Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

Large-scale dynamics for the FitzHugh-Nagumo model

Cristóbal Quiñinao

December 12, 2017

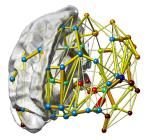
Deterministic and Stochastic Models in Neuroscience

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

ntroduction	Setting of the problem	The weakly connected case	The strongly connected case
0000000	00000	000	000000

More?

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	0000000	



The ability to exploit and transform the environment is remarkable characteristic of humans and it has been well stablished that this ability is due to a very evolved nervous system

Principles of Neural Science, Kandel et al.(2000)

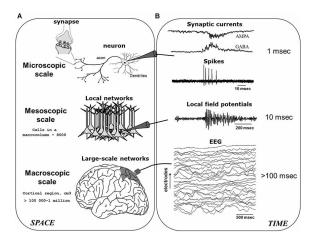
▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Setting of the problem

The weakly connected case

The strongly connected case

A picture is worth a thousand words



Frontiers in Human Neuroscience, Ros et al.(2014)

More?

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
		E ⁺⁴⁰		
		Ē		

FitzHugh-Nagumo model

Simplification of the HH model conserving the most prominent aspects of it

$$dV = (N(V) - w + I_0) dt,$$

$$dw = \frac{1}{\tau} (V + a - bw) dt,$$

where τ , $a,\,b$ and I_0 are constants, $N(\cdot)$ us a cubic function with negative leading term.

Nature, Lond. Hodgkin & Huxley (1939)

3

Sac

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More
00000000	00000	000	000000	
		r +40 A		
		F		

FitzHugh-Nagumo model

Simplification of the HH model conserving the most prominent aspects of it

$$dV = (N(V) - w + I_0) dt,$$

$$dw = \frac{1}{\tau} (V + a - bw) dt,$$

where $\tau,\,a,\,b$ and I_0 are constants, $N(\cdot)$ us a cubic function with negative leading term.

Nature, Lond. Hodgkin & Huxley (1939)

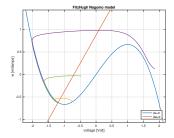
Setting of the problem

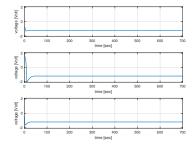
The weakly connected case

The strongly connected case

More

Numerics on the FhN model





▲ロト ▲暦 ト ▲臣 ト ▲臣 - ○へ⊙

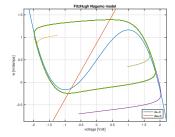
Setting of the problem 00000

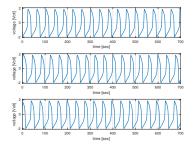
The weakly connected case

The strongly connected case

More

Numerics on the FhN model





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

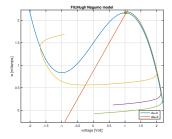
Setting of the problem

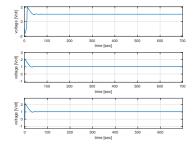
The weakly connected case

The strongly connected case

More

Numerics on the FhN model





▲ロト ▲暦 ト ▲臣 ト ▲臣 - ○へ⊙

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
00000000	00000	000	000000	

FitzHugh-Nagumo with noisy input

Consider the equation

$$dV = (N(V) - w + I_0) dt + \sigma dW_t$$

$$dw = \frac{1}{\tau} (V + a - bw) dt,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

500

where σ is a positive constant, and W_t is a Brownian motion.

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
00000000	00000	000	0000000	

FitzHugh-Nagumo with noisy input

Consider the equation

$$dV = (N(V) - w + I_0) dt + \sigma dW_t,$$

$$dw = \frac{1}{\tau} (V + a - bw) dt,$$

where σ is a positive constant, and W_t is a Brownian motion.

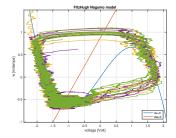
Setting of the problem 00000

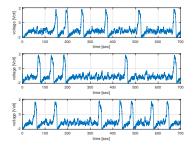
he weakly connected case

The strongly connected case

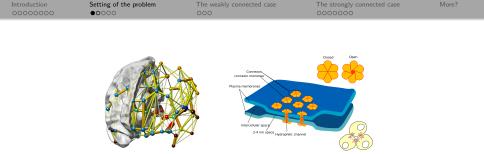
More

Numerics on the Noisy-FhN model



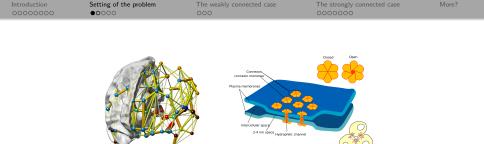


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



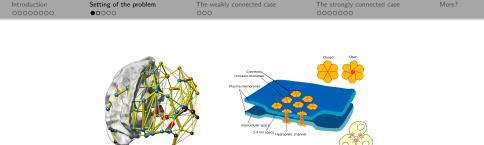
- Consider n FhN neurons $(v_t^i, w_t^i)_{t \ge 0}$, $i = 1, \dots, n$.
- Neurons interact through the difference of their potential.
- For simplicity, consider a fully connected network with synaptic weights arepsilon/n

$$I_t = -rac{arepsilon}{n} \sum_{j=1}^n \left(v_t^i - v_t^j
ight)$$



- Consider n FhN neurons $(v_t^i, w_t^i)_{t \ge 0}$, i = 1, ..., n.
- Neurons interact through the difference of their potential.
- $\,\circ\,$ For simplicity, consider a fully connected network with synaptic weights arepsilon/n

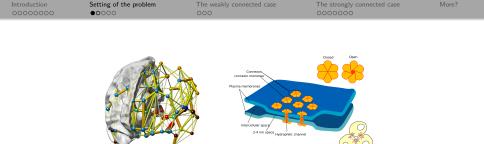
$$I_t = -\frac{\varepsilon}{n} \sum_{j=1}^n \left(v_t^i - v_t^j \right)$$



- Consider n FhN neurons $(v_t^i, w_t^i)_{t \ge 0}$, i = 1, ..., n.
- Neurons interact through the difference of their potential.
- $\,\circ\,$ For simplicity, consider a fully connected network with synaptic weights ε/n

$$I_t = -\frac{\varepsilon}{n} \sum_{j=1}^n \left(v_t^i - v_t^j \right)$$

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ▲ 日 ト



- Consider n FhN neurons $(v_t^i, w_t^i)_{t \ge 0}$, i = 1, ..., n.
- Neurons interact through the difference of their potential.
- $\,\circ\,$ For simplicity, consider a fully connected network with synaptic weights ε/n

$$I_t = -\frac{\varepsilon}{n} \sum_{j=1}^n \left(v_t^i - v_t^j \right)$$

イロト イポト イヨト イヨト

Sac

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

FitzHugh-Nagumo noisy network

Dynamics of each cell $(v^i_t, w^i_t)_{t\geq 0}$ are then solution to the equations

$$dv_t^i = \left(N(v_t^i) - w_t^i + I_0\right) dt - \frac{\varepsilon}{n} \sum_{j=1}^n \left(v_t^i - v_t^j\right) dt + \sigma dW_t^i$$
$$dw_t^i = \left(v_t^i + a - bw_t^i\right) \frac{dt}{\tau}$$

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	0000	000	000000	

Nonlinear SDE

Since interaction is linear, the system can be re-written by

$$\begin{cases} dv_t^i &= \left(N(v_t^i) - w_t^i + I_0\right) dt - \varepsilon \left(v_t^i - \frac{1}{n} \sum_{j=1}^n v_t^j\right) dt + \sigma dW_t^i \\ \tau dw_t^i &= \left(v_t^i + a - bw_t^i\right) dt, \end{cases}$$

and in the case $n \gg 1$, it is natural to consider the mean-field representation

$$\begin{cases} d\bar{v}_t &= \left(N(\bar{v}_t) - \bar{w}_t + I_0\right) dt - \varepsilon \left(\bar{v}_t - \mathbb{E}[\bar{v}_t]\right) dt + \sigma d\bar{W}_t, \\ \tau d\bar{w}_t &= \left(\bar{v}_t + a - b\bar{w}_t\right) dt \end{cases}$$

The passage micro/macro is due to the propagation of chaos property.

 Proof follows the coupling technique using nice a priori bounds to deal with the cubic nonlinearity (Carrillo, Fournier, etc).

Sac

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	0000	000	000000	

Nonlinear SDE

Since interaction is linear, the system can be re-written by

$$\begin{cases} dv_t^i &= \left(N(v_t^i) - w_t^i + I_0\right) dt - \varepsilon \left(v_t^i - \frac{1}{n} \sum_{j=1}^n v_t^j\right) dt + \sigma dW_t^i \\ \tau dw_t^i &= \left(v_t^i + a - bw_t^i\right) dt, \end{cases}$$

and in the case $n \gg 1$, it is natural to consider the mean-field representation

$$\begin{cases} d\bar{v}_t &= \left(N(\bar{v}_t) - \bar{w}_t + I_0\right) dt - \varepsilon \left(\bar{v}_t - \mathbb{E}[\bar{v}_t]\right) dt + \sigma d\bar{W}_t, \\ \tau d\bar{w}_t &= \left(\bar{v}_t + a - b\bar{w}_t\right) dt \end{cases}$$

• The passage micro/macro is due to the propagation of chaos property.

 Proof follows the coupling technique using nice a priori bounds to deal with the cubic nonlinearity (Carrillo, Fournier, etc).

SQC

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	0000	000	000000	

Nonlinear SDE

Since interaction is linear, the system can be re-written by

$$\begin{cases} dv_t^i &= \left(N(v_t^i) - w_t^i + I_0\right) dt - \varepsilon \left(v_t^i - \frac{1}{n} \sum_{j=1}^n v_t^j\right) dt + \sigma dW_t^i \\ \tau dw_t^i &= \left(v_t^i + a - bw_t^i\right) dt, \end{cases}$$

and in the case $n \gg 1$, it is natural to consider the mean-field representation

$$\begin{cases} d\bar{v}_t &= \left(N(\bar{v}_t) - \bar{w}_t + I_0\right) dt - \varepsilon \left(\bar{v}_t - \mathbb{E}[\bar{v}_t]\right) dt + \sigma d\bar{W}_t, \\ \tau d\bar{w}_t &= \left(\bar{v}_t + a - b\bar{w}_t\right) dt \end{cases}$$

- The passage micro/macro is due to the propagation of chaos property.
- Proof follows the coupling technique using nice a priori bounds to deal with the cubic nonlinearity (Carrillo, Fournier, etc).

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

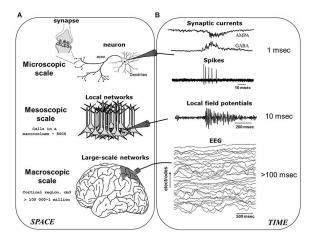
Setting of the problem

The weakly connected case

The strongly connected case

Ν

An equation is worth a thousand images



Frontiers in Human Neuroscience, Ros et al.(2014)

・ロト ・ 同ト ・ ヨト ・ ヨト

 \equiv

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

FitzHugh-Nagumo mean-field equation

By using the Fokker-Planck equation, we finally find that the law f_t of finding neurones with voltage v and recovery variable w at time t, solves

$$\partial_t f_t = Q_{\varepsilon}(f_t) f_t = \partial_w(Af_t) + \partial_v(B_{\varepsilon}[f_t]f_t) + \frac{\sigma^2}{2} \partial_{vv}^2 f_t$$

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

where $A = (bw - a - v)/\tau$, $B_{\varepsilon}[g] = -N(v) + x - I_0 + \varepsilon \left(v - \underbrace{\int_{\mathbb{R}^2} v g(w, v)}_{\mathscr{J}(g)}\right)$

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	•00	000000	

Consequences of the a priori bounds

• Existence of solutions for any coupling value *ε*. Uniqueness holds true when initial conditions have *finite partial entropy*:

$$\sup_{[0,T]} \int_{\mathbb{R}^2} f \log f + \int_0^t \int_{\mathbb{R}^2} \frac{|\partial_v f|^2}{f} \le C(T).$$

• Existence of stationary solutions, and uniqueness as a function of ε follows from a Brouwer fixed point argument. In particular, for any ε there is at least one stationary solution.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

Dac

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	•00	000000	

Consequences of the a priori bounds

• Existence of solutions for any coupling value *ε*. Uniqueness holds true when initial conditions have *finite partial entropy*:

$$\sup_{[0,T]} \int_{\mathbb{R}^2} f \log f + \int_0^t \int_{\mathbb{R}^2} \frac{|\partial_v f|^2}{f} \le C(T).$$

• Existence of stationary solutions, and uniqueness as a function of ε follows from a Brouwer fixed point argument. In particular, for any ε there is at least one stationary solution.

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

Stability results

On the variation $h:=f-G_{\varepsilon},$ the FhN kinetic equation induces the linear integro-differential operator

$$\mathscr{L}_{\varepsilon}h = Q_{\varepsilon}[G_{\varepsilon}]h + \varepsilon \mathscr{J}(h)\partial_{v}G_{\varepsilon}$$

which is such that

 $\langle Q_{\varepsilon}[G_{\varepsilon}]h,h\rangle_{L^{2}(m)} \leq K_{1}\|h\|_{L^{2}(\mathbb{R}^{2})} - K_{2}\|h\|_{L^{2}(m)}$

Consequences:

- Existence of stationary solutions, and uniqueness as a function of ε, is a consequence of some semigroup arguments [Mischler & Mouhout].
- Spectral analysis and nonlinear convergence in the weak coupling regime [Krein-Rutman + Duhamel's formula].

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

Stability results

On the variation $h:=f-G_{\varepsilon},$ the FhN kinetic equation induces the linear integro-differential operator

$$\mathscr{L}_{\varepsilon}h = Q_{\varepsilon}[G_{\varepsilon}]h + \varepsilon \mathscr{J}(h)\partial_{v}G_{\varepsilon}$$

which is such that

 $\langle Q_{\varepsilon}[G_{\varepsilon}]h,h\rangle_{L^{2}(m)} \leq K_{1}\|h\|_{L^{2}(\mathbb{R}^{2})} - K_{2}\|h\|_{L^{2}(m)}$

Consequences:

- Existence of stationary solutions, and uniqueness as a function of ε, is a consequence of some semigroup arguments [Mischler & Mouhout].
- Spectral analysis and nonlinear convergence in the weak coupling regime [Krein-Rutman + Duhamel's formula].

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

Stability results

On the variation $h:=f-G_{\varepsilon},$ the FhN kinetic equation induces the linear integro-differential operator

$$\mathscr{L}_{\varepsilon}h = Q_{\varepsilon}[G_{\varepsilon}]h + \varepsilon \mathscr{J}(h)\partial_{v}G_{\varepsilon}$$

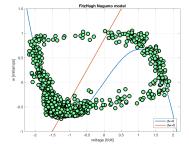
which is such that

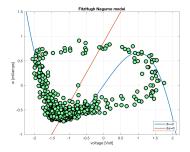
 $\langle Q_{\varepsilon}[G_{\varepsilon}]h,h\rangle_{L^{2}(m)} \leq K_{1}\|h\|_{L^{2}(\mathbb{R}^{2})} - K_{2}\|h\|_{L^{2}(m)}$

Consequences:

- Existence of stationary solutions, and uniqueness as a function of ε, is a consequence of some semigroup arguments [Mischler & Mouhout].
- Spectral analysis and nonlinear convergence in the weak coupling regime [Krein-Rutman + Duhamel's formula].

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
00000000	00000	000	000000	





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000000	Setting of the problem 00000	The weakly connected case	The strongly connected case •••••••	More?

Beyond the weakly connected case

• The next problem is the characterisation of the system when ε is large.

- To understand this transition we use the Hamilton-Jacobi approach of Roquejoffre, Barles, Perthame et al.
- We present the results for a simplified version of the equation (without the w dependance) but they remain true in the general case.

Dac

Introduction 00000000	Setting of the problem 00000	The weakly connected case	The strongly connected case •••••••	More?

Beyond the weakly connected case

- ${\circ}\,$ The next problem is the characterisation of the system when ${\varepsilon}$ is large.
- To understand this transition we use the Hamilton-Jacobi approach of Roquejoffre, Barles, Perthame et al.
- We present the results for a simplified version of the equation (without the w dependance) but they remain true in the general case.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
00000000	00000	000	000000	

Beyond the weakly connected case

- ${\circ}\,$ The next problem is the characterisation of the system when ${\varepsilon}$ is large.
- To understand this transition we use the Hamilton-Jacobi approach of Roquejoffre, Barles, Perthame et al.
- We present the results for a simplified version of the equation (without the w dependance) but they remain true in the general case.

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

The simplified equation

For $\varepsilon>0,$ we are concerned with the behaviour of $g_{\varepsilon}(t,v),$ solutions to the equation

$$\partial_t g_{\varepsilon} = \partial_v \Big(\big(-N(v) + \varepsilon^{-1} (v - I_g^{\varepsilon}(t)) \big) g_{\varepsilon} + \partial_v g_{\varepsilon} \Big),$$

coupled with the variable

$$I_g^{\varepsilon}(t) = \int_{\mathbb{R}} v g_{\varepsilon},$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

modelling a self-induced current

Introduction	Setting of the problem	The weakly connected case	The strongly connected case
00000000	00000	000	000000

Formal calculations

In terms of the Hopf-Cole transformation $g_{\varepsilon}=e^{\frac{\psi_{\varepsilon}}{\varepsilon}}$, we get

$$\partial_t \psi_{\varepsilon} = \left(1 - \varepsilon N'(v)\right) + \left(\varepsilon^{-1}(v - I^{\varepsilon}(t)) - N(v)\right) \partial_v \psi_{\varepsilon} + \varepsilon^{-1} |\partial_v \psi_{\varepsilon}|^2 + \partial_{vv}^2 \psi_{\varepsilon}$$

At the limit $\varepsilon \to 0$

$$0 = (v - I(t))\partial_v \psi(t, v) + |\partial_v \psi(t, v)|^2,$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

for some I(t) which is unfortunately unknown

Introduction	Setting of the problem	The weakly connected case	The strongly connected case
00000000	00000	000	000000

Formal calculations

In terms of the Hopf-Cole transformation $g_{\varepsilon}=e^{\frac{\psi_{\varepsilon}}{\varepsilon}}$, we get

$$\partial_t \psi_{\varepsilon} = \left(1 - \varepsilon N'(v)\right) + \left(\varepsilon^{-1}(v - I^{\varepsilon}(t)) - N(v)\right) \partial_v \psi_{\varepsilon} + \varepsilon^{-1} |\partial_v \psi_{\varepsilon}|^2 + \partial_{vv}^2 \psi_{\varepsilon}$$

At the limit $\varepsilon \to 0$

$$0 = (v - I(t))\partial_v \psi(t, v) + |\partial_v \psi(t, v)|^2,$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

for some I(t) which is unfortunately unknown

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

Some remarks

 However, previous equation can be explicitly solved, thus at the limit we expect to have

$$\psi(t,v) = -\frac{1}{2}(v - I(t))^2.$$

• Since $g_{\varepsilon} = e^{\frac{\varphi_{\varepsilon}}{\varepsilon}}$, we also expect that

 $\psi(t,v) \le 0.$

• The points where ψ equals 0 are very important since, once ε is small, the functions $g_{\varepsilon}(t, \cdot)$ are expected to concentrate around these points

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

Some remarks

• However, previous equation can be explicitly solved, thus at the limit we expect to have

$$\psi(t,v) = -\frac{1}{2}(v - I(t))^2.$$

 $\bullet~{\rm Since}~g_{\varepsilon}=e^{\frac{\psi_{\varepsilon}}{\varepsilon}}$, we also expect that

 $\psi(t,v) \le 0.$

• The points where ψ equals 0 are very important since, once ε is small, the functions $g_{\varepsilon}(t, \cdot)$ are expected to concentrate around these points

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

Some remarks

• However, previous equation can be explicitly solved, thus at the limit we expect to have

$$\psi(t,v) = -\frac{1}{2}(v - I(t))^2.$$

 $\bullet~{\rm Since}~g_{\varepsilon}=e^{\frac{\psi_{\varepsilon}}{\varepsilon}}$, we also expect that

 $\psi(t,v) \le 0.$

• The points where ψ equals 0 are very important since, once ε is small, the functions $g_{\varepsilon}(t, \cdot)$ are expected to concentrate around these points

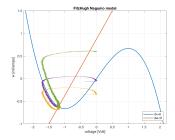
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

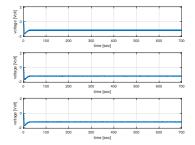
Setting of the problem 00000

The weakly connected case

The strongly connected case

Numerics on the Noisy-FhN model strongly connected





More?

▲ロト ▲暦 ト ▲臣 ト ▲臣 - ○へ⊙

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	0000000	

Final remark

In the 2-dimensional case, the limit remains a viscosity solution to

$$0 = (v - I(t))\partial_v \psi(t, v, w) + |\partial_v \psi(t, v, w)|^2.$$

Defining

$$\langle v \rangle_t = I(t) = \int_{\mathbb{R}^2} v f_t \qquad \langle x \rangle_t = \int_{\mathbb{R}^2} x f_t$$

we find that the pair $(\langle v \rangle_t, \langle x \rangle_t)$ is a solution to

$$d\langle v \rangle_t = \left(N(\langle v \rangle_t) - \langle x \rangle_t + I_0 \right) dt,$$

$$\tau d\langle x \rangle_t = \left(\langle v \rangle_t + a - b \langle x \rangle_t \right) dt,$$

i.e., to the FhN equation!

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	0000000	

Final remark

In the 2-dimensional case, the limit remains a viscosity solution to

$$0 = (v - I(t))\partial_v \psi(t, v, w) + |\partial_v \psi(t, v, w)|^2.$$

Defining

$$\langle v \rangle_t = I(t) = \int_{\mathbb{R}^2} v f_t \qquad \langle x \rangle_t = \int_{\mathbb{R}^2} x f_t$$

we find that the pair $(\langle v \rangle_t, \langle x \rangle_t)$ is a solution to

$$d\langle v \rangle_t = \left(N(\langle v \rangle_t) - \langle x \rangle_t + I_0 \right) dt,$$

$$\tau d\langle x \rangle_t = \left(\langle v \rangle_t + a - b \langle x \rangle_t \right) dt,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

i.e., to the FhN equation!

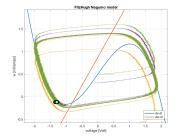
Setting of the problem 00000

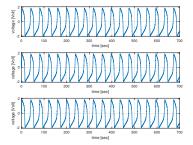
The weakly connected case 000

The strongly connected case

More

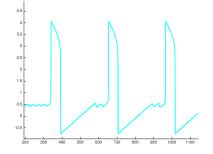
Numerics on the excited Noisy-FhN model strongly connected





◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	0000000	
MMO?				



Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

FitzHugh-Nagumo synaptic network

And if we consider a more complex model?

$$\begin{split} dv_t^i &= \left(N(v_t^i) - w_t^i + I_0 \right) dt + \sigma dW_t^i \\ &+ \frac{\varepsilon^{-1}}{n} \Big(g_E(v_t^i) \sum_{j=1}^n s_j^E - g_I(v_t^i) \sum_{j=1}^n s_j^I \Big) dt \\ dw_t^i &= \left(v_t^i + a - bw_t^i \right) \frac{dt}{\tau} \\ ds_t^i &= -s_t^i + \alpha(v_t^i) (1 - s_t^i). \end{split}$$

Condition:

$$\psi = \frac{1}{2} \left[g_E(v)^2 \overline{s}_E - g_I(v)^2 \overline{s}_I \right] \le 0,$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

i.e. the model might converge to a balanced network!

Introduction	Setting of the problem	The weakly connected case	The strongly connected case	More?
0000000	00000	000	000000	

FitzHugh-Nagumo synaptic network

And if we consider a more complex model?

$$\begin{split} dv_t^i &= \left(N(v_t^i) - w_t^i + I_0 \right) dt + \sigma dW_t^i \\ &+ \frac{\varepsilon^{-1}}{n} \Big(g_E(v_t^i) \sum_{j=1}^n s_j^E - g_I(v_t^i) \sum_{j=1}^n s_j^I \Big) dt \\ dw_t^i &= (v_t^i + a - bw_t^i) \frac{dt}{\tau} \\ ds_t^i &= -s_t^i + \alpha(v_t^i) (1 - s_t^i). \end{split}$$

Condition:

$$\psi = \frac{1}{2} \left[g_E(v)^2 \overline{s}_E - g_I(v)^2 \overline{s}_I \right] \le 0,$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

i.e. the model might converge to a balanced network!