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a. General picture



Basic purpose

e Provide a simple model for a neuronal network
o with similar neurons
~» focus on one single typical neuron

o choose a standard model for the dynamics of the typical neuron

~» examples: ‘ diffusion process ‘ (with hard threshold),
jump processes (with soft threshold)

e Use mean field assumption to describe interactions

o a neuron sees the others through the whole collectivity

o global quantity of interest ~» | global averaged firing rate
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e Provide a simple model for a neuronal network
o with similar neurons
~» focus on one single typical neuron

o choose a standard model for the dynamics of the typical neuron

~» examples: ‘ diffusion process ‘ (with hard threshold),
jump processes (with soft threshold)

e Use mean field assumption to describe interactions

o a neuron sees the others through the whole collectivity

o global quantity of interest ~» | global averaged firing rate

o | Excitatory | feature

o if global averaged firing rate T = each neuron is more likely to
spike

o would make sense to regard inhibitory counterpart
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e Mean field limit

o derive the limit model as the number of neurons 7

o expect ’ propagation of chaos / LLN

o reduce the asymptotic analysis to one typical neuron with
interaction with theoretical distribution?
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Challenges
e Mean field limit

o derive the limit model as the number of neurons 7

o expect ’ propagation of chaos / LLN

o reduce the asymptotic analysis to one typical neuron with
interaction with theoretical distribution?

e Program

o existence and uniqueness of solutions to | asymptotic model |?
influence of the excitation?

o prove convergence of finite models
e Literature

~» mean field integrate and fire

~» application to systemic risk

~» models without hard threshold [Fournier Locherbach (16)],
Hawks model of mean field types [Chevallier (16)]



Part 1. Motivation

b. A general form for the finite network



General LIF model for a single neuron

e Describe membrane potential of the neuron
~» neuron fires if membrane potential is high
o several simple models

~» jump model with soft threshold ~» spike is more likely if
potential is high

~» diffusive model with | hard threshold |~ spike occurs if
potential reaches a threshold
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General LIF model for a single neuron

e Describe membrane potential of the neuron
~» neuron fires if membrane potential is high

e Subthreshold dynamics
%w=4m+mwﬁ“
o A connected with properties of the membrane
o I'" ~5 current due to interactions with other cells
o I¥*' ~» collective effect due to external phenomena
e Threshold ~» spike whenever V reaches firing value V-
T=inf{t >0:V, > Vg}

o after 7 (no refractory period) ~» reset potential at V; = Vg
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Currents for connected neurons

e [abel the neuronsi=1,...,N

d . . L .
EV; = -AV} + L™ + I

o N ~» number of neurons
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Currents for connected neurons

e [abel the neuronsi=1,...,N

d . o .
p Vi=-AVi+ ™ + Y
o N ~» number of neurons

e Interaction current

Itint,i — Iim(vijj + l)

o depends on the states of the other neurons

e External current

. . —
™' = mean-trend, + noise;

o focus on the noise ~» noise; = (Wf),zo white noise
o very strong assumption ~» start with independent noises

o may think of correlated cases as well ~» more complicated [HL]



Mean-field interaction

e Force symmetric interactions (no privileged interactions)
o Itim(V{ ,J # 1) depending on the empirical distribution

e Subthreshold dynamics m

dv) = —Avidt + Itim(N’l > 6y )dt +dW,
J#L
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Mean-field interaction

e Force symmetric interactions (no privileged interactions)
o IM(V/,j # i) depending on the empirical distribution

e Subthreshold dynamics m

dVi = -AVidt + I,im(N’l Z Syi )dt +dW!
J#i
e Asymptotic model when N — +00? expect decorrelation between
neurons as N — oo + symmetry = expect averaging

-1 .
(5 > 6) ~ M)
J#i
e Typical neuron interacts with its own law ~» McKean-Vlasov eq.

dV; = —AVidt + I™(L(V,))dt + dW;



Part 1. Motivation

c. Examples



Choice of the interaction functional

¢ Frequently used model ([BH, IT])
) Itim(N -y e 6‘/,-) based on mean activity of the network
o I,i“‘(N‘1 i 6vj) function of 1 f#i{spikes < 7}
i) N excitation
l inhibition

e Other version (see [OBH, DIRT, NS]) ~» interactions

~» if function is {

o replace interaction currents by interaction pulses
it oo da
mt ysz N = 22 .
FVij#o=2§ 2 v
J#

d
= E%ﬁ{spiking neurons # i att}

o a > 0 & instantaneous self-excitatory interaction

e Replace spikes by defaults ~» systemic risk in economy [BH,NS]



Picture for neuronal model

e For Vi = 1 and Vg = —1 threshold is zero
0 ! 2 ; :

3
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Picture for systemic risk model

e Consider Vr minus the potential ~» threshold is zero

6
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Part II. Limiting model

a. Standard McKYV equations



A non-singular particle system

° the spikes and focus on standard dynamics

dX! = b(x}, @ )dt + (X}, i) AW,

N
. 1
o X(l), ..., X 1.i.d. (and L of noises), ﬁﬁv = I Z 6X§
i=1

e 1! if the coefficients are Lipschitz in all the variables ~» need a
suitable distance on space of measures



A non-singular particle system

° the spikes and focus on standard dynamics

dXi = (X, 7Yt + o (X, 7YY

N
. 1
1 i e o -N _ 1 )
oXy,..., Xy i.i.d. (and L of noises), [, = N Z 5)(;
o 1! if the coefficients are Lipschitz in all the variables ~» need a

suitable distance on space of measures

e Use the Wasserstein distance on P(R¢)

1/2
pov € Pa®Y, Wagu)=(int [ lr-yPartey)
RIxR

s

where 7 has u and v as marginals on R? x R?

o X and X’ two r.v.’s = W (LX), l:(X’)) < E[|IX - X"|?]'/?

L8] 1/2
e Example WZ(ZT/ Z Ox;» N Z 5x;) Z i — i
i=1 i=1



McKean-Vlasov SDE

e Expect some ‘ decorrelation / averaging ‘in the system as N T oo

o replace the empirical measure by the theoretical law
dX; = b(X,, L(Xy))dt + o(X;, L(X,))dW,;
e Cauchy-Lipschitz theory

o assume b and o Lipschitz continuous on RY x P»(RY) = unique
solution for any given initial condition in L?

o proof works as in the standard case taking advantage of

|6, ) (X, LX) = (b, )X}, LXD)|] < CE[X, - X;P]



McKean-Vlasov SDE

e Expect some ‘ decorrelation / averaging ‘in the system as N T oo

o replace the empirical measure by the theoretical law
dX; = b(X,, L(Xy))dt + o(X;, L(X,))dW,;
e Cauchy-Lipschitz theory

o assume b and o Lipschitz continuous on RY x P»(RY) = unique
solution for any given initial condition in L?

o proof works as in the standard case taking advantage of
4 4 2 4
E||(b, o)(Xi, LX) — (b, )X, LK) | < CE[IX, - X; ]
e Propagation of chaos
o each (Xf)OSth converges in law to the solution of MKV SDE

o particles get in the limit ~» for & fixed:

&), ... X ogier - LIMKV)® = L((X)o<i<r)™ asN /oo

o lim sup E[(Wa(@", L(X))*] =0
N /o0 0<t<T



Part II. Limiting model

b. Formulation of the asymptotic problem



Ansatz

e Recall the subthreshold dynamics of the finite network

!
Vi=Vy—-2 fo Vids + % Z #{neuron(j) spiked before 1} + W’
J#E
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current
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Ansatz
e Recall the subthreshold dynamics of the finite network
. . A 104 . .
Vi=Vy-24 f Vids + — Z #{neuron(y) spiked before ¢} + W;
0 N i

o Heuristics ~» same formal reasoning as for a regular interaction
current

IMVLj#i) |~ aB(M;)

—+

o M, = number of spikes for typical neuron up to ¢

e Subthreshold dynamics for typical neuron as N — oo
!
Vt = V() - /l\fv Vsds + CYE(M[) + WI
0

oM, =#{t>0:V,_ = Vg}depends on V!

o Typical non-singular interactions fol b(E(M,))ds [BH,IT]; see also
MFG [Campi,Fischer]



Interpretation of the mean-field interaction

e Subthreshold dynamics
t
Vi=Vo - Af Vids + oB(M;) + W,
0

o firing value Vr = 1, reset (after spiking) Vg = 0



Interpretation of the mean-field interaction

e Subthreshold dynamics
t
Vi=Vo - /lf Vids + oB(M;) + W,
0

o firing value V¢ = 1, reset (after spiking) Vg = 0

e Crucial question: what class of \ admissible solutions \?

o class of solutions dictates regularity for E(M;) ~» physical
interpretation?
E(M;ip — M)
~N=co probability of spike in [¢, 1 + A]
~N<co proportion of spikes in [z, t + h]
o E(M,) is allowed to jump ¢~ large proportion of neurons may
spike at the same time

o may stand for massive simultaneous spikes in the system



Instantaneous firing rate

e Meaning for requiring e : t — E(M,) to be differentiable?
probability of spike in [¢,7 + h] ~ ¢/ (1)h

o ¢’ ¢ instantaneous firing rate
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Instantaneous firing rate

e Meaning for requiring e : t — E(M,) to be differentiable?
probability of spike in [¢,7 + h] ~ ¢/ (1)h

o ¢’ ¢ instantaneous firing rate

e Subthreshold dynamics if differentiability
dV[ = —/thdt — ae,(t)dt + th

o SDE ~» stochastic calculus and regularizing effect

oP(V; €dy) = p(t,y)dy, t>0, y<lI

. ’ Fokker Planck equation ‘

aip(t,y) + 0y[(=Ay + ae’ O)p(t, y)] - 30;,p(t,y) = € (1)d0

op(t,1) = 0and dyp(t, 1) = -3¢/ (1)

o control of ¢/ & control of the mass near 1



Part I1. Limiting model

c. The need for a < 1



Cascade phenomenon

o Difficulty @ will dictate the smoothness of e! Cascade phenomenon
in the modeling if @ > 1!

e Example: runaway behavior if reset (Vg = 0, Vp = 1) ~> plot
Vr-potential

o choose N + 1 neurons, @ = (N + 1)/N and Vé =1i/N,
i=0,...,N,

0

o particles keep jumping!

oa < (N + 1)/N = no way for defaulting twice at same time



Reformulating the limiting model

e Convenient to reformulate solutions ~» unknown without reset

o M, = § different positive integers crossed by (Z;)o<s<

M, = [( sup ZS)+J

0<s<t
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Reformulating the limiting model

e Convenient to reformulate solutions ~» unknown without reset

o M, = § different positive integers crossed by (Z;)o<s<

M, = [( sup ZS)+J

0<s<t

e Dynamics of (Z;),>0
!

Zy =2y — /lf (Zs — My)ds + aE(M;) + W,, Zo=Vy
0

[t

(sup Zy),

0<s<t

!
< (Zo)+ +2|4 | (sup Z,),ds+ aE[(sup Z;),]| + sup |Wj

0 0<r<s O<s<t O<s<t

o @ < 1 needed to get an a priori bound



Part II. Limiting model

c. Solvability results



Solvability of the regular model

e Existence of regular solutions in arbitrary time?
o avoid blow-up of ¢’ in finite time?

o & avoid massive spikes?
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Solvability of the regular model

e Existence of regular solutions in arbitrary time?
o avoid blow-up of ¢’ in finite time?
o & avoid massive spikes?
e Caceres, Carrillo, Perthame
o for any @ > 0, 4V > 0 such that blow-up in finite time!
e D, Inglis, Rubenthaler and Tanré (AAP)
o for Vy < 1, 3! solution without blow-up for @ small enough
o explicit (but non-optimal) bounds on critical values &
e Brownian example: A =0and Vo =08 (Vp =1, Vg =0)
o existence of regular solutions if & < 0.10
o no regular solutions if @ > 0.54
o numerically, critical value ~ 0.38...

e Exemple O-U A — o0 = critical @ — 1 (& 4 fixed and 0 — 0)



Illustration

0.38 ——
0.9 - 0.39

0.8 |-
0.7 |-

0.6
0.5

e(t)

0.4 |-

0.2

0.1

0 0.005 0.01 0.015 0.02 0.025 0.03
time t

e Need a general notion of solutions with blow-up

o existence is known [DIRT], uniqueness is partial only [NS]



Lower bound for criticality
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Figure: Plot of a((0) in terms of A € [0; 80].

— 1.0
=
g
0.9
o.8
0.7
o.e
o.s
o.a
0.3~
o 2 4 B 8 1o
BY

Figure: Plot of a((0) in terms of A € [0; 10].



Part II. Limiting model

e. Existence of a blow-up for @ > 0



Caceres Carrillo Perthame argument

e Choose Vjy = vg and A = 0 to simplify

e Compute | Laplace transform of potential |

(1) = E[exp(uV))], foru >0



Caceres Carrillo Perthame argument

e Choose Vjy = vg and A = 0 to simplify

e Compute ‘ Laplace transform of potential ‘

z2(t) = E[exp(uVy)], foru >0
o provided e(¢) = E[M,] is differentiable ~» Itd’s formula yields

d 2
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Caceres Carrillo Perthame argument

e Choose Vjy = vg and A = 0 to simplify

e Compute ’ Laplace transform of potential ‘
2(t) = E[exp(uVy)], foru >0
o provided e(¢) = E[M,] is differentiable ~» Itd’s formula yields

d 2
—z(1) = |ape’ (1) + 5 |2(1) + [1 — exp(u)]e’ (1)
dt ~—
~———
n(r) v

o solve the ODE and use | z(¢) < exp(u)

t t S
0<exp (—,u + f n(s)ds) [2(0) - f v(s) exp (— f n(u)du) ds
0 0 0

~» let ¢ tend to co

<1




Caceres Carrillo Perthame argument

e Choose Vjy = vg and A = 0 to simplify

e Compute ’ Laplace transform of potential ‘

z2(t) = E[exp(uVy)], foru >0

o provided e(¢) = E[M,] is differentiable ~» Itd’s formula yields

d 2
Z22(0) = [apee’ 0 + o) + [1 = exp@yle’ )
t ~—  ———
. v(t)

n()

o solve the ODE and use | z(7) < exp(u)

0=2z0) - foo v(s) exp (— fs n(u)du) ds
0 0

o integrate explicitly

apexp(uvg)  u? f‘x’ >
o= - —Z slds>0
exp(r) — 1 2 Jy exp | —aue(s) > s|ds >



Part III. Solving the model for o < 1

a. General plan



Sketch of the proof

e Difficulty: competition between noise and mean-field
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Sketch of the proof

¢ Difficulty: competition between noise and mean-field

e Typical scheme for nonlinear models

o existence and uniqueness in on [0, T*]

1
o estimate of d—P(VT* € dy)| and iteration
y

e Short time result
1
o if d—P(Vo edy)<p(l-y) forye(d-g1)
)7

= existence and uniqueness on [0, T*(«, B, €)]

o Picard’s fixed point argument

eeCY([0,T]) — (r(e)(t) = E(Z l{vs_=1}))

<t 0<t<T

o where dV, = —AV,dt + ae’(t)dt + dW, before spike
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Ingredients for the contraction in small time

o and consider dV; = —AV{dt + a¢’(t)dt + dW; before spike
o 7¢ = k™ hitting time of 1
e Use first Markov property to refresh after reset
! eﬁs eus e e
T(e)(t) = Z P(r$" <t—sIXS = O)P(z¢ € ds) + P(r¢ < 1)
k=1 v0

> e stands for the mapping [0, T —s] 3t — e(t + 5) — e(s)

d
) ’ Use Fokker-Planck ‘ for p°(z,y) = EP(Vf edy,t <T1y)

’ e 1 e
0 0 (1,y) + Oy[(=Ay + @€ O)p* (1. ))] = 503p°(1,3) = 0
~s p(t, 1) =0

dP( 1<) 1 “(t,1)
o — = o=
di 2 P L



Ingredients for the contraction in small time

o and consider dV; = —AV{dt + a¢’(t)dt + dW; before spike
o 7¢ = k™ hitting time of 1
e Use first Markov property to refresh after reset
s ofs . .
T(e)(t) = Z P(r$" <t—sIXS = O)P(z¢ € ds) + P(r¢ < 1)
k=120

> e stands for the mapping [0, T — s] 3t — e(t + s5) — e(s)

d
o ’ Use Fokker-Planck ‘ for p°(t,y) = @P(Vf edy,t <T1y)

d 1
° d—tP(T‘f sn=-3 e (1, 1)

. ’ Use parametrix ‘ when Vg =vp < 1

! 1
pity) = q(t,vo,y) — fo f (ae'(s) — A) dpe(s, 2)q(t — 5,2, y)dzds

~s> g = p¥ for e = 0 and drit —A(y — 1)



Ingredients for the contraction in small time

o and consider dV; = —AV{dt + a¢’(t)dt + dW; before spike
o 7¢ = k™ hitting time of 1
e Use first Markov property to refresh after reset
! efs efs e e
I'e)(r) = Z P(r{ <t-sIX5 = 0)P(r; € ds) +P(r] < 1)
=1 0

> el stands for the mapping [0, T —s] 3 ¢t - e(t + 5) — e(s)

d
. ’ Use Fokker-Planck ‘ for pé(t,y) = EP(Vf €edy,t<T1y)

d e 1 e
) d_tP(Tl <= —anp (1)

° ’ Use parametrix ‘ when Vp = vy < 1

t 1
pe@t,y) = q(t,vo,y) - fo f (e’ (s) — A) O pe(s, z)q(t — 5.z, y)dzds

ouse p°(0,y) < B(1 —y) to control 9,p(s, z)



Part III. Solving the model for o < 1

b. From small to arbitrary time



Sketch of the proof

e Difficulty: competition between noise and mean-field
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Sketch of the proof

¢ Difficulty: competition between noise and mean-field

e Typical scheme for nonlinear models

o existence and uniqueness in on [0, T*]

1
o estimate of d—P(VT* € dy)| and iteration
y

e Short time result
1
o if d—P(Vo edy)<p(l-y) forye(d-g1)
)7

= existence and uniqueness on [0, T*(«, B, €)]
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Scheme for the a priori estimate

e Assume 3 solution with e € C! on [0, T']
o where dV; = b(V,)dt + ae’ (t)dt + dW, before spike

o with reset after spike
1
e Four steps to get d—P(Vo edy) <p( -y
y

o bound for p(t,y) = P(V; € dy)/dy

o 1/2 Holder bound for e

o Holder regularity of p(z,y) in y

o Lipschitz regularity of p(t,y) iny
e Bound of p(t,y)

o rough bound using (non-killed) Gaussian kernels
Vo>e=p(t,y) < Cle,a), ye(0,/4)

o very bad (can’t see p(t, 1) = 0) but explicit



Part III. Solving the model for o < 1

c. Implementing the rough bound for p



Continuity of ¢
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Continuity of ¢

e Condition for continuity of e?

x=1/2 /\,mm

Ae(t) = e(t) —e(t—) =0
& 36, | 0: kick due to particles in [0, d,) < 6,

a fj p(t—,y)dy

oif p(t,y) < 1/a fory € [0, &) then e(t) = e(t—)

e Application = implement the bound p(z,y) < C(e, @)

o if C(e, @)a < 1 then continuity of e

o ‘ provides the condition @ small! ‘

o continuity dictated by Brownian: e 1/2-Holder
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Regularity of p close to the boundary

e Recall Dirichlet condition p(¢, 1) = 0

o p satisfies Fokker-Planck ~» Feynman-Kac

p(T.y) =E|p(T —p,Y)) e><p(ﬂp)|Yo = y]

o where dY, = AY,dt — ae’ (T — t)dt + dW,
op=inf{t>=0:Y;, ¢ (1 -6,1)} AT (don’tsee the reset)
e Regularity of p at the boundary <~ P{Y,, = 1}

p(T,y) <CP({Y,=1-6}U{p=T})  sup  p(t,x)
€10, 7], xe[1-6,1]

e Probability to hit the boundary
o competition between B and e
~» e pushes ¥ away from 1
o e 1/2 Holder = B wins with >0 probability

o get Holder decay and then Lipschitz (barrier lemma)



Part IV. Solutions with blow-up

a. Physical solutions of the particle system



Returning to the particle system

e Specify mean field interaction
f i N
i\N N i.N N j i\N
Vit = Vi —/lfo Vi ds+NZM{ + Wi - M
J=1

i\N i\N
oMy = Ypsi 1[0,t](T;{ )

N
iN _ - iN . iN , @ J-N J-N
~ ) _1nf{t>‘rk_1 VI + v E M7 M) > 1}
J=1

kick
o may exclude interaction with i itself



Returning to the particle system

e Specify mean field interaction
f i N
i\N i,N i.N N j i\N
vt =V —/lfo Vs + NZM{ + W, - M,
j=1

i, i\N
° M;N = Dlks1 1[0,t](T2 )

N

iN _ . iN . iN , @ J.N J-N

T = 1nf{t>Tk_1 VI + v E M7 M) > 1}
j=1

kick
o may exclude interaction with i itself
e Not well-posed! take N = 3 and
ot: Ml =M> =M} =0, VL =1, Vi,V ie(l-%1-9
~~> Ist solution M} = 1, M7 =M} =0 kick= %
~» 2nd solution M! = M?> =M} =1 kick=1
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Refined notion of solution
e Previous counter-example ~» need to jumps

o jumps must be defined sequentially

e First particles to jump ~ g = {i € {1,...,N}: V,i_ =1}

e Particles to jump next

: r
I = {ie {1,....,N\I'p : V,_ +a|N—O| > 1}
e [terate

Iou---ull
T'o k|21}

Fent = fi € (L. .N\Fo U+ ULy : X[ + a——

a < 1 = no way for a neuron to spike twice at the same time

e Global set of particles that spike ~» I' = | Jg<x<y_1 'k

r o ar
Al e igr, V}:V,’_+%—1ifiel".

Vi=Vi+—
t - Nl



Part IV. Solutions with blow-up

b. Physical solutions of the limiting system
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Rules for spiking

e Seek cad-lag solutions
e From particle system ~» need to prescribe rules for spiking

o no more than 1 spike at a given time = AM; = M; — M,_ € {0, 1}

AE[M,] = P[V,- + aAE[M,] > 1]
N —
kick
o does not provide a characterization of the jumps of E[M,]!

o recall counter-example in finite models
a=1/2

0
e Notion of ‘ Physical solutions ‘ K)
o no jump if remaining mass after jump is too small!

»
5

Ae(t) =inf{n > 0: P(V,- +an > 1) <n}



Solutions with blow-up

e Description of the jumps of e(¢) = E(M,) when blow-up?

Ae(t) = e(t) — e(t—) = dg
© VYo < 6, kick due to particles in [0, ) > 6

5
© VYo < 0o, af p(t—, y)dy >0
0

———
kick due to particles in [0, 6)

o restart with density p(t,y) = p(t—,y + Ae(t)) for y near 1
e Construction of a solution = approximation

o risk modeling ~» massive/systemic default?
e Uniqueness?

o [NS] : uniqueness as long as t : fot le’(5)|?ds < oo for
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Reformulation

e Convenient to reformulate solutions ~» unknown without reset

o M, = § different positive integers crossed by (Z;)o<s<s

M, = [( sup ZS)+J

0<s<t

e Dynamics of (Z;),»0

'
Zi =2y - /lf (Zs — My)ds + oE(M;) + Wy, Zy="Vo
0

o | Similar transformation ‘ with particle system

N
i\N i,N N N @ N '
zZ = v —/lfo(Z’ - MN)ds + NZM{ + W
J=1

i,N B
M = |(sup Z™), ]
sef0,1]



Part V. Construction of solutions with blow up

a. M1 topology

[m] = = = = A
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Description

e Need convenient compactness for T functions
o rationale for using M1 (different from J1!)
~» topology on D([0, T'], R), see [Skorohod,Whitt]
o€ D(0,T],R) ~ Gy the

completed graph ‘ of f

Gr ={x,) eRX[0,T]: x € [f(-),f(D]},

nh<th

no= 10, [f(ti-) —xl < [f(ti-) —xl
~» natural order when G is traced out from left to right

e Gr-order (x1,11) < (x2,1p) if

e Parametric representation continuous function (u,r) : [0,T] — G

~» way of tracing it out ‘without going back on oneself’

. between fi, f>

du, (f1.2) = ( i?.f 1 2{||141 —w2lleo V Ir1 = 12llo}

uj,rj)y=1,
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e Modulus of continuity
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Compact sets

e Modulus of continuity

wr(f,1,6) = sup dist(f(22), [f(11),£(t3)])

OV (t—=0)<t) <tr<t3<TA(t+0)

of Tor| = wr(f,t,6) =0

e Set A has ‘ compact closure ‘ if and only if ||f||cc < o0 and

lim sup{( sup wr(f.%.6)) V vr(f,0,6) V vr(f.T,6)} = 0
00 req “ref0,T]

where vr(f, 1,6) = sup [F(t) - f(t2)]

OV(t—0)<t; <tr <T A(t+0)

e Connection with standard modulus

o if (f,)n>1 — f = for any continuity point of f

lim lim sup sup [fu(s) =f()I =0
020 pooo  se[0V(1=6),TA(t+0)]



Part V. Construction of solutions with blow up

b. Convergence of the particle system



Main Statement [DIRT]

e Recall particle system
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Main Statement [DIRT]

e Recall particle system
g g ; ] 04 N : ]
N= vl - ﬂfo (ZN = M) ds + v ZM&N + W

i,N i,
MY = |(sup Z;N), |
s€[0,7]

‘emplrlcal measure «» Ay = Z O5iN

o r.v. with values in P(D([0, T],R)) ~» call I1y the law of fy

e Claim 1: Family (ITy)ys1 is in PPD([0,T),R))), T > 0

e Claim 2: For a weak limit 1., for [1s-a.e. u € P(D([0, T],R)), the
canonical process (z;)scf0,7] generates, under y, a ’ physical solution ‘

ounder y, (z; —z0 + 4 jg(zs — my)ds — a{u, m;))iero,r) is B.M.
w1y = [(SUPg<ge; 25)+ ] and (u,my) = [ mydp
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o use o <1]

e Pass to the limit in the dynamics

!
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Sketch of proof

e Tightness requires only a priori bounds for E[sup,,7 |Z]

o use o <1]

e Pass to the limit in the dynamics

!
ZN = viN ) fo 2N = MN)ds + o, my) + W

o rewrite in terms of canonical process under fiy

! -1 1 N -1
AN © (Zr —z0+ /lfo (z5 — my)ds — afjiy, mz>) =Po (]V ; 5W!’)

0<t<T

~ 1y = (SUPg<ye; Z5)+]
e Main difficulty : continuity of the functional z = (supg<<; Zs)+

o may be false! True if z really crosses threshold



Part V. Construction of solutions with blow up

c. Another construction
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0

oM} = iy Loa(r)), 70 =inf{t >0 VI +ahes(t) > 1

o es(t) = ift<o
TR ) iftse



Delayed interaction

e Subthreshold potential with delayed interaction
!
Vi=Vy-2 f Vods + aes(t) + W,
0

oM} = iy Loa(r)), 70 =inf{t >0 VI +ahes(t) > 1

o es(t) = ift<o
TR ) iftse

e Claim 1: Laws (Z° = V® + M®)y<s<; is in P(D([0, T, R))



Delayed interaction

e Subthreshold potential with delayed interaction
!
Vi=Vy-2 f Vods + aes(t) + W,
0

o M? = Yol 1[0,,](7-2), Ti = inf{t > Tz_] : Vt‘s_ + ales(t) > 1}

o es(t) = ift<o
TR ) iftse

e Claim 1: Laws (Z° = V® + M®)y<s<; is in P(D([0, T, R))

e Claim 2: Under weak limit, the canonical process (z;)e[0,7]

generates, under (, a‘ physical solution ‘

ounder u, (z; —z0 + 4 fot(zs — my)ds — a{u, m;))ieio,r) is B.M.



Part V. Extensions

a. Model with common noise



Model with a common noise

e Common source of noise in dynamics of the neurons
Vi= Vé—/lfotvjds+lf+W§+W,°
e Mean-field modeling
V,=Vg— Afot Vids + aB(M|W°) + W, + W?

o same a ~» two # plots: competition with common noise

N=10000, b0, ho=0.25, T=0.06, =001, lpha =40, it =02

B

y HE
S i

Y,




Part V. Extensions

b. Model with random weights



Part V. Extensions

c. Model with spatial component



