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Part I. Motivation

a. General picture



Basic purpose
• Provide a simple model for a neuronal network

◦ with similar neurons

{ focus on one single typical neuron

◦ choose a standard model for the dynamics of the typical neuron

{ examples: diffusion process (with hard threshold),
jump processes (with soft threshold)

• Use mean field assumption to describe interactions

◦ a neuron sees the others through the whole collectivity

◦ global quantity of interest global averaged firing rate

• Excitatory feature

◦ if global averaged firing rate ↑ ⇒ each neuron is more likely to
spike

◦ would make sense to regard inhibitory counterpart
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Challenges
•Mean field limit

◦ derive the limit model as the number of neurons ↑

◦ expect propagation of chaos / LLN

◦ reduce the asymptotic analysis to one typical neuron with
interaction with theoretical distribution?

• Program

◦ existence and uniqueness of solutions to asymptotic model ?
influence of the excitation?

◦ prove convergence of finite models

• Literature

 mean field integrate and fire

 application to systemic risk

 models without hard threshold [Fournier Löcherbach (16)],
Hawks model of mean field types [Chevallier (16)]
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Part I. Motivation

b. A general form for the finite network



General LIF model for a single neuron
• Describe membrane potential of the neuron

 neuron fires if membrane potential is high

◦ several simple models

 jump model with soft threshold{ spike is more likely if
potential is high

 diffusive model with hard threshold { spike occurs if
potential reaches a threshold

• Subthreshold dynamics
d
dt

Vt = −λVt + Iint
t + Iext

t

◦ λ connected with properties of the membrane

◦ Iint{ current due to interactions with other cells

◦ Iext{ collective effect due to external phenomena

• Threshold{ spike whenever V reaches firing value VF

τ = inf
{
t ≥ 0 : Vt ≥ VF

}
◦ after τ (no refractory period){ reset potential at Vτ = VR
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Currents for connected neurons
• Label the neurons i = 1, . . . ,N

d
dt

V i
t = −λV i

t + Iint,i
t + Iext,i

t

◦ N { number of neurons

• Interaction current

Iint,i
t = Iint(V j

t , j , i)

◦ depends on the states of the other neurons

• External current

Iext,i
t = mean-trendi

t + noisei
t

◦ focus on the noise{ noisei
t = (Ẇ i

t)t≥0 white noise

◦ very strong assumption{ start with independent noises

◦ may think of correlated cases as well{ more complicated [HL]
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Mean-field interaction
• Force symmetric interactions (no privileged interactions)

◦ Iint
t (V j

t , j , i) depending on the empirical distribution

Iint
t (V j, j , i) = Iint

t

(
N−1

∑
j,i

δV j
·

)
• Subthreshold dynamics

dV i
t = −λV i

t dt + Iint
t

(
N−1

∑
j,i

δV j
·

)
dt + dW i

t

• Asymptotic model when N → +∞? expect decorrelation between
neurons as N → ∞ + symmetry⇒ expect averaging

Iint
t

( 1
N

∑
j,i

δV j
t

)
∼ Iint

t
(
L(Vt)

)
• Typical neuron interacts with its own law{McKean-Vlasov eq.

dVt = −λVtdt + Iint
t

(
L(Vt)

)
dt + dWt
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Part I. Motivation

c. Examples



Choice of the interaction functional

• Frequently used model ([BH, IT])

◦ Iint
t

(
N−1 ∑

j,i δV j

)
based on mean activity of the network

 Iint
t

(
N−1 ∑

j,i δV j

)
function of 1

N ]
{
spikes ≤ t

}
 if function is

{
↑

↓
⇒

excitation
inhibition

• Other version (see [OBH, DIRT, NS]){ interactions

◦ replace interaction currents by interaction pulses

Iint
t (V j, j , i) =

d
dt
α

N

∑
j,i

1
{V j

t−=VF}

=
d
dt
α

N
]
{
spiking neurons , i at t

}
◦ α > 0⇔ instantaneous self-excitatory interaction

• Replace spikes by defaults{ systemic risk in economy [BH,NS]



Picture for neuronal model
• For VF = 1 and VR = −1 threshold is zero



Picture for systemic risk model
• Consider VF minus the potential{ threshold is zero



Part II. Limiting model



Part II. Limiting model

a. Standard McKV equations



A non-singular particle system
• Forget the spikes and focus on standard dynamics

dXi
t = b

(
Xi

t , µ̄
N
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t

◦ X1
0 , . . . ,X

i
N i.i.d. (and ⊥⊥ of noises), µ̄N

t =
1
N

N∑
i=1

δXi
t

• ∃! if the coefficients are Lipschitz in all the variables need a
suitable distance on space of measures

• Use the Wasserstein distance on P2(Rd)

µ, ν ∈ P2(Rd), W2(µ, ν) =

(
inf
π

∫
Rd×Rd

|x − y|2dπ(x, y)
)1/2

,

where π has µ and ν as marginals on Rd × Rd

◦ X and X′ two r.v.’s⇒ W2(L(X),L(X′)) ≤ E[|X − X′|2]1/2

• Example W2
( 1
N

N∑
i=1

δxi ,
1
N

N∑
i=1

δx′i

)
≤

( 1
N

N∑
i=1

|xi − x′i |
2
)1/2



A non-singular particle system
• Forget the spikes and focus on standard dynamics

dXi
t = b

(
Xi

t , µ̄
N
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t

◦ X1
0 , . . . ,X

i
N i.i.d. (and ⊥⊥ of noises), µ̄N

t =
1
N

N∑
i=1

δXi
t

• ∃! if the coefficients are Lipschitz in all the variables need a
suitable distance on space of measures

• Use the Wasserstein distance on P2(Rd)

µ, ν ∈ P2(Rd), W2(µ, ν) =

(
inf
π

∫
Rd×Rd

|x − y|2dπ(x, y)
)1/2

,

where π has µ and ν as marginals on Rd × Rd

◦ X and X′ two r.v.’s⇒ W2(L(X),L(X′)) ≤ E[|X − X′|2]1/2

• Example W2
( 1
N

N∑
i=1

δxi ,
1
N

N∑
i=1

δx′i

)
≤

( 1
N

N∑
i=1

|xi − x′i |
2
)1/2



McKean-Vlasov SDE
• Expect some decorrelation / averaging in the system as N ↑ ∞

◦ replace the empirical measure by the theoretical law

dXt = b
(
Xt,L(Xt)

)
dt + σ

(
Xt,L(Xt)

)
dWt

• Cauchy-Lipschitz theory

◦ assume b and σ Lipschitz continuous on Rd × P2(Rd)⇒ unique
solution for any given initial condition in L2

◦ proof works as in the standard case taking advantage of

E
[∣∣∣(b, σ)

(
Xt,L(Xt)

)
− (b, σ)

(
X′t ,L(X′t )

)∣∣∣2] ≤ CE
[
|Xt − X′t |

2]

• Propagation of chaos

◦ each (Xi
t)0≤t≤T converges in law to the solution of MKV SDE

◦ particles get independent in the limit{ for k fixed:

(X1
t , . . . ,X

k
t )0≤t≤T −→

L
L(MKV)⊗k = L

(
(Xt)0≤t≤T

)⊗k as N ↗ ∞

◦ lim
N↗∞

sup
0≤t≤T

E
[(

W2(µ̄N
t ,L(Xt)

)2]
= 0
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Part II. Limiting model

b. Formulation of the asymptotic problem



Ansatz
• Recall the subthreshold dynamics of the finite network

V i
t = V i

0 − λ

∫ t

0
V i

sds +
α

N

∑
j,i

]
{
neuron(j) spiked before t

}
+ W i

t

• Heuristics{ same formal reasoning as for a regular interaction
current

Iint
t (V j, j , i) ∼

N→+∞
αE

(
Mt

)
◦ Mt = number of spikes for typical neuron up to t

• Subthreshold dynamics for typical neuron as N → ∞

Vt = V0 − λ

∫ t

0
Vsds + αE

(
Mt) + Wt

◦ Mt = ]
{
t ≥ 0 : Vt− = VF

}
depends on V!

• Typical non-singular interactions
∫ t

0 b(E(Ms))ds [BH,IT]; see also
MFG [Campi,Fischer]
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Interpretation of the mean-field interaction
• Subthreshold dynamics

Vt = V0 − λ

∫ t

0
Vsds + αE(Mt) + Wt

◦ firing value VF = 1, reset (after spiking) VR = 0

• Crucial question: what class of admissible solutions ?

◦ class of solutions dictates regularity for E(Mt){ physical
interpretation?

E(Mt+h −Mt)

∼N=∞ probability of spike in [t, t + h]

∼N<∞ proportion of spikes in [t, t + h]

◦ E(Mt) is allowed to jump! large proportion of neurons may
spike at the same time

◦ may stand for massive simultaneous spikes in the system
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Instantaneous firing rate
•Meaning for requiring e : t 7→ E(Mt) to be differentiable?

probability of spike in [t, t + h] ∼ e′(t)h

◦ e′! instantaneous firing rate

• Subthreshold dynamics if differentiability

dVt = −λVtdt − αe′(t)dt + dWt

◦ SDE{ stochastic calculus and regularizing effect

◦ P(Vt ∈ dy) = p(t, y)dy, t > 0, y < 1

• Fokker Planck equation

∂tp(t, y) + ∂y
[(
−λy + αe′(t)

)
p(t, y)

]
− 1

2∂
2
yyp(t, y) = e′(t)δ0

◦ p(t, 1) = 0 and ∂yp(t, 1) = −1
2 e′(t)

◦ control of e′ ⇔ control of the mass near 1
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Part II. Limiting model

c. The need for α < 1



Cascade phenomenon
• Difficulty α will dictate the smoothness of e! Cascade phenomenon
in the modeling if α > 1!

• Example: runaway behavior if reset (VR = 0, VF = 1){ plot
VF-potential

◦ choose N + 1 neurons, α = (N + 1)/N and V i
0 = i/N,

i = 0, . . . ,N,

◦ particles keep jumping!

◦ α < (N + 1)/N ⇒ no way for defaulting twice at same time



Reformulating the limiting model
• Convenient to reformulate solutions{ unknown without reset

Zt = Vt + Mt

◦ Mt = ] different positive integers crossed by (Zs)0≤s≤t

Mt =
⌊(

sup
0≤s≤t

Zs
)
+

⌋

• Dynamics of (Zt)t≥0

Zt = Z0 − λ

∫ t

0
(Zs −Ms)ds + αE(Mt) + Wt, Z0 = V0

• Application(
sup

0≤s≤t
Zs

)
+

≤ (Z0)+ + 2|λ|
∫ t

0

(
sup

0≤r≤s
Zr

)
+ds + αE

[(
sup

0≤s≤t
Zs

)
+

]
+ sup

0≤s≤t
|Ws|

◦ α < 1 needed to get an a priori bound



Reformulating the limiting model
• Convenient to reformulate solutions{ unknown without reset

Zt = Vt + Mt

◦ Mt = ] different positive integers crossed by (Zs)0≤s≤t

Mt =
⌊(

sup
0≤s≤t

Zs
)
+

⌋
• Dynamics of (Zt)t≥0

Zt = Z0 − λ

∫ t

0
(Zs −Ms)ds + αE(Mt) + Wt, Z0 = V0

• Application(
sup

0≤s≤t
Zs

)
+

≤ (Z0)+ + 2|λ|
∫ t

0

(
sup

0≤r≤s
Zr

)
+ds + αE

[(
sup

0≤s≤t
Zs

)
+

]
+ sup

0≤s≤t
|Ws|

◦ α < 1 needed to get an a priori bound



Reformulating the limiting model
• Convenient to reformulate solutions{ unknown without reset

Zt = Vt + Mt

◦ Mt = ] different positive integers crossed by (Zs)0≤s≤t

Mt =
⌊(

sup
0≤s≤t

Zs
)
+

⌋
• Dynamics of (Zt)t≥0

Zt = Z0 − λ

∫ t

0
(Zs −Ms)ds + αE(Mt) + Wt, Z0 = V0

• Application(
sup

0≤s≤t
Zs

)
+

≤ (Z0)+ + 2|λ|
∫ t

0

(
sup

0≤r≤s
Zr

)
+ds + αE

[(
sup

0≤s≤t
Zs

)
+

]
+ sup

0≤s≤t
|Ws|

◦ α < 1 needed to get an a priori bound



Part II. Limiting model

c. Solvability results



Solvability of the regular model
• Existence of regular solutions in arbitrary time?

◦ avoid blow-up of e′ in finite time?

◦ ⇔ avoid massive spikes?

• Caceres, Carrillo, Perthame

◦ for any α > 0, ∃V0 > 0 such that blow-up in finite time!

• D., Inglis, Rubenthaler and Tanré (AAP)

◦ for V0 < 1, ∃! solution without blow-up for α small enough

◦ explicit (but non-optimal) bounds on critical values α

• Brownian example: λ = 0 and V0 = 0.8 (VF = 1, VR = 0)

◦ existence of regular solutions if α ≤ 0.10

◦ no regular solutions if α ≥ 0.54

◦ numerically, critical value ∼ 0.38 . . .

• Exemple O-U λ→ ∞⇒ critical α→ 1 (⇔ λ fixed and σ→ 0)
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• existence is known [DIRT], uniqueness is partial only [NS]
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Part II. Limiting model

e. Existence of a blow-up for α � 0



Caceres Carrillo Perthame argument
• Choose V0 = v0 and λ = 0 to simplify

• Compute Laplace transform of potential

z(t) = E
[
exp(µVt)

]
, for µ > 0

◦ provided e(t) = E[Mt] is differentiable Itô’s formula yields

d
dt

z(t) =

[
αµe′(t) +

µ2

2

]
︸           ︷︷           ︸

η(t)

z(t) + [1 − exp(µ)]e′(t)︸              ︷︷              ︸
ν(t)

◦ solve the ODE and use z(t) ≤ exp(µ)

0 = z(0) −
∫ ∞

0
ν(s) exp

(
−

∫ s

0
η(u)du

)
ds

◦ integrate explicitly

1 −
αµ exp(µv0)
exp(µ) − 1

=
µ2

2

∫ ∞

0
exp

(
−αµe(s) −

µ2

2
s
)

ds ≥ 0
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Part III. Solving the model for α � 1

a. General plan



Sketch of the proof
• Difficulty: competition between noise and mean-field

• Typical scheme for nonlinear models

◦ existence and uniqueness in short time on [0,T?]

◦ estimate of
1
dy
P(VT? ∈ dy) and iteration

• Short time result

◦ if
1
dy
P(V0 ∈ dy) ≤ β(1 − y) for y ∈ (1 − ε, 1)

⇒ existence and uniqueness on [0,T?(α, β, ε)]

◦ Picard’s fixed point argument

e ∈ C1([0,T]) 7→
(
Γ(e)(t) = E

(∑
s≤t

1{Vs−=1}

))
0≤t≤T

◦ where dVt = −λVtdt + αe′(t)dt + dWt before spike
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Ingredients for the contraction in small time
• Fix e and consider dVe

t = −λVe
t dt + αe′(t)dt + dWt before spike

◦ τe
k = kth hitting time of 1

• Use first Markov property to refresh after reset

Γ(e)(t) =
∑
k≥1

∫ t

0
P
(
τe]s

1 ≤ t − s|Xe]s
0 = 0

)
P(τe

k ∈ ds) + P(τe
1 ≤ t)

 e]s stands for the mapping [0,T − s] 3 t 7→ e(t + s) − e(s)

• Use Fokker-Planck for pe(t, y) =
d
dy
P
(
Ve

t ∈ dy, t < τ1
)

◦
d
dt
P(τe

1 ≤ t) = −
1
2
∂ype(t, 1)

• Use parametrix when V0 = v0 < 1

pe(t, y) = q(t, v0, y) −
∫ t

0

∫ 1

−∞

(
αe′(s) − λ

)
∂zpe(s, z)q(t − s, z, y)dzds
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Part III. Solving the model for α � 1

b. From small to arbitrary time



Sketch of the proof
• Difficulty: competition between noise and mean-field

• Typical scheme for nonlinear models

◦ existence and uniqueness in short time on [0,T?]

◦ estimate of
1
dy
P(VT? ∈ dy) and iteration

• Short time result

◦ if
1
dy
P(V0 ∈ dy) ≤ β(1 − y) for y ∈ (1 − ε, 1)

⇒ existence and uniqueness on [0,T?(α, β, ε)]

◦ Picard’s fixed point argument

e ∈ C1([0,T]) 7→
(
Γ(e)(t) = E

(∑
s≤t

1{Vs−=1}

))
0≤t≤T

◦ where dVt = b(Vt)dt + αe′(t)dt + dWt before spike
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Scheme for the a priori estimate
• Assume ∃ solution with e ∈ C1 on [0,T]

◦ where dVt = b(Vt)dt + αe′(t)dt + dWt before spike

◦ with reset after spike

• Four steps to get
1
dy
P(V0 ∈ dy) ≤ β(1 − y)

◦ bound for p(t, y) = P(Vt ∈ dy)/dy

◦ 1/2 Hölder bound for e

◦ Hölder regularity of p(t, y) in y

◦ Lipschitz regularity of p(t, y) in y

• Bound of p(t, y)

◦ rough bound using (non-killed) Gaussian kernels

V0 > ε⇒ p(t, y) ≤ C(ε, α), y ∈ (0, ε/4)

◦ very bad (can’t see p(t, 1) = 0) but explicit
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Part III. Solving the model for α � 1

c. Implementing the rough bound for p



Continuity of e
• Condition for continuity of e?

∆e(t) = e(t) − e(t−) = 0

⇔ ∃δn ↓ 0 : kick due to particles in [0, δn)︸                                    ︷︷                                    ︸
α

∫ δn

0
p(t−, y)dy

< δn

◦ if p(t, y) < 1/α for y ∈ [0, ε) then e(t) = e(t−)

• Application⇒ implement the bound p(t, y) ≤ C(ε, α)

◦ if C(ε, α)α < 1 then continuity of e

◦ provides the condition α small!

◦ continuity dictated by Brownian: e 1/2-Hölder
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Regularity of p close to the boundary
• Recall Dirichlet condition p(t, 1) = 0

◦ p satisfies Fokker-Planck{ Feynman-Kac

p(T , y) = E
[
p(T − ρ,Yρ) exp

(
λρ

)∣∣∣Y0 = y
]

◦ where dYt = λYtdt − αe′(T − t)dt + dWt

◦ ρ = inf{t ≥ 0 : Yt < (1 − δ, 1)} ∧ T (don’t see the reset)

• Regularity of p at the boundary! P{Yρ = 1}

p(T , y) ≤ CP
(
{Yρ = 1 − δ} ∪ {ρ = T}

)
sup

t∈[0,T],x∈[1−δ,1]
p(t, x)

• Probability to hit the boundary

◦ competition between B and e

 e pushes Y away from 1

◦ e 1/2 Hölder⇒ B wins with >0 probability

(barrier lemma)
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Part IV. Solutions with blow-up

a. Physical solutions of the particle system



Returning to the particle system
• Specify mean field interaction

V i,N
t = V i,N

0 − λ

∫ t

0
V i,N

s ds +
α

N

N∑
j=1

Mj,N
t + W i

t −Mi,N
t

◦ Mi,N
t =

∑
k≥1 1[0,t](τ

i,N
k )

 τi,N
k = inf

{
t > τi,N

k−1 : V i,N
t− +

α

N

N∑
j=1

(
Mj,N

t −Mj,N
t−

)
︸                   ︷︷                   ︸

kick

≥ 1
}

◦ may exclude interaction with i itself

• Not well-posed! take N = 3 and

◦ t : M1
t− = M2

t− = M3
t− = 0, V1

t− = 1, V2
t−,V

3
t− ∈ (1 − 2α

3 , 1 −
α
3 )

 1st solution M1
t = 1, M2

t = M3
t = 0 kick = α

3

 2nd solution M1
t = M2

t = M3
t = 1 kick = 1
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Refined notion of solution
• Previous counter-example{ need to order jumps

◦ jumps must be defined sequentially

• First particles to jump{ Γ0 = {i ∈ {1, . . . ,N} : V i
t− = 1}

• Particles to jump next

Γ1 =

{
i ∈ {1, . . . ,N}\Γ0 : V i

t− + α
|Γ0|

N
≥ 1

}
• Iterate

Γk+1 =
{
i ∈ {1, . . . ,N}\Γ0 ∪ · · · ∪ Γk : Xi

t− + α
|Γ0 ∪ · · · ∪ Γk|

N
≥ 1

}
α < 1⇒ no way for a neuron to spike twice at the same time

• Global set of particles that spike{ Γ =
⋃

0≤k≤N−1 Γk

V i
t = V i

t− +
α|Γ|

N
if i < Γ, V i

t = V i
t− +

α|Γ|

N
− 1 if i ∈ Γ.
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Part IV. Solutions with blow-up

b. Physical solutions of the limiting system



Rules for spiking
• Seek càd-làg solutions

• From particle system{ need to prescribe rules for spiking

◦ no more than 1 spike at a given time⇒ ∆Mt = Mt −Mt− ∈ {0, 1}

∆E[Mt] = P
[
Vt− + α∆E[Mt]︸    ︷︷    ︸

kick

≥ 1
]

◦ does not provide a characterization of the jumps of E[Mt]!

◦ recall counter-example in finite models

• Notion of Physical solutions

◦ no jump if remaining mass after jump is too small!

∆e(t) = inf
{
η ≥ 0 : P

(
Vt− + αη ≥ 1

)
< η

}



Rules for spiking
• Seek càd-làg solutions

• From particle system{ need to prescribe rules for spiking

◦ no more than 1 spike at a given time⇒ ∆Mt = Mt −Mt− ∈ {0, 1}

∆E[Mt] = P
[
Vt− + α∆E[Mt]︸    ︷︷    ︸

kick

≥ 1
]

◦ does not provide a characterization of the jumps of E[Mt]!

◦ recall counter-example in finite models

• Notion of Physical solutions

◦ no jump if remaining mass after jump is too small!

∆e(t) = inf
{
η ≥ 0 : P

(
Vt− + αη ≥ 1

)
< η

}



Rules for spiking
• Seek càd-làg solutions

• From particle system{ need to prescribe rules for spiking

◦ no more than 1 spike at a given time⇒ ∆Mt = Mt −Mt− ∈ {0, 1}

∆E[Mt] = P
[
Vt− + α∆E[Mt]︸    ︷︷    ︸

kick

≥ 1
]

◦ does not provide a characterization of the jumps of E[Mt]!

◦ recall counter-example in finite models

• Notion of Physical solutions

◦ no jump if remaining mass after jump is too small!

∆e(t) = inf
{
η ≥ 0 : P

(
Vt− + αη ≥ 1

)
< η

}



Rules for spiking
• Seek càd-làg solutions

• From particle system{ need to prescribe rules for spiking

◦ no more than 1 spike at a given time⇒ ∆Mt = Mt −Mt− ∈ {0, 1}

∆E[Mt] = P
[
Vt− + α∆E[Mt]︸    ︷︷    ︸

kick

≥ 1
]

◦ does not provide a characterization of the jumps of E[Mt]!

◦ recall counter-example in finite models

• Notion of Physical solutions

◦ no jump if remaining mass after jump is too small!

∆e(t) = inf
{
η ≥ 0 : P

(
Vt− + αη ≥ 1

)
< η

}



Solutions with blow-up
• Description of the jumps of e(t) = E(Mt) when blow-up?

∆e(t) = e(t) − e(t−) ≥ δ0

⇔ ∀δ ≤ δ0, kick due to particles in [0, δ) ≥ δ

⇔ ∀δ ≤ δ0, α

∫ δ

0
p(t−, y)dy︸             ︷︷             ︸

kick due to particles in [0, δ)

≥ δ

◦ restart with density p(t, y) = p
(
t−, y + ∆e(t)

)
for y near 1

• Construction of a solution⇒ approximation

◦ risk modeling{ massive/systemic default?

• Uniqueness?

◦ [NS] : uniqueness as long as t :
∫ t

0 |e
′(s)|2ds < ∞ for



Reformulation
• Convenient to reformulate solutions{ unknown without reset

Zt = Vt + Mt

◦ Mt = ] different positive integers crossed by (Zs)0≤s≤t

Mt =
⌊(

sup
0≤s≤t

Zs
)
+

⌋

• Dynamics of (Zt)t≥0

Zt = Z0 − λ

∫ t

0
(Zs −Ms)ds + αE(Mt) + Wt, Z0 = V0

• Similar transformation with particle system

Zi,N
t = V i,N

0 − λ

∫ t

0

(
Zi,N

s −Mi,N
s

)
ds +

α

N

N∑
j=1

Mj,N
t + W i

t

Mi,N
t =

⌊(
sup

s∈[0,t]
Zi,N

s
)
+

⌋
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Part V. Construction of solutions with blow up

a. M1 topology



Description
• Need convenient compactness for ↑ functions

◦ rationale for using M1 (different from J1!)

 topology onD([0,T],R), see [Skorohod,Whitt]

• f ∈ D ([0,T],R){ Gf the completed graph of f

Gf = {(x, t) ∈ R × [0,T] : x ∈ [f (t−), f (t)]} ,

• Gf -order (x1, t1) ≤ (x2, t2) if
t1 < t2
t1 = t2, |f (t1−) − x1| ≤ |f (t1−) − x2|

 natural order when Gf is traced out from left to right

• Parametric representation continuous function (u, r) : [0,T]→ Gf

 way of tracing it out ‘without going back on oneself’

• Distance between f1, f2

dM1(f1, f2) = inf
(uj,rj),j=1,2

{‖u1 − u2‖∞ ∨ ‖r1 − r2‖∞}



Description
• Need convenient compactness for ↑ functions

◦ rationale for using M1 (different from J1!)

 topology onD([0,T],R), see [Skorohod,Whitt]

• f ∈ D ([0,T],R){ Gf the completed graph of f

Gf = {(x, t) ∈ R × [0,T] : x ∈ [f (t−), f (t)]} ,

• Gf -order (x1, t1) ≤ (x2, t2) if
t1 < t2
t1 = t2, |f (t1−) − x1| ≤ |f (t1−) − x2|

 natural order when Gf is traced out from left to right

• Parametric representation continuous function (u, r) : [0,T]→ Gf

 way of tracing it out ‘without going back on oneself’

• Distance between f1, f2

dM1(f1, f2) = inf
(uj,rj),j=1,2

{‖u1 − u2‖∞ ∨ ‖r1 − r2‖∞}



Description
• Need convenient compactness for ↑ functions

◦ rationale for using M1 (different from J1!)

 topology onD([0,T],R), see [Skorohod,Whitt]

• f ∈ D ([0,T],R){ Gf the completed graph of f

Gf = {(x, t) ∈ R × [0,T] : x ∈ [f (t−), f (t)]} ,

• Gf -order (x1, t1) ≤ (x2, t2) if
t1 < t2
t1 = t2, |f (t1−) − x1| ≤ |f (t1−) − x2|

 natural order when Gf is traced out from left to right

• Parametric representation continuous function (u, r) : [0,T]→ Gf

 way of tracing it out ‘without going back on oneself’

• Distance between f1, f2

dM1(f1, f2) = inf
(uj,rj),j=1,2

{‖u1 − u2‖∞ ∨ ‖r1 − r2‖∞}



Description
• Need convenient compactness for ↑ functions

◦ rationale for using M1 (different from J1!)

 topology onD([0,T],R), see [Skorohod,Whitt]

• f ∈ D ([0,T],R){ Gf the completed graph of f

Gf = {(x, t) ∈ R × [0,T] : x ∈ [f (t−), f (t)]} ,

• Gf -order (x1, t1) ≤ (x2, t2) if
t1 < t2
t1 = t2, |f (t1−) − x1| ≤ |f (t1−) − x2|

 natural order when Gf is traced out from left to right

• Parametric representation continuous function (u, r) : [0,T]→ Gf

 way of tracing it out ‘without going back on oneself’

• Distance between f1, f2

dM1(f1, f2) = inf
(uj,rj),j=1,2

{‖u1 − u2‖∞ ∨ ‖r1 − r2‖∞}



Description
• Need convenient compactness for ↑ functions

◦ rationale for using M1 (different from J1!)

 topology onD([0,T],R), see [Skorohod,Whitt]

• f ∈ D ([0,T],R){ Gf the completed graph of f

Gf = {(x, t) ∈ R × [0,T] : x ∈ [f (t−), f (t)]} ,

• Gf -order (x1, t1) ≤ (x2, t2) if
t1 < t2
t1 = t2, |f (t1−) − x1| ≤ |f (t1−) − x2|

 natural order when Gf is traced out from left to right

• Parametric representation continuous function (u, r) : [0,T]→ Gf

 way of tracing it out ‘without going back on oneself’

• Distance between f1, f2

dM1(f1, f2) = inf
(uj,rj),j=1,2

{‖u1 − u2‖∞ ∨ ‖r1 − r2‖∞}



Compact sets
•Modulus of continuity

wT (f , t, δ) = sup
0∨(t−δ)≤t1<t2<t3≤T∧(t+δ)

dist
(
f (t2), [f (t1), f (t3)]

)
◦ f ↑ or ↓ ⇒ wT (f , t, δ) = 0

• Set A has compact closure if and only if ‖f ‖∞ < ∞ and

lim
δ→0

sup
f∈A

{(
sup

t∈[0,T]
wT (f , t, δ)

)
∨ vT (f , 0, δ) ∨ vT (f ,T , δ)

}
= 0

where vT (f , t, δ) = sup
0∨(t−δ)≤t1≤t2≤T∧(t+δ)

∣∣∣f (t1) − f (t2)
∣∣∣

• Connection with standard modulus

◦ if (fn)n≥1 → f ⇒ for any continuity point of f

lim
δ→0

lim sup
n→∞

sup
s∈[0∨(t−δ),T∧(t+δ)]

|fn(s) − f (s)| = 0
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Part V. Construction of solutions with blow up

b. Convergence of the particle system



Main Statement [DIRT]

• Recall particle system

Zi,N
t = V i,N

0 − λ

∫ t

0

(
Zi,N

s −Mi,N
s

)
ds +

α

N

N∑
j=1

Mj,N
t + W i

t

Mi,N
t =

⌊(
sup

s∈[0,t]
Zi,N

s
)
+

⌋

◦ empirical measure { µ̄N =
1
N

N∑
i=1

δZ̃i,N
·

◦ r.v. with values in P(D([0,T],R)){ call ΠN the law of µ̄N

• Claim 1: Family (ΠN)N≥1 is tight in P(P(D([0,T],R))), T > 0

• Claim 2: For a weak limit Π∞, for Π∞-a.e. µ ∈ P(D([0,T],R)), the
canonical process (zt)t∈[0,T] generates, under µ, a physical solution

◦ under µ, (zt − z0 + λ
∫ t

0 (zs − ms)ds − α〈µ,mt〉)t∈[0,T) is B.M.

 mt = b(sup0≤s≤t zs)+c and 〈µ,mt〉 =
∫

mtdµ
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Sketch of proof
• Tightness requires only a priori bounds for E

[
sup0≤t≤T |Zt|

p]
◦ use α < 1

• Pass to the limit in the dynamics

Zi,N
t = V i,N

0 − λ

∫ t

0
(Z̃i,N

s −Mi,N
s )ds + α〈µ̄N ,mt〉 + W i

t

◦ rewrite in terms of canonical process under µ̄N

µ̄N ◦

(
zt − z0 + λ

∫ t

0
(zs − ms)ds − α〈µ̄N ,mt〉

)−1

0≤t≤T
= P ◦

( 1
N

N∑
i=1

δW i
·

)−1

 mt = (sup0≤s≤t zs)+c

•Main difficulty : continuity of the functional z 7→ (sup0≤s≤t zs)+

◦ may be false! True if z really crosses threshold
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Part V. Construction of solutions with blow up

c. Another construction



Delayed interaction
• Subthreshold potential with delayed interaction

Vδ
t = V0 − λ

∫ t

0
Vδ

s ds + αeδ(t) + Wt

◦ Mδ
t =

∑
k≥1 1[0,t](τδk), τδk = inf

{
t > τδk−1 : Vδ

t− + α∆eδ(t) ≥ 1
}

◦ eδ(t) =

0 if t ≤ δ
E(Mδ

t−δ) if t > δ

• Claim 1: Laws (Zδ = Vδ + Mδ)0<δ≤1 is tight in P(D([0,T],R))

• Claim 2: Under weak limit, the canonical process (zt)t∈[0,T]

generates, under µ, a physical solution

◦ under µ, (zt − z0 + λ
∫ t

0 (zs − ms)ds − α〈µ,mt〉)t∈[0,T) is B.M.
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Part V. Extensions

a. Model with common noise



Model with a common noise
• Common source of noise in dynamics of the neurons

V i
t = V i

0 − λ

∫ t

0
V i

sds + Ii
t + W i

t + W0
t

•Mean-field modeling

Vt = VR − λ

∫ t

0
Vsds + αE

(
Mt|W0) + Wt + W0

t

◦ same α{ two , plots: competition with common noise

Figure 1: Two realizations of the loss function t 7! LN
t . Parameters: ↵ = 0.4,

µ0 = �x0 with x0 = 0.2, ⇢ = 0.25, b = 0.5 and N = 100000.

We would like to understand what happens in (1.4) when the number of firms N
in the portfolio becomes very large. In particular, we are interested in the behavior
of the loss function

LN
t :=

1

N

NX

j=1

1⌧ jt, as N ! 1,

which is the proportion of firms that have defaulted before t.
To provide some intuition, we numerically plot t 7! LN

t in Figure 1 for large N ,
and for two realizations of the Brownian trajectory (Bt)t�0, using exactly the same
parameters (and a Dirac mass as initial condition). We see that the behavior of
the loss function can be very different, depending on the realization of (Bt)t�0: it
can either be continuous, or can have a jump. The discontinuous behavior would
correspond to a catastrophic event, where a large number of firms in the portfolio all
defaulted at the same time. A key question is therefore whether or not it is possible
to estimate the probability that there will be a catastrophic event in terms of µ0

and the parameters ↵, ⇢ and b when N is large.

2 Convergence results
In order to study the convergence of the system (1.4) as N ! 1, we first introduce
the (continuous) limit equation:

8
>>>>><
>>>>>:

X̄t = X0 + bt +
p
⇢Bt +

p
1 � ⇢Wt � ↵L̄t, t 2 [0, ⌧̄),

X̄t = 0, t � ⌧̄ ,

⌧̄ = inf{t � 0 : X̄t = 0},

L̄t = P
✓

inf
st

X̄s  0
���(Bs)st

◆
, t > 0.

(2.1)

3

 See Hambly, Ledger (without singular interactions)



Part V. Extensions

b. Model with random weights



Part V. Extensions

c. Model with spatial component


