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Mean-field theory for neural networks
Agenda mathematical (rigorous) modelling of neural microcircuits
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Circuits
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Assumptions

» cell input should be " Poissonian”
and "close to” independent

» network should exhibit stable
"balanced state”, i.e. each cell
operates close to threshold

Math challenges

» how to formalize the above
assumptions?

» how to characterize "balanced
states” in mathematical terms?

> how to derive mean-field limits
and fluctuation theory (for
finite-size corrections)?

Applications
> statistical inference

» control_(of dynamical states)



Mean-field theory for neural networks

Agenda mathematical (rigorous) analysis of neural microcircuits,

e.g.

» How to distinguish network variability from signal noise?

» How to relate various scale parameters, e.g. connectivity vs. population
size, precisely?
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Classical model - Binary neural networks

» reduced math. description ni(t)=0—-1,i=1,...,N

» Markovian dynamics

ni:0—1 with rate f (fy ZJ. J,.(J.N)nj + Iext)
ni:1—0 withratel—7(...)

for given 0 < £ < 1, SV € {0,1}
> sparsity 3 JE-N) =0(K), KN

> operation close to threshold v = O (ﬁ)
features
» admits "asynchronous irregular” states

> MFT for the mean rate /i(t) = & >, ni(t) combines Poissonian and
central limit theorem, widely unexplored mathematically

» universality poorly understood

> heterogeneities, in particular impact of motives on dynamical features,
poorly understood



(Stochastic) MFT

class. simplifications for rigorous math analysis:

> symmetry J; = Jji
> all-to-all couplings K =3, J; = O (N)
well understood with the help of (equilibrium) statistical mechanics

(since in this case it becomes a gradient type dynamics)
motivation for asymmetry

> symmetry lacks neurophysiological plausibility, because synapses operate
unidirectional

> the majority of neurons either act excitatorily (J; > 0) or inhibitorily
(Ji < 0) which also contradicts symmetry
> symmetry creates additional attractors that do not correspond to
memorized states (e.g., metastable mixture states, spin-glass attractor)
add. motivation for asymmetric couplings can be found in the survey article:
Kree, R. and Zippelius, A. (1991). Asymmetrically diluted neural
networks, in Models of Neural Networks, ed. van Hemmen, et al.,

Springer



Classical simplifications

For rigorous math analysis:

> symmetry J; = J;i

> all-to-all couplings K =3, J; = O (N)
well understood with the help of (equilibrium) statistical mechanics
(since in this case it becomes a gradient type dynamics)
motivation for dilution

> neural connectivity is high, but far away from all-to-all

> allows for structural/hierarchical models



An exactly solvable asymmetric neural network model
Derrida, et al., Europhys. Lett., 4, pp. 167-173 (1987)

p

1
Jj = 3G > ey

p=1

where

> ¢ = 41 value of neuron i in pattern p, supposed to be independent
random variables with P (& = +1) = 1

> c; € {0,1} - random, independent, P(c; =1) = £

Dynamics
parallel - all neurons updated simultaneously

1 with prob. (1 —2Bui(t))) !
mi(e 4oty = 4 T with pro (1+exp( ﬁU()))_1
—1  with prob. (1 + exp (+28ui(t)))
where
> 3= % is interpreted as inverse temperature

> ui(t) =3 Jini(t)
typical order of At = O(1)



An exactly solvable asymmetric neural network model
Derrida, et al., Europhys. Lett., 4, pp. 167-173 (1987)

1 P
Ji = 5 Ci ;&‘ff‘

where

> ¢ = =41 value of neuron i in pattern p, supposed to be independent
random variables with P (& = +1) = 1

> c; € {0,1} - random, independent, P(c; =1) = £

Dynamics

random sequential - choose a neuron i randomly (according to uniform
distribution) and update its state according to (1)

typical order of At = O ()

Problem How to compare both dynamics precisely?

> parallel update is deterministic
» sequential update is random

» both are not cont.-time MCs



Main result: dynamical properties as N — oo

observable N
m(t) = (Al, Zsmn)
i=1

overlap with stored pattern (&f',...,&R)
» parallel dynamics

m(t + At) = f(m(t))

> sequential update
d
¢ M) = —m(t) + f(m(t))

where
= Khek S (14 my @ — m) (K (k(p— 1)
fm)=>_ =2 > 7 U s )
k=0 n=0 s=0

-tanh (8 (kp — 2(n — s)))



Main result: dynamical properties as N — oo - fixed row
sum

observable

overlap with stored pattern (&1,...,&N)

> parallel dynamics

» sequential update

5 m(t) = —m(t) + f(m(t))
where
z":’“il (1+m YK=n(1 — m)" (K) <K(p—1)>.

-tanh (8 (Kp — 2(n — s)))



General case - Heuristics
recall:
> reduced math. description nj(t) =0—-1,i=1,...,N
» Markovian dynamics
ni:0—1 with rate f (’YZJ- J,(jN)nj - m)
ni:1—0 withratel—f(...)
for given 0 < f < 1, J,S-N) € {0,1}
Conjecture
as N — oo, but K < N: n;(0) ind. = n;(t) asympt. ind.
has been verified for t ~ O (1) in the case of the parallel update for
K = O (log N) in
Derrida, et al., J. Physique 47, 1297-1303, 1986
suppose also that n;(t) are identically distributed, then

u™(t ZJU ni(t) — m~yU(t) —

with
> U(t) ~ Bin(K, m(t))
> m(t) = E(ni(8) = E (5 % mi(0))



General case - Heuristics, ctd.

the weak law of large numbers therefore implies

Z uM(t)) ~ E (f (vU(t) —

therefore N
HOEED P
N i=1

with
d

dt

—=m(t) = —m(t) + E(f (7U() —

m))

m))



CLT approximation - K large

for increasing K

CLT-approximation Bin(K, m(t)) ~ N(Km(t), Km(t)(1 — m(t))) yields
YU(t) = m ~ N(pa(t), pa(t))

with pu1(t) = yKm(t) — m, p2(t) = ¥*Km(t)(1 — m(t)), and thus

4 m(e) (t) 1 (u)e” ST 4
—m(t) ~ —m(t) + F(u)e 22mO0-m0) du
dt V2my2Km(t)(1 — m(t))

obtained in Van Vreeswijk, et al., Science 1996, Neural Comput.
10, 1998.

Our goal new approach to MFT incl. finite size effects using stochastic

analysis



Elements of MFT: martingale structure of Markov chains

General setting

(X(t))e>0 - (time-homogeneous) time-continuous Markov chain on finite
state space S, right-cont. trajectories

(P(t))e>o0 - family of transition probabilities

Q - generator (rate) matrix, i.e.,
d tQ
Q= —dtP(t)\t:O P(t)y=¢e"",t>0

F(t) :=o{X(s)|s < t}, t >0, filtration generated by X(t), t >0



Martingale structure, ctd.

Theorem
Let f : S — R be any bounded function. Then

f(X(t)) = F(X(0)) + M (t) + /Ot Qf(X(s))dst >0, (2)

where

MI(2) = F(X (1)) — F(X(0)) - / L QF(X(s))ds. £ > 0,

is a right-cont. martingale w.r.t. (F(t))s>0 with

E (Mf(t)2) —E (/Ot (Q (f2) - 2fo) (X(s)) ds)
/0 (Z ax(a (FX(s)) — F(7)) ) ds

JjES

(3)

Moreover,

0 =~ [ axeas (FX(s) — O ds. e 20. *)

JES

is again a right-cont. martingale w.r.t. (F(t))>0.



Remarks on Theorem 1

f(X(t)) = f(X(O))+Mf(t)+/t Qf(X(s))ds,t >0, (5)
0
Remarks

> (5) is called the semimartingale decomposition of the process f(X(t)),
since it gives a decomposition into a martingale and a process of bounded
variation [ Qf(X(s)) ds.

> (5) is the analogue of the Ito-decomposition of f(X(t)) for f € C* and
X(t) being the solution of a stochastic differential equation

> (5) links two important concepts for stochastic processes: Markov
property and martingale property

Corollary
Suppose that P (X(0) = iy) = 1 for some initial state iy € S. Then

E((M) ©) = [ 3 pusdas () - 1) as.

NI



Binary neural networks: math. model

> network of N binary neurons n(t) = (m(t),..., nn(t)) with n;i(t) € {0,1}

> input u;(t) to the i*" neuron given as

N
u,-(t)z'yZJ,-jnj(t)—m,-,i:1,...,N7

j=1
with connectivity matrix J; € {0,1} (no further distributional
assumptions yet)
> m; denotes some mean input that will be specified later

dynamics time-continuous Markov chain on the state space Iy = {0,1}" with
rate matrix Q(n,m) =0 if |[n — m| > 2 and

f(ui) fm—n=e¢
1—f(u) ifm—n=—e.

Q(n,m) = {

Here e; denotes the i*" unit vector.

Ex for f

Heaviside- function f(u) = 1{,>¢} for some given threshold 6

1

sigmoid-function f(u) = v )



Martingales
given G : Iy : 0{0,1}"¥ — R the process

M; = ME = G (n(¢)) — G (n(0)) — /Ot QG (n(s)) ds, t > 0

is a martingale w.r.t. the natural filtration generated by n(t) with

E(me) = [ E( S A(@) (6 (n(5) + &) — 6 (n(s))’

+ Z (L= f(u)) (G (n(s) —e) - G ("(S)))2) ds

Ex

> G(n) = mi(n) = nj, we obtain that
) t
My = ni(t) — / f(ui(s)) — ni(s) ds
0
» G(n) = mj(n) = ninj, i # j, we obtain that

M{ = ni(t)ny(t) — /Ot(—2"f(5)nj(5) + f(ui(s))ni(s) + f(uj(s))ni(s)) ds



Elements of a MFT: LLN

Laws of large numbers of the mean activity

N

A(t) = % 3 ()

i=1

Scenario J; = J{" such that -1 | S > Ky with Ky 1 oo, mi = m, f

Lipschitz
In this case: ( 1
N) N
n(t) = i S ai(t) < mM(e)
jeJn)
with |J™| > Ky, where
™M (t) = —m™M(t) + F(ywKnm™ (£) — m), m(0) = mo (6)

for suitable initial conditions n;(0), e.g. n;i(0) i.i.d. with E(n;(0)) = mo.



LLN

Theorem

(©) < au(0) + |/ 5 + (ks +1) [ on(s) s

Gronwall’s inequality implies in particular,

dn(t) < (dN(O) - ,/,%) elwhnlifllipt1)t ¢ > g
N

Suppose now that Ky — 00, supys; YywKn < oo and initial conditions n(0) are
chosen such that limy_,o dy(0) — 0, e.g. ni(0) i.id. with E(n;(0)) = no, then
for every ensemble average ™ with |JM| > Ky it follows that

lim E (|nJ(N)(t) - m(N)(t)|2) =0.

N— oo



LLN, ctd.

Corollary
If ywKn — 7V«, then

lim E (|nJ(N)(t) - m(t)|2) ~0
N—oco
where m is a solution to the ordinary differential equation

m(t) = —m(t) + f(~vem(t) — m), m(0) = mg.



main observation

Fix a subset J C {1,..., N} with |J] > Ky. n’(t) admits the following

semimartingale decomposition

n’(t) = n’ ‘ n’(s) ds A
(t) (@+Ao (s)ds + M

with
> Qn’(t) = g Xie, Fui(1) — mit) ~ F(ywKnm™(t) — m) —
> and
E(Mf) = /Ot ,-e;:oE <f(u,—(s)) (ﬁ) ) ds
*A%EAEO (@m<w)>$

= ﬁ /Ot E <Z(l — ni(s))f (ui(s)) + mi(s)(1 — f(u,-(s)))) ds

m™(t)

t
K



Remarks

> (Universality) no additional distributional assumptions on (J,-(jN)) required

> noteable implication: n; become asymptotically uncorrelated: indeed,
F(u™(£) = F(y.m(t) — m) implies:

%E(nf(t))E(nj(t)) = (F(yem(t) = m) — E(ni(1))) (f(7=m(t) — m) — E(n;(t)))

9 E(m()ni(1) = ~2E(n(e)m(8)) + F(em(t) — mE(m(2))
+ f(7.m(t) — m)E(n;(1)))
implies

% (E(ni(£)n;(2)) — E(ni(£))E(n;(2))) = =2 (E(ni(t)n;(¢)) — E(ni(t))E(n;(t)))

so that Cov(n;i(t), nj(t)) < 0 for t > 0 provided the same holds for the
initial condition t =0



Elements of a MFT: CLT - small ensemble size

The central limit theory for the mean activity

Scenario in addition yy Ky = 7y«, hence

a(t) = NZ

where

m(t) = —m(t) + f(y.m(t) — m).

next define standardized ensemble averages

W (t) == m(nl(t) - m(t)) VI (IJI N0 m(t> .

(7)



CLT - small ensemble size

Theorem
JM < {1,... N}, Ky and dn(0) such that

1
JM but /|JV (d 0 —) 0
| S 1 00 but 4/[JMV)] N()+\/K—N —

Suppose that
-1
Po (n“(N)l’*(O)) — N(mo, 0p) in distr./weakly

(e.g. ni(0) iid Bernoulli (mo), hence o3 = mo(1 — mg))

Then nJ(N)’*(t) — Noo(t) in distr. (on the Skorokhod space D([0, >c))), which
is a sol. of the sde

dneo(t) = —noo(t) dt + o(t) dW(t)
where W (t) is 1d-Brownian motion and

() == (1= m(t))f (yam(t) — m) + m(t)(1 — f(y.m(t) — m))



CLT, ctd.

Rem
> f no longer enters the drift term, since the argument of f is "faster

- Q)

averaging” than n’

» the CLT yields the following " finite size” correction

7 (8) = m(t) + ———no(t)

VI
in the LLN, where
m(t) = —m(t) + f (yom(t) — m)
dneo(t) = —noo(t) dt + o(t) dW(t)
with

o*(t) = (1= m(t))f (y.m(t) — m) + m(t)(1 — f(7.m(t) — m))



Main ingredient

(rescaled) semimartingale decomposition

W8 = ™ (0) + /0 VI (Q@Mn"™ () = rin(s)) ds + MM (2)

where

M(N)(t) = /| JW)| (nJ(N)(t) _ nJ(N)(O) 3 /t Q(N)HJ(N)(S) ds)
0

E ((Mf)2(t)) = /Ota2(s) ds, N — oo

and apply the following martingale CLT

with



Martingale CLT

Theorem

Forn=1,2,,..., let (F{),s, be a filtration and (M,(t)),-, be an
(F{),>o-martingale with right-continuous sample paths, having left limits at
t > 0 and starting at 0, i.e. M,(0) =0, such that

lim E ( sup |My(s) — Mn(s—)|> =0.

n— oo 0<s<t

Assume that there exist nonnegative, nondecreasing, (FY),-,-adapted
processes such that

My (t) = An(t) £ >0,
is an (F{),»o-martingale and that

t
lim An(t) = / o*(s) ds in probability
0

n— oo

for some deterministic function o : [0,00) — R. Then

nILrgo M,(t) = /Ota(s) dW(s),t >0,

weakly on the Skorokhod-space D[0, o0). Here, (W(t))¢>0 is a 1d-Brownian
motion.



CLT - total population average activity

Additional assumption: f € C2, rows of J,.E.N) ind.
Theorem
=(N),* -1 2\ ..
Po (n ' (0)) — N(mg, 0g) in distr./weakkly

(e.g. ni(0) iid Bernoulli (mo), hence o§ = mo(1 — mo)).
Then

N
OE ( Z m(f)> = Moo (1)
in distr./weakly (on the Skorokhod s;;ace D([0,))), which is a sol. of the sde
dnoo(t) = (Y« f'(v=m(t) — Mm)neo(t) — noo(t)) dt + o(t) dW(t)
where W (t) is 1d-Brownian motion and

o*(t) = (1 — m())F(yem(t) — m) + m(t)(1 — F(.m(t) — m))

Note drift term now depends on f’



How f’ enters the drift term

VN (Q<N)5(N>(t) _ ,,-,(t))

- mAl/Z (7 (501" = m) = () = m)) - a0

=:/




How f’ enters the drift term, ctd.

Taylor expansion yields for the first term /

N Z ( (v*nJ:(N) () — m) — f(y.m(t) — m)>
= \/N% ; <’y*f'(’y*m(t) - m)KiN <Z I () — m(t)>>

j=1

+f Z (’Y* £ IN) <ZN:J(N) m(t)) )

Jj=1

:Ia+lb

for certain values f,( )( t) between u (t) m and ~v.m(t) — m, and now 1st

term no longer vanishes



Extensions - finite K, N — oo

supy Ky < oo implies that remainder in
NZ( (%n' (1) fm)ff('y*m(t)fm)>
Z < (yem(t) — m)KiN (ZJgN>nj(t) - m(t)))

Z( (et )K1< s -(t)—m(t)))
i=1 N\ j=1

:Ia+lb

no longer vanishes with increasing N



Extensions - finite K, N — oo
hence look at full Taylor expansion at u1(t) := v.m(t) — m:

k=0 i=1
2 AR (¢

= (l/jll( ))Hk(t)
k=0

with

Remark expansion of p(t) w.r.t. K (see Farkhooi, et. al.) yields
> p,k(t) =0 (Klik)
> polynomial scaling v = 7. £, a € (0,1], leads to

> M2k+1(t) ~ 0O (K17(2k+1)a)
> pok(t) ~ O (K1) 4 (2k — 1)1pp(t)k



Extensions - finite K, N — oo

N K
.1 SV
(® = Jim 13 (200" (0 - m— (o)

i=1
Remark expansion of p(t) w.r.t. K (see Farkhooi, et. al.)
special case: v = 'y*ﬁ leads to

2k+1

> pota(t) ~ O (KI_T)
> pai(t) ~ O (Kl—%) + (2k — 1)1pa(t)¥

recovers normal approximation obtained in van Vreeswijk, et al
improved convergence of infinite series in terms of corrections terms to the
Gaussian approximation leads to

4 () (t) ! /f( )(1+Gm(u)) -
—m(t) <X —m(t)+ u)(1+Gn(u))e 2omOA—m(t u
dt V22 Km(6)(1 — m(0))
where
vk =y
> o) =TI ek (22)

» H; = Hermite polynomial of order k



