision can be influenced by 
retrospective cues, presented long after the array is extinguished, that 
is, when there is no sensory input available28.

These results indicate that the allocation of limited working  
memory storage can be controlled and updated with changing  
behavioral priorities. Similar recall advantages and costs have been 
observed for objects that are visually salient11,26,29, even when test 
probability is equal, indicating an automatic component to memory  
allocation that might be linked to visual attention. Further evidence  
that resource is associated with allocation of visual attention has 
arisen from demonstration of recall advantages for targets of  
saccades11,29,30 and for targets of covert shifts of attention, as inferred 
from micro-saccades25.

In oculomotor areas, including frontal eye field (FEF) and lateral 
intraparietal area (LIP), neural activity is modulated by both stimulus 
salience and task relevance to produce retinotopic maps of stimulus 
priority31. Such priority maps have been implicated in the guidance 
of visual attention and eye movements, but could also be involved in 
determining how working memory resources are distributed between 
objects. When eye movement sequences are interrupted, the upcom-
ing saccade target is held in memory with high resolution, whereas 
objects that had previously been the focus of attention are represented 
more coarsely11. This allocation may reflect a dual role of working 
memory representations in visual exploration, whereby memory for 
the saccade target is compared with post-saccadic input to correct 
inaccurate eye movements, and a record of attended locations is main-
tained to inhibit re-examination of previously explored locations32.

Sources of noise
Errors in recollection of a stimulus could arise from multiple sources: 
noise in the initial stage of sensory processing, in storing or main-
taining information in a stable state once the sensory input has been 

Figure 1 Evidence from delayed estimation  
challenging the slot model. (a) Example of a  
color delayed-estimation task8. Observers must  
report the color in memory that matches a probed  
location by selecting from a color wheel. (b) The  
distribution of responses relative to the correct  
(target) color depends on the number of items  
in the sample display. (c) Recall variability as  
measured by the standard deviation (SD) of  
error increases gradually and continuously with  
set size. In the item-limit (slot) model, this  
function would be flat up to set size 4. Adapted  
with permission from ref. 9. (d) Example of  
an orientation delayed-estimation task with  
sequential presentation10. Observers must  
report the orientation in memory that matches a  
probed color by adjustment of the probe, using  
a response dial. An item of the cue color (here,  
green) is more likely to be probed than items of  
other colors, making it higher priority for accurate  
storage. (e,f) Response distributions and standard deviation of errors for the orientation estimation task. When an item of the cue color is present in the 
sequence, it is remembered with enhanced precision (lower standard deviation) compared with other items in the sequence. Comparison with trials on which 
the cue color is absent (no cue) shows that uncued items are recalled with lower precision when a cued item is present. Adapted with permission from ref. 10.
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motion direction8–10,15,16,18–21. Rather than exhibiting the abrupt, step 
decline that would be expected on reaching a capacity limit of a fixed 
number of items5, in every case, recall variability has been shown to 
gradually and continuously increase as set size increases (Fig. 1b,c), 
as predicted if working memory resources are shared between items. 
Across a range of studies, this relationship between precision of recall 
and set size has been shown to follow a power law9,11,15,17.

Although the concept of a limited working memory resource 
has considerable explanatory power for behavioral data (discussed 
below), the exact nature of the representational medium remains 
to be established and is an important goal for neurophysiological 
investigation. The majority of electrophysiological and computational 
studies have confined themselves to studying memory for a single 
object. However, understanding the neural effects of increasing set 
size will be crucial for determining the cognitive architecture underly-
ing working memory and distinguishing between competing models 
(Fig. 2b–d). Resource models are already beginning to have an effect 
on systems neuroscience. Animal studies have started to measure 
working memory behaviorally in non-human primates using set  
sizes >1, with testing of resource models in mind22–25. Looking ahead, 
interpretation of such neural data will crucially depend on having a 
sound theoretical framework for behavior. In this review, we focus on 
emerging data from studies that have employed simple visual memo-
randa, as they are the easiest to model and have been used in both 
human and animal studies.

Flexible resource allocation
Flexibility in memory allocation11 represents a crucial distinction 
between competing slot and resource accounts of working memory. 
Rather than being limited to a fixed storage resolution, a growing body 
of evidence indicates that memory resources can be unevenly distrib-
uted so that prioritized items are stored with enhanced precision com-
pared to other objects. Voluntary control over resource allocation has 
been demonstrated by studies in which one stimulus in a memory array 
is indicated as more likely to be selected for test, resulting in a robust 
gain in recall precision for the cued stimulus10,18,26. Critically, this 
recall advantage appears to come with a corresponding cost to other 
stimuli in memory, which are recalled with less precision10,11,26.

These findings are consistent with an unequally distributed, but 
limited, resource: when more resource is devoted to a prioritized item, 

less is available for other objects. Notably, these effects cannot be 
explained simply by biased competition for sensory processing favor-
ing a prioritized item27, for several reasons. First, equivalent find-
ings are observed for stimuli presented one at a time in sequence10, 
eliminating competition in sensory input (Fig. 1d–f). Second, cues 
presented following prolonged examination of a stimulus array are 
of similar effectiveness as those presented before the array26, indicat-
ing that working memory resolution can be changed after the initial 
encoding is complete. Finally, recall precision can be influenced by 
retrospective cues, presented long after the array is extinguished, that 
is, when there is no sensory input available28.

These results indicate that the allocation of limited working  
memory storage can be controlled and updated with changing  
behavioral priorities. Similar recall advantages and costs have been 
observed for objects that are visually salient11,26,29, even when test 
probability is equal, indicating an automatic component to memory  
allocation that might be linked to visual attention. Further evidence  
that resource is associated with allocation of visual attention has 
arisen from demonstration of recall advantages for targets of  
saccades11,29,30 and for targets of covert shifts of attention, as inferred 
from micro-saccades25.

In oculomotor areas, including frontal eye field (FEF) and lateral 
intraparietal area (LIP), neural activity is modulated by both stimulus 
salience and task relevance to produce retinotopic maps of stimulus 
priority31. Such priority maps have been implicated in the guidance 
of visual attention and eye movements, but could also be involved in 
determining how working memory resources are distributed between 
objects. When eye movement sequences are interrupted, the upcom-
ing saccade target is held in memory with high resolution, whereas 
objects that had previously been the focus of attention are represented 
more coarsely11. This allocation may reflect a dual role of working 
memory representations in visual exploration, whereby memory for 
the saccade target is compared with post-saccadic input to correct 
inaccurate eye movements, and a record of attended locations is main-
tained to inhibit re-examination of previously explored locations32.

Sources of noise
Errors in recollection of a stimulus could arise from multiple sources: 
noise in the initial stage of sensory processing, in storing or main-
taining information in a stable state once the sensory input has been 

Figure 1 Evidence from delayed estimation  
challenging the slot model. (a) Example of a  
color delayed-estimation task8. Observers must  
report the color in memory that matches a probed  
location by selecting from a color wheel. (b) The  
distribution of responses relative to the correct  
(target) color depends on the number of items  
in the sample display. (c) Recall variability as  
measured by the standard deviation (SD) of  
error increases gradually and continuously with  
set size. In the item-limit (slot) model, this  
function would be flat up to set size 4. Adapted  
with permission from ref. 9. (d) Example of  
an orientation delayed-estimation task with  
sequential presentation10. Observers must  
report the orientation in memory that matches a  
probed color by adjustment of the probe, using  
a response dial. An item of the cue color (here,  
green) is more likely to be probed than items of  
other colors, making it higher priority for accurate  
storage. (e,f) Response distributions and standard deviation of errors for the orientation estimation task. When an item of the cue color is present in the 
sequence, it is remembered with enhanced precision (lower standard deviation) compared with other items in the sequence. Comparison with trials on which 
the cue color is absent (no cue) shows that uncued items are recalled with lower precision when a cued item is present. Adapted with permission from ref. 10.
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removed, or in the final stage of decoding (retrieval) and response 
generation. It is important to distinguish between these possibilities.

Working memory precision is inevitably limited by the precision 
afforded by early sensory representations, which is influenced by stimu-
lus factors such as contrast. Moreover, encoding of sensory information  
is not instantaneous26,33, so recall errors following brief exposure to 
multiple or complex stimuli may reflect incomplete encoding. The 
quality of encoding might also depend on attentional limitations34,35 
instead of, or in addition to, storage capacity limitations. Indeed,  
when the time available for encoding items into working memory  
is systematically varied, the rate at which recall precision increases 
over short exposures depends on the number of visual elements26, 
consistent with a continuous parallel accumulation of sensory infor-
mation into memory36. However, with prolonged exposures, precision 
does not continue to increase, but rather approaches a maximum 
value that depends on the number of items stored, which is consist-
ent with a limit on how much information can be simultaneously 
represented in working memory26.

During the maintenance stage, additional noise might be added. 
Recall variability has been shown to increase with the duration of 
the delay period (for example, see ref. 28), which is consistent with a 
gradual accumulation of error resulting from noise in memory, but 
is difficult to explain solely in terms of noise at encoding or decoding 
stages. The possibility that noise in working memory recall arises pre-
dominantly at the decoding or response stage has generally received 
less attention. However, it is unlikely to be a major contributor in 
delayed-estimation tasks, as only one of the items in memory is speci-
fied for recall; thus, noise arising at this stage would not be expected 
to produce set size–dependent effects.

Neural data
The search for a neural basis for limits on working memory  
performance has primarily focused on brain areas that are active 
during the delay period of memory tasks. Investigations using  
functional magnetic resonance imaging (fMRI) have identified regions 
of human prefrontal and posterior parietal cortex that show elevated 
blood oxygen level–dependent (BOLD) signals during working 
memory maintenance37–39 (Fig. 3a), whereas electroencephalogra-
phy (EEG) studies have observed a sustained negativity over posterior 

electrodes contralateral to memorized stimuli21,40 (the contralateral 
delay activity, CDA). Both BOLD and CDA signals are sensitive to the 
number of items in memory, displaying increasing37,38,40 or inverted 
U–shaped21,39,41 responses to increasing load.

Within the slot framework, an increase in neural activity with  
memory load has been considered to be the signature of a working 
memory store, based on the assumption that increasing load engages 
more of a store’s capacity. Indeed, a number of studies37,38,40 have 
reported that neural signals reach an abrupt plateau at higher memory 
loads, potentially corroborating the hypothesis of a maximum number 
of objects that can be stored5. However, unambiguously identifying a 
signal plateau in the presence of noise is not trivial, and the methods  
used to date have not been rigorous, either relying on appeals to  
subjective visual judgment or on the statistical error of accepting the 
null hypothesis.

It therefore remains to be established whether these neural signals 
reach a maximum at a particular set size and then plateau, or increase 
continuously toward an asymptotic limit (for example, according to  
a saturation function; Fig. 3b). One perspective is that increases in 
CDA amplitude may actually be explained by amplitude modula-
tion asynchrony, whereby a systematic decrease in the peak, but not 
trough, of alpha-band oscillation can produce the appearance of a 
sustained negativity (the CDA) when trial averaged42.

At the level of individual differences, the rate at which neural 
signals change with load is correlated with working memory per-
formance measures40,43, although the common assumption that this 
reflects differences in signal plateau has again not been rigorously 
examined. Notably, both BOLD and CDA measures show effects of 
the complexity as well as the number of visual stimuli in the memory 
array37,44, suggesting that the amplitude of neural signals may reflect 
both information content and object number. Consistent with this, 
the amplitude of the CDA is correlated with precision of recall45, even 
when only a single item is held in memory46 (Fig. 3c).

In contrast with the slot framework, resource models of working 
memory dictate that the same resources are engaged whether one  
or multiple visual items are stored. This is also true for the latest  
revisions of the slot model, which effectively distribute resource in  
discrete quanta19 (see below). Thus, increases in neural activity with 
load should not be considered the definitive marker of a working  

Figure 2 Models of working memory. (a) In the slot (or item limit) model of  
working memory4,5, each visual item is stored in one of a fixed number of  
independent memory slots (here, 3) with high resolution (left, illustrated,  
by narrow distribution of errors around the true feature value of a tested item).  
When there are more items than slots, one or more items are not stored and  
the slot model predicts that errors in report of a randomly chosen item will be  
composed of a mixture of high-precision responses (right, blue component of  
distribution corresponds to trials when the chosen item received a slot) and  
random guesses (green component corresponds to trials where it did not get  
a slot). (b) Resource models of working memory8,11,17 fundamentally differ:  
they propose a limited supply of representational medium that is shared out  
between items, without a limit to the number of items that can be stored.  
Crucially, the precision with which an item can be recalled depends on the  
quantity of resource allocated to it. If resources are equally distributed  
between objects, error variability (width of the distribution) increases  
continuously with the number of items (compare distribution of error for one  
versus four items), with a normal distribution being commonly assumed.  
(c) In discrete-representation models19, the working memory medium is divided into a discrete number of quanta, similar to the slot model. However, these 
slots are shared out between items; in this respect, this type of model is much closer to resource models than the original slot model (a). For low set sizes 
(for example, one item shown at left), the quanta combine to produce a high-resolution memory of an item. However, for higher set sizes, above the number 
of slots available (right), all items get either one or zero quanta, predicting a mixture of low-resolution recall and random guesses. Note how this distribution 
differs from those in a and b. (d) Variable-precision models15,16 propose that working memory precision varies, from trial to trial and item to item, around 
a mean that decreases with increasing number of items as a result of limited resources. This model predicts that recall errors will be made up of an infinite 
mixture of distributions (assumed normal) of different widths. Variability in precision could stem from variability in resource or from bottom-up factors.
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so U(x1) = U(x2) = ✓ ✓ =

Z 2h

0
w(y)dy = W (2h) implicit eqn defining

bump half-width

for w(x) = A(1� |x|)e�|x|
W (2h) = 2Ahe�2h = ✓ solved with numerical
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-30 -15 0 15 30

-1

0

1

2

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4A B

✓

-30 -15 0 15 30

0

1

2

-90

90

0180

A B

A: two branches of solutions: wide & marginally stable, narrow & unstable
B: bump solutions widen as the strength of coupling is increased

[x1, x2] = {x|U(x) � ✓}



Nonequilibrium dynamics via interface equations

x

U
(x
)

x

t(
m
s)

x1(t) x2(t)

A(t)



Nonequilibrium dynamics via interface equations

x

U
(x
)

x

t(
m
s)

x1(t) x2(t)

A(t)

can show interfaces u(xj(t), t) = ✓
determine dynamics of the entire
neural field u(x, t)

define active region:
A(t) = [x1(t), x2(t)]



Nonequilibrium dynamics via interface equations

x

U
(x
)

x

t(
m
s)

x1(t) x2(t)

A(t)

can show interfaces u(xj(t), t) = ✓
determine dynamics of the entire
neural field u(x, t)

define active region:
A(t) = [x1(t), x2(t)]

differentiate
u(xj(t), t) = ✓

↵j(t)
dxj

dt
+

@u(xj(t), t)

@t
= 0 ↵j(t) =

@u(xj(t), t)

@x



Nonequilibrium dynamics via interface equations

x

U
(x
)

x

t(
m
s)

x1(t) x2(t)

A(t)

can show interfaces u(xj(t), t) = ✓
determine dynamics of the entire
neural field u(x, t)

define active region:
A(t) = [x1(t), x2(t)]

differentiate
u(xj(t), t) = ✓

↵j(t)
dxj

dt
+

@u(xj(t), t)

@t
= 0 ↵j(t) =

@u(xj(t), t)

@x

@u(xj(t), t)

@t
= �✓ +W (x2(t)� x1(t))so W (x) =

Z x

0
w(y)dywith

recall @u(x, t)

@t
= �u(x, t) +

Z x2(t)

x1(t)
w(x� y)dy



Nonequilibrium dynamics via interface equations
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x1(t) x2(t)

A(t)

can show interfaces u(xj(t), t) = ✓
determine dynamics of the entire
neural field u(x, t)

define active region:
A(t) = [x1(t), x2(t)]

differentiate
u(xj(t), t) = ✓

↵j(t)
dxj

dt
+

@u(xj(t), t)

@t
= 0 ↵j(t) =

@u(xj(t), t)

@x

@u(xj(t), t)

@t
= �✓ +W (x2(t)� x1(t))so W (x) =

Z x

0
w(y)dywith

recall @u(x, t)

@t
= �u(x, t) +

Z x2(t)

x1(t)
w(x� y)dy

static gradient
approximation

↵1(t) ⇡ ↵̄ = U 0(�h)

x

U
(x
)

✓U 0(�h)

ẋ1(t) = ↵̄�1 [✓ �W (x2(t)� x1(t))]

ẋ2(t) = ↵̄�1 [�✓ +W (x2(t)� x1(t))]

↵2(t) ⇡ �↵̄ = �|U 0(h)|
W (x2 � x1) = ✓ : ẋ1 = ẋ2 = 0

W (x2 � x1) > ✓ : ẋ1 < 0, ẋ2 > 0

W (x2 � x1) < ✓ : ẋ1 > 0, ẋ2 < 0
(Amari 1977)

(Krishnan, Poll, and ZPK 2017)



Interface equations for stochastic neural field

: spatially-extended noise withZ(x, t) hdZ(x, t)dZ(y, s)i = C(x� y)�(t� s)dtds

du(x, t) = [�u(x, t) + w(x) ⇤H(u(x, t)� ✓)] dt+
p

✏|u(x, t)|dZ(x, t)
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Interface equations for a two interacting bumps
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and integral equations for the gradients
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Stochastic interface equations for noise-driven bumps
assuming static gradient
and considering the
stochastic neural field

dx1 = ↵̄�1
h
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,

dx2 = �↵̄�1
h
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p
✏✓dZ(x2, t)
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and similar equations for x3 & x4
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and similar equations for x3 & x4
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Stochastic interface equations for noise-driven bumps
assuming static gradient
and considering the
stochastic neural field

dx1 = ↵̄�1
h
(✓ �W (x2 � x1) +W (x3 � x1)�W (x4 � x1)) dt�

p
✏✓dZ(x1, t)

i
,

dx2 = �↵̄�1
h
(✓ �W (x2 � x1) +W (x3 � x2)�W (x4 � x2)) dt�

p
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i

and similar equations for x3 & x4

errors in initial condition recall arise from repulsion, absorption, and bump wandering

MSE = h(�1�out � �1)
2i = 1
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Performance on a two-item working memory task

MSE is reduced as two items (bumps) are placed farther apart
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MSE is reduced as two items (bumps) are placed farther apart
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Multiple interacting bumps: Interface equations
active region is given by the union of N finite intervals A(t) = [N

j=1 [aj(t), bj(t)]

du(x, t) =

2

4�u(x, t) +
NX

j=1

Z bj(t)

aj(t)
w(x� y)dy

3

5 dt+
p

✏|u(x, t)|dZ(x, t)
effective neural
field equation
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Multiple interacting bumps: Interface equations
active region is given by the union of N finite intervals A(t) = [N
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bumps can be annihilated by adjacent bumps in additional to being repelled and merged



Performance in multi-item working memory task

we expect performance to worsen as the number
of items to be stored is increased

we also explore the impact of increasing the
strength of synaptic connectivity in the network

MSE = h(�1�out � �1)
2i = 1
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Summary and conclusions
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It  is,  of  course,  an  indispensable  part  of  a 
scrivener's business to verify the accuracy of his 
copy,  word  by  word.  Where  there  are  two  or 
more  scriveners  in  an  office,  they  assist  each 
other in this examination, one reading from the 
copy, the other holding the original. It is a very 
dull,  wearisome,  and  lethargic  affair.  I  can 
readily  imagine  that  to  some  sanguine 
temperaments it would be altogether intolerable.
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Memory-guided search: examples

(Kilpatrick & Poll 2017)



Search strategies

examine the next radiograph in the stack. The decision to
move to the next case is driven by the visual properties of
the stimulus [3], the probability of finding a target [18], the
reward structure [19], the number of objects to scan in
the stimulus [20], and the history of errors [17]. All of
these are also factors common to search in other domains.

Modulation between exploration and exploitation is also
fundamental to many non-spatial aspects of human behav-
ior. Social search for potential mates (e.g., in marriage and
divorce) may proceed from local search (e.g., people highly
similar to the searcher) to global search as thresholds for
mate quality are adjusted with age [21]. Humans searching
for information in the external environment – information
foraging (e.g., on the Web or through social networks) – also
switch adaptively between local and global search: people
leave a local patch of web pages when they perceive that
its value has fallen below what can be found globally
elsewhere [22]. In decision making, the search for cues
on which to base choices often starts with those that have

been most useful in the past (local focus) and proceeds to
others until enough cues have been found to select an
option [23]. This pattern also arises in problem solving.
For example, when engaged in an anagram task that
involves making words from a set of random letters, people
use the discovery of past solutions to determine how long to
stay in a local ‘patch’ [24], as they also do when angling for
fish in a sequence of virtual ponds on a computer screen
[25]. Expecting resources near where (or when) other
resources have been found may be a broadly adaptive
cognitive bias – explaining, for example, the tendency
for people and nonhuman primates to expect ‘streaky’
outcomes, sometimes called the hot-hand fallacy [26].

Exploration can be random, treating all courses of action
more or less equally, or guided by beliefs about the struc-
ture of the environment [27–29]. The former, often called
model-free is driven by stimulus-response relationships and
defines exploration as an increased probability of choosing
an outcome associated with a lower expected value or of
choosing any behavior with unknown consequences. Belief-
guided search, often called model-based involves a cognitive
representation or map of the relational structure of the
environment. Model-based decisions can inform both
where and when to search by guiding search to regions that
provide more information. An example of model-based
‘when’ search is exploring to see whether a cake is finished
baking only after sufficient time has passed to allow it to do
so. In the model-free case, there is no model of the temporal
dynamics of baking, simply knowledge that baking cakes
need checking. While model-free exploration is typically
defined by choosing outcomes with lower expected rewards
than exploitation, model-based exploration can lead to
greater long-term rewards by using cognitive representa-
tions to decide both where and when exploration is most
likely to pay dividends in the future [30,31]; from this
perspective, learning can be conceived of as a foraging
process [32].

Are internal and external search processes governed by
common underlying mechanisms? Figure 2 illustrates a
recent priming study that found that experience with more
local exploitation in a spatial foraging task led to more
focused production of word solutions in a subsequent ana-
gram task [33]. The common mechanism is also supported
by findings demonstrating that measures of executive
capacity (e.g., working memory span) are related to search
in various domains, both internal and external [34–37],
including visual search [38,39]. Furthermore, dynamic
switching between local and global search has been sug-
gested to account for human decisions to move from one
‘region’ of memory to another – for example, when recalling
types of animal in a verbal fluency task [6] – as well as
decisions to leave visible patches (e.g., berry bushes in a
simulated berry-picking task) [40].

The neurobiology  of cognitive search
Cognitive search involves the capacity to maintain goals in
stable neural representations and to relax these repre-
sentations as needed to create opportunities for flexibility
and exploration in either the internal or external world.
These capacities allow us to search not only in the present,
but also in the past and the future (Box 2). Research
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Figure 1 . Local exploration in human visual search. In visual search, people look
for specific letter targets; for example, Fs in an array of letter distractors. The local
exploitation step is the act of recognizing a letter and determining whether it is
your target. The local exploration step is the act of selecting the next letter
(accomplished at a rate of about 20–40 letters/s). All else being equal, visual
attention is drawn to salient items in the field (A). How then are we to avoid
perseverating on one incorrect but vivid letter? One answer (B) is to rely on the
phenomenon of ‘inhibition of return’ (IOR) [94]. If one attends or fixates on an item
and then deploys one’s gaze or attention away from that item, it becomes harder to
bring the gaze or attention back to the original item than to move it elsewhere. It
was originally believed that IOR would permit attention to sample the display
without replacement. Unfortunately, further research found that visual search was
not markedly impaired when IOR was blocked and observers had to sample with
replacement. A more moderate view might hold that IOR serves to bias exploration
toward new items (C) even if it does not absolutely prevent return to a rejected
item. However, given enough time, observers can adopt strategies that allow them
to prevent perseveration [95]. Thus, for example, one might ‘read’ a display from
side to side and top to bottom. This more controlled, prospective strategy (D)
would avoid sampling with replacement but would slow the rate with which items
can be processed. In some cases, a more chaotic strategy will get you to the target
more quickly [96].
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•A: fixate on salient images 

•B: inhibition-of-return 

•C: exploration bias 

•D: “lawnmower” or 

“boustrophedonic” strategy

(Hills et al 2015)
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Stationary solutions depend on input from position layer
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U(x) =

Z b

a
wu(x� y)dy

Q(x) =

Z d

c
wq(x, y)dy +

Z b

a
wp(x� y)dy

v(t) ⌘ 0

a, b

c, d

bump interfaces

front interfaces



Stationary solutions depend on input from position layer
can the memory layer remember visited locations? analyze stationary solns for 

U(x) =

Z b

a
wu(x� y)dy

Q(x) =

Z d

c
wq(x, y)dy +

Z b

a
wp(x� y)dy

v(t) ⌘ 0

a, b

c, d

bump interfaces

front interfaces

wu(x) = (1� |x|)e�|x|
lateral inhibitory

wq(x, y) = [1 + � cos(ny)] · e
�|x�y|

2
reflects spatial heterogeneity of

cortical regions encoding position

wp(x) = I0
↵e�↵|x|

2

locally excitatory



Stationary solutions depend on input from position layer
can the memory layer remember visited locations? analyze stationary solns for 

U(x) =

Z b

a
wu(x� y)dy

Q(x) =

Z d

c
wq(x, y)dy +

Z b

a
wp(x� y)dy

v(t) ⌘ 0

a, b

c, d

bump interfaces

front interfaces

wu(x) = (1� |x|)e�|x|
lateral inhibitory

wq(x, y) = [1 + � cos(ny)] · e
�|x�y|

2
reflects spatial heterogeneity of

cortical regions encoding position

wp(x) = I0
↵e�↵|x|

2

locally excitatory

threshold conditions 
(self-consistency):
U(a) = U(b) = ✓u,

Q(c) = Q(d) = ✓q,

evaluated to produce 
bifurcation plots

5

-5 0 5 10 15
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D E F

FIG. 3. Dependence of stationary solutions on the input from the position layer. A. For no position layer input (I0 = 0), there
is a range of memory layer threshold values ✓q (grey region), for which multiple stable (blue solid) and unstable (red dashed)
standing front solutions exist. The branches “snake” back and forth, turning at saddle-node (SN) bifurcations (See also [50]).
The left interface c is bounded to be between �2⇡ and 0 (see main text), and we solve Eq. (9) to obtain the both the left c
and right interface (see D for reference). B. Weak input (I0 = 0.1, background gradient) from a bump centered at �u = 7.184
(near 3rd SN) shifts branches near the 3rd SN, but weakly a↵ects other branches. A stable solution near d ⇡ 10 for ✓q = 0.4
still remains (magenta dot). C. Weak input from bump centered at �u = 10.184 (near 4th SN) shifts branches near d ⇡ 10, so
nearby solutions for ✓q = 0.4 vanish. D,E,F. Stationary solution profiles associated with red dot in A (panel D); magenta dot
in B (panel E); and magenta dot in C (panel F). Solution from D is shown for reference in panels E and F. Other parameters
are ✓u = 0.2, ✓q = 0.4, ↵ = 1, n = 1, � = 0.3.

mixture of transcendental functions, we do not expect to
be able to solve explicitly for vector solutions (a, b, c, d).
Thus, we will employ a nonlinear root-finder in order to
construct associated bifurcation diagrams.

We now demonstrate the mechanism by which fronts
are propagated in Eq. (3), via input from the position
layer, Eq. (1). This analysis uses bifurcation diagrams
associated with stationary solutions, but in Section IV we
approximate the dynamics of the bump and front inter-
faces to obtain a low-dimensional system for the motion
of the patterns in each layer. Bifurcation curves and sta-
tionary solutions of the model Eq. (1) and (3) are shown
in Fig. 3. Nonlinear root-finding applied to Eq. (9) is
used to compute the bifurcation curves, but the stabil-
ity will be determined by a linear analysis below. To
clearly display solution curves, we have bounded the left
interface c of the front solution between [�2⇡, 0]. Note,
similar bifurcation curves would be obtained by bounding
c 2 [�2(m + 1)⇡,�2m⇡] for any positive integer m. The
location of the left interface c only marginally a↵ects the
right interface, since interactions between the interfaces
are described by the function ec�d in Eq. (9), which will
typically be small. In [50], this was addressed by plot-
ting bifurcation diagrams showing the dependence of the
width Lf = d � c of the front, rather than the right
interface d. For our purposes, it is more instructive to

track how d changes with the location of the bump in
the position layer.

Solutions’ dependence on the memory layer threshold
✓q and input from the position layer is shown in Fig. 3A–
C. The case of no input (I0 ⌘ 0 in Eq. (9)) is shown in Fig.
3A. Note the metastability of solution in the grey shaded
region. Advancing the front interface to subsequent sta-
ble branches is the main mechanism by which previously
visited locations are stored by the network. When input
from the position layer is applied to the memory layer
(Fig. 3B,C), it warps the solution curves in the vicinity
of the excitation. This can result in the annihilation of
stable solutions at lower values of ✓q (Fig. 3C). We plot
profiles in Fig. 3D–F, demonstrating how solutions are
identified with their threshold intersection points. Note
input from the position layer is not su�cient to desta-
bilize the input-free solution in Fig. 3E, but is in Fig.
3F since the input is slightly ahead of the front interface.
This is the mechanism by which the memory layer’s front
is propagated, once moving bumps in the position layer
are considered: The bump must be ahead of the front
interface to propagate it forward.

Next, we take a closer look at the bifurcation that oc-
curs by increasing the strength I0 of the input from the
position layer to the memory layer. In particular, we
consider a one-sided front, as this a fairly accurate ap-
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FIG. 4. Phase diagram showing the impact of the bump location �u and input amplitude I0 on the movement of a nearby
front interface. A. Partition of (I0,�u) parameter space into regions where front propagates forward (white) and where it does
not (black). Line shows analytical approximation from Eq. (11). Mismatch arises due to subtle discretization errors in the
numerical scheme for solving the full system. B,C. Numerical simulations of the full network, Eq. (1) and (3) with a stationary
bump centered at �u = 6 (interfaces given by dashed lines). The position input amplitude is switched from I0 = 0 to I0 = 0.02
in panel B (blue square in A) and I0 = 0.1 in panel C (red star in A) at t = 50 (light line). The front only propagates for
large enough I0 (panel C). Other parameters are ✓u = 0.2, ✓q = 0.4, � = 0.3, n = 1, and ↵ = 1.

proximation to the case d � c � 1, and we will utilize
this observation in our low-dimensional system we derive
in Section IV.

One-sided front. Terms involving ec�d will tend to
be quite small even for a modest di↵erence between the
two front interfaces (e.g., e�10

⇡ 4.54 ⇥ 10�5). Thus,
we consider the case where c � d is su�ciently large as
to ignore the exponentially small term ec�d, and focus
specifically on using Eq. (9) to solve for the right interface
d. In this case, we can write

✓u = (b � a)ea�b
, (10a)

✓q =
1

2
+

� cos(nd) + n� sin(nd)

2(n2 + 1)
+ P(d; a, b), (10b)

so that Eq. (10a) and (10b) can be solved in sequence
to obtain bifurcation curves for d, which will be very
similar to Fig. 3, except for small di↵erences arising for
low values of d. As we also demonstrated in Fig. 3C,
increasing the strength of the input I0 from the position
layer to the memory layer can lead to the annihilation
of the pair of stable/unstable solutions via a saddle-node
(SN) bifurcation. We will now discuss how to identify
this curve of SN bifurcations in the reduced Eq. (10).

Fixing the threshold ✓q, we can identify the critical
I0 for which a SN bifurcation occurs by simultaneously
looking for the interface location d

c and I
c
0

at which an
extremum of the right-hand-side of Eq. (10b) occurs. In
essence, this identifies the point at which the bend of
the bifurcation curves in Fig. 3 cross through a thresh-
old value ✓q due to an increase of the input I0. This
requires, first, that Eq. (10b) is satisfied for d = d

c. Ad-
ditionally, we require that the derivative of the right-hand
side Eq. (10b) with respect to d is zero since the SN bi-
furcation occurs at a critical point of the solution curve.
Regardless of the location of the bump in the position
layer (parameterized by a and b), this condition is given

by the equation:

n�

n2 + 1
[n cos(nd) � sin(nd)]

+
↵I0

2

h
e�↵|d�a|

� e�↵|d�b|
i

= 0,

which can be solved explicitly for the critical input
strength I

c
0

in terms of the interface location d
c at the

bifurcation:

I
c
0

=
2n�

↵(n2 + 1)
·
sin(nd

c) � n cos(nd
c)

e�↵|dc�a|
� e�↵|dc�b| . (11)

Plugging Eq. (11) into Eq. (10b), we obtain the following
implicit equation for the critical location of the interface,
given the critical input I

c
0
:

✓q =
1

2
+ �

cos(nd
c) + n sin(nd

c)

2(n2 + 1)
+

n�

↵(n2 + 1)
(12)

⇥
sin(nd

c) � n cos(nd
c)

e�↵|dc�a|
� e�↵|dc�b|

P(dc; a, b)

I0

.

Eq. (12) further simplifies in the case where the input is
ahead of the interface d

c
< a < b, so that

2↵

�
(n2 + 1)

✓
✓q �

1

2

◆
=
�
↵ � 2n

2
�
cos(nd

c)

+ (↵ + 2)n sin(nd
c),

which can be solved explicitly

d
c =

2

n

"
tan�1

 p
A2 + B2 � C2 + B

A + C

!
+ m⇡

#
,

for m 2 Z, where A = ↵ � 2n
2, B = (↵ + 2)n, and C =

2↵
� (n2 + 1)

�
✓q �

1

2

�
. A similar set of explicit solutions

can be obtained for the case a < b < d
c, so that

d
c =

2

n

"
tan�1

 p
A2 + B2 � C2 � B

C �A

!
+ m⇡

#
.

require that I0 > Ic0 which can be determined by simplifying the threshold equations

Ic0 =
2n�

↵(n2 + 1)
· sin(nd

c)� n cos(ndc)

e�↵|dc�a| � e�↵|dc�b|
where      is the location of the right front interface 
at the saddle-node bifurcation

dc

front interface

bump position �u
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FIG. 5. Eigensolution for perturbations near the right interface of the front at x = d. A. Eigenvalue varies nonmonotonically
for di↵erent values of ✓q (correspondingly plotted versus d) along the stable branch corresponding to those d values. As input
amplitude I0 is increased, the range of d values decreases and �d := �+, Eq. (18), moves closer to zero. Cusp arises at boundary
of input (bump in position layer is centered at �u = 10.184). B. Eigenfunction �d(x) associated with perturbations of the
right interface, x = d, defined in Eq. (15). Peak near x = d increases as the input amplitude is increased I0. Shades correspond
to input strength I0 as in A. Other parameters are � = 0.3, ↵ = 1, n = 1, c 2 [�2⇡, 0], and ✓u = 0.2.

where Q0 = (�cwq(c, c) � 1)(�dwq(d, d) � 1) �

�c�dwq(c, d)wq(d, c) and Q1 = 2��cwq(c, c)��dwq(d, d).
Clearly, the roots of U(�) = 0 are �0 = 0 and �w =
2wu(b�a)/(wu(0)�wu(b�a)), the typical stability clas-
sification of bumps in neural fields with Heaviside firing
rates [38, 43]. The zero eigenvalue indicates the transla-
tion symmetry of the bump, and the generically nonzero
eigenvalue �w represents the stability of the bump in re-
sponse to width perturbations, determined by the sign
of wu(b � a). We are interested in the linear stability
characterized by Q(�) = 0. These eigenvalues can be
determined explicitly assuming (a, b, c, d) and Q

0(x) are
known by applying the quadratic formula

�± =
1

2


�Q1 �

q
Q2

1
� 4Q0

�
, (18)

Neutral stability of the front occurs when Re�+ = 0.
Past work showed these are SN bifurcations [50], so we
expect �+ = 0. Placing this condition on Eq. (18) yields
Q0 = 0, and

(�cwq(c, c) � 1)(�dwq(d, d) � 1) = �c�dwq(c, d)wq(d, c).

For front interfaces that are far apart d � c � 1,
|wq(c, d)|, |wq(d, c)| ⌧ 1. These terms scale exponen-
tially with the distance d � c, so their product will
be smaller, and we approximate Eq. (17) as a diago-
nal system with eigenvalues �d := �+ = �dwq(d, d) � 1
and �c := �� = �cwq(c, c) � 1. Focusing on bifurca-
tions that emerge at the right interface near x = d,
we expect the SN bifurcation to occur when �d = 0 or
wq(d, d) = |Q

0(d)|. This is identical to the condition we
derived above for the location of SN bifurcations for a
single-interface front.

We solve for the eigenvalue �d using the formula
Eq. (18) and plot in Fig. 5A, showing the dependence of
this eigenvalue for a specific front interface value d. As
expected, the eigenvalue becomes zero at the endpoints

of the stable branch, annihilating in a SN bifurcation.
The associated eigenfunction is determined by plugging
�d = �+ into Eq. (16), solving the linear system for the
degenerate eigenvector ( (a), (b),�(c),�(d)), and using
the full linear system Eq. (15) to determine the shape of
( (x),�(x)). The result is plotted in Fig. 5B, showing
perturbations of this form shift the location of the right
front interface to the right.

With knowledge of the mechanism by which the posi-
tion layer u(x, t) moves the memory layer front q(x, t), we
now derive low-dimensional approximations of the bump
and front motion. Our interface calculations track the
location of the bump �u(t) as well as the left and right
locations of the memory front �+(t) and ��(t) using a
system of three nonlinear di↵erential equations.

IV. INTERFACE EQUATIONS

We now derive interface equations for the position layer
u(x, t) and the front layer q(x, t), starting with mild as-
sumptions on the parameters and dynamics of the activ-
ity in each layer. Strong assumptions of weak heterogene-
ity and inputs will be used to simplify the form of our de-
rived interface equations. Interface equations reduce the
dimensionality of our system due to the Heaviside form of
the nonlinearities in Eq. (1) and (3), so that the threshold
crossing points u(x, t) = ✓u and q(x, t) = ✓q largely de-
termine the dynamics of the full system. Several authors
extended the seminal work of Amari (1977) [38], who
developed interface methods for analyzing bump stabil-
ity in neural fields, to handle more complicated dynam-
ics like fronts in heterogeneous networks [49] and two-
dimensional domains [53].

To start, we define the active regions of both layers,
Au(t) = {x|u(x, t) > ✓u} and Aq(t) = {x|q(x, t) > ✓q}

where the output of the firing rate nonlinearities will be
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FIG. 4. Phase diagram showing the impact of the bump location �u and input amplitude I0 on the movement of a nearby
front interface. A. Partition of (I0,�u) parameter space into regions where front propagates forward (white) and where it does
not (black). Line shows analytical approximation from Eq. (11). Mismatch arises due to subtle discretization errors in the
numerical scheme for solving the full system. B,C. Numerical simulations of the full network, Eq. (1) and (3) with a stationary
bump centered at �u = 6 (interfaces given by dashed lines). The position input amplitude is switched from I0 = 0 to I0 = 0.02
in panel B (blue square in A) and I0 = 0.1 in panel C (red star in A) at t = 50 (light line). The front only propagates for
large enough I0 (panel C). Other parameters are ✓u = 0.2, ✓q = 0.4, � = 0.3, n = 1, and ↵ = 1.

proximation to the case d � c � 1, and we will utilize
this observation in our low-dimensional system we derive
in Section IV.

One-sided front. Terms involving ec�d will tend to
be quite small even for a modest di↵erence between the
two front interfaces (e.g., e�10

⇡ 4.54 ⇥ 10�5). Thus,
we consider the case where c � d is su�ciently large as
to ignore the exponentially small term ec�d, and focus
specifically on using Eq. (9) to solve for the right interface
d. In this case, we can write

✓u = (b � a)ea�b
, (10a)

✓q =
1

2
+

� cos(nd) + n� sin(nd)

2(n2 + 1)
+ P(d; a, b), (10b)

so that Eq. (10a) and (10b) can be solved in sequence
to obtain bifurcation curves for d, which will be very
similar to Fig. 3, except for small di↵erences arising for
low values of d. As we also demonstrated in Fig. 3C,
increasing the strength of the input I0 from the position
layer to the memory layer can lead to the annihilation
of the pair of stable/unstable solutions via a saddle-node
(SN) bifurcation. We will now discuss how to identify
this curve of SN bifurcations in the reduced Eq. (10).

Fixing the threshold ✓q, we can identify the critical
I0 for which a SN bifurcation occurs by simultaneously
looking for the interface location d

c and I
c
0

at which an
extremum of the right-hand-side of Eq. (10b) occurs. In
essence, this identifies the point at which the bend of
the bifurcation curves in Fig. 3 cross through a thresh-
old value ✓q due to an increase of the input I0. This
requires, first, that Eq. (10b) is satisfied for d = d

c. Ad-
ditionally, we require that the derivative of the right-hand
side Eq. (10b) with respect to d is zero since the SN bi-
furcation occurs at a critical point of the solution curve.
Regardless of the location of the bump in the position
layer (parameterized by a and b), this condition is given

by the equation:

n�

n2 + 1
[n cos(nd) � sin(nd)]

+
↵I0

2

h
e�↵|d�a|

� e�↵|d�b|
i

= 0,

which can be solved explicitly for the critical input
strength I

c
0

in terms of the interface location d
c at the

bifurcation:

I
c
0

=
2n�

↵(n2 + 1)
·
sin(nd

c) � n cos(nd
c)

e�↵|dc�a|
� e�↵|dc�b| . (11)

Plugging Eq. (11) into Eq. (10b), we obtain the following
implicit equation for the critical location of the interface,
given the critical input I

c
0
:

✓q =
1

2
+ �

cos(nd
c) + n sin(nd

c)

2(n2 + 1)
+

n�

↵(n2 + 1)
(12)

⇥
sin(nd

c) � n cos(nd
c)

e�↵|dc�a|
� e�↵|dc�b|

P(dc; a, b)

I0

.

Eq. (12) further simplifies in the case where the input is
ahead of the interface d

c
< a < b, so that

2↵

�
(n2 + 1)

✓
✓q �

1

2

◆
=
�
↵ � 2n

2
�
cos(nd

c)

+ (↵ + 2)n sin(nd
c),

which can be solved explicitly

d
c =

2

n

"
tan�1

 p
A2 + B2 � C2 + B

A + C

!
+ m⇡

#
,

for m 2 Z, where A = ↵ � 2n
2, B = (↵ + 2)n, and C =

2↵
� (n2 + 1)

�
✓q �

1

2

�
. A similar set of explicit solutions

can be obtained for the case a < b < d
c, so that

d
c =

2

n

"
tan�1

 p
A2 + B2 � C2 � B

C �A

!
+ m⇡

#
.

require that I0 > Ic0 which can be determined by simplifying the threshold equations

Ic0 =
2n�

↵(n2 + 1)
· sin(nd

c)� n cos(ndc)

e�↵|dc�a| � e�↵|dc�b|
where      is the location of the right front interface 
at the saddle-node bifurcation

dc

stability is determined by projecting the associated eigenvalue problem to the interfaces

(�+ 1) (a) = �a [wu(0) (a) + wu(b� a) (b)] ,

(�+ 1) (b) = �a [wu(b� a) (a) + wu(0) (b)] .

u(x, t) = U(x) +  (x, t), q(x, t) = Q(x) + �(x, t)

(�+ 1)�(c) = �cwq(c, c)�(c) + �dwq(c, d)�(d),

(�+ 1)�(d) = �cwq(d, c)�(c) + �dwq(d, d)�(d),

front interface

bump position �u
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derive dynamics 
of interfaces:

where
is centroid of bump position

�u(t) =

Z t

0
v(s)ds
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FIG. 6. Interface equations approximate the dynamics of the full neural field model, Eq. (1) and (3). A. Bump propagates
across the domain of the position layer, u(x, t), in response to a velocity input defined v(t) = 0.3 on t 2 [0, 62.5) and v(t) = �0.3
on t 2 [62.5, 250]. Interfaces defined by Eq. (23) approximately track the threshold crossing locations u(x±(t), t) = ✓u of the
full simulation. B. Memory layer, q(x, t), supports a front solution that propagates in response to the motion of the bump in
the position layer. Our interface approximation, �±(t), given by Eq. (24) correspondingly tracks the left and right boundaries
of the visited regions of the searching agent. C,D. Zoomed-in versions of the simulations in A,B, showing slight mismatches in
the approximation that occur due to our truncations. Colorbar labels show minimal color corresponds to the threshold value ✓
of the layer in each plot (✓u for u(x, t) and ✓q for q(x, t)), while 1 is the maximal color value. Parameters are ✓u = 0.2, ✓q = 0.4,
n = 1, � = 0.3, I0 = 0.2, and ↵ = 1.

yielding

d =
2

n
tan�1

 p
�2 + n2�2 � (2✓q � 1)2(n2 + 1)2 + n�

� + (2✓q � 1)(n2 + 1)

!
,

up to periodicity, so that

�
�1

c = �
�1

d = �Q
0(d) =

1

2


1 + �

cos(nd) + n sin(nd)

n2 + 1

�
.

We can now notice a number of features of the full sys-
tem Eq. (3) captured by the interface Eq. (25). First, in
the absence of any heterogeneity (� = 0) or positional
input (I0 = 0), the front interfaces propagate at a speed
approximated by �d(1/2 � ✓q) on the right (�+(t)) and
�c(1/2 � ✓q) on the left (��(t)). Su�ciently strong het-
erogeneity (� = �

c
> 0) will pin the front. Without

any positional input (I0 = 0), the critical value �
c that

pins fronts is given by the � such that the maximum of
� [cos(n�+) + n sin(n�+)] equals n

2 + 1� 2✓q. This oc-
curs when �

c =
⇥
n

2 + 1 � 2✓q

⇤
/ [cos T (n) � n sin T (n)]

for T (n) = 2 tan�1((1 �
p

n2 + 1)/n), corresponding to

the critical heterogeneity for wave propagation failure
discussed in [48, 49]. Thus, we require � > �

c for the
system to retain memory of visited locations, which pre-
vents front propagation to the rest of the domain.

Our interface equations are compared with simulations
of the full model Eq. (1) and (3) in Fig. 6. The evolu-
tion of the bump interfaces in the positional layer u(x, t)
(u(x±(t), t) = ✓u) are captured well by x±(t) = �u(t)±h

(Fig. 6A,C). We expect the mismatch arises as the re-
sult of our static gradient approximation ux(x±(t), t) ⇡

±U
0(±h). The front tracks previously visited locations of

the bump, corresponding to the active regions in the do-
main at time t (Fig. 6B,D). More regions are activated
when the searcher position enters an unvisited part of
the domain. Otherwise, the front solution remains sta-
tionary. Thus far, we have utilized an open-loop velocity
protocol, so that the velocity input to the position layer
does not receive feedback from the memory layer.

Our low-dimensional approximation, Eq. (24), per-
forms well when compared with numerical simulations.
Thus, we have established a mechanism by which a bal-

interfaces track bump position 
as well as expanding front locations

�̇+ = S(�+) + C(�+) +G(�+ ��u)

�̇� = S(��)� C(��)�G(�� ��u)



Memory-guided control of search
v(t) = �(u(x, t), q(x, t))motor system guides search according to control feedback

⌧��̇(t) = 2hH(u� ✓u), H(q � ✓q)i(�+ � �(t))� hH(u� ✓u)i(�� � �(t))consider

leads to v(t) ! v0 in novel environments, v(t) ! v1 in searched environments



Memory-guided control of search
v(t) = �(u(x, t), q(x, t))motor system guides search according to control feedback

⌧��̇(t) = 2hH(u� ✓u), H(q � ✓q)i(�+ � �(t))� hH(u� ✓u)i(�� � �(t))consider

leads to v(t) ! v0 in novel environments, v(t) ! v1 in searched environments

on a single track with a hidden target 12

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

100

150

200

250

0 1 2 3 4 5
0

100

200

300

xT

2r

L0 v(t)

A

t
⇢

Tv

p
(T

a
=

t
)

⇢ = 0.5

⇢ = 1

⇢ = 2

B C
T̄

FIG. 7. Ballistically moving agent searches for a hidden target. A. Searcher (dot) begins at the left edge (x = 0) of the domain
(x 2 [0, L]), initially moving with speed v0 and then moving with speed v1 on all subsequent trips across. The target (green
line) spanning x 2 [xT � r, xT + r] is stochastically discoverable according to the waiting time density p(t) = ⇢2te�⇢t (plot
above), so if the waiting time exceeds Tv, the searcher will not find the target on the current trip. B. Plots of T̄ versus v0 = v1
(line) using Eq. (32) are nonmonotonic, revealing an interior optimum that minimizes the average search time (circles). As the
rate of target discovery ⇢ decreases, T̄ increases, and the optimal v0 decreases. Theory matches well with averages from 106

Monte Carlo simulations (dots). C. Mean search time T̄ as a function of both v0 and v1, showing the optimal choice (v0, v1)
occurs when v0 = v1 ⇡ 0.706 (circle) when ⇢ = 1. Other parameters are L = 100 and r = 1.

We now address the problem of finding the velocities
(v0, v1), corresponding to the novel and searched terri-
tory, that minimize the time to find the target. The mean
first passage time can be derived analytically by track-
ing the probability of absorption and accumulated search
time at each target encounter. The first visit to the target
occurs after TL(v0) = (xT � r)/v0. During the first pass
over the target, the searcher discovers the target with
probability Pv0 , Eq. (28), with conditional mean time
within the target Ta(v0), Eq. (29). The time between
the first and the second visits is TR(v0) + TR(v1), where
TR(v) = (L�xT �r)/v, and the probability of finding the
trap during the next visit is Pv1 with mean time Ta(v1).
Subsequent times and probabilities are computed simi-
larly, and the time spent searching scales linearly with
the length of the searcher’s path. Using geometric se-
ries, we can compute the mean time to find the target by
marginalizing over all possible visit counts

T (xT ) = TL(v0) + Pv0Ta(v0) +
1 � Pv0

2 � Pv1


2L

v1Pv1

+(1 � Pv1)

✓
Tv0 + TR(v0) + TL(v1) + Ta(v1) �

L

v1

◆

+Tv0 + TR(v0) + TR(v1) + Ta(v1) �
2L

v1

�
. (30)

The generalized mean first passage time is then given
by integrating over the range of possible target loca-
tions xT , assuming a uniform probability of placement:

T̄ = 1

L�2r

R L�r
r hT (xT )idxT . Since the only terms in

Eq. (30) that depend on xT are TL(v) and TR(v), we need

only compute T̄L(v) = 1

L�2r

R L�r
r

xT�r
v dxT = L�2r

2v and

T̄R(v) = 1

L�2r

R L�r
r

L�xT�r
v dxT = L�2r

2v , and we rescale
space, so it is in units of the radius r. This is equivalent
to setting r = 1 in Eq. (30), and considering any spatial

parameters as in rescaled coordinates, which yields

T̄ =
L � 2

2v0

+ Pv0Ta(v0) + (1 � Pv0)


L

v1Pv1

+

✓
1 +

L

2

◆✓
1

v0

�
1

v1

◆
+ Ta(v1)

�
. (31)

Note, for constant speeds v1 = v0, Eq. (31) simplifies
considerably to

T̄ (v1 ⌘ v0) =
L

2Pv0v0

(2 � Pv0) + Ta(v0) �
1

v0

. (32)

As shown in Fig. 7B, T̄ (v1 = v0) has an internal mini-
mum, which leads to the most rapid finding of the tar-
get. Notably, in Fig. 7C, we find there is no advantage
in searching more quickly (or slowly), once the domain
has already been searched. In fact, the search time is
minimized when v1 = v0.

Thus, for single segments, memory-guidance does not
speed up search, in this particular paradigm. The opti-
mal strategy for minimizing the time to find the target
is for the searcher to maintain the same search speed
throughout the exploration process. We now demon-
strate an alternative paradigm in which memory-guided
search does reduce the time to find the target.

Radial arm maze. Since search on a single segment
does not appear to be aided my memory-guidance, we
examine the case in which the agent must search over
a space with more complex topology. In particular, we
study the problem of the searcher finding a hidden tar-
get in a radial arm maze (Fig. 8A). This paradigm has
commonly been used to test mammalian memory, requir-
ing a combination of spatial navigation, decision-making,
and working memory [55, 56]. Rather than deriving a
new neural field model and associated interface equa-
tions on this more complex domain, we develop a simpler

waiting time to discover 
while over target ⇢2te�⇢t

probability of finding on 
a single visit Pv = 1� (1 + ⇢Tv)e

�⇢Tv
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We now address the problem of finding the velocities
(v0, v1), corresponding to the novel and searched terri-
tory, that minimize the time to find the target. The mean
first passage time can be derived analytically by track-
ing the probability of absorption and accumulated search
time at each target encounter. The first visit to the target
occurs after TL(v0) = (xT � r)/v0. During the first pass
over the target, the searcher discovers the target with
probability Pv0 , Eq. (28), with conditional mean time
within the target Ta(v0), Eq. (29). The time between
the first and the second visits is TR(v0) + TR(v1), where
TR(v) = (L�xT �r)/v, and the probability of finding the
trap during the next visit is Pv1 with mean time Ta(v1).
Subsequent times and probabilities are computed simi-
larly, and the time spent searching scales linearly with
the length of the searcher’s path. Using geometric se-
ries, we can compute the mean time to find the target by
marginalizing over all possible visit counts

T (xT ) = TL(v0) + Pv0Ta(v0) +
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The generalized mean first passage time is then given
by integrating over the range of possible target loca-
tions xT , assuming a uniform probability of placement:

T̄ = 1
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Eq. (30) that depend on xT are TL(v) and TR(v), we need

only compute T̄L(v) = 1

L�2r

R L�r
r

xT�r
v dxT = L�2r

2v and

T̄R(v) = 1

L�2r

R L�r
r

L�xT�r
v dxT = L�2r

2v , and we rescale
space, so it is in units of the radius r. This is equivalent
to setting r = 1 in Eq. (30), and considering any spatial

parameters as in rescaled coordinates, which yields

T̄ =
L � 2

2v0

+ Pv0Ta(v0) + (1 � Pv0)


L

v1Pv1

+

✓
1 +

L

2

◆✓
1

v0

�
1

v1

◆
+ Ta(v1)

�
. (31)

Note, for constant speeds v1 = v0, Eq. (31) simplifies
considerably to
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2Pv0v0
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v0

. (32)

As shown in Fig. 7B, T̄ (v1 = v0) has an internal mini-
mum, which leads to the most rapid finding of the tar-
get. Notably, in Fig. 7C, we find there is no advantage
in searching more quickly (or slowly), once the domain
has already been searched. In fact, the search time is
minimized when v1 = v0.

Thus, for single segments, memory-guidance does not
speed up search, in this particular paradigm. The opti-
mal strategy for minimizing the time to find the target
is for the searcher to maintain the same search speed
throughout the exploration process. We now demon-
strate an alternative paradigm in which memory-guided
search does reduce the time to find the target.

Radial arm maze. Since search on a single segment
does not appear to be aided my memory-guidance, we
examine the case in which the agent must search over
a space with more complex topology. In particular, we
study the problem of the searcher finding a hidden tar-
get in a radial arm maze (Fig. 8A). This paradigm has
commonly been used to test mammalian memory, requir-
ing a combination of spatial navigation, decision-making,
and working memory [55, 56]. Rather than deriving a
new neural field model and associated interface equa-
tions on this more complex domain, we develop a simpler
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probability of finding on 
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We now address the problem of finding the velocities
(v0, v1), corresponding to the novel and searched terri-
tory, that minimize the time to find the target. The mean
first passage time can be derived analytically by track-
ing the probability of absorption and accumulated search
time at each target encounter. The first visit to the target
occurs after TL(v0) = (xT � r)/v0. During the first pass
over the target, the searcher discovers the target with
probability Pv0 , Eq. (28), with conditional mean time
within the target Ta(v0), Eq. (29). The time between
the first and the second visits is TR(v0) + TR(v1), where
TR(v) = (L�xT �r)/v, and the probability of finding the
trap during the next visit is Pv1 with mean time Ta(v1).
Subsequent times and probabilities are computed simi-
larly, and the time spent searching scales linearly with
the length of the searcher’s path. Using geometric se-
ries, we can compute the mean time to find the target by
marginalizing over all possible visit counts

T (xT ) = TL(v0) + Pv0Ta(v0) +
1 � Pv0

2 � Pv1


2L

v1Pv1

+(1 � Pv1)

✓
Tv0 + TR(v0) + TL(v1) + Ta(v1) �

L

v1

◆

+Tv0 + TR(v0) + TR(v1) + Ta(v1) �
2L

v1

�
. (30)

The generalized mean first passage time is then given
by integrating over the range of possible target loca-
tions xT , assuming a uniform probability of placement:

T̄ = 1

L�2r

R L�r
r hT (xT )idxT . Since the only terms in

Eq. (30) that depend on xT are TL(v) and TR(v), we need

only compute T̄L(v) = 1

L�2r

R L�r
r

xT�r
v dxT = L�2r

2v and

T̄R(v) = 1

L�2r

R L�r
r

L�xT�r
v dxT = L�2r

2v , and we rescale
space, so it is in units of the radius r. This is equivalent
to setting r = 1 in Eq. (30), and considering any spatial

parameters as in rescaled coordinates, which yields

T̄ =
L � 2

2v0

+ Pv0Ta(v0) + (1 � Pv0)


L

v1Pv1

+

✓
1 +

L

2

◆✓
1

v0

�
1

v1

◆
+ Ta(v1)

�
. (31)

Note, for constant speeds v1 = v0, Eq. (31) simplifies
considerably to

T̄ (v1 ⌘ v0) =
L

2Pv0v0

(2 � Pv0) + Ta(v0) �
1

v0

. (32)

As shown in Fig. 7B, T̄ (v1 = v0) has an internal mini-
mum, which leads to the most rapid finding of the tar-
get. Notably, in Fig. 7C, we find there is no advantage
in searching more quickly (or slowly), once the domain
has already been searched. In fact, the search time is
minimized when v1 = v0.

Thus, for single segments, memory-guidance does not
speed up search, in this particular paradigm. The opti-
mal strategy for minimizing the time to find the target
is for the searcher to maintain the same search speed
throughout the exploration process. We now demon-
strate an alternative paradigm in which memory-guided
search does reduce the time to find the target.

Radial arm maze. Since search on a single segment
does not appear to be aided my memory-guidance, we
examine the case in which the agent must search over
a space with more complex topology. In particular, we
study the problem of the searcher finding a hidden tar-
get in a radial arm maze (Fig. 8A). This paradigm has
commonly been used to test mammalian memory, requir-
ing a combination of spatial navigation, decision-making,
and working memory [55, 56]. Rather than deriving a
new neural field model and associated interface equa-
tions on this more complex domain, we develop a simpler

optimal pair
v0 ⌘ v1

IOR has no
advantage on
single tracks
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FIG. 8. Ballistically-moving agent searches a radial arm maze with a single target in a single arm. A. Searcher (dot) begins
at the center of the maze, and chooses a random arm ⌦k, k 2 {1, ..., N} to search. Purely random search (rand) proceeds with
the searcher always choosing 1 out of N total arm. Inhibition-of-return (IOR) guides searcher away from previously searched
arms, so the first N arms chosen are the arms k = 1, ..., N . B. Inhibition-of-return leads to more rapid location of the target
than purely random search (T̄rand > T̄IOR as in Eq. (36). Theory (solid lines) matches 106 Monte Carlo simulations (dots) very
well. Here N = 8. C. Average time to find the target T̄IOR using IOR increases with the number of arms, but note the optimal
search speed vmin

0 (circles) remains relatively unchanged. Other parameters are L = 100, r = 1, and ⇢ = 1.

model for memory of previously visited locations using a
metastable neuronal network with distinct populations
encoding each arm. We assume the searcher begins at
the center of the maze with N arms that radiate out-
wards, so locations lie on the union of bounded intervals
⌦1 [ ⌦2 [ · · · [ ⌦N with ⌦j = [0, L] for all j. The target
lies within one of the arms k 2 {1, ..., N} at a location
xT 2 [r, L � r] as before. Since our previous analysis
did not reveal an advantage to storing the spatial struc-
ture of locations visited within a segment, we remark that
memory of visited arms can be stored by distinct bistable
neural populations:

q̇j(t) = �qj(t) + H(qj � ✓q) + Ij(t), (33)

where Ij(t) = I0 > ✓q when the agent visits arm j and
Ij(t) = 0 otherwise. The variables qj(t) ! 1 once arm j

is visited, and initially qj(0) = 0 for all j. If the searcher
avoids arms such that qj(t) > ✓q, they will only visit
novel arms until qj(t) ! 1 for all j. Thus, Eq. (33)
constitutes a discretized version of Eq. (3). When the
searcher is over the target, it discovers it according to
a Gamma distributed waiting time. The probability of
discovering the target at each encounter is Pv, Eq. (28),
and the conditional mean first passage time within the
target is Ta(v), Eq. (29).

We now derive the mean time to find the target, as in
the case of a single armed domain. In particular, we com-
pare the e↵ects of IOR, where the searcher avoids previ-
ously explored arms initially, as opposed to a memoryless
selection of the next arm to be searched. As mentioned,
we assume the speed of search is constant throughout the
process |v(t)| ⌘ v0 for all t. Following the steps of our
previous calculation (and see also [57]), we find that (for
r = 1) the average time for a memoryless to find a target
placed uniformly on xT 2 [1, L � 1] on one of N radial

arms is

T̄rand =
2L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(34)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0).

On the other hand, a searcher that uses IOR to avoid
previously explored arms prior to all arms being searched
finds the target after an average time

T̄IOR =
L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(35)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0),

which appears nearly the same as the random search time
T̄rand, except that the leading factor is roughly half for
T̄IOR. In fact, it is straightforward to show T̄rand � T̄IOR

for any N � 2, since

T̄rand � T̄IOR =
N � 1

2

L

v0

> 0, (36)

for N � 2. This theory is matched very well to Monte
Carlo simulations of the ballistic searcher (Fig. 8B),
demonstrating the e�cacy of IOR in reducing the time
to find the target. This e↵ect is even stronger for mazes
with more arms (higher N) as the total time to find the
target (Fig. 8C) and the discrepancy between IOR and
random search increases with N .

Our analysis of the neural field model has demon-
strated a plausible neural mechanism for memory-guided
search, persistent activity encoding previously searched
regions. The theory and simulations we have per-
formed here for corresponding ballistic searcher models
has demonstrated that memory-guided search does not
appear to be advantageous in one-dimensional domains
comprised of a single segment. However, multiple seg-
ments adjoined at there ends can comprise more complex
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FIG. 8. Ballistically-moving agent searches a radial arm maze with a single target in a single arm. A. Searcher (dot) begins
at the center of the maze, and chooses a random arm ⌦k, k 2 {1, ..., N} to search. Purely random search (rand) proceeds with
the searcher always choosing 1 out of N total arm. Inhibition-of-return (IOR) guides searcher away from previously searched
arms, so the first N arms chosen are the arms k = 1, ..., N . B. Inhibition-of-return leads to more rapid location of the target
than purely random search (T̄rand > T̄IOR as in Eq. (36). Theory (solid lines) matches 106 Monte Carlo simulations (dots) very
well. Here N = 8. C. Average time to find the target T̄IOR using IOR increases with the number of arms, but note the optimal
search speed vmin

0 (circles) remains relatively unchanged. Other parameters are L = 100, r = 1, and ⇢ = 1.

model for memory of previously visited locations using a
metastable neuronal network with distinct populations
encoding each arm. We assume the searcher begins at
the center of the maze with N arms that radiate out-
wards, so locations lie on the union of bounded intervals
⌦1 [ ⌦2 [ · · · [ ⌦N with ⌦j = [0, L] for all j. The target
lies within one of the arms k 2 {1, ..., N} at a location
xT 2 [r, L � r] as before. Since our previous analysis
did not reveal an advantage to storing the spatial struc-
ture of locations visited within a segment, we remark that
memory of visited arms can be stored by distinct bistable
neural populations:

q̇j(t) = �qj(t) + H(qj � ✓q) + Ij(t), (33)

where Ij(t) = I0 > ✓q when the agent visits arm j and
Ij(t) = 0 otherwise. The variables qj(t) ! 1 once arm j

is visited, and initially qj(0) = 0 for all j. If the searcher
avoids arms such that qj(t) > ✓q, they will only visit
novel arms until qj(t) ! 1 for all j. Thus, Eq. (33)
constitutes a discretized version of Eq. (3). When the
searcher is over the target, it discovers it according to
a Gamma distributed waiting time. The probability of
discovering the target at each encounter is Pv, Eq. (28),
and the conditional mean first passage time within the
target is Ta(v), Eq. (29).

We now derive the mean time to find the target, as in
the case of a single armed domain. In particular, we com-
pare the e↵ects of IOR, where the searcher avoids previ-
ously explored arms initially, as opposed to a memoryless
selection of the next arm to be searched. As mentioned,
we assume the speed of search is constant throughout the
process |v(t)| ⌘ v0 for all t. Following the steps of our
previous calculation (and see also [57]), we find that (for
r = 1) the average time for a memoryless to find a target
placed uniformly on xT 2 [1, L � 1] on one of N radial

arms is

T̄rand =
2L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(34)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0).

On the other hand, a searcher that uses IOR to avoid
previously explored arms prior to all arms being searched
finds the target after an average time

T̄IOR =
L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(35)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0),

which appears nearly the same as the random search time
T̄rand, except that the leading factor is roughly half for
T̄IOR. In fact, it is straightforward to show T̄rand � T̄IOR

for any N � 2, since

T̄rand � T̄IOR =
N � 1

2

L

v0

> 0, (36)

for N � 2. This theory is matched very well to Monte
Carlo simulations of the ballistic searcher (Fig. 8B),
demonstrating the e�cacy of IOR in reducing the time
to find the target. This e↵ect is even stronger for mazes
with more arms (higher N) as the total time to find the
target (Fig. 8C) and the discrepancy between IOR and
random search increases with N .

Our analysis of the neural field model has demon-
strated a plausible neural mechanism for memory-guided
search, persistent activity encoding previously searched
regions. The theory and simulations we have per-
formed here for corresponding ballistic searcher models
has demonstrated that memory-guided search does not
appear to be advantageous in one-dimensional domains
comprised of a single segment. However, multiple seg-
ments adjoined at there ends can comprise more complex

q̇j(t) = �qj(t) +H(qj � ✓q) + Ij(t)

memory population per arm
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FIG. 8. Ballistically-moving agent searches a radial arm maze with a single target in a single arm. A. Searcher (dot) begins
at the center of the maze, and chooses a random arm ⌦k, k 2 {1, ..., N} to search. Purely random search (rand) proceeds with
the searcher always choosing 1 out of N total arm. Inhibition-of-return (IOR) guides searcher away from previously searched
arms, so the first N arms chosen are the arms k = 1, ..., N . B. Inhibition-of-return leads to more rapid location of the target
than purely random search (T̄rand > T̄IOR as in Eq. (36). Theory (solid lines) matches 106 Monte Carlo simulations (dots) very
well. Here N = 8. C. Average time to find the target T̄IOR using IOR increases with the number of arms, but note the optimal
search speed vmin

0 (circles) remains relatively unchanged. Other parameters are L = 100, r = 1, and ⇢ = 1.

model for memory of previously visited locations using a
metastable neuronal network with distinct populations
encoding each arm. We assume the searcher begins at
the center of the maze with N arms that radiate out-
wards, so locations lie on the union of bounded intervals
⌦1 [ ⌦2 [ · · · [ ⌦N with ⌦j = [0, L] for all j. The target
lies within one of the arms k 2 {1, ..., N} at a location
xT 2 [r, L � r] as before. Since our previous analysis
did not reveal an advantage to storing the spatial struc-
ture of locations visited within a segment, we remark that
memory of visited arms can be stored by distinct bistable
neural populations:

q̇j(t) = �qj(t) + H(qj � ✓q) + Ij(t), (33)

where Ij(t) = I0 > ✓q when the agent visits arm j and
Ij(t) = 0 otherwise. The variables qj(t) ! 1 once arm j

is visited, and initially qj(0) = 0 for all j. If the searcher
avoids arms such that qj(t) > ✓q, they will only visit
novel arms until qj(t) ! 1 for all j. Thus, Eq. (33)
constitutes a discretized version of Eq. (3). When the
searcher is over the target, it discovers it according to
a Gamma distributed waiting time. The probability of
discovering the target at each encounter is Pv, Eq. (28),
and the conditional mean first passage time within the
target is Ta(v), Eq. (29).

We now derive the mean time to find the target, as in
the case of a single armed domain. In particular, we com-
pare the e↵ects of IOR, where the searcher avoids previ-
ously explored arms initially, as opposed to a memoryless
selection of the next arm to be searched. As mentioned,
we assume the speed of search is constant throughout the
process |v(t)| ⌘ v0 for all t. Following the steps of our
previous calculation (and see also [57]), we find that (for
r = 1) the average time for a memoryless to find a target
placed uniformly on xT 2 [1, L � 1] on one of N radial

arms is

T̄rand =
2L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(34)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0).

On the other hand, a searcher that uses IOR to avoid
previously explored arms prior to all arms being searched
finds the target after an average time

T̄IOR =
L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(35)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0),

which appears nearly the same as the random search time
T̄rand, except that the leading factor is roughly half for
T̄IOR. In fact, it is straightforward to show T̄rand � T̄IOR

for any N � 2, since

T̄rand � T̄IOR =
N � 1

2

L

v0

> 0, (36)

for N � 2. This theory is matched very well to Monte
Carlo simulations of the ballistic searcher (Fig. 8B),
demonstrating the e�cacy of IOR in reducing the time
to find the target. This e↵ect is even stronger for mazes
with more arms (higher N) as the total time to find the
target (Fig. 8C) and the discrepancy between IOR and
random search increases with N .

Our analysis of the neural field model has demon-
strated a plausible neural mechanism for memory-guided
search, persistent activity encoding previously searched
regions. The theory and simulations we have per-
formed here for corresponding ballistic searcher models
has demonstrated that memory-guided search does not
appear to be advantageous in one-dimensional domains
comprised of a single segment. However, multiple seg-
ments adjoined at there ends can comprise more complex

q̇j(t) = �qj(t) +H(qj � ✓q) + Ij(t)

memory population per arm

compare random arm selection search strategy to inhibition of return for N arms

T̄rand =
2L(N � 1)

v0
+

2NL(1� Pv0)
2

Pv0(2� Pv0)v0
+

L(1� Pv0)

(2� Pv0)v0
+

L� 2

2v0
+ Ta(v0)

T̄IOR =
L(N � 1)

v0
+

2NL(1� Pv0)
2

Pv0(2� Pv0)v0
+

L(1� Pv0)

(2� Pv0)v0
+

L� 2

2v0
+ Ta(v0)
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FIG. 8. Ballistically-moving agent searches a radial arm maze with a single target in a single arm. A. Searcher (dot) begins
at the center of the maze, and chooses a random arm ⌦k, k 2 {1, ..., N} to search. Purely random search (rand) proceeds with
the searcher always choosing 1 out of N total arm. Inhibition-of-return (IOR) guides searcher away from previously searched
arms, so the first N arms chosen are the arms k = 1, ..., N . B. Inhibition-of-return leads to more rapid location of the target
than purely random search (T̄rand > T̄IOR as in Eq. (36). Theory (solid lines) matches 106 Monte Carlo simulations (dots) very
well. Here N = 8. C. Average time to find the target T̄IOR using IOR increases with the number of arms, but note the optimal
search speed vmin

0 (circles) remains relatively unchanged. Other parameters are L = 100, r = 1, and ⇢ = 1.

model for memory of previously visited locations using a
metastable neuronal network with distinct populations
encoding each arm. We assume the searcher begins at
the center of the maze with N arms that radiate out-
wards, so locations lie on the union of bounded intervals
⌦1 [ ⌦2 [ · · · [ ⌦N with ⌦j = [0, L] for all j. The target
lies within one of the arms k 2 {1, ..., N} at a location
xT 2 [r, L � r] as before. Since our previous analysis
did not reveal an advantage to storing the spatial struc-
ture of locations visited within a segment, we remark that
memory of visited arms can be stored by distinct bistable
neural populations:

q̇j(t) = �qj(t) + H(qj � ✓q) + Ij(t), (33)

where Ij(t) = I0 > ✓q when the agent visits arm j and
Ij(t) = 0 otherwise. The variables qj(t) ! 1 once arm j

is visited, and initially qj(0) = 0 for all j. If the searcher
avoids arms such that qj(t) > ✓q, they will only visit
novel arms until qj(t) ! 1 for all j. Thus, Eq. (33)
constitutes a discretized version of Eq. (3). When the
searcher is over the target, it discovers it according to
a Gamma distributed waiting time. The probability of
discovering the target at each encounter is Pv, Eq. (28),
and the conditional mean first passage time within the
target is Ta(v), Eq. (29).

We now derive the mean time to find the target, as in
the case of a single armed domain. In particular, we com-
pare the e↵ects of IOR, where the searcher avoids previ-
ously explored arms initially, as opposed to a memoryless
selection of the next arm to be searched. As mentioned,
we assume the speed of search is constant throughout the
process |v(t)| ⌘ v0 for all t. Following the steps of our
previous calculation (and see also [57]), we find that (for
r = 1) the average time for a memoryless to find a target
placed uniformly on xT 2 [1, L � 1] on one of N radial

arms is

T̄rand =
2L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(34)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0).

On the other hand, a searcher that uses IOR to avoid
previously explored arms prior to all arms being searched
finds the target after an average time

T̄IOR =
L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(35)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0),

which appears nearly the same as the random search time
T̄rand, except that the leading factor is roughly half for
T̄IOR. In fact, it is straightforward to show T̄rand � T̄IOR

for any N � 2, since

T̄rand � T̄IOR =
N � 1

2

L

v0

> 0, (36)

for N � 2. This theory is matched very well to Monte
Carlo simulations of the ballistic searcher (Fig. 8B),
demonstrating the e�cacy of IOR in reducing the time
to find the target. This e↵ect is even stronger for mazes
with more arms (higher N) as the total time to find the
target (Fig. 8C) and the discrepancy between IOR and
random search increases with N .

Our analysis of the neural field model has demon-
strated a plausible neural mechanism for memory-guided
search, persistent activity encoding previously searched
regions. The theory and simulations we have per-
formed here for corresponding ballistic searcher models
has demonstrated that memory-guided search does not
appear to be advantageous in one-dimensional domains
comprised of a single segment. However, multiple seg-
ments adjoined at there ends can comprise more complex

q̇j(t) = �qj(t) +H(qj � ✓q) + Ij(t)

memory population per arm

compare random arm selection search strategy to inhibition of return for N arms

T̄rand =
2L(N � 1)

v0
+

2NL(1� Pv0)
2

Pv0(2� Pv0)v0
+

L(1� Pv0)

(2� Pv0)v0
+

L� 2

2v0
+ Ta(v0)

T̄IOR =
L(N � 1)

v0
+
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2
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+
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+
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IOR reduces search time
for N=2 or greater arms
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FIG. 8. Ballistically-moving agent searches a radial arm maze with a single target in a single arm. A. Searcher (dot) begins
at the center of the maze, and chooses a random arm ⌦k, k 2 {1, ..., N} to search. Purely random search (rand) proceeds with
the searcher always choosing 1 out of N total arm. Inhibition-of-return (IOR) guides searcher away from previously searched
arms, so the first N arms chosen are the arms k = 1, ..., N . B. Inhibition-of-return leads to more rapid location of the target
than purely random search (T̄rand > T̄IOR as in Eq. (36). Theory (solid lines) matches 106 Monte Carlo simulations (dots) very
well. Here N = 8. C. Average time to find the target T̄IOR using IOR increases with the number of arms, but note the optimal
search speed vmin

0 (circles) remains relatively unchanged. Other parameters are L = 100, r = 1, and ⇢ = 1.

model for memory of previously visited locations using a
metastable neuronal network with distinct populations
encoding each arm. We assume the searcher begins at
the center of the maze with N arms that radiate out-
wards, so locations lie on the union of bounded intervals
⌦1 [ ⌦2 [ · · · [ ⌦N with ⌦j = [0, L] for all j. The target
lies within one of the arms k 2 {1, ..., N} at a location
xT 2 [r, L � r] as before. Since our previous analysis
did not reveal an advantage to storing the spatial struc-
ture of locations visited within a segment, we remark that
memory of visited arms can be stored by distinct bistable
neural populations:

q̇j(t) = �qj(t) + H(qj � ✓q) + Ij(t), (33)

where Ij(t) = I0 > ✓q when the agent visits arm j and
Ij(t) = 0 otherwise. The variables qj(t) ! 1 once arm j

is visited, and initially qj(0) = 0 for all j. If the searcher
avoids arms such that qj(t) > ✓q, they will only visit
novel arms until qj(t) ! 1 for all j. Thus, Eq. (33)
constitutes a discretized version of Eq. (3). When the
searcher is over the target, it discovers it according to
a Gamma distributed waiting time. The probability of
discovering the target at each encounter is Pv, Eq. (28),
and the conditional mean first passage time within the
target is Ta(v), Eq. (29).

We now derive the mean time to find the target, as in
the case of a single armed domain. In particular, we com-
pare the e↵ects of IOR, where the searcher avoids previ-
ously explored arms initially, as opposed to a memoryless
selection of the next arm to be searched. As mentioned,
we assume the speed of search is constant throughout the
process |v(t)| ⌘ v0 for all t. Following the steps of our
previous calculation (and see also [57]), we find that (for
r = 1) the average time for a memoryless to find a target
placed uniformly on xT 2 [1, L � 1] on one of N radial

arms is

T̄rand =
2L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(34)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0).

On the other hand, a searcher that uses IOR to avoid
previously explored arms prior to all arms being searched
finds the target after an average time

T̄IOR =
L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(35)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0),

which appears nearly the same as the random search time
T̄rand, except that the leading factor is roughly half for
T̄IOR. In fact, it is straightforward to show T̄rand � T̄IOR

for any N � 2, since

T̄rand � T̄IOR =
N � 1

2

L

v0

> 0, (36)

for N � 2. This theory is matched very well to Monte
Carlo simulations of the ballistic searcher (Fig. 8B),
demonstrating the e�cacy of IOR in reducing the time
to find the target. This e↵ect is even stronger for mazes
with more arms (higher N) as the total time to find the
target (Fig. 8C) and the discrepancy between IOR and
random search increases with N .

Our analysis of the neural field model has demon-
strated a plausible neural mechanism for memory-guided
search, persistent activity encoding previously searched
regions. The theory and simulations we have per-
formed here for corresponding ballistic searcher models
has demonstrated that memory-guided search does not
appear to be advantageous in one-dimensional domains
comprised of a single segment. However, multiple seg-
ments adjoined at there ends can comprise more complex

T̄rand � T̄IOR = (N � 1)
L

v0
> 0
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FIG. 9. Two-dimensional simulation of the neural field model, Eq. (37), describing the propagation of a coupled bump and
front in a planar domain. Evolution of the bump in the position layer u(x, t) is tracked by showing snapshots at (A) T = 0;
(B) T = 90; and (C) T = 250. The path of the agent is shown by the solid blue line. Motion of the bump layer is stored by
the front layer q(x, t), which tracks the previously visited locations of the bump at the same snapshots in time: (A) T = 0;
(B) T = 90; and (C) T = 250. Parameters are ✓u = 0.2, ✓q = 0.45, n = 1, � = 0.3, � = 0.3, and I0 = 0.3.

domains like the radial arm maze, which do benefit from
inhibition-of-return (IOR). A searcher that avoids pre-
viously searched segments will tend to find a randomly
placed target more quickly than a searcher that chooses
subsequent arms in a memoryless way. Since our low-
dimensional theory was derived from the full neural field
equations, we expect that stochastic simulations of the
full neural field model would yield qualitatively similar
results. We now discuss briefly how our theory might be
extended to two-dimensional domains.

VI. EXTENSIONS TO TWO-DIMENSIONS

Most visual and navigational search tasks tend to be
in spaces of two or more dimensions (See 1D,E and [1–
3]). In future work, we will extend our analysis of our
one-dimensional model, Eq. (1) and (3), to an analogous
two-dimensional model. In this case, we expect there to
be a wider variety of control mechanisms that lead to
an e�cient use of memory in guiding future search loca-
tions. Analysis of stationary solutions in two-dimensional
neural field models has been successful in a number of
cases [58–61], and there is a clear path to extending in-
terface methods to describe contour boundaries that arise
for solutions in planar systems [53].

Here we briefly discuss a candidate model for memory-
guided search in two-dimensions. In particular, we will
demonstrate in numerical simulations that such a model

does result in a model that can store previously visited
locations in the plane. Memory of a searching agent’s po-
sition and memory for previously searched locations are
captured by the following pair of neural field equations
on a planar domain:

ut = �u + wu ⇤ H(u � ✓u) � v(t) · (rwu) ⇤ H(u � ✓u),

qt = �q + wq ⇤ H(q � ✓q) + wp ⇤ H(u � ✓u), (37)

defined on x = (x1, x2)T
2 R2. Recurrent coupling in

the position layer is described by the integral wu ⇤H(u�

✓u) =
R
R2 wu(x � y)H(u(y, t) � ✓u)dy, and the synaptic

kernel is lateral inhibitory and rotationally symmetric
(wu(x,y) = wu(z), z =

p
(x1 � y1)2 + (x2 � y2)2) com-

prised of a di↵erence of Bessel functions of the second
kind [60]:

wu(z) =
4X

k=1

ckK0(↵kz),

with [c1, c2, c3, c4] = [5/3,�5/3,�1/2, 1/2] and
[↵1, ↵2, ↵3, ↵4] = [1, 2, 1/4, 1/2]. Velocity input is
given by a two-dimensional vector v(t) = (v1(t), v2(t))T ,
which translate bumps when taking its dot prod-
uct with the gradient of the weight function
rwu(r) = (@x1 , @x2)

T
wu(r), r =

p
x

2
1

+ x
2
2
. The

heterogeneous connectivity function that pins the activ-
ity in the memory layer is defined using the product of

two-dimensional neural field
model can track memory
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FIG. 9. Two-dimensional simulation of the neural field model, Eq. (37), describing the propagation of a coupled bump and
front in a planar domain. Evolution of the bump in the position layer u(x, t) is tracked by showing snapshots at (A) T = 0;
(B) T = 90; and (C) T = 250. The path of the agent is shown by the solid blue line. Motion of the bump layer is stored by
the front layer q(x, t), which tracks the previously visited locations of the bump at the same snapshots in time: (A) T = 0;
(B) T = 90; and (C) T = 250. Parameters are ✓u = 0.2, ✓q = 0.45, n = 1, � = 0.3, � = 0.3, and I0 = 0.3.

domains like the radial arm maze, which do benefit from
inhibition-of-return (IOR). A searcher that avoids pre-
viously searched segments will tend to find a randomly
placed target more quickly than a searcher that chooses
subsequent arms in a memoryless way. Since our low-
dimensional theory was derived from the full neural field
equations, we expect that stochastic simulations of the
full neural field model would yield qualitatively similar
results. We now discuss briefly how our theory might be
extended to two-dimensional domains.

VI. EXTENSIONS TO TWO-DIMENSIONS

Most visual and navigational search tasks tend to be
in spaces of two or more dimensions (See 1D,E and [1–
3]). In future work, we will extend our analysis of our
one-dimensional model, Eq. (1) and (3), to an analogous
two-dimensional model. In this case, we expect there to
be a wider variety of control mechanisms that lead to
an e�cient use of memory in guiding future search loca-
tions. Analysis of stationary solutions in two-dimensional
neural field models has been successful in a number of
cases [58–61], and there is a clear path to extending in-
terface methods to describe contour boundaries that arise
for solutions in planar systems [53].

Here we briefly discuss a candidate model for memory-
guided search in two-dimensions. In particular, we will
demonstrate in numerical simulations that such a model

does result in a model that can store previously visited
locations in the plane. Memory of a searching agent’s po-
sition and memory for previously searched locations are
captured by the following pair of neural field equations
on a planar domain:

ut = �u + wu ⇤ H(u � ✓u) � v(t) · (rwu) ⇤ H(u � ✓u),

qt = �q + wq ⇤ H(q � ✓q) + wp ⇤ H(u � ✓u), (37)

defined on x = (x1, x2)T
2 R2. Recurrent coupling in

the position layer is described by the integral wu ⇤H(u�

✓u) =
R
R2 wu(x � y)H(u(y, t) � ✓u)dy, and the synaptic

kernel is lateral inhibitory and rotationally symmetric
(wu(x,y) = wu(z), z =

p
(x1 � y1)2 + (x2 � y2)2) com-

prised of a di↵erence of Bessel functions of the second
kind [60]:

wu(z) =
4X

k=1

ckK0(↵kz),

with [c1, c2, c3, c4] = [5/3,�5/3,�1/2, 1/2] and
[↵1, ↵2, ↵3, ↵4] = [1, 2, 1/4, 1/2]. Velocity input is
given by a two-dimensional vector v(t) = (v1(t), v2(t))T ,
which translate bumps when taking its dot prod-
uct with the gradient of the weight function
rwu(r) = (@x1 , @x2)

T
wu(r), r =

p
x

2
1

+ x
2
2
. The

heterogeneous connectivity function that pins the activ-
ity in the memory layer is defined using the product of
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FIG. 10. Inhibition-of-return is implemented when an agent
moves in the direction of the unexplored regions of the domain
⌦. A. The intersection of the bump layer’s active region Au(t)
and the complement of the active region Aq(t) is the region
yet to be searched (quarter section of circle) with center-of-
mass xT (t) close to the agent’s current location xP (t) (black
dot). B. The agent reorients its velocity angle #(t) in the
direction of the unexplored region (xT (t)).

cosines and an exponential:

wq(x,y) = (1 + � cos(ny1) + �2 cos(ny2))
e��d2

2⇡
. (38)

As in the one-dimensional case, the weight function is
a homogeneous kernel modulated by periodic hetero-
geneities. We will demonstrate in numerical simulations
that these heterogeneities can pin the expansion of wave
fronts, analogous to the stabilizing e↵ects they have on
stationary bumps in planar neural fields [62]. Lastly, we
consider an input term from the position layer, applying
feedforward input centered at the location of the bump:

wp(d) = I0e
��z2

.

We now demonstrate that this model is capable of gen-
erating a memory trace for previously visited regions of a
searcher exploring two-dimensional space. In Fig. 9, we
demonstrate the results from a numerical simulation of
the neural field Eq. (37). A bump is instantiated in the
position layer u(x, t), and tracks the locations visited by
an agent moving about the domain (Fig. 9A-C), evolv-
ing in response to velocity inputs. The motion of the
bump is reflected by the memory of previously visited
locations tracked by the front layer q(x, t) (Fig. 9D-F).
The activity in the front layer is stabilized by the het-
erogeneity in the weight kernel, Eq. (38), as it was in the
one-dimensional case.

We now discuss a control mechanism that we con-
jecture could lead to successful inhibition-of-return of
a searcher with position and memory layer activity de-
scribed by Eq. (37). In particular, the position and
memory layers will have active regions Au(t) and Aq(t)
describing the area of superthreshold within each (Fig.
10A). From the active region Au(t), the position center-
of-mass xP (t) can be computed as the first moment. Sec-
ond, the region Au(t) \ (⌦\Aq(t)) describes where the
position layer’s activity intersects with the complement
of the memory layer’s activity, corresponding to unex-
plored space. If we call the center-of-mass of this region

xT (t), then an IOR mechanism might work by having
the searcher move toward xT (t). Thus, the angle of the
searcher’s velocity #(t) should constantly orient in the
direction of xT (t) (Fig. 10B).

Note, the computations involved in determining a
gradient-descent type orientation of the searcher require
some linear readouts [63], divisive normalization [64, 65],
and potential nonlinearities. Motor control circuits are
capable of producing outputs that correspond to a wide
range of nonlinearities, for example, built on summations
of various nonlinear basis functions [66]. Thus, we ex-
pect the computation we have outlined above could be
implemented as a closed-loop feedback from the memory
system onto a corresponding motor control circuit, but
we do not propose a specific neural architecture for doing
so at this time.

VII. DISCUSSION

We have demonstrated that a neural field model can
store previously visited locations in a search task with
persistent activity. In a one-dimensional model, feed-
forward connectivity from a continuous attractor net-
work that encodes position can initiate memory-encoding
activity in the form of stationary fronts whose spatial
resolution is determined by the frequency of underlying
synaptic heterogeneity (as in [50]). Analysis of station-
ary solutions demonstrate the mechanism by which per-
sistent activity expands in the memory layer is via a hys-
teresis. For strong enough input from the position layer,
front positions in the vicinity of the position input un-
dergo a bifurcation, leading to a rapid transition of the
front to an adjacent stable location. We can capture
the dynamics of these two layers by a low-dimensional
approximation that tracks the interfaces of the front in
the memory layer, and the position of the bump attrac-
tor in the position layer. This low-dimensional model is
leveraged to test the impact of memory-guided search.
We find that search along a single one-dimensional seg-
ment is not aided by memory-guided search, but search in
more complex domains with distinct conjoined segments
are. We expect that our approach can be extended to
two-dimensional search processes, where memory-guided
search is likely to be advantageous in most situations.

Our work contributes a new application of interface
methods to neural field equations. Recently, the dynam-
ics of labyrinthine and spot patterns in two-dimensions
have been captured by the low-dimensional projection of
their interfaces [53, 61]. This method has two advan-
tages. First, it can lead to numerical simulation schemes
that are an order of magnitude faster than simulating
the full system, since the dimensionality of the problem
can sometime be reduced by one. Second, it often leads
to systems that are analytically tractable, allowing for
a systematic study of both linear and nonlinear dynam-
ics in the vicinity of equilibria. We leveraged both of
these advantages in our work, since we were able to gain

control mechanism could avoid
previously visited areas
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FIG. 6. Interface equations approximate the dynamics of the full neural field model, Eq. (1) and (3). A. Bump propagates
across the domain of the position layer, u(x, t), in response to a velocity input defined v(t) = 0.3 on t 2 [0, 62.5) and v(t) = �0.3
on t 2 [62.5, 250]. Interfaces defined by Eq. (23) approximately track the threshold crossing locations u(x±(t), t) = ✓u of the
full simulation. B. Memory layer, q(x, t), supports a front solution that propagates in response to the motion of the bump in
the position layer. Our interface approximation, �±(t), given by Eq. (24) correspondingly tracks the left and right boundaries
of the visited regions of the searching agent. C,D. Zoomed-in versions of the simulations in A,B, showing slight mismatches in
the approximation that occur due to our truncations. Colorbar labels show minimal color corresponds to the threshold value ✓
of the layer in each plot (✓u for u(x, t) and ✓q for q(x, t)), while 1 is the maximal color value. Parameters are ✓u = 0.2, ✓q = 0.4,
n = 1, � = 0.3, I0 = 0.2, and ↵ = 1.

yielding

d =
2

n
tan�1

 p
�2 + n2�2 � (2✓q � 1)2(n2 + 1)2 + n�

� + (2✓q � 1)(n2 + 1)

!
,

up to periodicity, so that

�
�1

c = �
�1

d = �Q
0(d) =

1

2


1 + �

cos(nd) + n sin(nd)

n2 + 1

�
.

We can now notice a number of features of the full sys-
tem Eq. (3) captured by the interface Eq. (25). First, in
the absence of any heterogeneity (� = 0) or positional
input (I0 = 0), the front interfaces propagate at a speed
approximated by �d(1/2 � ✓q) on the right (�+(t)) and
�c(1/2 � ✓q) on the left (��(t)). Su�ciently strong het-
erogeneity (� = �

c
> 0) will pin the front. Without

any positional input (I0 = 0), the critical value �
c that

pins fronts is given by the � such that the maximum of
� [cos(n�+) + n sin(n�+)] equals n

2 + 1� 2✓q. This oc-
curs when �

c =
⇥
n

2 + 1 � 2✓q

⇤
/ [cos T (n) � n sin T (n)]

for T (n) = 2 tan�1((1 �
p

n2 + 1)/n), corresponding to

the critical heterogeneity for wave propagation failure
discussed in [48, 49]. Thus, we require � > �

c for the
system to retain memory of visited locations, which pre-
vents front propagation to the rest of the domain.

Our interface equations are compared with simulations
of the full model Eq. (1) and (3) in Fig. 6. The evolu-
tion of the bump interfaces in the positional layer u(x, t)
(u(x±(t), t) = ✓u) are captured well by x±(t) = �u(t)±h

(Fig. 6A,C). We expect the mismatch arises as the re-
sult of our static gradient approximation ux(x±(t), t) ⇡

±U
0(±h). The front tracks previously visited locations of

the bump, corresponding to the active regions in the do-
main at time t (Fig. 6B,D). More regions are activated
when the searcher position enters an unvisited part of
the domain. Otherwise, the front solution remains sta-
tionary. Thus far, we have utilized an open-loop velocity
protocol, so that the velocity input to the position layer
does not receive feedback from the memory layer.

Our low-dimensional approximation, Eq. (24), per-
forms well when compared with numerical simulations.
Thus, we have established a mechanism by which a bal-

interface equations estimate
low-dimensional dynamics 
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FIG. 7. Ballistically moving agent searches for a hidden target. A. Searcher (dot) begins at the left edge (x = 0) of the domain
(x 2 [0, L]), initially moving with speed v0 and then moving with speed v1 on all subsequent trips across. The target (green
line) spanning x 2 [xT � r, xT + r] is stochastically discoverable according to the waiting time density p(t) = ⇢2te�⇢t (plot
above), so if the waiting time exceeds Tv, the searcher will not find the target on the current trip. B. Plots of T̄ versus v0 = v1
(line) using Eq. (32) are nonmonotonic, revealing an interior optimum that minimizes the average search time (circles). As the
rate of target discovery ⇢ decreases, T̄ increases, and the optimal v0 decreases. Theory matches well with averages from 106

Monte Carlo simulations (dots). C. Mean search time T̄ as a function of both v0 and v1, showing the optimal choice (v0, v1)
occurs when v0 = v1 ⇡ 0.706 (circle) when ⇢ = 1. Other parameters are L = 100 and r = 1.

We now address the problem of finding the velocities
(v0, v1), corresponding to the novel and searched terri-
tory, that minimize the time to find the target. The mean
first passage time can be derived analytically by track-
ing the probability of absorption and accumulated search
time at each target encounter. The first visit to the target
occurs after TL(v0) = (xT � r)/v0. During the first pass
over the target, the searcher discovers the target with
probability Pv0 , Eq. (28), with conditional mean time
within the target Ta(v0), Eq. (29). The time between
the first and the second visits is TR(v0) + TR(v1), where
TR(v) = (L�xT �r)/v, and the probability of finding the
trap during the next visit is Pv1 with mean time Ta(v1).
Subsequent times and probabilities are computed simi-
larly, and the time spent searching scales linearly with
the length of the searcher’s path. Using geometric se-
ries, we can compute the mean time to find the target by
marginalizing over all possible visit counts

T (xT ) = TL(v0) + Pv0Ta(v0) +
1 � Pv0

2 � Pv1


2L

v1Pv1

+(1 � Pv1)

✓
Tv0 + TR(v0) + TL(v1) + Ta(v1) �

L

v1

◆

+Tv0 + TR(v0) + TR(v1) + Ta(v1) �
2L

v1

�
. (30)

The generalized mean first passage time is then given
by integrating over the range of possible target loca-
tions xT , assuming a uniform probability of placement:

T̄ = 1

L�2r

R L�r
r hT (xT )idxT . Since the only terms in

Eq. (30) that depend on xT are TL(v) and TR(v), we need

only compute T̄L(v) = 1

L�2r

R L�r
r

xT�r
v dxT = L�2r

2v and

T̄R(v) = 1

L�2r

R L�r
r

L�xT�r
v dxT = L�2r

2v , and we rescale
space, so it is in units of the radius r. This is equivalent
to setting r = 1 in Eq. (30), and considering any spatial

parameters as in rescaled coordinates, which yields

T̄ =
L � 2

2v0

+ Pv0Ta(v0) + (1 � Pv0)


L

v1Pv1

+

✓
1 +

L

2

◆✓
1

v0

�
1

v1

◆
+ Ta(v1)

�
. (31)

Note, for constant speeds v1 = v0, Eq. (31) simplifies
considerably to

T̄ (v1 ⌘ v0) =
L

2Pv0v0

(2 � Pv0) + Ta(v0) �
1

v0

. (32)

As shown in Fig. 7B, T̄ (v1 = v0) has an internal mini-
mum, which leads to the most rapid finding of the tar-
get. Notably, in Fig. 7C, we find there is no advantage
in searching more quickly (or slowly), once the domain
has already been searched. In fact, the search time is
minimized when v1 = v0.

Thus, for single segments, memory-guidance does not
speed up search, in this particular paradigm. The opti-
mal strategy for minimizing the time to find the target
is for the searcher to maintain the same search speed
throughout the exploration process. We now demon-
strate an alternative paradigm in which memory-guided
search does reduce the time to find the target.

Radial arm maze. Since search on a single segment
does not appear to be aided my memory-guidance, we
examine the case in which the agent must search over
a space with more complex topology. In particular, we
study the problem of the searcher finding a hidden tar-
get in a radial arm maze (Fig. 8A). This paradigm has
commonly been used to test mammalian memory, requir-
ing a combination of spatial navigation, decision-making,
and working memory [55, 56]. Rather than deriving a
new neural field model and associated interface equa-
tions on this more complex domain, we develop a simpler

IOR has little advantage
along 1D tracks
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FIG. 8. Ballistically-moving agent searches a radial arm maze with a single target in a single arm. A. Searcher (dot) begins
at the center of the maze, and chooses a random arm ⌦k, k 2 {1, ..., N} to search. Purely random search (rand) proceeds with
the searcher always choosing 1 out of N total arm. Inhibition-of-return (IOR) guides searcher away from previously searched
arms, so the first N arms chosen are the arms k = 1, ..., N . B. Inhibition-of-return leads to more rapid location of the target
than purely random search (T̄rand > T̄IOR as in Eq. (36). Theory (solid lines) matches 106 Monte Carlo simulations (dots) very
well. Here N = 8. C. Average time to find the target T̄IOR using IOR increases with the number of arms, but note the optimal
search speed vmin

0 (circles) remains relatively unchanged. Other parameters are L = 100, r = 1, and ⇢ = 1.

model for memory of previously visited locations using a
metastable neuronal network with distinct populations
encoding each arm. We assume the searcher begins at
the center of the maze with N arms that radiate out-
wards, so locations lie on the union of bounded intervals
⌦1 [ ⌦2 [ · · · [ ⌦N with ⌦j = [0, L] for all j. The target
lies within one of the arms k 2 {1, ..., N} at a location
xT 2 [r, L � r] as before. Since our previous analysis
did not reveal an advantage to storing the spatial struc-
ture of locations visited within a segment, we remark that
memory of visited arms can be stored by distinct bistable
neural populations:

q̇j(t) = �qj(t) + H(qj � ✓q) + Ij(t), (33)

where Ij(t) = I0 > ✓q when the agent visits arm j and
Ij(t) = 0 otherwise. The variables qj(t) ! 1 once arm j

is visited, and initially qj(0) = 0 for all j. If the searcher
avoids arms such that qj(t) > ✓q, they will only visit
novel arms until qj(t) ! 1 for all j. Thus, Eq. (33)
constitutes a discretized version of Eq. (3). When the
searcher is over the target, it discovers it according to
a Gamma distributed waiting time. The probability of
discovering the target at each encounter is Pv, Eq. (28),
and the conditional mean first passage time within the
target is Ta(v), Eq. (29).

We now derive the mean time to find the target, as in
the case of a single armed domain. In particular, we com-
pare the e↵ects of IOR, where the searcher avoids previ-
ously explored arms initially, as opposed to a memoryless
selection of the next arm to be searched. As mentioned,
we assume the speed of search is constant throughout the
process |v(t)| ⌘ v0 for all t. Following the steps of our
previous calculation (and see also [57]), we find that (for
r = 1) the average time for a memoryless to find a target
placed uniformly on xT 2 [1, L � 1] on one of N radial

arms is

T̄rand =
2L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(34)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0).

On the other hand, a searcher that uses IOR to avoid
previously explored arms prior to all arms being searched
finds the target after an average time

T̄IOR =
L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(35)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0),

which appears nearly the same as the random search time
T̄rand, except that the leading factor is roughly half for
T̄IOR. In fact, it is straightforward to show T̄rand � T̄IOR

for any N � 2, since

T̄rand � T̄IOR =
N � 1

2

L

v0

> 0, (36)

for N � 2. This theory is matched very well to Monte
Carlo simulations of the ballistic searcher (Fig. 8B),
demonstrating the e�cacy of IOR in reducing the time
to find the target. This e↵ect is even stronger for mazes
with more arms (higher N) as the total time to find the
target (Fig. 8C) and the discrepancy between IOR and
random search increases with N .

Our analysis of the neural field model has demon-
strated a plausible neural mechanism for memory-guided
search, persistent activity encoding previously searched
regions. The theory and simulations we have per-
formed here for corresponding ballistic searcher models
has demonstrated that memory-guided search does not
appear to be advantageous in one-dimensional domains
comprised of a single segment. However, multiple seg-
ments adjoined at there ends can comprise more complex

only advantageous on
more complex domains

ZP Kilpatrick, DB Poll. Neural field model of memory-guided search. 
Phys. Rev. E (2017) in press. 
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domains: a velocity-jump process model. J Stat. Mech. (2016) 053201.
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FIG. 6. Interface equations approximate the dynamics of the full neural field model, Eq. (1) and (3). A. Bump propagates
across the domain of the position layer, u(x, t), in response to a velocity input defined v(t) = 0.3 on t 2 [0, 62.5) and v(t) = �0.3
on t 2 [62.5, 250]. Interfaces defined by Eq. (23) approximately track the threshold crossing locations u(x±(t), t) = ✓u of the
full simulation. B. Memory layer, q(x, t), supports a front solution that propagates in response to the motion of the bump in
the position layer. Our interface approximation, �±(t), given by Eq. (24) correspondingly tracks the left and right boundaries
of the visited regions of the searching agent. C,D. Zoomed-in versions of the simulations in A,B, showing slight mismatches in
the approximation that occur due to our truncations. Colorbar labels show minimal color corresponds to the threshold value ✓
of the layer in each plot (✓u for u(x, t) and ✓q for q(x, t)), while 1 is the maximal color value. Parameters are ✓u = 0.2, ✓q = 0.4,
n = 1, � = 0.3, I0 = 0.2, and ↵ = 1.

yielding

d =
2

n
tan�1

 p
�2 + n2�2 � (2✓q � 1)2(n2 + 1)2 + n�

� + (2✓q � 1)(n2 + 1)

!
,

up to periodicity, so that

�
�1

c = �
�1

d = �Q
0(d) =

1

2


1 + �

cos(nd) + n sin(nd)

n2 + 1

�
.

We can now notice a number of features of the full sys-
tem Eq. (3) captured by the interface Eq. (25). First, in
the absence of any heterogeneity (� = 0) or positional
input (I0 = 0), the front interfaces propagate at a speed
approximated by �d(1/2 � ✓q) on the right (�+(t)) and
�c(1/2 � ✓q) on the left (��(t)). Su�ciently strong het-
erogeneity (� = �

c
> 0) will pin the front. Without

any positional input (I0 = 0), the critical value �
c that

pins fronts is given by the � such that the maximum of
� [cos(n�+) + n sin(n�+)] equals n

2 + 1� 2✓q. This oc-
curs when �

c =
⇥
n

2 + 1 � 2✓q

⇤
/ [cos T (n) � n sin T (n)]

for T (n) = 2 tan�1((1 �
p

n2 + 1)/n), corresponding to

the critical heterogeneity for wave propagation failure
discussed in [48, 49]. Thus, we require � > �

c for the
system to retain memory of visited locations, which pre-
vents front propagation to the rest of the domain.

Our interface equations are compared with simulations
of the full model Eq. (1) and (3) in Fig. 6. The evolu-
tion of the bump interfaces in the positional layer u(x, t)
(u(x±(t), t) = ✓u) are captured well by x±(t) = �u(t)±h

(Fig. 6A,C). We expect the mismatch arises as the re-
sult of our static gradient approximation ux(x±(t), t) ⇡

±U
0(±h). The front tracks previously visited locations of

the bump, corresponding to the active regions in the do-
main at time t (Fig. 6B,D). More regions are activated
when the searcher position enters an unvisited part of
the domain. Otherwise, the front solution remains sta-
tionary. Thus far, we have utilized an open-loop velocity
protocol, so that the velocity input to the position layer
does not receive feedback from the memory layer.

Our low-dimensional approximation, Eq. (24), per-
forms well when compared with numerical simulations.
Thus, we have established a mechanism by which a bal-

interface equations estimate
low-dimensional dynamics 
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FIG. 7. Ballistically moving agent searches for a hidden target. A. Searcher (dot) begins at the left edge (x = 0) of the domain
(x 2 [0, L]), initially moving with speed v0 and then moving with speed v1 on all subsequent trips across. The target (green
line) spanning x 2 [xT � r, xT + r] is stochastically discoverable according to the waiting time density p(t) = ⇢2te�⇢t (plot
above), so if the waiting time exceeds Tv, the searcher will not find the target on the current trip. B. Plots of T̄ versus v0 = v1
(line) using Eq. (32) are nonmonotonic, revealing an interior optimum that minimizes the average search time (circles). As the
rate of target discovery ⇢ decreases, T̄ increases, and the optimal v0 decreases. Theory matches well with averages from 106

Monte Carlo simulations (dots). C. Mean search time T̄ as a function of both v0 and v1, showing the optimal choice (v0, v1)
occurs when v0 = v1 ⇡ 0.706 (circle) when ⇢ = 1. Other parameters are L = 100 and r = 1.

We now address the problem of finding the velocities
(v0, v1), corresponding to the novel and searched terri-
tory, that minimize the time to find the target. The mean
first passage time can be derived analytically by track-
ing the probability of absorption and accumulated search
time at each target encounter. The first visit to the target
occurs after TL(v0) = (xT � r)/v0. During the first pass
over the target, the searcher discovers the target with
probability Pv0 , Eq. (28), with conditional mean time
within the target Ta(v0), Eq. (29). The time between
the first and the second visits is TR(v0) + TR(v1), where
TR(v) = (L�xT �r)/v, and the probability of finding the
trap during the next visit is Pv1 with mean time Ta(v1).
Subsequent times and probabilities are computed simi-
larly, and the time spent searching scales linearly with
the length of the searcher’s path. Using geometric se-
ries, we can compute the mean time to find the target by
marginalizing over all possible visit counts

T (xT ) = TL(v0) + Pv0Ta(v0) +
1 � Pv0

2 � Pv1


2L

v1Pv1

+(1 � Pv1)

✓
Tv0 + TR(v0) + TL(v1) + Ta(v1) �

L

v1

◆

+Tv0 + TR(v0) + TR(v1) + Ta(v1) �
2L

v1

�
. (30)

The generalized mean first passage time is then given
by integrating over the range of possible target loca-
tions xT , assuming a uniform probability of placement:

T̄ = 1

L�2r

R L�r
r hT (xT )idxT . Since the only terms in

Eq. (30) that depend on xT are TL(v) and TR(v), we need

only compute T̄L(v) = 1

L�2r

R L�r
r

xT�r
v dxT = L�2r

2v and

T̄R(v) = 1

L�2r

R L�r
r

L�xT�r
v dxT = L�2r

2v , and we rescale
space, so it is in units of the radius r. This is equivalent
to setting r = 1 in Eq. (30), and considering any spatial

parameters as in rescaled coordinates, which yields

T̄ =
L � 2

2v0

+ Pv0Ta(v0) + (1 � Pv0)


L

v1Pv1

+

✓
1 +

L

2

◆✓
1

v0

�
1

v1

◆
+ Ta(v1)

�
. (31)

Note, for constant speeds v1 = v0, Eq. (31) simplifies
considerably to

T̄ (v1 ⌘ v0) =
L

2Pv0v0

(2 � Pv0) + Ta(v0) �
1

v0

. (32)

As shown in Fig. 7B, T̄ (v1 = v0) has an internal mini-
mum, which leads to the most rapid finding of the tar-
get. Notably, in Fig. 7C, we find there is no advantage
in searching more quickly (or slowly), once the domain
has already been searched. In fact, the search time is
minimized when v1 = v0.

Thus, for single segments, memory-guidance does not
speed up search, in this particular paradigm. The opti-
mal strategy for minimizing the time to find the target
is for the searcher to maintain the same search speed
throughout the exploration process. We now demon-
strate an alternative paradigm in which memory-guided
search does reduce the time to find the target.

Radial arm maze. Since search on a single segment
does not appear to be aided my memory-guidance, we
examine the case in which the agent must search over
a space with more complex topology. In particular, we
study the problem of the searcher finding a hidden tar-
get in a radial arm maze (Fig. 8A). This paradigm has
commonly been used to test mammalian memory, requir-
ing a combination of spatial navigation, decision-making,
and working memory [55, 56]. Rather than deriving a
new neural field model and associated interface equa-
tions on this more complex domain, we develop a simpler

IOR has little advantage
along 1D tracks
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FIG. 8. Ballistically-moving agent searches a radial arm maze with a single target in a single arm. A. Searcher (dot) begins
at the center of the maze, and chooses a random arm ⌦k, k 2 {1, ..., N} to search. Purely random search (rand) proceeds with
the searcher always choosing 1 out of N total arm. Inhibition-of-return (IOR) guides searcher away from previously searched
arms, so the first N arms chosen are the arms k = 1, ..., N . B. Inhibition-of-return leads to more rapid location of the target
than purely random search (T̄rand > T̄IOR as in Eq. (36). Theory (solid lines) matches 106 Monte Carlo simulations (dots) very
well. Here N = 8. C. Average time to find the target T̄IOR using IOR increases with the number of arms, but note the optimal
search speed vmin

0 (circles) remains relatively unchanged. Other parameters are L = 100, r = 1, and ⇢ = 1.

model for memory of previously visited locations using a
metastable neuronal network with distinct populations
encoding each arm. We assume the searcher begins at
the center of the maze with N arms that radiate out-
wards, so locations lie on the union of bounded intervals
⌦1 [ ⌦2 [ · · · [ ⌦N with ⌦j = [0, L] for all j. The target
lies within one of the arms k 2 {1, ..., N} at a location
xT 2 [r, L � r] as before. Since our previous analysis
did not reveal an advantage to storing the spatial struc-
ture of locations visited within a segment, we remark that
memory of visited arms can be stored by distinct bistable
neural populations:

q̇j(t) = �qj(t) + H(qj � ✓q) + Ij(t), (33)

where Ij(t) = I0 > ✓q when the agent visits arm j and
Ij(t) = 0 otherwise. The variables qj(t) ! 1 once arm j

is visited, and initially qj(0) = 0 for all j. If the searcher
avoids arms such that qj(t) > ✓q, they will only visit
novel arms until qj(t) ! 1 for all j. Thus, Eq. (33)
constitutes a discretized version of Eq. (3). When the
searcher is over the target, it discovers it according to
a Gamma distributed waiting time. The probability of
discovering the target at each encounter is Pv, Eq. (28),
and the conditional mean first passage time within the
target is Ta(v), Eq. (29).

We now derive the mean time to find the target, as in
the case of a single armed domain. In particular, we com-
pare the e↵ects of IOR, where the searcher avoids previ-
ously explored arms initially, as opposed to a memoryless
selection of the next arm to be searched. As mentioned,
we assume the speed of search is constant throughout the
process |v(t)| ⌘ v0 for all t. Following the steps of our
previous calculation (and see also [57]), we find that (for
r = 1) the average time for a memoryless to find a target
placed uniformly on xT 2 [1, L � 1] on one of N radial

arms is

T̄rand =
2L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(34)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0).

On the other hand, a searcher that uses IOR to avoid
previously explored arms prior to all arms being searched
finds the target after an average time

T̄IOR =
L(N � 1)

v0

+
2NL(1 � Pv0)

2

Pv0(2 � Pv0)v0

(35)

+
L(1 � Pv0)

(2 � Pv0)v0

+
L � 2

2v0

+ Ta(v0),

which appears nearly the same as the random search time
T̄rand, except that the leading factor is roughly half for
T̄IOR. In fact, it is straightforward to show T̄rand � T̄IOR

for any N � 2, since

T̄rand � T̄IOR =
N � 1

2

L

v0

> 0, (36)

for N � 2. This theory is matched very well to Monte
Carlo simulations of the ballistic searcher (Fig. 8B),
demonstrating the e�cacy of IOR in reducing the time
to find the target. This e↵ect is even stronger for mazes
with more arms (higher N) as the total time to find the
target (Fig. 8C) and the discrepancy between IOR and
random search increases with N .

Our analysis of the neural field model has demon-
strated a plausible neural mechanism for memory-guided
search, persistent activity encoding previously searched
regions. The theory and simulations we have per-
formed here for corresponding ballistic searcher models
has demonstrated that memory-guided search does not
appear to be advantageous in one-dimensional domains
comprised of a single segment. However, multiple seg-
ments adjoined at there ends can comprise more complex

only advantageous on
more complex domains
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