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The ability to exploit and transform the environment is remarkable characteristic
nervous system

of humans and it has been well stablished that this ability is due to a very evolved

Principles of Neural Science, Kandel et al.(2000)
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A picture is worth a thousand words
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FitzHugh-Nagumo model

Simplification of the HH model conserving the most prominent aspects of it

av (N(V) —w + Io) dt,

dw 1(V—i—a—bw) dt,
T

where 7, a, b and Iy are constants, N(-) us a cubic function with negative leading
term.

Nature, Lond. Hodgkin & Huxley (1939)
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FitzHugh-Nagumo with noisy input
Consider the equation

dv

dw

= ( w—i—Io) dt + odWy,
1
;(V +a — bw) dt,
where o is a positive constant, and W; is a Brownian motion
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FitzHugh-Nagumo Network

o Consider n FhN neurons (vi, wi)¢>o0, ¢ = 1,



FitzHugh-Nagumo Network

o Consider n FhN neurons (vi, wi)¢>o0, ¢ = 1,.

LM
o Neurons interact through the difference of their potential.
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FitzHugh-Nagumo Network

o Consider n FhN neurons (vi, wi)¢>o0, ¢ = 1,.

LM
o Neurons interact through the difference of their potential.

==

n
R
ni4

o For simplicity, consider a fully connected network with synaptic weights /n
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FitzHugh-Nagumo noisy network

i
dUt =

Dynamics of each cell (vti,wf)tzo are then solution to the equations
n

(N(UZ) —w; + Io) dt — %z:l (vz —vf) dt + odW;
=
dw, = (vi+a—bw}) dt

RN Ge



Nonlinear SDE

Since interaction is linear, the system can be re-written by
{dvi

Tdwy

(N(v}) —wi + Io) dt —s(vf — L5 vi) dt + odW;
= (vi +a — bw}) dt,
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Nonlinear SDE

Since interaction is linear, the system can be re-written by
{dvi

Tdwy

(N(v}) —wi + Io) dt — 5(1;2 — L5 vf) dt + odW;
= (vi +a — bw}) dt,

and in the case n > 1, it is natural to consider the mean-field representation
dv =
Td’lflt

= (N(’l_)t) — Wt + Io) dt — E(’l_)t — ]E[Ut]) dt + O'th,
= ('l_)t +a— blflt)dt

o The passage micro/macro is due to the propagation of chaos property.
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Introduction Setting of the problem

The weakly connected case
00000000 [ele] lele]

The strongly connected case More?
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Nonlinear SDE

Since interaction is linear, the system can be re-written by
dv = (N(v}) — wi + Io) dtfs(v,f -1 ;’:1 vi) dt + cdW;
rdwi = (vi 4+ a — bw?)dt,

and in the case n > 1, it is natural to consider the mean-field representation

dvy = (N(¢) — W + Io) dt — (v — E[t¢]) dt + odW,
Tdw; = (V¢ + a — bwy)dt

o The passage micro/macro is due to the propagation of chaos property.

o Proof follows the coupling technique using nice a priori bounds to deal with
the cubic nonlinearity (Carrillo, Fournier, etc).



An equation is worth a thousand images
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FitzHugh-Nagumo mean-field equation

By using the Fokker-Planck equation, we finally find that the law f; of finding
neurones with voltage v and recovery variable w at time ¢, solves

2
Oufe = Qelfi)fo = Ou(Af)) + Bu(Belfilfo) + 00 fi
where A = (bw — a —v) /7,

Bs[g]:—N(v)+m—Io+6(v—/RQvg(w,U))
—_——

H(9)
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Consequences of the a priori bounds

sup

o Existence of solutions for any coupling value €. Uniqueness holds true when
initial conditions have finite partial entropy:

L aufP
sup R2flogf+/0/R2—f < o).
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Consequences of the a priori bounds

o Existence of solutions for any coupling value €. Uniqueness holds true when
initial conditions have finite partial entropy:
sup

L aufP
cup R2flogf+/0/Rz—f <o)

o Existence of stationary solutions, and uniqueness as a function of ¢ follows

from a Brouwer fixed point argument. In particular, for any € there is at
least one stationary solution.
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Stability results

On the variation h

integro-differential operator

= f — G., the FhN kinetic equation induces the linear
which is such that

Zeh = Qc[Gelh + ¢ 7 (h)0,Ge

(Qe[Ge] by h) 12 (m)

< KallhllL2mey — KallhllL2(m)
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Stability results

On the variation h

:= f — G, the FhN kinetic equation induces the linear
integro-differential operator

Zeh = Qc[Gelh + ¢ 7 (h)0,Ge
which is such that

(Qe[Ge] by h) 12 (m)

< KallhllL2mey — KallhllL2(m)
Consequences:

o Existence of stationary solutions, and uniqueness as a function of ¢, is a

consequence of some semigroup arguments [Mischler & Mouhout].
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Stability results
On the variation h := f — G., the FhN kinetic equation induces the linear
integro-differential operator

Loh = Q.[Gelh + & 7 (h)D,G-

which is such that

(Qe[Gel by M) p2(my < KallhllL2we) — KallhllL2(m)

Consequences:

o Existence of stationary solutions, and uniqueness as a function of ¢, is a
consequence of some semigroup arguments [Mischler & Mouhout].

o Spectral analysis and nonlinear convergence in the weak coupling regime
[Krein-Rutman + Duhamel’s formula].
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joffre, Barles, Perthame et al.

o The next problem is the characterisation of the system when ¢ is large.

o To understand this transition we use the Hamilton-Jacobi approach of Roque-

> We present the results for a simplified version of the equation (without the
w dependance) but they remain true in the general case.

«O» «F»r « =

Er <

>
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Beyond the weakly connected case
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o The next problem is the characterisation of the system when ¢ is large.
o To understand this transition we use the Hamilton-Jacobi approach of Roque-
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Beyond the weakly connected case

o The next problem is the characterisation of the system when ¢ is large.
joffre, Barles, Perthame et al.

o To understand this transition we use the Hamilton-Jacobi approach of Roque-

o We present the results for a simplified version of the equation (without the
w dependance) but they remain true in the general case.
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The simplified equation

For £ > 0, we are concerned with the behaviour of g.(t,v), solutions to the
equation

coupled with the variable

Buge = 0, ((—~ N(w) +&7 (0 = I (1) g + Dugt )

I;(t) = / VYe,
R
modelling a self-induced current
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In terms of the Hopf-Cole transformation g. = e = , we get
8t¢e =

(1—eN'(v) + (7 (v = I°(1)) = N(v)) Outbe + " |Oute|* + 85,0

«O» «Fr «=)r « =)
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In terms of the Hopf-Cole transformation g. = e = , we get
8t¢s =

(1=eN'(0)) + (7 (v = I°(t)) = N(v)) Buthe + ™" |0utpe|* + 5, ¢
At the limite — 0

0= (v—I(t)duih(t,v) + |Bub(t,v)[?,

for some I(t) which is unfortunately unknown

«O» «F»r « =

Er <
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Some remarks
expect to have

o However, previous equation can be explicitly solved, thus at the limit we
Since g- = ¢ O

$(t,0) = —3 (0 = 1(1))*

, we also expect that

b(t,v) < 0.

The points where v equals 0 are very important since, once ¢ is small, the
functions g.(t,-) are expected to concentrate around these points

RN Ge



Some remarks

o However, previous equation can be explicitly solved, thus at the limit we
expect to have
1
bltv) = —5 (0 = I(1)*,

o Since g. = e, we also expect that

P(t,v) <0.
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Some remarks

expect to have

o However, previous equation can be explicitly solved, thus at the limit we

1
bltv) = —5 (0 = I(1)*,
o Since g. = e, we also expect that
(t,v) < 0,

o The points where 1 equals O are very important since, once ¢ is small, the
functions g. (¢, -) are expected to concentrate around these points
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Final remark

In the 2-dimensional case, the limit remains a viscosity solution to

0= (v—1(t)But(t, v, w) + |Buib(t, v, w)|?.
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Final remark

In the 2-dimensional case, the limit remains a viscosity solution to
0 = (v — I(t))3utp(t, v, w) + |Butp(t, v, w) .
Defining

e=10= [ ofe  @e= [ on

we find that the pair ((v)¢, (z):) is a solution to

d(’U)t

Td{x): =
i.e., to the FhN equation!

(N((v)s) = (@): + Io) dt,
((v)e +a — b{x)e) dt,
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FitzHugh-Nagumo synaptic network

And if we consider a more complex model?

i
dvy

(N(v;) — wi + Io) dt + odW;

1 n n

€ i i

+=— (95 3 57 — gr(w)) > sh) e
n j=1 j=1

i i iy db
dw; = (vi+a— bwyi)
dsi =

—si 4+ a(v)(1 —si).
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FitzHugh-Nagumo synaptic network

And if we consider a more complex model?

dot (N(v;) — wi + Io) dt + odW;

1 n n
€ i i
+=— (95 3 57 — gr(w)) > sh) e
L j=1 g=1
dwi

i iy dt
(v +a — bwy)
dsi

—si 4+ a(v)(1 —si).
Condition:

1 _ _
V=3 [98(v)*5e — g1(v)*51] <0,
i.e. the model might converge to a balanced network!
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