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Mean-field theory for neural networks
Agenda mathematical (rigorous) modelling of neural microcircuits

Assumptions

I cell input should be ”Poissonian”
and ”close to” independent

I network should exhibit stable
”balanced state”, i.e. each cell
operates close to threshold

Math challenges

I how to formalize the above
assumptions?

I how to characterize ”balanced
states” in mathematical terms?

I how to derive mean-field limits
and fluctuation theory (for
finite-size corrections)?

Applications

I statistical inference

I control (of dynamical states)



Mean-field theory for neural networks

Agenda mathematical (rigorous) analysis of neural microcircuits,
e.g.:

I How to distinguish network variability from signal noise?

I How to relate various scale parameters, e.g. connectivity vs. population
size, precisely?
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Classical model - Binary neural networks

I reduced math. description ni (t) = 0− 1, i = 1, . . . ,N

I Markovian dynamics{
ni : 0→ 1 with rate f

(
γ
∑

j J
(N)
ij nj + Iext

)
ni : 1→ 0 with rate 1− f (. . .)

for given 0 ≤ f ≤ 1, J
(N)
ij ∈ {0, 1}

I sparsity
∑

j J
(N)
ij = O(K), K � N

I operation close to threshold γ = O
(

1√
K

)
features

I admits ”asynchronous irregular” states

I MFT for the mean rate n̄(t) = 1
N

∑
i ni (t) combines Poissonian and

central limit theorem, widely unexplored mathematically

I universality poorly understood

I heterogeneities, in particular impact of motives on dynamical features,
poorly understood



(Stochastic) MFT

class. simplifications for rigorous math analysis:

I symmetry Jij = Jji

I all-to-all couplings K =
∑

j Jij = O (N)

well understood with the help of (equilibrium) statistical mechanics
(since in this case it becomes a gradient type dynamics)
motivation for asymmetry

I symmetry lacks neurophysiological plausibility, because synapses operate
unidirectional

I the majority of neurons either act excitatorily (Jij > 0) or inhibitorily
(Jij < 0) which also contradicts symmetry

I symmetry creates additional attractors that do not correspond to
memorized states (e.g., metastable mixture states, spin-glass attractor)

add. motivation for asymmetric couplings can be found in the survey article:

Kree, R. and Zippelius, A. (1991). Asymmetrically diluted neural

networks, in Models of Neural Networks, ed. van Hemmen, et al.,

Springer



Classical simplifications

For rigorous math analysis:

I symmetry Jij = Jji

I all-to-all couplings K =
∑

j Jij = O (N)

well understood with the help of (equilibrium) statistical mechanics
(since in this case it becomes a gradient type dynamics)

motivation for dilution

I neural connectivity is high, but far away from all-to-all

I allows for structural/hierarchical models



An exactly solvable asymmetric neural network model
Derrida, et al., Europhys. Lett., 4, pp. 167-173 (1987)

Jij =
1

K
cij

p∑
µ=1

ξµi ξ
µ
j

where

I ξµi = ±1 value of neuron i in pattern µ, supposed to be independent
random variables with P (ξµi = ±1) = 1

2

I cij ∈ {0, 1} - random, independent, P(cij = 1) = K
N

Dynamics
parallel - all neurons updated simultaneously

ni (t + δt) =

{
+1 with prob. (1 + exp (−2βui (t)))−1

−1 with prob. (1 + exp (+2βui (t)))−1 (1)

where

I β = 1
T

is interpreted as inverse temperature

I ui (t) =
∑

j Jijnj(t)

typical order of ∆t = O(1)



An exactly solvable asymmetric neural network model
Derrida, et al., Europhys. Lett., 4, pp. 167-173 (1987)

Jij =
1

K
cij

p∑
µ=1

ξµi ξ
µ
j

where

I ξµi = ±1 value of neuron i in pattern µ, supposed to be independent
random variables with P (ξµi = ±1) = 1

2

I cij ∈ {0, 1} - random, independent, P(cij = 1) = K
N

Dynamics

random sequential - choose a neuron i randomly (according to uniform
distribution) and update its state according to (1)
typical order of ∆t = O

(
1
N

)
Problem How to compare both dynamics precisely?

I parallel update is deterministic

I sequential update is random

I both are not cont.-time MCs



Main result: dynamical properties as N →∞

observable

m(t) = E

(
1

N

N∑
i=1

ξµi ni (t)

)
overlap with stored pattern (ξµ1 , . . . , ξ

µ
N)

I parallel dynamics
m(t + ∆t) = f (m(t))

I sequential update
d

dt
m(t) = −m(t) + f (m(t))

where

f (m) =
∞∑
k=0

K ke−k

k!

k∑
n=0

k(p−1)∑
s=0

(1 + m)k−n(1−m)n

2kp

(
k

n

)(
k(p − 1)

s

)
·

· tanh (β (kp − 2(n − s)))



Main result: dynamical properties as N →∞ - fixed row
sum

N∑
j=1

cij ≡ K

observable

m(t) = E

(
1

N

N∑
i=1

ξµi ni (t)

)
overlap with stored pattern (ξµ1 , . . . , ξ

µ
N)

I parallel dynamics
m(t + ∆t) = f (m(t))

I sequential update
d

dt
m(t) = −m(t) + f (m(t))

where

f (m) =
K∑

n=0

K(p−1)∑
s=0

(1 + m)K−n(1−m)n

2Kp

(
K

n

)(
K(p − 1)

s

)
·

· tanh (β (Kp − 2(n − s)))



General case - Heuristics
recall:

I reduced math. description ni (t) = 0− 1, i = 1, . . . ,N

I Markovian dynamics{
ni : 0→ 1 with rate f

(
γ
∑

j J
(N)
ij nj −m

)
ni : 1→ 0 with rate 1− f (. . .)

for given 0 ≤ f ≤ 1, J
(N)
ij ∈ {0, 1}

Conjecture
as N →∞, but K � N: ni (0) ind. ⇒ ni (t) asympt. ind.
has been verified for t ∼ O (1) in the case of the parallel update for
K = O (logN) in
Derrida, et al., J. Physique 47, 1297-1303, 1986

suppose also that ni (t) are identically distributed, then

u
(N)
i (t) = γ

N∑
j=1

J
(N)
ij nj(t)−m ∼ γU(t)−m

with

I U(t) ∼ Bin(K ,m(t))

I m(t) = E (ni (t)) = E
(

1
N

∑N
j=1 mj(t)

)



General case - Heuristics, ctd.

the weak law of large numbers therefore implies

1

N

N∑
i=1

f (u
(N)
i (t)) ∼ E (f (γU(t)−m))

therefore

m(N)(t) =
1

N

N∑
i=1

ni (t) ∼ m(t)

with
d

dt
m(t) = −m(t) + E (f (γU(t)−m))



CLT approximation - K large

for increasing K

CLT-approximation Bin(K ,m(t)) ∼ N(Km(t),Km(t)(1−m(t))) yields

γU(t)−m ∼ N(µ1(t), µ2(t))

with µ1(t) = γKm(t)−m, µ2(t) = γ2Km(t)(1−m(t)), and thus

d

dt
m(t) ∼ −m(t) +

1√
2πγ2Km(t)(1−m(t))

∫
f (u)e

− (u−γKm(t)−m))2

2γ2m(t)(1−m(t)) du

obtained in Van Vreeswijk, et al., Science 1996, Neural Comput.

10, 1998.

Our goal new approach to MFT incl. finite size effects using stochastic

analysis



Elements of MFT: martingale structure of Markov chains

General setting

(X (t))t≥0 - (time-homogeneous) time-continuous Markov chain on finite
state space S , right-cont. trajectories

(P(t))t≥0 - family of transition probabilities

Q - generator (rate) matrix, i.e.,

Q =
d

dt
P(t)|t=0 P(t) = etQ , t ≥ 0

F(t) := σ{X (s) | s ≤ t}, t ≥ 0, filtration generated by X (t), t ≥ 0



Martingale structure, ctd.
Theorem
Let f : S → R be any bounded function. Then

f (X (t)) = f (X (0)) + M f (t) +

∫ t

0

Qf (X (s)) ds t ≥ 0 , (2)

where

M f (t) := f (X (t))− f (X (0))−
∫ t

0

Qf (X (s)) ds , t ≥ 0 ,

is a right-cont. martingale w.r.t. (F(t))t≥0 with

E
(
M f (t)2

)
= E

(∫ t

0

(
Q
(
f 2
)
− 2fQf

)
(X (s)) ds

)

=

∫ t

0

E

∑
j∈S

qX (s) j (f (X (s))− f (j))2

 ds

(3)

Moreover,

M f (t)2 −
∫ t

0

∑
j∈S

qX (s) j (f (X (s))− f (j))2 ds , t ≥ 0 . (4)

is again a right-cont. martingale w.r.t. (F(t))t≥0.



Remarks on Theorem 1

f (X (t)) = f (X (0)) + M f (t) +

∫ t

0

Qf (X (s)) ds , t ≥ 0 , (5)

Remarks

I (5) is called the semimartingale decomposition of the process f (X (t)),
since it gives a decomposition into a martingale and a process of bounded
variation

∫ t

0
Qf (X (s)) ds.

I (5) is the analogue of the Ito-decomposition of f (X (t)) for f ∈ C 2 and
X (t) being the solution of a stochastic differential equation

I (5) links two important concepts for stochastic processes: Markov
property and martingale property

Corollary
Suppose that P (X (0) = i0) = 1 for some initial state i0 ∈ S . Then

E

((
M f
)2

(t)

)
=

∫ t

0

∑
i,j∈S

pi0j(s)qij (f (i)− f (j))2 ds .



Binary neural networks: math. model
I network of N binary neurons n(t) = (n1(t), . . . , nN(t)) with ni (t) ∈ {0, 1}
I input ui (t) to the i th neuron given as

ui (t) = γ
N∑
j=1

Jijnj(t)−mi , i = 1, . . . ,N ,

with connectivity matrix Jij ∈ {0, 1} (no further distributional
assumptions yet)

I mi denotes some mean input that will be specified later

dynamics time-continuous Markov chain on the state space IN = {0, 1}N with
rate matrix Q(n,m) = 0 if |n −m| ≥ 2 and

Q(n,m) =

{
f (ui ) if m − n = ei

1− f (ui ) if m − n = −ei .

Here ei denotes the i th unit vector.

Ex for f

Heaviside- function f (u) = 1{u≥θ} for some given threshold θ

sigmoid-function f (u) = 1

1+e−γ(u−θ)



Martingales
given G : IN : 0{0, 1}N → R the process

Mt = MG
t = G (n(t))− G (n(0))−

∫ t

0

QG (n(s)) ds , t ≥ 0

is a martingale w.r.t. the natural filtration generated by n(t) with

E
(
M2

t

)
=

∫ t

0

E
( N∑

i :ni=0

f (ui ) (G (n(s) + ei )− G (n(s)))2

+
N∑

i :ni=1

(1− f (ui )) (G (n(s)− ei )− G (n(s)))2
)
ds

Ex

I G(n) = πi (n) = ni , we obtain that

M i
t = ni (t)−

∫ t

0

f (ui (s))− ni (s) ds

I G(n) = πij(n) = ninj , i 6= j , we obtain that

M ij
t = ni (t)nj(t)−

∫ t

0

(−2ni (s)nj(s) + f (ui (s))nj(s) + f (uj(s))ni (s)) ds



Elements of a MFT: LLN

Laws of large numbers of the mean activity

n̄(t) :=
1

N

N∑
i=1

ni (t)

Scenario Jij = J
(N)
ij such that

∑N
j=1 J

(N)
ij ≥ KN with KN ↑ ∞, mi ≡ m, f

Lipschitz

In this case:

nJ(N)

(t) :=
1

|J(N)|
∑

j∈J(N)

n
(N)
j (t) � m(N)(t)

with |J(N)| ≥ KN , where

ṁ(N)(t) = −m(N)(t) + f (γNKNm
(N)(t)−m) ,m(0) = m0 (6)

for suitable initial conditions ni (0), e.g. ni (0) i.i.d. with E(ni (0)) = m0.



LLN

dN(t) := sup
J⊂{1,...,N}
|J|≥KN

E
(
|nJ(t)−m(N)(t)|2

) 1
2

Theorem

dN(t) ≤ dN(0) +

√
t

KN
+ (γNKN‖f ‖Lip + 1)

∫ t

0

dN(s) ds

Gronwall’s inequality implies in particular,

dN(t) ≤
(
dN(0) +

√
t

KN

)
e(γNKN‖f ‖Lip+1)t , t ≥ 0 .

Suppose now that KN →∞, supN≥1 γNKN <∞ and initial conditions n(0) are
chosen such that limN→∞ dN(0)→ 0, e.g. ni (0) i.i.d. with E(ni (0)) = n0, then

for every ensemble average nJ(N)

with |J(N)| ≥ KN it follows that

lim
N→∞

E
(
|nJ(N)

(t)−m(N)(t)|2
)

= 0 .



LLN, ctd.

Corollary

If γNKN → γ∗, then

lim
N→∞

E
(
|nJ(N)

(t)−m(t)|2
)
= 0

where m is a solution to the ordinary differential equation

ṁ(t) = −m(t) + f (γ∗m(t)−m) ,m(0) = m0 .



main observation

Fix a subset J ⊂ {1, . . . ,N} with |J| ≥ KN . nJ(t) admits the following
semimartingale decomposition

nJ(t) = nJ(0) +

∫ t

0

QnJ(s) ds + Mt

with

I QnJ(t) = 1
|J|
∑

i∈J f (ui (t))− ni (t) ∼ f (γNKNm
(N)(t)−m)−m(N)(t)

I and

E
(
M2

t

)
=

∫ t

0

∑
i∈J:ni=0

E

(
f (ui (s))

(
1

|J|

)2
)

ds

+

∫ t

0

∑
i∈J:ni=1

E

(
(1− f (ui (s)))

(
1

|J|

)2
)

ds

=
1

|J|2

∫ t

0

E

(∑
i∈J

(1− ni (s))f (ui (s)) + ni (s)(1− f (ui (s)))

)
ds ∼ t

|J| .



Remarks

I (Universality) no additional distributional assumptions on (J
(N)
ij ) required

I noteable implication: ni become asymptotically uncorrelated: indeed,
f (u

(N)
i (t))→ f (γ∗m(t)−m) implies:

d

dt
E(ni (t))E(nj(t)) = (f (γ∗m(t)−m)− E(ni (t))) (f (γ∗m(t)−m)− E(nj(t)))

d

dt
E(ni (t)nj(t)) = −2E(ni (t)nj(t)) + f (γ∗m(t)−m)E(ni (t))

+ f (γ∗m(t)−m)E(nj(t)))

implies

d

dt
(E(ni (t)nj(t))− E(ni (t))E(nj(t))) � −2 (E(ni (t)nj(t))− E(ni (t))E(nj(t)))

so that Cov(ni (t), nj(t)) � 0 for t > 0 provided the same holds for the
initial condition t = 0



Elements of a MFT: CLT - small ensemble size

The central limit theory for the mean activity

Scenario in addition γNKN ≡ γ∗, hence

n̄(t) =
1

N

N∑
i=1

ni (t) � m(t)

where

ṁ(t) = −m(t) + f (γ∗m(t)−m) . (7)

next define standardized ensemble averages

nj,∗(t) :=
√
|J|
(
nJ(t)−m(t)

)
=
√
|J|

(
1

|J|
∑
i∈J

ni (t)−m(t)

)
.



CLT - small ensemble size

Theorem
J(N) ⊂ {1, . . . ,N}, KN and dN(0) such that

|J(N)| ↑ ∞ but
√
|J(N)|

(
dN(0) +

1√
KN

)
→ 0

Suppose that

P ◦
(
n|J

(N)|,∗(0)
)−1

→ N(m0, σ
2
0) in distr./weakly

(e.g. ni (0) iid Bernoulli (m0), hence σ2
0 = m0(1−m0))

Then nJ(N),∗(t)→ n∞(t) in distr. (on the Skorokhod space D([0,∞))), which
is a sol. of the sde

dn∞(t) = −n∞(t) dt + σ(t) dW (t)

where W (t) is 1d-Brownian motion and

σ2(t) := (1−m(t))f (γ∗m(t)−m) + m(t)(1− f (γ∗m(t)−m))



CLT, ctd.

Rem

I f no longer enters the drift term, since the argument of f is ”faster

averaging” than nJ(N)

I the CLT yields the following ”finite size” correction

nJ(N)

(t) � m(t) +
1√
|J(N)|

n∞(t)

in the LLN, where

ṁ(t) = −m(t) + f (γ∗m(t)−m)

dn∞(t) = −n∞(t) dt + σ(t) dW (t)

with

σ2(t) = (1−m(t))f (γ∗m(t)−m) + m(t)(1− f (γ∗m(t)−m))



Main ingredient

(rescaled) semimartingale decomposition

nJ(N),∗(t) = nJ(N),∗(0) +

∫ t

0

√
|J(N)|

(
Q(N)nJ(N)

(s)− ṁ(s)
)
ds + M(N)(t)

where

M(N)(t) :=
√
|J(N)|

(
nJ(N)

(t)− nJ(N)

(0)−
∫ t

0

Q(N)nJ(N)

(s) ds

)
with

E

((
M f
)2

(t)

)
→
∫ t

0

σ2(s) ds ,N →∞

and apply the following martingale CLT



Martingale CLT
Theorem
For n = 1, 2, , . . ., let (Fn

t )t≥0 be a filtration and (Mn(t))t≥0 be an
(Fn

t )t≥0-martingale with right-continuous sample paths, having left limits at
t > 0 and starting at 0, i.e. Mn(0) = 0, such that

lim
n→∞

E

(
sup

0≤s≤t
|Mn(s)−Mn(s−)|

)
= 0 .

Assume that there exist nonnegative, nondecreasing, (Fn
t )t≥0-adapted

processes such that
M2

n (t)− An(t) , t ≥ 0 ,

is an (Fn
t )t≥0-martingale and that

lim
n→∞

An(t) =

∫ t

0

σ2(s) ds in probability

for some deterministic function σ : [0,∞)→ R. Then

lim
n→∞

Mn(t) =

∫ t

0

σ(s) dW (s) , t ≥ 0 ,

weakly on the Skorokhod-space D[0,∞). Here, (W (t))t≥0 is a 1d-Brownian
motion.



CLT - total population average activity

Additional assumption: f ∈ C 2
b , rows of J

(N)
ij ind.

Theorem

P ◦
(
n̄(N),∗(0)

)−1

→ N(m0, σ
2
0) in distr./weakkly

(e.g. ni (0) iid Bernoulli (m0), hence σ2
0 = m0(1−m0)).

Then

n̄(N),∗(t) :=
√
N

(
1

N

N∑
i=1

ni (t)−m(t)

)
→ n∞(t)

in distr./weakly (on the Skorokhod space D([0,∞))), which is a sol. of the sde

dn∞(t) =
(
γ∗f
′(γ∗m(t)−m)n∞(t)− n∞(t)

)
dt + σ(t) dW (t)

where W (t) is 1d-Brownian motion and

σ2(t) := (1−m(t))f (γ∗m(t)−m) + m(t)(1− f (γ∗m(t)−m))

Note drift term now depends on f ′



How f ′ enters the drift term

√
N
(
Q(N)n̄(N)(t)− ṁ(t)

)
=
√
N

1

N

N∑
i=1

(
f

(
γ∗n

J
(N)
i· (t)−m

)
− f (γ∗m(t)−m)

)
︸ ︷︷ ︸

=:I

− n(N),∗(t)︸ ︷︷ ︸
=:II



How f ′ enters the drift term, ctd.

Taylor expansion yields for the first term I

√
N

1

N

N∑
i=1

(
f

(
γ∗n

J
(N)
i· (t)−m

)
− f (γ∗m(t)−m)

)

=
√
N

1

N

N∑
i=1

(
γ∗f
′(γ∗m(t)−m)

1

KN

(
N∑
j=1

J
(N)
ij nj(t)−m(t)

))

+
√
N

1

N

N∑
i=1

γ2
∗

2
f ′′(ξ

(N)
i (t))

1

K 2
N

(
N∑
j=1

J
(N)
ij nj(t)−m(t)

)2


= Ia + Ib

for certain values ξ
(N)
i (t) between u

(N)
i (t)−m and γ∗m(t)−m, and now 1st

term no longer vanishes



Extensions - finite K , N →∞

supN KN <∞ implies that remainder in

1

N

N∑
i=1

(
f

(
γ∗n

J
(N)
i· (t)−m

)
− f (γ∗m(t)−m)

)

=
1

N

N∑
i=1

(
γ∗f
′(γ∗m(t)−m)

1

KN

(
N∑
j=1

J
(N)
ij nj(t)−m(t)

))

+
1

N

N∑
i=1

γ2
∗

2
f ′′(ξ

(N)
i (t))

1

K 2
N

(
N∑
j=1

J
(N)
ij nj(t)−m(t)

)2


= Ia + Ib

no longer vanishes with increasing N



Extensions - finite K , N →∞
hence look at full Taylor expansion at µ1(t) := γ∗m(t)−m:

1

N

N∑
i=1

(
f

(
γ∗n

J
(N)
i· (t)−m

)
− f (γ∗m(t)−m)

)

=
∞∑
k=0

f (k)(µ1(t))

k!

1

N

N∑
i=1

(
γ∗n

J
(N)
i· (t)−m − µ1(t)

)k

�
∞∑
k=0

f (k)(µ1(t))

k!
µk(t)

with

µk(t) = lim
N→∞

1

N

N∑
i=1

(
γ∗n

J
(N)
i· (t)−m − µ1(t)

)k

Remark expansion of µk(t) w.r.t. K (see Farkhooi, et. al.) yields

I µk(t) = O
(
K 1−k

)
I polynomial scaling γ = γ∗

1
α

, α ∈ (0, 1], leads to

I µ2k+1(t) ∼ O
(
K 1−(2k+1)α

)
I µ2k(t) ∼ O

(
K 1−(2k)α

)
+ (2k − 1)!!µ2(t)

k



Extensions - finite K , N →∞

µk(t) = lim
N→∞

1

N

N∑
i=1

(
γ∗n

J
(N)
i· (t)−m − µ1(t)

)k

Remark expansion of µk(t) w.r.t. K (see Farkhooi, et. al.)
special case: γ = γ∗

1√
K

leads to

I µ2k+1(t) ∼ O
(
K 1− 2k+1

2

)
I µ2k(t) ∼ O

(
K 1− 2k

2

)
+ (2k − 1)!!µ2(t)k

recovers normal approximation obtained in van Vreeswijk, et al

improved convergence of infinite series in terms of corrections terms to the
Gaussian approximation leads to

d

dt
m(t) � −m(t)+

1√
2πγ2Km(t)(1−m(t))

∫
f (u)(1+Gm(u))e

− (u−γKm(t)−m))2

2γ2m(t)(1−m(t)) du

where

I Gm(u) =
∑m

k=3(−1)k µk

k!µ
k
2
2

Hk

(
u−µ1√
µ2

)
I Hk = Hermite polynomial of order k


