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The ability to exploit and transform the environment is remarkable characteristic
of humans and it has been well stablished that this ability is due to a very evolved
nervous system

Principles of Neural Science, Kandel et al.(2000)
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A picture is worth a thousand words

Frontiers in Human Neuroscience, Ros et al.(2014)
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FitzHugh-Nagumo model

Simplification of the HH model conserving the most prominent aspects of it

dV =

�
N(V )� w + I0

�
dt,

dw =

1

⌧

(V + a� bw) dt,

where ⌧ , a, b and I0 are constants, N(·) us a cubic function with negative leading
term.

Nature, Lond. Hodgkin & Huxley (1939)
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Numerics on the FhN model
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Numerics on the FhN model
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Numerics on the FhN model
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FitzHugh-Nagumo with noisy input

Consider the equation

dV =

�
N(V )� w + I0

�
dt+ �dWt,

dw =

1

⌧

(V + a� bw) dt,

where � is a positive constant, and Wt is a Brownian motion.
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Numerics on the Noisy-FhN model
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FitzHugh-Nagumo Network

Consider n FhN neurons (vit, w
i
t)t�0, i = 1, . . . , n.

Neurons interact through the di↵erence of their potential.

For simplicity, consider a fully connected network with synaptic weights "/n

It = � "

n

nX

j=1

⇣
v

i
t � v

j
t

⌘
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FitzHugh-Nagumo noisy network

Dynamics of each cell (vit, w
i
t)t�0 are then solution to the equations

dv

i
t =

�
N(v

i
t)� w

i
t + I0

�
dt� "

n

nX

j=1

�
v

i
t � v

j
t

�
dt+ �dW

i
t

dw

i
t = (v

i
t + a� bw

i
t)

dt

⌧
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Nonlinear SDE

Since interaction is linear, the system can be re-written by

(
dv

i
t =

�
N(v

i
t)� w

i
t + I0

�
dt� "

⇣
v

i
t � 1

n

Pn
j=1 v

j
t

⌘
dt+ �dW

i
t

⌧dw

i
t = (v

i
t + a� bw

i
t) dt,

and in the case n � 1, it is natural to consider the mean-field representation
(
dv̄t =

�
N(v̄t)� w̄t + I0

�
dt� "

�
v̄t � E[v̄t]

�
dt+ �d

¯

Wt,

⌧dw̄t = (v̄t + a� bw̄t)dt

The passage micro/macro is due to the propagation of chaos property.

Proof follows the coupling technique using nice a priori bounds to deal with
the cubic nonlinearity (Carrillo, Fournier, etc).
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An equation is worth a thousand images

Frontiers in Human Neuroscience, Ros et al.(2014)
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FitzHugh-Nagumo mean-field equation

By using the Fokker-Planck equation, we finally find that the law ft of finding
neurones with voltage v and recovery variable w at time t, solves

@tft = Q"(ft)ft = @w(Aft) + @v(B"[ft]ft) +
�

2

2

@

2
vvft

where A = (bw � a� v)/⌧,

B"[g] = �N(v) + x� I0 + "

⇣
v �

Z

R2
v g(w, v)

| {z }
J (g)

⌘



Introduction Setting of the problem The weakly connected case The strongly connected case More?

Consequences of the a priori bounds

Existence of solutions for any coupling value ". Uniqueness holds true when
initial conditions have finite partial entropy :

sup

[0,T ]

Z

R2
f log f +

Z t

0

Z

R2

|@vf |2

f

 C(T ).

Existence of stationary solutions, and uniqueness as a function of " follows
from a Brouwer fixed point argument. In particular, for any " there is at
least one stationary solution.
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Stability results

On the variation h := f � G", the FhN kinetic equation induces the linear
integro-di↵erential operator

L"h = Q"[G"]h+ "J (h)@vG"

which is such that

hQ"[G"]h, hiL2(m)  K1khkL2(R2) �K2khkL2(m)

Consequences:

Existence of stationary solutions, and uniqueness as a function of ", is a
consequence of some semigroup arguments [Mischler & Mouhout].

Spectral analysis and nonlinear convergence in the weak coupling regime
[Krein-Rutman + Duhamel’s formula].
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Beyond the weakly connected case

The next problem is the characterisation of the system when " is large.

To understand this transition we use the Hamilton-Jacobi approach of Roque-
jo↵re, Barles, Perthame et al.

We present the results for a simplified version of the equation (without the
w dependance) but they remain true in the general case.
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The simplified equation

For " > 0, we are concerned with the behaviour of g"(t, v), solutions to the
equation

@tg" = @v

⇣�
�N(v) + "

�1
(v � I

"
g (t))

�
g" + @vg"

⌘
,

coupled with the variable

I

"
g (t) =

Z

R
vg",

modelling a self-induced current
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Formal calculations

In terms of the Hopf-Cole transformation g" = e

 "
" , we get

@t " =

�
1� "N

0
(v)

�
+

�
"

�1
(v � I

"
(t))�N(v)

�
@v " + "

�1|@v "|2 + @

2
vv "

At the limit "! 0

0 = (v � I(t))@v (t, v) + |@v (t, v)|2,

for some I(t) which is unfortunately unknown
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Some remarks

However, previous equation can be explicitly solved, thus at the limit we
expect to have

 (t, v) = �1

2

(v � I(t))

2
.

Since g" = e

 "
" , we also expect that

 (t, v)  0.

The points where  equals 0 are very important since, once " is small, the
functions g"(t, ·) are expected to concentrate around these points
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Numerics on the Noisy-FhN model strongly connected
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Final remark

In the 2-dimensional case, the limit remains a viscosity solution to

0 = (v � I(t))@v (t, v, w) + |@v (t, v, w)|2.

Defining

hvit = I(t) =

Z

R2
vft hxit =

Z

R2
xft

we find that the pair (hvit, hxit) is a solution to

dhvit =

�
N(hvit)� hxit + I0

�
dt,

⌧dhxit = (hvit + a� bhxit) dt,

i.e., to the FhN equation!
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Numerics on the excited Noisy-FhN model strongly connected
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MMO?
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FitzHugh-Nagumo synaptic network

And if we consider a more complex model?

dv

i
t =

�
N(v

i
t)� w

i
t + I0

�
dt+ �dW

i
t

+

"

�1

n

⇣
gE(v

i
t)

nX

j=1

s

E
j � gI(v

i
t)

nX

j=1

s

I
j

⌘
dt

dw

i
t = (v

i
t + a� bw

i
t)

dt

⌧

ds

i
t = �s

i
t + ↵(v

i
t)(1� s

i
t).

Condition:

 =

1

2

⇥
gE(v)

2
sE � gI(v)

2
sI

⇤
 0,

i.e. the model might converge to a balanced network!
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