Mean field models for neural networks with excitatory interactions

CRM Conference (Pisa)

François Delarue (Nice – J.-A. Dieudonné)

September 13-15 2017

Based on joint works with J. Inglis, S. Rubenthaler and E. Tanré

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Part I. Motivation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Part I. Motivation

a. General picture

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Basic purpose

• Provide a simple model for a neuronal network

 \circ with similar neurons

 \rightarrow focus on one single typical neuron

• choose a standard model for the dynamics of the typical neuron

 \rightarrow examples: diffusion process (with hard threshold), jump processes (with soft threshold)

• Use mean field assumption to describe interactions

• a neuron sees the others through the whole collectivity

 \circ global quantity of interest \rightsquigarrow global averaged firing rate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Basic purpose

• Provide a simple model for a neuronal network

 \circ with similar neurons

 \rightarrow focus on one single typical neuron

• choose a standard model for the dynamics of the typical neuron

 \rightarrow examples: diffusion process (with hard threshold), jump processes (with soft threshold)

• Use mean field assumption to describe interactions

• a neuron sees the others through the whole collectivity

 \circ global quantity of interest \rightsquigarrow global averaged firing rate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Excitatory feature

• if global averaged firing rate $\uparrow \Rightarrow$ each neuron is more likely to spike

• would make sense to regard inhibitory counterpart

• Mean field limit

 \circ derive the limit model as the number of neurons \uparrow

• expect propagation of chaos / LLN

• reduce the asymptotic analysis to one typical neuron with interaction with theoretical distribution?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Mean field limit

 \circ derive the limit model as the number of neurons \uparrow

• expect propagation of chaos / LLN

• reduce the asymptotic analysis to one typical neuron with interaction with theoretical distribution?

• Program

• existence and uniqueness of solutions to asymptotic model ? influence of the excitation?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• prove convergence of finite models

• Mean field limit

 \circ derive the limit model as the number of neurons \uparrow

• expect propagation of chaos / LLN

• reduce the asymptotic analysis to one typical neuron with interaction with theoretical distribution?

• Program

• existence and uniqueness of solutions to asymptotic model ? influence of the excitation?

• prove convergence of finite models

• Literature

↔ mean field integrate and fire [Lewis and Rinzel (03); Ostojic, Brunel and Hakim (09); Caceres, Carrillo, Perthame (11,14); DIRT; Inglis and Talay (16)]

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

• Mean field limit

 \circ derive the limit model as the number of neurons \uparrow

• expect propagation of chaos / LLN

• reduce the asymptotic analysis to one typical neuron with interaction with theoretical distribution?

• Program

• existence and uniqueness of solutions to asymptotic model ? influence of the excitation?

• prove convergence of finite models

• Literature

view mean field integrate and fire

↔ application to systemic risk [Hambly and Ledger (16), Nadotchiy and Shkolnikov (17)]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Mean field limit

 \circ derive the limit model as the number of neurons \uparrow

• expect propagation of chaos / LLN

• reduce the asymptotic analysis to one typical neuron with interaction with theoretical distribution?

• Program

• existence and uniqueness of solutions to asymptotic model ? influence of the excitation?

• prove convergence of finite models

• Literature

→ mean field integrate and fire

→ application to systemic risk

→ models without hard threshold [Fournier Löcherbach (16)], Hawks model of mean field types [Chevallier (16)]

Part I. Motivation

b. A general form for the finite network

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General LIF model for a single neuron

• Describe membrane potential of the neuron

 \rightsquigarrow neuron fires if membrane potential is high

several simple models

 \rightsquigarrow jump model with soft threshold \rightsquigarrow spike is more likely if potential is high

 \sim diffusive model with hard threshold \sim spike occurs if potential reaches a threshold

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

General LIF model for a single neuron

• Describe membrane potential of the neuron

 \rightsquigarrow neuron fires if membrane potential is high

several simple models

 \rightsquigarrow jump model with soft threshold \rightsquigarrow spike is more likely if potential is high

 \sim diffusive model with hard threshold \sim spike occurs if potential reaches a threshold

• Subthreshold dynamics

$$\frac{d}{dt}V_t = -\lambda V_t + I_t^{\text{int}} + I_t^{\text{ext}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\circ \lambda$ connected with properties of the membrane

- $\circ I^{\text{int}} \rightsquigarrow$ current due to interactions with other cells
- $\circ I^{\text{ext}} \rightsquigarrow$ collective effect due to external phenomena

General LIF model for a single neuron

• Describe membrane potential of the neuron

 \rightsquigarrow neuron fires if membrane potential is high

• Subthreshold dynamics

$$\frac{d}{dt}V_t = -\lambda V_t + I_t^{\text{int}} + I_t^{\text{ext}}$$

• λ connected with properties of the membrane • $I^{\text{int}} \rightarrow$ current due to interactions with other cells • $I^{\text{ext}} \rightarrow$ collective effect due to external phenomena

• Threshold \rightsquigarrow spike whenever V reaches firing value V_F

 $\tau = \inf\{t \ge 0 : V_t \ge V_F\}$

• after τ (no refractory period) \rightsquigarrow reset potential at $V_{\tau} = V_R$

Taken from W. Gerstner and W. Kistler, Spiking neuron models 2002/3→ → + E → → + E → → E → → - Q ←

Currents for connected neurons

• Label the neurons i = 1, ..., N

$$\frac{d}{dt}V_t^i = -\lambda V_t^i + I_t^{\text{int},i} + I_t^{\text{ext},i}$$

 $\circ N \rightsquigarrow$ number of neurons

Currents for connected neurons

• Label the neurons $i = 1, \ldots, N$

$$\frac{d}{dt}V_t^i = -\lambda V_t^i + I_t^{\text{int},i} + I_t^{\text{ext},i}$$

 $\circ N \rightarrow$ number of neurons

• Interaction current

$$I_t^{\text{int},i} = I^{\text{int}}(V_t^j, j \neq i)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• depends on the states of the other neurons

Currents for connected neurons

• Label the neurons $i = 1, \ldots, N$

$$\frac{d}{dt}V_t^i = -\lambda V_t^i + I_t^{\text{int},i} + I_t^{\text{ext},i}$$

 $\circ N \rightarrow$ number of neurons

• Interaction current

$$\boldsymbol{I}_t^{\text{int},i} = \boldsymbol{I}^{\text{int}}(\boldsymbol{V}_t^j, j \neq i)$$

• depends on the states of the other neurons

• External current

$$I_t^{\text{ext},i} = \text{mean-trend}_t^i + \text{noise}_t^i$$

• focus on the noise \rightsquigarrow noise^{*i*}_{*t*} = $(\dot{W}_t^i)_{t\geq 0}$ white noise

- \circ very strong assumption \rightarrow start with independent noises
- \circ may think of correlated cases as well \sim more complicated [HL]

Mean-field interaction

• Force symmetric interactions (no privileged interactions) • $I_t^{int}(V_t^j, j \neq i)$ depending on the empirical distribution

$$I_t^{\text{int}}(V^j, j \neq i) = I_t^{\text{int}}\left(N^{-1}\sum_{j\neq i}\delta_{V^j}\right)$$

• Subthreshold dynamics

$$dV_t^i = -\lambda V_t^i dt + I_t^{\text{int}} \left(N^{-1} \sum_{j \neq i} \delta_{V_t^j} \right) dt + dW_t^i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Mean-field interaction

• Force symmetric interactions (no privileged interactions) • $I_t^{int}(V_t^j, j \neq i)$ depending on the empirical distribution

$$I_t^{\text{int}}(V^j, j \neq i) = I_t^{\text{int}}\left(N^{-1}\sum_{j\neq i}\delta_{V^j}\right)$$

• Subthreshold dynamics

$$dV_t^i = -\lambda V_t^i dt + I_t^{\text{int}} \left(N^{-1} \sum_{j \neq i} \delta_{V_t^j} \right) dt + dW_t^i$$

• Asymptotic model when $N \to +\infty$? expect decorrelation between neurons as $N \to \infty$ + symmetry \Rightarrow expect averaging

$$I_t^{\text{int}}\left(\frac{1}{N}\sum_{j\neq i}\delta_{V_t^j}\right) \sim I_t^{\text{int}}(\mathcal{L}(V_t))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Mean-field interaction

• Force symmetric interactions (no privileged interactions) • $I_t^{int}(V_t^j, j \neq i)$ depending on the empirical distribution

$$I_t^{\text{int}}(V^j, j \neq i) = I_t^{\text{int}}\left(N^{-1}\sum_{j\neq i}\delta_{V^j}\right)$$

• Subthreshold dynamics

$$dV_t^i = -\lambda V_t^i dt + I_t^{\text{int}} \left(N^{-1} \sum_{j \neq i} \delta_{V_t^j} \right) dt + dW_t^i$$

• Asymptotic model when $N \to +\infty$? expect decorrelation between neurons as $N \to \infty +$ symmetry \Rightarrow expect averaging

$$I_t^{\text{int}}\left(\frac{1}{N}\sum_{j\neq i}\delta_{V_t^j}\right) \sim I_t^{\text{int}}(\mathcal{L}(V_t))$$

• Typical neuron interacts with its own law \sim McKean-Vlasov eq.

$$dV_t = -\lambda V_t dt + I_t^{\text{int}} (\mathcal{L}(V_t)) dt + dW_t$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Part I. Motivation

c. Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Choice of the interaction functional

• Frequently used model ([BH, IT])

$$\circ I_t^{\text{int}} \left(N^{-1} \sum_{j \neq i} \delta_{V^j} \right) \text{based on mean activity of the network} \\ \rightsquigarrow I_t^{\text{int}} \left(N^{-1} \sum_{j \neq i} \delta_{V^j} \right) \text{function of } \frac{1}{N} \# \{ \text{spikes} \le t \} \\ \\ \text{ } \Rightarrow \text{ if function is } \left\{ \begin{array}{c} \uparrow \\ \downarrow \end{array} \right. \Rightarrow \begin{array}{c} \text{excitation} \\ \text{inhibition} \end{array}$$

● Other version (see [OBH, DIRT, NS]) → interactions

replace interaction currents by interaction pulses

$$I_{t}^{\text{int}}(V^{j}, j \neq i) = \frac{d}{dt} \frac{\alpha}{N} \sum_{j \neq i} \mathbf{1}_{\{V_{t-}^{j} = V_{F}\}}$$
$$= \frac{d}{dt} \frac{\alpha}{N} \sharp \{\text{spiking neurons } \neq i \text{ at } t\}$$

 $\circ \alpha > 0 \Leftrightarrow$ instantaneous self-excitatory interaction

• Replace spikes by defaults ~> systemic risk in economy [BH,NS]

Picture for neuronal model

• For $V_F = 1$ and $V_R = -1$ threshold is zero

Picture for systemic risk model

• Consider V_F minus the potential \sim threshold is zero

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

Part II. Limiting model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Part II. Limiting model

a. Standard McKV equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A non-singular particle system

• Forget the spikes and focus on standard dynamics

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N) dt + \sigma(X_t^i, \bar{\mu}_t^N) dW_t^i$$

$$\circ X_0^1, \dots, X_N^i$$
 i.i.d. (and \bot of noises), $\overline{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$

• \exists ! if the coefficients are Lipschitz in all the variables \rightsquigarrow need a suitable distance on space of measures

A non-singular particle system

• Forget the spikes and focus on standard dynamics

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N) dt + \sigma(X_t^i, \bar{\mu}_t^N) dW_t^i$$

$$\circ X_0^1, \dots, X_N^i$$
 i.i.d. (and \bot of noises), $\overline{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$

- \exists ! if the coefficients are Lipschitz in all the variables \rightsquigarrow need a suitable distance on space of measures
- Use the Wasserstein distance on $\mathcal{P}_2(\mathbb{R}^d)$

$$\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d), \quad W_2(\mu, \nu) = \left(\inf_{\pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 d\pi(x, y)\right)^{1/2},$$

where π has μ and ν as marginals on $\mathbb{R}^d \times \mathbb{R}^d$

• X and X' two r.v.'s \Rightarrow $W_2(\mathcal{L}(X), \mathcal{L}(X')) \le \mathbb{E}[|X - X'|^2]^{1/2}$

• Example
$$W_2\left(\frac{1}{N}\sum_{i=1}^N \delta_{x_i}, \frac{1}{N}\sum_{i=1}^N \delta_{x'_i}\right) \le \left(\frac{1}{N}\sum_{i=1}^N |x_i - x'_i|^2\right)^{1/2}$$

200

McKean-Vlasov SDE

• Expect some decorrelation / averaging in the system as $N \uparrow \infty$

 \circ replace the empirical measure by the theoretical law

 $dX_t = b(X_t, \mathcal{L}(X_t))dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$

• Cauchy-Lipschitz theory

 \circ assume *b* and σ Lipschitz continuous on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \Rightarrow$ unique solution for any given initial condition in L^2

• proof works as in the standard case taking advantage of $\mathbb{E}\left[\left|(b,\sigma)(X_t,\mathcal{L}(X_t)) - (b,\sigma)(X'_t,\mathcal{L}(X'_t))\right|^2\right] \le C\mathbb{E}\left[|X_t - X'_t|^2\right]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

McKean-Vlasov SDE

• Expect some decorrelation / averaging in the system as $N \uparrow \infty$

o replace the empirical measure by the theoretical law

 $dX_t = b(X_t, \mathcal{L}(X_t))dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$

• Cauchy-Lipschitz theory

 \circ assume *b* and σ Lipschitz continuous on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \Rightarrow$ unique solution for any given initial condition in L^2

• proof works as in the standard case taking advantage of $\mathbb{E}\left[\left|(b,\sigma)(X_t,\mathcal{L}(X_t)) - (b,\sigma)(X'_t,\mathcal{L}(X'_t))\right|^2\right] \le C\mathbb{E}\left[|X_t - X'_t|^2\right]$

• Propagation of chaos

• each $(X_t^i)_{0 \le t \le T}$ converges in law to the solution of MKV SDE • particles get independent in the limit \rightsquigarrow for *k* fixed:

$$(X_t^1, \dots, X_t^k)_{0 \le t \le T} \xrightarrow{\mathcal{L}} \mathcal{L}(\mathrm{MKV})^{\otimes k} = \mathcal{L}((X_t)_{0 \le t \le T})^{\otimes k} \text{ as } N \nearrow \infty$$

$$\circ \lim_{N \nearrow \infty} \sup_{0 \le t \le T} \mathbb{E}[(W_2(\bar{\mu}_t^N, \mathcal{L}(X_t))^2] = 0$$

Part II. Limiting model

b. Formulation of the asymptotic problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ansatz

• Recall the subthreshold dynamics of the finite network

$$V_t^i = V_0^i - \lambda \int_0^t V_s^i ds + \frac{\alpha}{N} \sum_{j \neq i} \#\{\text{neuron}(j) \text{ spiked before } t\} + W_t^i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Ansatz

• Recall the subthreshold dynamics of the finite network

$$V_t^i = V_0^i - \lambda \int_0^t V_s^i ds + \frac{\alpha}{N} \sum_{j \neq i} \#\{\text{neuron}(j) \text{ spiked before } t\} + W_t^i$$

• Heuristics \rightsquigarrow same formal reasoning as for a regular interaction current

$$I_t^{\text{int}}(V^j, j \neq i) \underset{N \to +\infty}{\sim} \alpha \mathbb{E}(\boldsymbol{M}_t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

 $\circ M_t$ = number of spikes for typical neuron up to t

Ansatz

• Recall the subthreshold dynamics of the finite network

$$V_t^i = V_0^i - \lambda \int_0^t V_s^i ds + \frac{\alpha}{N} \sum_{j \neq i} \#\{\text{neuron}(j) \text{ spiked before } t\} + W_t^i$$

• Heuristics \rightsquigarrow same formal reasoning as for a regular interaction current

$$I_t^{\text{int}}(V^j, j \neq i) \underset{N \to +\infty}{\sim} \alpha \mathbb{E}(\boldsymbol{M}_t)$$

• M_t = number of spikes for typical neuron up to t

• Subthreshold dynamics for typical neuron as $N \to \infty$

$$V_t = V_0 - \lambda \int_0^t V_s ds + \alpha \mathbb{E}(M_t) + W_t$$

 $\circ M_t = \sharp \{t \ge 0 : V_{t-} = V_F\} \text{ depends on } V!$

• Typical non-singular interactions $\int_0^t b(\mathbb{E}(M_s)) ds$ [BH,IT]; see also MFG [Campi,Fischer]

Interpretation of the mean-field interaction

• Subthreshold dynamics

$$V_t = V_0 - \lambda \int_0^t V_s ds + \alpha \mathbb{E}(M_t) + W_t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• firing value $V_F = 1$, reset (after spiking) $V_R = 0$

Interpretation of the mean-field interaction

• Subthreshold dynamics

$$V_t = V_0 - \lambda \int_0^t V_s ds + \alpha \mathbb{E}(M_t) + W_t$$

• firing value $V_F = 1$, reset (after spiking) $V_R = 0$

• Crucial question: what class of admissible solutions ?

◦ class of solutions dictates regularity for $\mathbb{E}(M_t)$ → physical interpretation?

 $\mathbb{E}(M_{t+h} - M_t)$ ~_{N=\infty} probability of spike in [t, t + h] ~_{N<\infty} proportion of spikes in [t, t + h]

 $\circ \mathbb{E}(M_t)$ is allowed to jump $\leftrightarrow \rightarrow$ large proportion of neurons may spike at the same time

• may stand for massive simultaneous spikes in the system
Instantaneous firing rate

• Meaning for requiring $e : t \mapsto \mathbb{E}(M_t)$ to be differentiable?

probability of spike in $[t, t + h] \sim e'(t)h$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\circ e' \iff$ instantaneous firing rate

Instantaneous firing rate

• Meaning for requiring $e : t \mapsto \mathbb{E}(M_t)$ to be differentiable?

probability of spike in $[t, t + h] \sim \frac{e'(t)h}{h}$

 $\circ e' \iff$ instantaneous firing rate

• Subthreshold dynamics if differentiability

$$dV_t = -\lambda V_t dt - \alpha e'(t) dt + dW_t$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◦ SDE \rightsquigarrow stochastic calculus and regularizing effect ◦ $\mathbb{P}(V_t \in dy) = p(t, y)dy, \quad t > 0, \quad y < 1$

Instantaneous firing rate

• Meaning for requiring $e : t \mapsto \mathbb{E}(M_t)$ to be differentiable?

probability of spike in $[t, t + h] \sim \frac{e'(t)h}{h}$

 $\circ e' \iff$ instantaneous firing rate

• Subthreshold dynamics if differentiability

$$dV_t = -\lambda V_t dt - \alpha e'(t) dt + dW_t$$

 \circ SDE \rightarrow stochastic calculus and regularizing effect

 $\circ \mathbb{P}(V_t \in dy) = p(t, y)dy, \quad t > 0, \quad y < 1$

• Fokker Planck equation

$$\partial_t p(t, y) + \partial_y [(-\lambda y + \alpha e'(t))p(t, y)] - \frac{1}{2} \partial_{yy}^2 p(t, y) = e'(t)\delta_0$$

•
$$p(t, 1) = 0$$
 and $\partial_y p(t, 1) = -\frac{1}{2}e'(t)$

• control of $e' \Leftrightarrow$ control of the mass near 1

Part II. Limiting model

c. The need for $\alpha < 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cascade phenomenon

• Difficulty α will dictate the smoothness of *e*! Cascade phenomenon in the modeling if $\alpha > 1$!

• Example: runaway behavior if reset $(V_R = 0, V_F = 1) \rightarrow \text{plot}$ V_F -potential

• choose N + 1 neurons, $\alpha = (N + 1)/N$ and $V_0^i = i/N$, $i = 0, \dots, N$,

o particles keep jumping!

 $\circ \alpha < (N+1)/N \Rightarrow$ no way for defaulting twice at same time

æ

Reformulating the limiting model

• Convenient to reformulate solutions ~> unknown without reset

$$\mathbf{Z}_t = V_t + \mathbf{M}_t$$

 $\circ M_t = \sharp$ different positive integers crossed by $(Z_s)_{0 \le s \le t}$

$$M_t = \left\lfloor (\sup_{0 \le s \le t} \mathbf{Z}_s)_+ \right\rfloor$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reformulating the limiting model

• Convenient to reformulate solutions \rightsquigarrow unknown without reset

$$\mathbf{Z}_t = V_t + \mathbf{M}_t$$

 $\circ M_t = \sharp$ different positive integers crossed by $(Z_s)_{0 \le s \le t}$

$$M_t = \left\lfloor (\sup_{0 \le s \le t} \mathbf{Z}_s)_+ \right\rfloor$$

• Dynamics of $(\mathbf{Z}_t)_{t\geq 0}$

$$\mathbf{Z}_t = Z_0 - \lambda \int_0^t (\mathbf{Z}_s - \mathbf{M}_s) ds + \alpha \mathbb{E}(\mathbf{M}_t) + W_t, \qquad Z_0 = V_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Reformulating the limiting model

• Convenient to reformulate solutions ~> unknown without reset

$$\mathbf{Z}_t = V_t + \mathbf{M}_t$$

 $\circ M_t =$ different positive integers crossed by $(Z_s)_{0 \le s \le t}$

$$M_t = \left\lfloor (\sup_{0 \le s \le t} \mathbf{Z}_s)_+ \right\rfloor$$

• Dynamics of $(\mathbf{Z}_t)_{t\geq 0}$

$$Z_t = Z_0 - \lambda \int_0^t (Z_s - M_s) ds + \alpha \mathbb{E}(M_t) + W_t, \qquad Z_0 = V_0$$

• Application

 $(\sup_{0\leq s\leq t}Z_s)_+$

$$\leq (Z_0)_+ + 2|\lambda| \int_0^t (\sup_{0 \le r \le s} Z_r)_+ ds + \alpha \mathbb{E}[(\sup_{0 \le s \le t} Z_s)_+] + \sup_{0 \le s \le t} |W_s|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\circ \alpha < 1$ needed to get an *a priori* bound

Part II. Limiting model

c. Solvability results

• Existence of regular solutions in arbitrary time?

• avoid blow-up of *e*' in finite time?

 $\circ \Leftrightarrow$ avoid massive spikes?

- Existence of regular solutions in arbitrary time?
 avoid blow-up of *e'* in finite time?
 - $\circ \Leftrightarrow$ avoid massive spikes?
- Caceres, Carrillo, Perthame

• for any $\alpha > 0$, $\exists V_0 > 0$ such that blow-up in finite time!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Existence of regular solutions in arbitrary time?
avoid blow-up of e' in finite time?

 $\circ \Leftrightarrow$ avoid massive spikes?

• Caceres, Carrillo, Perthame

• for any $\alpha > 0$, $\exists V_0 > 0$ such that blow-up in finite time!

• D., Inglis, Rubenthaler and Tanré (AAP)

o for V₀ < 1, ∃! solution without blow-up for *α* small enough
o explicit (but non-optimal) bounds on critical values *α*

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Existence of regular solutions in arbitrary time?
 o avoid blow-up of e' in finite time?
 - $\circ \Leftrightarrow$ avoid massive spikes?
- Caceres, Carrillo, Perthame

• for any $\alpha > 0$, $\exists V_0 > 0$ such that blow-up in finite time!

• D., Inglis, Rubenthaler and Tanré (AAP)

o for V₀ < 1, ∃! solution without blow-up for *α* small enough
o explicit (but non-optimal) bounds on critical values *α*

- Brownian example: λ = 0 and V₀ = 0.8 (V_F = 1, V_R = 0)
 c existence of regular solutions if α ≤ 0.10
 c no regular solutions if α ≥ 0.54
 c numerically, critical value ~ 0.38...
- Exemple O-U $\lambda \to \infty \Rightarrow$ critical $\alpha \to 1$ ($\Leftrightarrow \lambda$ fixed and $\sigma \to 0$)

Illustration

- Need a general notion of solutions with blow-up
 - existence is known [DIRT], uniqueness is partial only [NS]

王

Lower bound for criticality

Figure: Plot of $\alpha_0(0)$ in terms of $\lambda \in [0; 80]$.

Figure: Plot of $\alpha_0(0)$ in terms of $\lambda \in [0; 10]$.

200

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ □

Part II. Limiting model

e. Existence of a blow-up for $\alpha \gg 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Choose $V_0 = v_0$ and $\lambda = 0$ to simplify
- Compute Laplace transform of potential

 $z(t) = \mathbb{E}[\exp(\mu V_t)], \quad \text{for } \mu > 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Choose $V_0 = v_0$ and $\lambda = 0$ to simplify
- Compute Laplace transform of potential

 $z(t) = \mathbb{E}[\exp(\mu V_t)], \quad \text{for } \mu > 0$

• provided $e(t) = \mathbb{E}[M_t]$ is differentiable \rightsquigarrow Itô's formula yields

$$\frac{d}{dt}z(t) = \underbrace{\left[\alpha\mu e'(t) + \frac{\mu^2}{2}\right]}_{\eta(t)} z(t) + \underbrace{\left[1 - \exp(\mu)\right]e'(t)}_{\nu(t)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Choose $V_0 = v_0$ and $\lambda = 0$ to simplify

0

Compute Laplace transform of potential

$$z(t) = \mathbb{E}[\exp(\mu V_t)], \quad \text{for } \mu > 0$$

• provided $e(t) = \mathbb{E}[M_t]$ is differentiable \rightsquigarrow Itô's formula yields

$$\frac{d}{dt}z(t) = \underbrace{\left[\alpha\mu e'(t) + \frac{\mu^2}{2}\right]}_{\eta(t)} z(t) + \underbrace{\left[1 - \exp(\mu)\right]e'(t)}_{\nu(t)}$$

• solve the ODE and use $\underbrace{z(t) \leq \exp(\mu)}_{z(0) - \int_0^t \nu(s) \exp\left(-\int_0^s \eta(u)du\right)ds} \le 1$
 $\Rightarrow \det t \text{ tend to } \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Choose $V_0 = v_0$ and $\lambda = 0$ to simplify
- Compute Laplace transform of potential

 $z(t) = \mathbb{E}[\exp(\mu V_t)], \quad \text{for } \mu > 0$

• provided $e(t) = \mathbb{E}[M_t]$ is differentiable \rightsquigarrow Itô's formula yields

$$\frac{d}{dt}z(t) = \underbrace{\left[\alpha\mu e'(t) + \frac{\mu^2}{2}\right]}_{\eta(t)} z(t) + \underbrace{\left[1 - \exp(\mu)\right]e'(t)}_{\nu(t)}$$

• solve the ODE and use $z(t) \le \exp(\mu)$

$$0 = z(0) - \int_0^\infty v(s) \exp\left(-\int_0^s \eta(u) du\right) ds$$

integrate explicitly

$$1 - \frac{\alpha\mu\exp(\mu\nu_0)}{\exp(\mu) - 1} = \frac{\mu^2}{2} \int_0^\infty \exp\left(-\alpha\mu e(s) - \frac{\mu^2}{2}s\right) ds \ge 0$$

Part III. Solving the model for $\alpha \ll 1$

a. General plan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Difficulty: competition between noise and mean-field

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

 $e \in C^1([0,T])$

• where $dV_t = -\lambda V_t dt + \alpha e'(t) dt + dW_t$ before spike

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

$$e \in C^1([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E}\left(\sum_{s \le t} \mathbf{1}_{\{V_{s-}=1\}}\right) \right)_{0 \le t \le T}$$

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

• Picard's fixed point argument

$$e \in C^{1}([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E} \left(\sum_{s \le t} \mathbf{1}_{\{V_{s-}=1\}} \right) \right)_{0 \le t \le T}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

o if ¹/_{dy} P(V₀ ∈ dy) ≤ β(1 − y) for y ∈ (1 − ε, 1)
⇒ existence and uniqueness on [0, T*(α, β, ε)]
◦ Picard's fixed point argument

$$e \in C^{1}([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E} \left(\sum_{s \leq t} \mathbf{1}_{\{V_{s-}=1\}} \right) \right)_{0 \leq t \leq T}$$

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• estimate of

$$\frac{1}{dy}\mathbb{P}(V_{T^{\star}} \in dy) \quad \text{and iteration}$$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

 \Rightarrow existence and uniqueness on $[0, T^{\star}(\alpha, \beta, \varepsilon)]$

• Picard's fixed point argument

$$e \in C^1([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E} \left(\sum_{s \le t} \mathbf{1}_{\{V_{s-}=1\}} \right) \right)_{0 \le t \le T}$$

• Fix *e* and consider $dV_t^e = -\lambda V_t^e dt + \alpha e'(t)dt + dW_t$ before spike

 $\circ \tau_k^e = k^{\text{th}}$ hitting time of 1

- Fix *e* and consider $dV_t^e = -\lambda V_t^e dt + \alpha e'(t)dt + dW_t$ before spike • $\tau_L^e = k^{\text{th}}$ hitting time of 1
- Use first Markov property to refresh after reset

$$\Gamma(e)(t) = \sum_{k\geq 1} \int_0^t \mathbb{P}(\tau_1^{e^{\sharp_s}} \le t - s | X_0^{e^{\sharp_s}} = 0) \mathbb{P}(\tau_k^e \in ds) + \mathbb{P}(\tau_1^e \le t)$$

 $\rightsquigarrow e^{\sharp_s}$ stands for the mapping $[0, T - s] \ni t \mapsto e(t + s) - e(s)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Fix *e* and consider $dV_t^e = -\lambda V_t^e dt + \alpha e'(t)dt + dW_t$ before spike • $\tau_k^e = k^{\text{th}}$ hitting time of 1
- Use first Markov property to refresh after reset

$$\Gamma(e)(t) = \sum_{k\geq 1} \int_0^t \mathbb{P}(\tau_1^{e^{\sharp_s}} \le t - s | X_0^{e^{\sharp_s}} = 0) \mathbb{P}(\tau_k^e \in ds) + \mathbb{P}(\tau_1^e \le t)$$

 $\rightsquigarrow e^{\sharp_s}$ stands for the mapping $[0, T - s] \ni t \mapsto e(t + s) - e(s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Use Fokker-Planck for $p^e(t, y) = \frac{d}{dy} \mathbb{P}(V_t^e \in dy, t < \tau_1)$

$$\circ \partial_t p^e(t, y) + \partial_y [(-\lambda y + \alpha e'(t))p^e(t, y)] - \frac{1}{2} \partial_{yy}^2 p^e(t, y) = 0$$

$$\sim p^e(t, 1) = 0$$

$$\circ \frac{d}{dt} \mathbb{P}(\tau_1^e \le t) = -\frac{1}{2} \partial_y p^e(t, 1)$$

- Fix *e* and consider $dV_t^e = -\lambda V_t^e dt + \alpha e'(t)dt + dW_t$ before spike • $\tau_L^e = k^{\text{th}}$ hitting time of 1
- Use first Markov property to refresh after reset

$$\Gamma(e)(t) = \sum_{k\geq 1} \int_0^t \mathbb{P}(\tau_1^{e^{\sharp s}} \le t - s | X_0^{e^{\sharp s}} = 0) \mathbb{P}(\tau_k^e \in ds) + \mathbb{P}(\tau_1^e \le t)$$

 $\rightsquigarrow e^{\sharp_s}$ stands for the mapping $[0, T - s] \ni t \mapsto e(t + s) - e(s)$

• Use Fokker-Planck for
$$p^e(t, y) = \frac{d}{dy} \mathbb{P}(V_t^e \in dy, t < \tau_1)$$

$$\circ \frac{d}{dt} \mathbb{P}(\tau_1^e \le t) = -\frac{1}{2} \partial_y p^e(t, 1)$$

• Use parametrix when $V_0 = v_0 < 1$

$$p^{e}(t, y) = q(t, v_{0}, y) - \int_{0}^{t} \int_{-\infty}^{1} (\alpha e'(s) - \lambda) \partial_{z} p e(s, z) q(t - s, z, y) dz ds$$

$$\rightsquigarrow q = p^{0} \text{ for } e = 0 \text{ and } \operatorname{drit} -\lambda(y - 1)$$

- Fix *e* and consider $dV_t^e = -\lambda V_t^e dt + \alpha e'(t)dt + dW_t$ before spike • $\tau_k^e = k^{\text{th}}$ hitting time of 1
- Use first Markov property to refresh after reset

$$\Gamma(e)(t) = \sum_{k \ge 1} \int_0^t \mathbb{P}(\tau_1^{e^{\sharp s}} \le t - s | X_0^{e^{\sharp s}} = 0) \mathbb{P}(\tau_k^e \in ds) + \mathbb{P}(\tau_1^e \le t)$$

 $\rightsquigarrow e^{\sharp_s}$ stands for the mapping $[0, T - s] \ni t \mapsto e(t + s) - e(s)$

• Use Fokker-Planck for $p^e(t, y) = \frac{d}{dy} \mathbb{P}(V_t^e \in dy, t < \tau_1)$

$$\circ \frac{d}{dt} \mathbb{P}(\tau_1^e \le t) = -\frac{1}{2} \partial_y p^e(t, 1)$$

• Use parametrix when $V_0 = v_0 < 1$

$$p^{e}(t,y) = q(t,v_{0},y) - \int_{0}^{t} \int_{-\infty}^{1} \left(\alpha e'(s) - \lambda\right) \partial_{z} p e(s,z) q(t-s,z,y) dz ds$$

• use $p^e(0, y) \leq \beta(1 - y)$ to control $\partial_z p^e(s, z)$

Part III. Solving the model for $\alpha \ll 1$

b. From small to arbitrary time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Difficulty: competition between noise and mean-field
- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

 $e \in C^1([0,T])$

• where $dV_t = b(V_t)dt + \alpha e'(t)dt + dW_t$ before spike

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

$$e \in C^1([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E}\left(\sum_{s \le t} \mathbf{1}_{\{V_{s-}=1\}}\right) \right)_{0 \le t \le T}$$

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

• Picard's fixed point argument

$$e \in C^{1}([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E} \left(\sum_{s \leq t} \mathbf{1}_{\{V_{s-}=1\}} \right) \right)_{0 \leq t \leq T}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• Short time result

o if ¹/_{dy} P(V₀ ∈ dy) ≤ β(1 − y) for y ∈ (1 − ε, 1)
⇒ existence and uniqueness on [0, T^{*}(α, β, ε)]
◦ Picard's fixed point argument

$$e \in C^{1}([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E} \left(\sum_{s \leq t} \mathbf{1}_{\{V_{s-}=1\}} \right) \right)_{0 \leq t \leq T}$$

- Difficulty: competition between noise and mean-field
- Typical scheme for nonlinear models

• existence and uniqueness in short time on $[0, T^{\star}]$

• estimate of

$$\frac{1}{dy}\mathbb{P}(V_{T^{\star}} \in dy) \quad \text{and iteration}$$

• Short time result

• if
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$
 for $y \in (1-\varepsilon, 1)$

 \Rightarrow existence and uniqueness on $[0, T^{\star}(\alpha, \beta, \varepsilon)]$

• Picard's fixed point argument

$$e \in C^1([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E} \left(\sum_{s \le t} \mathbf{1}_{\{V_{s-}=1\}} \right) \right)_{0 \le t \le T}$$

• Assume \exists solution with $e \in C^1$ on [0, T]

• where $dV_t = b(V_t)dt + \alpha e'(t)dt + dW_t$ before spike

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• with reset after spike

• Assume \exists solution with $e \in C^1$ on [0, T]

• where $dV_t = b(V_t)dt + \alpha e'(t)dt + dW_t$ before spike

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• with reset after spike

• Four steps to get $\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$

• Assume \exists solution with $e \in C^1$ on [0, T]

• where $dV_t = b(V_t)dt + \alpha e'(t)dt + dW_t$ before spike

• with reset after spike

• Four steps to get $\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$ • bound for $p(t, y) = \mathbb{P}(V_t \in dy)/dy$

• Bound of p(t, y)

o rough bound using (non-killed) Gaussian kernels

$$V_0 > \varepsilon \Rightarrow p(t, y) \le C(\varepsilon, \alpha), \quad y \in (0, \varepsilon/4)$$

• very bad (can't see p(t, 1) = 0) but explicit

• Assume \exists solution with $e \in C^1$ on [0, T]

• where $dV_t = b(V_t)dt + \alpha e'(t)dt + dW_t$ before spike

• with reset after spike

• Four steps to get
$$\frac{1}{dy} \mathbb{P}(V_0 \in dy) \le \beta(1-y)$$

◦ **bound** for $p(t, y) = \mathbb{P}(V_t \in dy)/dy$

 \circ 1/2 Hölder bound for *e*

 \circ Hölder regularity of p(t, y) in y

• Lipschitz regularity of p(t, y) in y

• Bound of p(t, y)

o rough bound using (non-killed) Gaussian kernels

$$V_0 > \varepsilon \Rightarrow p(t, y) \le C(\varepsilon, \alpha), \quad y \in (0, \varepsilon/4)$$

• very bad (can't see p(t, 1) = 0) but explicit

Part III. Solving the model for $\alpha \ll 1$

c. Implementing the rough bound for p

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Continuity of *e*

• Condition for continuity of *e*?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Continuity of *e*

• Condition for continuity of *e*?

 $\Delta e(t) = e(t) - e(t-) = 0$ $\Leftrightarrow \exists \delta_n \downarrow 0 : \underbrace{\text{kick due to particles in } [0, \delta_n]}_{\alpha \int_0^{\delta_n} p(t-, y) dy} < \delta_n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• if $p(t, y) < 1/\alpha$ for $y \in [0, \varepsilon)$ then e(t) = e(t-)

Continuity of e

• Condition for continuity of *e*?

 $\Delta e(t) = e(t) - e(t-) = 0$

 $\Leftrightarrow \exists \delta_n \downarrow 0 : \underbrace{\text{kick due to particles in } [0, \delta_n]}_{\alpha \int_0^{\delta_n} p(t-, y) dy} < \delta_n$

• if $p(t, y) < 1/\alpha$ for $y \in [0, \varepsilon)$ then e(t) = e(t-)

• Application \Rightarrow implement the bound $p(t, y) \leq C(\varepsilon, \alpha)$

• if $C(\varepsilon, \alpha)\alpha < 1$ then continuity of *e*

• provides the condition α small!

• continuity dictated by Brownian: e 1/2-Hölder

• Recall Dirichlet condition p(t, 1) = 0

∘ *p* satisfies Fokker-Planck → Feynman-Kac

$$p(T, y) = \mathbb{E}\Big[p(T - \rho, \mathbf{Y}_{\rho}) \exp(\lambda \rho) \Big| \mathbf{Y}_{0} = y\Big]$$

• where $dY_t = \lambda Y_t dt - \alpha e'(T-t)dt + dW_t$

 $\circ \rho = \inf\{t \ge 0 : Y_t \notin (1 - \delta, 1)\} \land T \quad \text{(don't see the reset)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Recall Dirichlet condition p(t, 1) = 0

∘ *p* satisfies Fokker-Planck → Feynman-Kac

$$p(T, y) = \mathbb{E}\left[p(T - \rho, \mathbf{Y}_{\rho}) \exp(\lambda \rho) | \mathbf{Y}_{0} = y\right]$$

• where $dY_t = \lambda Y_t dt - \alpha e'(T-t)dt + dW_t$

 $\circ \rho = \inf\{t \ge 0 : Y_t \notin (1 - \delta, 1)\} \land T \quad \text{(don't see the reset)}$

• Regularity of *p* at the boundary $\leftrightarrow \mathbb{P}\{Y_{\rho} = 1\}$

$$p(T, y) \le C\mathbb{P}(\{Y_{\rho} = 1 - \delta\} \cup \{\rho = T\}) \sup_{t \in [0, T], x \in [1 - \delta, 1]} p(t, x)$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - の々で

- Recall Dirichlet condition p(t, 1) = 0
 - ∘ *p* satisfies Fokker-Planck → Feynman-Kac

$$p(T, y) = \mathbb{E}\left[p(T - \rho, \mathbf{Y}_{\rho}) \exp(\lambda \rho) | \mathbf{Y}_{0} = y\right]$$

• where $dY_t = \lambda Y_t dt - \alpha e'(T-t)dt + dW_t$

- $\circ \rho = \inf\{t \ge 0 : Y_t \notin (1 \delta, 1)\} \land T \quad \text{(don't see the reset)}$
- Regularity of *p* at the boundary $\leftrightarrow \mathbb{P}\{Y_{\rho} = 1\}$

$$p(T, y) \le C\mathbb{P}(\{Y_{\rho} = 1 - \delta\} \cup \{\rho = T\}) \sup_{t \in [0, T]_{*} \times \in [1 - \delta, 1]} p(t, x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• Probability to hit the boundary

• competition between *B* and *e*

 $\rightsquigarrow e$ pushes *Y* away from 1

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ≧ ∽のへで

- Recall Dirichlet condition p(t, 1) = 0
 - ∘ *p* satisfies Fokker-Planck → Feynman-Kac

$$p(T, y) = \mathbb{E}\left[p(T - \rho, \mathbf{Y}_{\rho}) \exp(\lambda \rho) | \mathbf{Y}_{0} = y\right]$$

• where $dY_t = \lambda Y_t dt - \alpha e'(T-t)dt + dW_t$

- $\circ \rho = \inf\{t \ge 0 : Y_t \notin (1 \delta, 1)\} \land T \quad \text{(don't see the reset)}$
- Regularity of *p* at the boundary $\leftrightarrow \mathbb{P}\{Y_{\rho} = 1\}$

$$p(T, y) \le C\mathbb{P}(\{Y_{\rho} = 1 - \delta\} \cup \{\rho = T\}) \sup_{t \in [0, T], x \in [1 - \delta, 1]} p(t, x)$$

• Probability to hit the boundary

 \circ competition between *B* and *e*

 $\rightsquigarrow e$ pushes *Y* away from 1

 $\circ e 1/2$ Hölder $\Rightarrow B$ wins with >0 probability

 $\circ y > 1 - \delta/2$ and $\delta \ll 1 \Rightarrow p(T, y) \le (1 - c) \sup_{t \in [0, T], x \ge 1 - \delta} p(t, x)$

- Recall Dirichlet condition p(t, 1) = 0
 - ∘ *p* satisfies Fokker-Planck → Feynman-Kac

$$p(T, y) = \mathbb{E}\left[p(T - \rho, \mathbf{Y}_{\rho}) \exp(\lambda \rho) | \mathbf{Y}_{0} = y\right]$$

• where $dY_t = \lambda Y_t dt - \alpha e'(T-t)dt + dW_t$

- $\circ \rho = \inf\{t \ge 0 : Y_t \notin (1 \delta, 1)\} \land T \quad \text{(don't see the reset)}$
- Regularity of *p* at the boundary $\leftrightarrow \mathbb{P}\{Y_{\rho} = 1\}$

$$p(T, y) \le C\mathbb{P}(\{Y_{\rho} = 1 - \delta\} \cup \{\rho = T\}) \sup_{t \in [0, T], x \in [1 - \delta, 1]} p(t, x)$$

- Probability to hit the boundary
 - \circ competition between *B* and *e*

 $\rightsquigarrow e$ pushes *Y* away from 1

- $\circ e 1/2$ Hölder $\Rightarrow B$ wins with >0 probability
- o get Hölder decay and then Lipschitz (barrier lemma)

Part IV. Solutions with blow-up

a. Physical solutions of the particle system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Returning to the particle system

• Specify mean field interaction

$$V_{t}^{i,N} = V_{0}^{i,N} - \lambda \int_{0}^{t} V_{s}^{i,N} ds + \frac{\alpha}{N} \sum_{j=1}^{N} M_{t}^{j,N} + W_{t}^{i} - M_{t}^{i,N}$$

$$\circ M_{t}^{i,N} = \sum_{k\geq 1} \mathbf{1}_{[0,t]}(\tau_{k}^{i,N})$$

$$\rightsquigarrow \tau_{k}^{i,N} = \inf\left\{t > \tau_{k-1}^{i,N} : V_{t-}^{i,N} + \underbrace{\frac{\alpha}{N} \sum_{j=1}^{N} (M_{t}^{j,N} - M_{t-}^{j,N})}_{kick} \ge 1\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• may exclude interaction with *i* itself

Returning to the particle system

• Specify mean field interaction

$$V_{t}^{i,N} = V_{0}^{i,N} - \lambda \int_{0}^{t} V_{s}^{i,N} ds + \frac{\alpha}{N} \sum_{j=1}^{N} M_{t}^{j,N} + W_{t}^{i} - M_{t}^{i,N}$$

• may exclude interaction with *i* itself

• Not well-posed! take N = 3 and • $t: M_{t-}^1 = M_{t-}^2 = M_{t-}^3 = 0, V_{t-}^1 = 1, V_{t-}^2, V_{t-}^3 \in (1 - \frac{2\alpha}{3}, 1 - \frac{\alpha}{3})$ $\implies 1$ st solution $M_t^1 = 1, M_t^2 = M_t^3 = 0$ kick $= \frac{\alpha}{3}$ $\implies 2$ nd solution $M_t^1 = M_t^2 = M_t^3 = 1$ kick = 1

• Previous counter-example \rightarrow need to order jumps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• jumps must be defined sequentially

• Previous counter-example \rightarrow need to order jumps

• jumps must be defined sequentially

• First particles to jump $\rightsquigarrow \Gamma_0 = \{i \in \{1, \dots, N\} : V_{t-}^i = 1\}$

• Previous counter-example \rightarrow need to order jumps

• jumps must be defined sequentially

- First particles to jump $\rightsquigarrow \Gamma_0 = \{i \in \{1, \dots, N\} : V_{t-}^i = 1\}$
- Particles to jump next

$$\Gamma_1 = \left\{ i \in \{1, \dots, N\} \setminus \Gamma_0 : V_{t-}^i + \alpha \frac{|\Gamma_0|}{N} \ge 1 \right\}$$

• Iterate

$$\Gamma_{k+1} = \left\{ i \in \{1, \dots, N\} \setminus \Gamma_0 \cup \dots \cup \Gamma_k : X_{t-}^i + \alpha \frac{|\Gamma_0 \cup \dots \cup \Gamma_k|}{N} \ge 1 \right\}$$

 $\alpha < 1 \Rightarrow$ no way for a neuron to spike twice at the same time

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Previous counter-example \rightarrow need to order jumps

• jumps must be defined sequentially

- First particles to jump $\rightsquigarrow \Gamma_0 = \{i \in \{1, \dots, N\} : V_{t-}^i = 1\}$
- Particles to jump next

$$\Gamma_1 = \left\{ i \in \{1, \dots, N\} \setminus \Gamma_0 : V_{l-}^i + \alpha \frac{|\Gamma_0|}{N} \ge 1 \right\}$$

• Iterate

$$\Gamma_{k+1} = \left\{ i \in \{1, \dots, N\} \setminus \Gamma_0 \cup \dots \cup \Gamma_k : X_{t-}^i + \alpha \frac{|\Gamma_0 \cup \dots \cup \Gamma_k|}{N} \ge 1 \right\}$$

α < 1 ⇒ no way for a neuron to spike twice at the same time
 Global set of particles that spike → Γ = ∪_{0≤k≤N-1} Γ_k

$$V_t^i = V_{t-}^i + \frac{\alpha |\Gamma|}{N} \text{ if } i \notin \Gamma, \quad V_t^i = V_{t-}^i + \frac{\alpha |\Gamma|}{N} - 1 \text{ if } i \in \Gamma.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Part IV. Solutions with blow-up

b. Physical solutions of the limiting system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Seek càd-làg solutions
- From particle system \sim need to prescribe rules for spiking • no more than 1 spike at a given time $\Rightarrow \Delta M_t = M_t - M_{t-} \in \{0, 1\}$

$$\Delta \mathbb{E}[M_t] = \mathbb{P}[V_{t-} + \underbrace{\alpha \Delta \mathbb{E}[M_t]}_{kick} \ge 1]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Seek càd-làg solutions
- From particle system \sim need to prescribe rules for spiking • no more than 1 spike at a given time $\Rightarrow \Delta M_t = M_t - M_{t-} \in \{0, 1\}$

$$\Delta \mathbb{E}[M_t] = \mathbb{P}[V_{t-} + \underbrace{\alpha \Delta \mathbb{E}[M_t]}_{kick} \ge 1]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• does not provide a characterization of the jumps of $\mathbb{E}[M_t]!$

- Seek càd-làg solutions
- From particle system \sim need to prescribe rules for spiking • no more than 1 spike at a given time $\Rightarrow \Delta M_t = M_t - M_{t-} \in \{0, 1\}$

$$\Delta \mathbb{E}[M_t] = \mathbb{P}[V_{t-} + \underbrace{\alpha \Delta \mathbb{E}[M_t]}_{kick} \ge 1]$$

• does not provide a characterization of the jumps of $\mathbb{E}[M_t]!$

o recall counter-example in finite models

- Seek càd-làg solutions
- From particle system \sim need to prescribe rules for spiking • no more than 1 spike at a given time $\Rightarrow \Delta M_t = M_t - M_{t-} \in \{0, 1\}$

$$\Delta \mathbb{E}[M_t] = \mathbb{P}[V_{t-} + \underbrace{\alpha \Delta \mathbb{E}[M_t]}_{kick} \ge 1]$$

• does not provide a characterization of the jumps of $\mathbb{E}[M_t]!$

o recall counter-example in finite models

• no jump if remaining mass after jump is too small!

$$\Delta e(t) = \inf\{\eta \ge 0 : \mathbb{P}(V_{t-} + \alpha \eta \ge 1) < \eta\}$$

Solutions with blow-up

• Description of the jumps of $e(t) = \mathbb{E}(M_t)$ when blow-up?

$$\Delta e(t) = e(t) - e(t-) \ge \delta_0$$

$$\Leftrightarrow \forall \delta \le \delta_0, \text{ kick due to particles in } [0, \delta] \ge \delta$$

$$\Leftrightarrow \forall \delta \le \delta_0, \qquad \underbrace{\alpha \int_0^{\delta} p(t-, y) dy}_{\text{ kick due to particles in } [0, \delta]} \ge \delta$$

kick due to particles in $[0, \delta)$

• restart with density $p(t, y) = p(t-, y + \Delta e(t))$ for y near 1

• Construction of a solution \Rightarrow approximation

◦ risk modeling → massive/systemic default?

• Uniqueness?

• [NS] : uniqueness as long as $t : \int_0^t |e'(s)|^2 ds < \infty$ for

Reformulation

• Convenient to reformulate solutions ~> unknown without reset

$$\mathbf{Z}_t = V_t + \mathbf{M}_t$$

 $\circ M_t = \sharp$ different positive integers crossed by $(Z_s)_{0 \le s \le t}$

$$M_t = \left\lfloor (\sup_{0 \le s \le t} Z_s)_+ \right\rfloor$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reformulation

• Convenient to reformulate solutions ~> unknown without reset

$$\mathbf{Z}_t = V_t + \mathbf{M}_t$$

 $\circ M_t = \sharp$ different positive integers crossed by $(Z_s)_{0 \le s \le t}$

$$M_t = \left\lfloor (\sup_{0 \le s \le t} \mathbf{Z}_s)_+ \right\rfloor$$

• Dynamics of $(\mathbf{Z}_t)_{t\geq 0}$

$$\mathbf{Z}_t = Z_0 - \lambda \int_0^t (\mathbf{Z}_s - \mathbf{M}_s) ds + \alpha \mathbb{E}(\mathbf{M}_t) + W_t, \qquad Z_0 = V_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Reformulation

• Convenient to reformulate solutions ~> unknown without reset

$$\mathbf{Z}_t = V_t + \mathbf{M}_t$$

 $\circ M_t = \sharp$ different positive integers crossed by $(Z_s)_{0 \le s \le t}$

$$M_t = \left\lfloor (\sup_{0 \le s \le t} \mathbf{Z}_s)_+ \right\rfloor$$

• Dynamics of $(\mathbf{Z}_t)_{t\geq 0}$

$$\mathbf{Z}_t = Z_0 - \lambda \int_0^t (\mathbf{Z}_s - \mathbf{M}_s) ds + \alpha \mathbb{E}(\mathbf{M}_t) + W_t, \qquad Z_0 = V_0$$

• Similar transformation with particle system

$$Z_t^{i,N} = V_0^{i,N} - \lambda \int_0^t \left(Z_s^{i,N} - M_s^{i,N} \right) ds + \frac{\alpha}{N} \sum_{j=1}^N M_t^{j,N} + W_t^i$$
$$M_t^{i,N} = \lfloor (\sup_{s \in [0,t]} Z_s^{i,N})_+ \rfloor$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Part V. Construction of solutions with blow up

a. M1 topology

• Need convenient compactness for \uparrow functions

• rationale for using M1 (different from J1!)

 \rightsquigarrow topology on $\mathcal{D}([0, T], \mathbb{R})$, see [Skorohod, Whitt]

Need convenient compactness for ↑ functions
 rationale for using M1 (different from J1!)
 → topology on D([0, T], R), see [Skorohod, Whitt]

• $f \in \mathcal{D}([0,T],\mathbb{R}) \rightsquigarrow \mathcal{G}_f$ the completed graph of f

 $\mathcal{G}_f = \{(x,t) \in \mathbb{R} \times [0,T] : x \in [f(t-),f(t)]\},\$

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - の々で

Need convenient compactness for ↑ functions

rationale for using M1 (different from J1!)
wo topology on D([0, T], R), see [Skorohod, Whitt]

f ∈ D([0, T], R) ~> G_f the completed graph of f

G_f = {(x, t) ∈ R × [0, T] : x ∈ [f(t-), f(t)]},

G_f-order (x₁, t₁) ≤ (x₂, t₂) if t₁ < t₂

t₁ = t₂, |f(t₁-) - x₁| ≤ |f(t₁-) - x₂|

 \rightsquigarrow natural order when \mathcal{G}_f is traced out from left to right

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - の々で

Need convenient compactness for ↑ functions

rationale for using M1 (different from J1!)
wo topology on D([0, T], R), see [Skorohod, Whitt]

f ∈ D([0, T], R) ~> G_f the completed graph of f

G_f = {(x, t) ∈ R × [0, T] : x ∈ [f(t-), f(t)]},

G_f-order (x₁, t₁) ≤ (x₂, t₂) if t₁ < t₂

t₁ = t₂, |f(t₁-) - x₁| ≤ |f(t₁-) - x₂|

 \rightsquigarrow natural order when \mathcal{G}_f is traced out from left to right

Parametric representation continuous function (u, r): [0, T] → G_f
 ∞ way of tracing it out 'without going back on oneself'

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - の々で

Need convenient compactness for ↑ functions

rationale for using M1 (different from J1!)
wo topology on D([0, T], ℝ), see [Skorohod, Whitt]

f ∈ D([0, T], ℝ) ~ G_f the completed graph of f

$$\mathcal{G}_{f} = \{(x,t) \in \mathbb{R} \times [0, T] : x \in [f(t-), f(t)]\},$$

• \mathcal{G}_{f} -order $(x_{1}, t_{1}) \leq (x_{2}, t_{2})$ if $\begin{array}{c} t_{1} < t_{2} \\ t_{1} = t_{2}, |f(t_{1}-) - x_{1}| \leq |f(t_{1}-) - x_{2}| \end{array}$

 \rightsquigarrow natural order when \mathcal{G}_f is traced out from left to right

Parametric representation continuous function (u, r): [0, T] → G_f
 ∞ way of tracing it out 'without going back on oneself'
 Distance between f₁, f₂

$$d_{M_1}(f_1, f_2) = \inf_{(u_j, r_j), j=1, 2} \{ ||u_1 - u_2||_{\infty} \lor ||r_1 - r_2||_{\infty} \}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Compact sets

• Modulus of continuity

 $w_T(f, t, \delta) = \sup_{0 \lor (t-\delta) \le t_1 < t_2 < t_3 \le T \land (t+\delta)} \operatorname{dist}(f(t_2), [f(t_1), f(t_3)])$

 $\circ f \uparrow \text{ or } \downarrow \Rightarrow w_T(f, t, \delta) = 0$

Compact sets

• Modulus of continuity

$$w_T(f, t, \delta) = \sup_{0 \lor (t-\delta) \le t_1 < t_2 < t_3 \le T \land (t+\delta)} \operatorname{dist}(f(t_2), [f(t_1), f(t_3)])$$

$$\circ f \uparrow \text{or} \downarrow \Rightarrow w_T(f, t, \delta) = 0$$

• Set *A* has compact closure if and only if $||f||_{\infty} < \infty$ and

$$\lim_{\delta \to 0} \sup_{f \in A} \left\{ \left(\sup_{t \in [0,T]} w_T(f, t, \delta) \right) \lor v_T(f, 0, \delta) \lor v_T(f, T, \delta) \right\} = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where
$$v_T(f, t, \delta) = \sup_{0 \lor (t-\delta) \le t_1 \le t_2 \le T \land (t+\delta)} |f(t_1) - f(t_2)|$$

Compact sets

• Modulus of continuity

 $w_T(f, t, \delta) = \sup_{0 \lor (t-\delta) \le t_1 < t_2 < t_3 \le T \land (t+\delta)} \operatorname{dist}(f(t_2), [f(t_1), f(t_3)])$

$$\circ f \uparrow \text{ or } \downarrow \Rightarrow w_T(f, t, \delta) = 0$$

• Set *A* has compact closure if and only if $||f||_{\infty} < \infty$ and

$$\lim_{\delta \to 0} \sup_{f \in A} \left\{ \left(\sup_{t \in [0,T]} w_T(f,t,\delta) \right) \lor v_T(f,0,\delta) \lor v_T(f,T,\delta) \right\} = 0$$

where $v_T(f, t, \delta) = \sup_{0 \lor (t-\delta) \le t_1 \le t_2 \le T \land (t+\delta)} |f(t_1) - f(t_2)|$

• Connection with standard modulus

∘ if $(f_n)_{n \ge 1} \to f \Rightarrow$ for any continuity point of *f*

$$\lim_{\delta \to 0} \limsup_{n \to \infty} \sup_{s \in [0 \lor (t-\delta), T \land (t+\delta)]} |f_n(s) - f(s)| = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Part V. Construction of solutions with blow up

b. Convergence of the particle system

Main Statement [DIRT]

• Recall particle system

$$\begin{aligned} \boldsymbol{Z}_{t}^{i,N} &= \boldsymbol{V}_{0}^{i,N} - \lambda \int_{0}^{t} \left(\boldsymbol{Z}_{s}^{i,N} - \boldsymbol{M}_{s}^{i,N} \right) ds + \frac{\alpha}{N} \sum_{j=1}^{N} \boldsymbol{M}_{t}^{j,N} + \boldsymbol{W}_{t}^{i} \\ \boldsymbol{M}_{t}^{i,N} &= \lfloor (\sup_{s \in [0,t]} \boldsymbol{Z}_{s}^{i,N})_{+} \rfloor \end{aligned}$$

• empirical measure
$$\rightsquigarrow \bar{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{\bar{Z}^{i,N}}$$

 \circ r.v. with values in $\mathcal{P}(\mathcal{D}([0,T],\mathbb{R})) \rightarrow \text{call } \prod_N$ the law of $\overline{\mu}_N$

Main Statement [DIRT]

• Recall particle system

$$\begin{aligned} \boldsymbol{Z}_{t}^{i,N} &= \boldsymbol{V}_{0}^{i,N} - \lambda \int_{0}^{t} \left(\boldsymbol{Z}_{s}^{i,N} - \boldsymbol{M}_{s}^{i,N} \right) ds + \frac{\alpha}{N} \sum_{j=1}^{N} \boldsymbol{M}_{t}^{j,N} + \boldsymbol{W}_{t}^{i} \\ \boldsymbol{M}_{t}^{i,N} &= \lfloor (\sup_{s \in [0,t]} \boldsymbol{Z}_{s}^{i,N})_{+} \rfloor \end{aligned}$$

• empirical measure
$$\rightarrow \bar{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{\tilde{\Sigma}^{i,N}}$$

• r.v. with values in $\mathcal{P}(\mathcal{D}([0,T],\mathbb{R})) \rightarrow \text{call } \prod_N$ the law of $\overline{\mu}_N$

< ロ > < 部 > < 표 > < 표 > · 표 ·

• Claim 1: Family $(\Pi_N)_{N \ge 1}$ is tight in $\mathcal{P}(\mathcal{P}(\mathcal{D}([0, T], \mathbb{R}))), T > 0$

Main Statement [DIRT]

• Recall particle system

$$\begin{aligned} \boldsymbol{Z}_{t}^{i,N} &= \boldsymbol{V}_{0}^{i,N} - \lambda \int_{0}^{t} \left(\boldsymbol{Z}_{s}^{i,N} - \boldsymbol{M}_{s}^{i,N} \right) ds + \frac{\alpha}{N} \sum_{j=1}^{N} \boldsymbol{M}_{t}^{j,N} + \boldsymbol{W}_{t}^{i} \\ \boldsymbol{M}_{t}^{i,N} &= \lfloor (\sup_{s \in [0,t]} \boldsymbol{Z}_{s}^{i,N})_{+} \rfloor \end{aligned}$$

• empirical measure
$$\rightarrow \bar{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{\tilde{Z}_{\cdot}^{i,N}}$$

• r.v. with values in $\mathcal{P}(\mathcal{D}([0,T],\mathbb{R})) \rightsquigarrow \text{call } \prod_N$ the law of $\overline{\mu}_N$

- Claim 1: Family $(\Pi_N)_{N \ge 1}$ is tight in $\mathcal{P}(\mathcal{P}(\mathcal{D}([0, T], \mathbb{R}))), T > 0$
- Claim 2: For a weak limit Π_{∞} , for Π_{∞} -a.e. $\mu \in \mathcal{P}(\mathcal{D}([0, T], \mathbb{R}))$, the canonical process $(z_t)_{t \in [0,T]}$ generates, under μ , a physical solution

$$\circ \text{ under } \mu, (z_t - z_0 + \lambda \int_0^t (z_s - m_s) ds - \alpha \langle \mu, m_t \rangle)_{t \in [0,T)} \text{ is B.M.}$$
$$\longrightarrow m_t = \lfloor (\sup_{0 \le s \le t} z_s)_+ \rfloor \text{ and } \langle \mu, m_t \rangle = \int m_t d\mu$$

Sketch of proof

• Tightness requires only a priori bounds for $\mathbb{E}[\sup_{0 \le t \le T} |Z_t|^p]$

Sketch of proof

- Tightness requires only a priori bounds for E[sup_{0≤t≤T} |Z_t|^p]
 o use α < 1
- Pass to the limit in the dynamics

$$Z_t^{i,N} = V_0^{i,N} - \lambda \int_0^t (\tilde{Z}_s^{i,N} - M_s^{i,N}) ds + \alpha \langle \bar{\mu}_N, m_t \rangle + W_t^i$$

 \circ rewrite in terms of canonical process under $\bar{\mu}_N$

$$\bar{\mu}_N \circ \left(z_t - z_0 + \lambda \int_0^t (z_s - m_s) ds - \alpha \langle \bar{\mu}_N, m_t \rangle \right)_{0 \le t \le T}^{-1} = \mathbb{P} \circ \left(\frac{1}{N} \sum_{i=1}^N \delta_{W_i^i} \right)^{-1}$$
$$\rightsquigarrow m_t = (\sup_{0 \le s \le t} z_s)_+ |$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Sketch of proof

- Tightness requires only a priori bounds for $\mathbb{E}[\sup_{0 \le t \le T} |Z_t|^p]$ • use $\alpha < 1$
- Pass to the limit in the dynamics

$$Z_t^{i,N} = V_0^{i,N} - \lambda \int_0^t (\tilde{Z}_s^{i,N} - M_s^{i,N}) ds + \alpha \langle \bar{\mu}_N, m_t \rangle + W_t^i$$

 \circ rewrite in terms of canonical process under $\bar{\mu}_N$

$$\bar{\mu}_N \circ \left(z_t - z_0 + \lambda \int_0^t (z_s - m_s) ds - \alpha \langle \bar{\mu}_N, m_t \rangle \right)_{0 \le t \le T}^{-1} = \mathbb{P} \circ \left(\frac{1}{N} \sum_{i=1}^N \delta_{W_i^i} \right)^{-1}$$

 $\rightsquigarrow m_t = (\sup_{0 \le s \le t} z_s)_+ \rfloor$

Main difficulty : continuity of the functional *z* → (sup_{0≤s≤t} *z_s*)₊
 may be false! True if *z* really crosses threshold

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Part V. Construction of solutions with blow up

c. Another construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Delayed interaction

• Subthreshold potential with delayed interaction

$$V_t^{\delta} = V_0 - \lambda \int_0^t V_s^{\delta} ds + \alpha e_{\delta}(t) + W_t$$

$$\circ M_t^{\delta} = \sum_{k \ge 1} \mathbf{1}_{[0,t]}(\tau_k^{\delta}), \quad \tau_k^{\delta} = \inf \left\{ t > \tau_{k-1}^{\delta} : V_{t-}^{\delta} + \alpha \Delta e_{\delta}(t) \ge 1 \right\}$$

$$\circ e_{\delta}(t) = \begin{cases} 0 & \text{if } t \le \delta \\ \mathbb{E}(M_{t-\delta}^{\delta}) & \text{if } t > \delta \end{cases}$$

◆□▶ ◆圖▶ ★필▶ ★필▶ _ 필 _

Delayed interaction

• Subthreshold potential with delayed interaction

$$V_t^{\delta} = V_0 - \lambda \int_0^t V_s^{\delta} ds + \alpha e_{\delta}(t) + W_t$$

$$\circ M_t^{\delta} = \sum_{k \ge 1} \mathbf{1}_{[0,t]}(\tau_k^{\delta}), \quad \tau_k^{\delta} = \inf \left\{ t > \tau_{k-1}^{\delta} : V_{t-}^{\delta} + \alpha \Delta e_{\delta}(t) \ge 1 \right\}$$

$$\circ e_{\delta}(t) = \begin{cases} 0 & \text{if } t \le \delta \\ \mathbb{E}(M_{t-\delta}^{\delta}) & \text{if } t > \delta \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Claim 1: Laws $(Z^{\delta} = V^{\delta} + M^{\delta})_{0 < \delta \le 1}$ is tight in $\mathcal{P}(\mathcal{D}([0, T], \mathbb{R}))$

Delayed interaction

• Subthreshold potential with delayed interaction

$$V_t^{\delta} = V_0 - \lambda \int_0^t V_s^{\delta} ds + \alpha e_{\delta}(t) + W_t$$

$$\Rightarrow M_t^{\delta} = \sum_{k \ge 1} \mathbf{1}_{[0,t]}(\tau_k^{\delta}), \quad \tau_k^{\delta} = \inf\left\{t > \tau_{k-1}^{\delta} : V_{t-}^{\delta} + \alpha \Delta e_{\delta}(t) \ge 1\right\}$$

$$\Rightarrow e_{\delta}(t) = \begin{cases} 0 & \text{if } t \le \delta \\ \mathbb{E}(M_{t-\delta}^{\delta}) & \text{if } t > \delta \end{cases}$$

- Claim 1: Laws $(Z^{\delta} = V^{\delta} + M^{\delta})_{0 < \delta \le 1}$ is tight in $\mathcal{P}(\mathcal{D}([0, T], \mathbb{R}))$
- Claim 2: Under weak limit, the canonical process $(z_t)_{t \in [0,T]}$ generates, under μ , a physical solution

• under
$$\mu$$
, $(z_t - z_0 + \lambda \int_0^t (z_s - m_s) ds - \alpha \langle \mu, m_t \rangle)_{t \in [0,T)}$ is B.M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Part V. Extensions

a. Model with common noise

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Model with a common noise

• Common source of noise in dynamics of the neurons

$$V_t^i = V_0^i - \lambda \int_0^t V_s^i ds + I_t^i + W_t^i + W_t^0$$

• Mean-field modeling

$$V_t = V_R - \lambda \int_0^t V_s ds + \alpha \mathbb{E}(M_t | \boldsymbol{W}^0) + W_t + \boldsymbol{W}_t^0$$

• same $\alpha \rightarrow$ two \neq plots: competition with common noise

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

크

~ See Hambly, Ledger (without singular interactions)

Part V. Extensions

b. Model with random weights

Part V. Extensions

c. Model with spatial component