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Introduction and position of the problem

Introduction and position of the problem

General problematic : How collective neuronal dynamics can emerges from
individual neuron ?

It may depends on several aspects as :

e Intrinsic dynamic of each neuron
e Type of coupling between neuron

o Memory effects
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Introduction and position of the problem

Introduction and position of the problem

Aim : Test the different assumptions made on

e the unit neuron
e the coupling
e memorization effect

to understand the impact on the patterns generated by the network.
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Introduction and position of the problem

Introduction and position of the problem

Model considered : To answer the above questions, we will focus on two
models

e The time elapsed model (structured partial differential equation model)

e The nonlinear leaky integrate and fire model (Fokker-Planck equation)

Remarks :

e Those models are not exhaustive and there exists several other PDE’s
models to describe neural networks

e Very rich dynamics can emerge from those two equations and some of
them are easy to tackle theoretically.
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Introduction and position of the problem

Plan of the course

Plan of the course :

e Some classical models for single neuron
e Time elapsed PDE model

e Noisy Leaky Integrate and Fire PDE model
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

Neural cell.
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Neuron: specialized cell that

e is electrically excitable

e receive, analyse and transmit signal to other neurons
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

Neural cell.

Description of a unit neural activity :

To communicate neurons emit action potential that is also calling "spike”.
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This phenomenon involves several complex processes including: opening and closing of various
ion channels.
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Some classical models for single neuron

Description via intrinsic mechanisms
Description via frequency of spikes

Neural cell

Vast spectrum of different types of neurons that can be classified according to their shape, their

intrinsic dynamics ...
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

Model of neural cell

Two aspects of modelling :
e Description via intrinsic mechanisms involved on a unit neuron

e Description via the frequency of "spikes” of the neuron, omitting the explicit
modelling of the intrinsic mechanisms involved on the neuron.

Principal mathematical tools :
e deterministic dynamical systems

e stochastic models.
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Some classical models for single neuron P n
Description via intrinsic mechanisms

Description via frequency of spikes

Description via intrinsic mechanisms on a unit neuron

Intrinsic mechanisms on a unit neuron :
o In the simplest models, the cell is assimilated to an electrical circuit

e In more precise models, for example, propagation of signal along the axon
or the impact of dendrites may be included

Main electrical circuit model type :
e Hodgkin-Huxley model
e FitzHugh Nagumo model
e Integrate and fire model
o Morris-Lecar model
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Some classical models for single neuron

Description via intrinsic mechanisms
Description via frequency of spikes

Hodgkin-Huxley model
Hodgkin-Huxley model (1952) :
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T,,(V)% = (Ns(V) — n), n: probability of potassium channel to be open

Tm(V)(:;—T = (Moo (V) — m) m: probability of Sodium channel to be actif

T,,(V)% = (hoo (V) — h)  h: probability of Sodium channel to be open.
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Some classical models for single neuron

Description via intrinsic mechanisms
Description via frequency of spikes

Hodgkin-Huxley model
Hodgkin-Huxley model (1952) :

@ 4 coupled equations (one on membrane potential and three on ion channels)
@ Allow to reproduce several typical patterns

@ Difficult to study mathematically and numerically expensive

Simplified models allowing to well capture several patterns of neurons ?

@ Replace some variables by their stationary states (fast variables)
@ Do not explicitly model ion channels
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Some classical models for single neuron P n
Description via intrinsic mechanisms

Description via frequency of spikes

FitzHugh-Nagumo model

FitzHugh Nagumo model : Involves two variables

e The membrane voltage v

e The recovery variable w

Equations :

ev'(t)=v— "; —w+I(t), I(t): external current input

w'(t) =(v+a— bw).
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Some classical models for single neuron P n
Description via intrinsic mechanisms

Description via frequency of spikes

FitzHugh-Nagumo model

Typical patterns that may capture FitzHugh Nagumo model : Depending of
the choice of the parameters (even in the simplest case / =0, b = 0)

e Fast convergence to a stationary state

e Excitable case : the neuron emit a spike before coming back to its resting
state

e Oscillations and convergence to a periodic solution (limit cycle)
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Some classical models for single neuron P n
Description via intrinsic mechanisms

Description via frequency of spikes

FitzHugh-Nagumo model

Case /| = cste, b =0
@ Unique stationary state
@ Stable if f/ < 0 and unstable if f' > 0.
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Some classical models for single neuron P n
Description via intrinsic mechanisms

Description via frequency of spikes

FitzHugh-Nagumo model
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Some classical models for single neuron P n
Description via intrinsic mechanisms

Description via frequency of spikes

FitzHugh-Nagumo model
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Some classical models for single neuron eyt [T n
Description via intrinsic mechanisms
Description via frequency of spikes

FitzHugh-Nagumo model
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Some classical models for single neuron

Description via intrinsic mechanisms
Description via frequency of spikes

Nagumo model, role of noise

3
ev'(t)y=v— % —w+I(t), I(t): external current input

W’(t):(v+afbw)+%.
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Some classical models for single neuron P n
Description via intrinsic mechanisms

Description via frequency of spikes

Leaky Integrate and Fire Model (from Lapicque,1907).

Leaky Integrate and Fire Model :
TV'(t) = = V(t)+ RI(t), V(t) < Vg, [: external input
V(t_) =Vr= V(t+) = VF;, Vg < VE.
e Vg is the value of the action potential
e Vg is the reset potential

e We may add some noise : 7a;V = (= V(t) + RI(t))dt + cdW(t), V(t) < VE.

Very simple structure :

e Linear differential equation on the potential V (if V < Vg)

e Spiking modelled via a threshold Vg and jump of V to a given value Vg.
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Some classical models for single neuron i S n
Description via intrinsic mechanisms

Description via frequency of spikes

Leaky Integrate and Fire Model (from Lapicque,190
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From C. Rossant et al, Frontiers in Neuroscience (2011)
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

Wilson-Cowan model.

Wilson-Cowan model : models probability of a neuron to spike at time f,
typically

u'(t) = —u(t) + S(u(t)), where S is a sigmoidal function.

Several useful extention/application

e Including inhibitory/excitatory neurons
o Extension to spatial models leading to neural fields equations

u'(t,x) = —u(t, x) + S(/ w(x, y)u(t, y)dy) + I(t, x).

e Application in epilepsy in visual cortex
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Some classical models for single neuron

Description via intrinsic mechanisms
Description via frequency of spikes

Wilson-Cowan model.

Feature

@ multiple steady states and bifurcation theory (S. Amari, Bressloff-Golubitsky,
Chossat-Faugeras-Faye)

@ Interpretation of visual illusions and visual hallucinations (Kliver, Oster, Siegel...)
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

Stochastic processes

Ponctual processes/counting processes :

e homogeneous Poisson processes
e inhomogeneous Poisson processes
e Renewal processes

o Hawkes processes
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

Homogeneous Poisson processes

Homogeneous Poisson processes : Given a parameter A > 0 and a
time interval / of size T,

OT)" a7
n! '

P(Neuron discharge ntimes on /) =

Main properties

e Time independent
o No dependance with respect to the past
o Probability of a neuron that has not yet discharge at time t : e~
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

Inhomogeneous Poisson processes

Inhomogeneous Poisson processes : Given a function A > 0 and a
time interval | = [a, b],

b
(/3 A(S)ds)nef(f: A(s)ds)

P(Neuron discharge ntimes on /) = p

Main properties

e Time dependent
o No dependance with respect to the past

o Probability of a neuron that has not yet discharge at time t :
t
e JoMs)ds
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

Renewal processes/Hawkes processes

Renewal processes : include models with memory of the preceding
spike and therefore useful to integrate the refractory period.

Main properties

e The delay between two consecutive spikes are independent
e The delay between two consecutive spikes are identically distributed

Hawkes processes : More complex processes that allows to model
synaptic integration (see Caceres, Chevallier, Doumic, Reynaud-Bouret)
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Some classical models for single neuron - S .
Description via intrinsic mechanisms

Description via frequency of spikes

From the microscopic to macroscopic scale ?

Macroscopic scale via mean field assumptions leading to PDE’s :

@ Infinitely many neurons
@ Homogeneous interconnexions
@ Each neuron receive the mean activity of the network

Many PDE models obtain via this paradigm
@ time-elapsed model
@ Leaky-integrate and fire type models (Fokker-Planck model)
@ oscillators ( Kuramoto equation)
o ...

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Biological motivation and setting

Biological motivation and setting : From Pham, Pakdaman, Champagnat, Vibert

@ Networks at the Nucleus Tractus Solitarius
oo (NTS) responsible of basic rhythms.

ACCESSORY (LATERAL) WOTOR
CUNEATE NUCLEUS

PeEOR cesgBELLAR i 3 ‘ @ NTS contains neural circuits with only
; excitatory connections displaying a
spontaneous activity.

ANBIGUUS

@ No pacemaker neurons responsible for the
e spontaneous activity.

@ Simple partial differential equation model to

FYRAMID

explore the possible mechanisms of
spontaneous activity generation ?

http://www.neuroanatomy.wisc.edu/virtualbrain/BrainStem/11Solitarius.html|
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

First studies

First studies :

@ Simulation of several computational models adjusted to the experiments revealed that the
network could sustain regular rhythmic activity in some parameter ranges

@ Phenomenon of spontaneous activity persists in networks with diverse connectivity.

@ That the phenomenon can be observed in many models suggests that the fine details of the
model may not be at the core of the mechanism, and that to get the gist of the phenomena,
one may focus on a few features of neural dynamics.

@ We have proposed a simple mathematical model where neurons are describe via the time
elapsed since the last discharge to obtain theoretically this phenomenon of spontaneous
activity observed.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Elapsed time model

Main assumptions on the model.

Dynamic on each neuron :

@ The neurons are excitatory

@ Even without stimulations, the neurons have an activity

@ Neurons discribe via the time elapsed sinc the last discharge

@ When a neuron discharge, it's new intrinsic dynamic may depends on it’s past activity

Interconnexions :
The amplitude of stimulation X(t) is homogeneous with

X(1) = /Ota(s)N(tf s)ds

where N(t) is the flux of neurons which discharge at time t. To simplify, we take here X(t) = N(t).
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Time elapsed model

on(s,t on(s,t +oo
(8,0 | 9n(S:D) | bs n(t))n(s, ) :/ K(s, u)p(u, N(t))n(u, t)du,
ot s — — 0
. death of the neurons
aging neurons Redistribution in age of the death neurons

+o0
N(t) := /0 p(s,N(t)) n(s,t)ds, n(s=0,t)=0.

@ n(s,t): density of neurons at time t such that the time elapsed since the last discharge is s.

@ N(t) : flux of neurons which discharge at time ¢

@ p(s, u) : firing rate of the neurons of age s which discharge when they are submitted to an
amplitude of stimulation u > 0.

@ K(s, u): Positive measure allowing to give the repartition of neurons which discharge at the
state u and which reset at the state s.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Assumptions on p and K.

The function p(s, u) :

@ The probability for a neuron to survive up to the age ¢ :
P(s > t) = e~ Jopls:)ds,
@ The account of refractory period
Osp > 0 and p = 0 for s small enough.

@ Excitatory neurons :
Oup > 0.

@ Interconnexions between the neurons :

modeled via 9yp, if no interconnexions dyp = 0.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Assumptions on p and K.

The kernel fragmentation K(s, u) :

@ For each u > 0, K(s, u) models the measure of probability for a neuron which has discharge
at the age u to reset in the new state s.

@ K(s,u) =0 for s> u: all the neurons which discharge at an age u, reset at an age s smaller
than u

o [ K(s,u)ds=1,andso [;"* n(s,t)ds=1, vt>0.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Assumptions on p and K

The kernel fragmentation K(s, u) :

We also introduce the two following quantities :

e 0 < f(s,u):= fos K(s, u)ds < 1 which is the probability for a neuron which discharge at the
state u reset to an age smaller than s.

@ —9uf := ®(s,u) > 0 which implies that the bigger u is, the smaller the probability that a
neuron which has discharge at the age u reset to a state smaller than s is small.

We assume that N
/ d(s,u)ds =6 < 1;
0

and u
/ sK(s,u)ds < 6u
0

i.e. the expected value of the new state of a neuron which has discharge at age u is smaller or
equal to fu.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Main questions

Main questions : What is the impact of the strength of interconnections on the dynamic of the
neural network ?

@ 1. When the interconnections are low or inexistant, intuitively, we expect that the solution
converges to a stationary state.

@ 2. For hight interconnections, we expect the apparition of more complex patterns as periodic
solutions.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Methods to tackle the problem

Case 1: dynamic "almost linear” :

@ Spectral methods (K = ds—¢) (Mischler, Weng)

@ With entropy generalized methods, inspired by Laurencot and Perthame where we search
decreasing functional by multiply the Equation by judicious test functions.

Case 2 : Situation more complex :

@ Many different patterns and periodic solutions numerically observed.
@ By well choosing p and K, explicit of infinitely many periodic solutions.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.

Numerical simulations
Finite size model

Plan of study without interconnexions.

Plan of study without interconnexions

e Existence and uniqueness of stationary state (Krein Rutman
Theorem)

e Entropy type inequality

e Proof of convergence to a stationary state
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections.

Stationary states Is there existence and unicity of the solution of Equation
+o0
DsA + p(s)A = / K(s, u)p(u)A(u)du,
0

+o00o
A(0)=0, A> o,/ A(s)ds = 1.
0

Krein-Rutman Theorem :
Let T > 0 and

C = {f € ([0, T]) such that f > 0}.

Let T be a compact operator strictly positif on C. Then, the spectral radius of T is a simple
eigenvalue of T and there exists a unique normalized eigenvector in C.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections.

@ we sete > 0, R > 0 and consider the operator T : (C([0, R]) — C([0, R]) which to f associate
the solution

R R
9sA + (11 + p(8))A — /0 K(s, 0)p(W)A(U)du = f, A(0) = /0 A(s)ds.

@ For p big enough £ > 0 small enough, T well defined and compact and we have
f>0= T(f) > 0.

By Krein-Rutman Theorem, there exists Ag . and A > 0 such that

R R
9sA+ (D(S) + Ar.o)A = /0 K(s, u)p(u)A(U)du, A@Q)=e, A> 0’/0 A(s)ds = 1.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections.

Limit R — +o00,e - 0

@ Compactness obtained via assumption (mass do not goes at the limit to infinity)

u
/ sK(s,u)ds < 6u, 6 <1.
0

Hence, at the limit [,">° A(s)ds = 1.

@ More precisely, for e small enough and R > 0 big enough,

2 R
c-gSApse (1- 9)/ SA: p(s)ds < C,  [|AcRllLee + l|0xAc Rl < C.
0
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.

Numerical simulations
Finite size model

Case without interconnections : asymptotic analysis.

Convergence to the stationary state

@ Setting m(s, t) = n(s, t) — A(s), we find by linearity that m is solution of Equation

+o00o +o00o
orm+ Osm + p(s)m = / p(u)K(s, uym(u, t)du, / m(s, t)ds = 0.
0 0

@ Forall a(s) € R,

+o0 +oo
/ (U)K (s, u)m(u, t)du = /0 p(u)K (s, u)m(u, t) — a(s)m(u, t)du.
0
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.

Numerical simulations
Finite size model

Case without interconnections : asymptotic analysis.

with fragmentation term : If the kernel fragmentation "mixed everything”, the
above strategy will give nothing.

Strategy for general kernel fragmentation

e We consider the following new quantity

B(s,t) = /OS n(u, t)du

which models the probability for a neuron that the time elapsed since its
last discharge is smaller than s.

e We search an entropy inequality on

M(s, t) == /Os n(u, t) — A(u)du.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.

Numerical simulations
Finite size model

Case without interconnections : asymptotic analysis.

Equation on M : closed equation

OM(s, t) 4 OM(s, t)
ot 0s

o 9p(u)
—s Ou

+ p(s)M(s, ) = — / f(s, uYM(u, t)du + / p(u)d (s, uYM(u, t)du.

By setting the absolute values

o|M(s, t)] +8IM(s, 3l
ot as

+p(8)|M(s, 1)] < / 1P/ () I1(s, w)IM(u, ] dut+ / p(u)®(s, u)|M(u, t)|du.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.

Numerical simulations
Finite size model

Case without interconnections : asymptotic analysis.

e if p=cst > 0, then, with
+oo
/ d(s,u)ds <0,
0

We directly obtain that

%/W(s, )|ds < (1 +¢9)/p\M(u, )|du.

@ Else, we multiply Equation on M by a judicious test function P solution of

_9P(s)

D) ek pP(s) = [ 1P (91w 5) + plo)ou. )] Plu)el

We then have

+oo e
%/0 P(s)|M(s, t)|ds < /\/ s)|M(s, t)|ds

Exponential decreased for [M| as soon A < 0and P > C > 0.
As M and 8;M are solution of the same Equation, we obtain exponential decrease of min L'.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Numerical simulation
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Case of strong interconnections.

The study of periodic solution is complex. Numerically, we observe many periodic solutions when
the strength of interconnections is strong enough.

Aim of this part : Explicitly construct many different periodic solutions in a particular case where
the solution of the equation can be reduced to a time delay Equation on the flux of neurons N(t).

Assumptions : We assume that p(s, u) = Is>,(4), Where o is a decreasing function, and
K(S, U) = 05—0-
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Case of strong interconnections.

Reduction to a delay equation on N. Assume that we have a solution of our transport Equation and
that
d

SoN) <

Then, by using the mass conservation law, we have for all t > o,

t
N(1) +/ N(s)ds = 1.
= o (N(1)

Proof
With the mass conservation, for all t > o1 we have

+00 a(N(t)) a(N(1))
/ n(s, t)ds :/ n(s, t)ds+/ n(s, t)ds f/ n(s, t)ds + N(t).
0 0 0

Now, as Z(o(N(1)) < 1, for s < o(N(t)), we deduce that

n(s,t) = N(t —s).
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Case of strong interconnections.

Construction of periodic solutions : We take the "inverse” problem : Given a periodic function N(t)
of period T, we consider the following Equation

{ 6n(st)+8nst +p(3Nt)) n(s,t) =0, teR, s>0,
n(s=0,t) = N(t).

As we look forward periodic solution n in time, we do not need initial data and the method of
characteristics gives the solution

n(t,s) = N(t — s)e Jo PN+ =s)du it t _ 5> 0.
By periodicity of n, we obtain that for all s < kT, k € N, we must have
n(t =0,s) = N(KT — s)e™ Jo PUNUTKT—9))du

Hence finding periodic flux N(t) of our Equation can reduced to find conditions on N such that the
solution of the above Equation is also solution of the initial transport Equation; that is we must have

+oo +oo
N(t) = / n(s, t)ds and / n(s, t)ds = 1.
a(N(t)) 0
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Case of strong interconnections.

Proposition (Criteria linking o and N)

Let o(-) be a decreasing function and let N be a T periodic function such that
d a(N(t))
EU(N(t)) <HT, 1= N(t) +/ N(t — s)ds.
0
Assume that

p(s, N) = Iss o(n)-
Then the solution of our Equation with N given is also solution of the non linear transport Equation.

Proof. We observe that, as 2o (N(t)) < 1, then, for s € (0,5(N(t)), we have n(s, t) = N(t — s).
We deduce, by setting M(t) = [,7>° n(s, t)ds, that

%M(t) +M(t) =1

and as M is periodic, we have M = 1, which proves the Proposition.

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Case of strong interconnections.

Explicit construction of periodic solutions : We can construct infinitely many periodic solutions. The
simplest example is the following
Let o > 0, we set

0 < Nm(«) = ea T 1 < Np(a) :zzeﬂeia__l < 1, (1)
and we assume that
2a on [0, Nm(a)]a
o(x) = { o —In(x) +In(Np(a))  on [Nm(a), Np(e)], (2
e on [Np(a), o).

We can remark that, in this system, there exists a unique stationary state.

Then, the function N, « periodic defined by
N(t) = Np(a)e™!, te(0,a)

satisfies the assumptions of the Proposition.
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Study of the time elapsed model and main questions.
Case without interconnections.

Time elapsed model Case of strong interconnections.
Numerical simulations

Finite size model

Case of strong interconnections

Let
° oo —In(Nm) +In(Np) on [0, Nm],
o(x) = 4 oo — In(x) + In(Np) on [Nm, Np],
o) on [Np, o).

Proposition

Let n > 0 be an integer and («;);<n4+1 be an increasing sequence with ag = 0. Define

Nm = I N := Nm,

1375 (6™ ~ ¥ 1)ty —an |

Nt = e¥+1=% Nm, i € {0,...,n— 1}, Np := supg<j<n N

We consider the function o given above with o9 = apy1 — a1 + In(Ngr/Np). Then, the
anpt1-periodic function N defined as

N(t) = Nfe*i=t  for te (aj, i), 0<i<n—1, N(t) :== Nm = N for t € (an, ans1),
i aF AF

satisfies the wanted assumptions
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Numerical simulations
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Study of the time elapsed model and main questions.
Case without interconnections.

Time elapsed model Case of strong interconnections.
Numerical simulations

Finite size model

Numerical simulations.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Numerical simulations.
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Study of the time elapsed model and main questions.
Case without interconnections.

Time elapsed model Case of strong interconnections.
Numerical simulations

Finite size model

Comparaison with the case with kernel fragmentation.
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Time elapsed model

Study of the time elapsed model and main questions.

Case without interconnections.
Case of strong interconnections.
Numerical simulations

Finite size model

Comparaison with the case with adaptative memory.
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Study of the time elapsed model and main questions.
Case without interconnections.

Case of strong interconnections.

Numerical simulations

Finite size model

Comparaison with the case with adaptative memory.

Time elapsed model
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Finite size model.

For the PDE model, we now chose the following amplitude of stimulation X such that

X(t) = ;e‘a' * N(t)

1
;X’(t) = —X(t) + N(t).

Let us see what happens in the case where there is a finite number K of neurons.

Description of the dynamic.

@ We have a neuron which receive an input signal X.
@ If the time elapsed since the last discharge s is such that

s < o(X) then p(s, X) =0, else p(s, X) =1.

e If o(X) < s, the probability of discharge of a neuron is equal to 0, else it is given by an
exponential law of parameter 1.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Finite size model.

Description of the dynamic.
@ while there is no discharge X satisfies the Equation

@ When there is a discharge, at a time t;, we have
X(t) = X(0)e~ ¥ + a/K

To find the time t
@ We chose randomly a A which satisfies an exponential low of parameter 1.
@ We define p by

u
w(u) = /0 [[s(0)+v>o(x(v)) AV
@ The time of discharge of the neuron is then given by the time ¢ such that

u(t) = A.
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Study of the time elapsed model and main questions.
Case without interconnections.

Time elapsed model Case of strong interconnections.
Numerical simulations

Finite size model

Finite size model.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.
Numerical simulations
Finite size model

Finite size model.
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Study of the time elapsed model and main questions.
Case without interconnections.
Time elapsed model Case of strong interconnections.

Numerical simulations
Finite size model

Conclusion of the time elapsed model

Conclusion of the time elapsed model

e Simple model based on the time elapsed since the last discharge
e However, very rich dynamics with several patterns.
e Several possible extentions

e Link between the micro/macroscopic scale by Caceres, Chevallier, Doumic,
Reynaud-Bouret

o Add of heterogeneity (with Kang, Perthame).
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Idea of proof.

Modéle Leaky-Integrate and Fire. Equation with transmission delay

Leaky Integrate and Fire model

Leaky Integrate and Fire model :
@ Neuron describe via its membrane potential v € (—oo, VF)
@ When the membrane potential reach the value Vg, the neuron spikes
@ After a spike, the neuron, instantly, reset at the value Vp.

Model chosen (Brunel, Hakim) :

0 0
20+ = [(— v+ bND)p(v, 0] - ’i’(v,t) = N()3(v—VR),  v< Ve,
N————
‘,_/
Leaky Integrate and Fire noise neurons reset
p(Ve, 1) =0, p(—o0,t) =0, p(v,0)=p°(v)>0 N(t):= _a%(vﬁ ) >0.

@ p(v,t) : density of neurons at time t with a membrane potential v € (—oo, VF)
@ b : strength of interconnexions.
@ N(t): Flux of neurons which discharge at time t.
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Idea of proof.
Modéle Leaky-Integrate and Fire. Equation with transmission delay

Model chosen

0 0
a"t’(v 0+ o (= v+ BN(D)p(v.1)] - ’;(v, t)= N(OS(v — VR), v < Ve,
N————
‘,_/
Leaky Integrate and Fire noise neurons reset

p(Vth):Oz p(fooat):()r p(V,O)ZpO(V)EO,

N(t) := —U%(VF, t)>0.
Questions :
@ Qualitative dynamic and existence/uniqueness result (with Carrillo, Perthame, Smets) (see
also Caceres, Carrillo, Gonzéalez, Gualdani, Perthame , Schonbek )
@ Link between micro and macroscopic model ( Delarue, Inglis, Rubenthaler, Tanré)
@ Link with time elapsed model ? (Dumont, Henry, Tarniceriu)
@ Add of heterogeneity (with B. Perthame and G. Wainrib)
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Idea of proof.

Modéle Leaky-Integrate and Fire. Equation with transmission delay

Link with the time elapsed model in the linear case.

Link with the time elapsed model in the linear case with K(s, u) = §s—o. (Dumont, Henry,
Tarniceriu)

Term of discharge d(s) in time elapsed : We compute d of Equation

orn+ Osn+ d(s)n(s,t) =0

corresponding to the one given by the Fokker-Planck equation.

Steps :
@ We consider the function q(s, v) solution of

0sq(s, V) + 0v(—vq) —oOwq =0, q(s=0,V)=0y_y,.

@ d constructed via q using that the probability that a neuron reach the age s without discharge
is

% .
Plazs)= [ als.v)dv = e~ I clale

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Idea of proof.

Modéle Leaky-Integrate and Fire. Equation with transmission delay

Link with the time elapsed model in the linear case.

Link kernel K : Density of probability K(v, s) for a neuron to be at the potential v knowing that the
time elapsed since its last discharge is > s,

q(s, v)

K(v,s) := 7]7\/2_0 oS, v)dv.

Formula of p with respect to n :

+o0 +o00
If po(v) :=/0 K(v,s)nyg(s)ds, then p(v,t) :/0 K(v,s)n(t,s)ds

is solution of

d
Otp + Ov(—vp) — aOwp = Sy=y, N(t), N(t) = —aafﬁ(VF, 1), p(0,v) = po.

with n solution of
orn+ 0sn+d(s)n=0, n(0,s) = my(s).
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Idea of proof.
Modéle Leaky-Integrate and Fire. Equation with transmission delay

Qualitative dynamic

‘Z‘t’( t)+£[(7v+bN ()p(v, 1)] — ‘;(v,r):/\/(r)a(va,q), V< Ve,
W—’ N———

Leaky Integrate and Fire noise neurons reset
P(Ve,t) =0,  p(—o0,t)=0,  p(v,0)=p°(v)>0.

op
N(t) == —o—(V, >0.
() =~ 22 (Ve,1) >0

Well posedness of the solution ?

The total activity of the network N(t) acts instantly on the network.

@ With the diffusion, this implies that for all b > 0, by well choosing the initial data, we have
blow-up (Caceres, Carrillo, Perthame).

@ As soon b < 0, the solution is globally well defined (Carrillo, Gonzalez, Gualdani, Schonbek,
Delarue, Inglis, Rubenthaler, Tanré).

© If we add a delay N on the network, the equation is always well posed (with Caceres, Roux,
Schneider)
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Idea of proof.
Equation with transmission delay

Modele Leaky-Integrate and Fire.

Qualitative dynamic
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Qualitative dynamic
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Idea of proof.

Modéle Leaky-Integrate and Fire. Equation with transmission delay

Qualitative dynamic

Stationary states (Caceres, Carrillo, Perthame)

Implicit formula

N, (v—bNeo?  [VF (w=bNoo ?
Poo(V) = ~2e~ 25 / ez dw
a max(v, Vg)
with the constraint on N y
-
Poo(V)dv = 1.
— 0

@ There exists C > 0 such that, if b < C, there exists a unique stationary state

@ for intermediate b and some range of parameters (Vg, VF, o), there exists at least two
stationary states

© If bis big enough, there is no stationary states.
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Qualitative dynamic

Asymptotic qualitative dynamic : if b = 0 (no interconnexions) solutions converge to a stationary
state (Caceres, Carrillo, Perthame)

Idea of the proof :

@ Entropy inequality with G(x) = (x — 1)?

%/,pr‘””(zg(v;)d” 2”/ P V){ (Zg(\i)))} o

@ Poincaré estimates

v, _ 2 v, _ 2
/F(lﬂpﬂdvgc/ﬂ,mj (V(F’p&)) av.
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Qualitative dynamic

What happens if we add interconnexions ? (Carrillo, Perthame, Salort, Smets)

Inhibitory case :

@ Inhibitory case : Uniform estimates on N in L2, independent of b and the initial data,
@ Inhibitory case : L>° estimates dependent of b and the initial data.

Exitatory case :
@ Estimates on N, depending on the initial data and b.

@ Convergence to a unique stationary state for sufficiently weak interconnections with respect to
the initial data

Existence of periodic solutions ?
@ Not numerically observed

@ Signification of the blow-up condition ? Is there a way to prolongate the solution after the
blow-up ?
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

A priori estimates on N.

Theorem :

Inhibitory case :

@ There exists a constant C, such that for all initial data and b < 0, there exists T > 0 such that
forall / C [T, +o0),

/N(t)zdt < C(1 +I).
/
@ Assume the initial data in L°°. Then, for all b < 0, there exists C > 0 such that

IN[[e= < C.
Excitatory case :
@ Given an initial data and b > 0 small enough, 3 C > 0 such that for all interval /,

/N(t)zdt <c(+11)
1
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Asymptotic dynamic.

Theorem :

Inhibitory case :
@ Letb<0.3C,u>0suchthatforall 0 < —b < C and all initial data

v _ 2 V _ 2
/ " Poo <m) (t,v)dv < e*“t/ " Poo (M) (0, v)av.
— 00 poo — 00 pOO

Excitatory case :
@ Given an initial data, if b > 0 is small enough, then 3 p > 0 such that

Vv, _ 2 Vv, _ 2
/ " e <M) (t,v)dv < efuf/ " e (M) (0, v)dv.
—o0 Poo —oo Poo
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Entropy estimate

Classical entropy estimates : Let G(x) = (x — 1), then

d ' P(v,t) _

(o) o (5im) - (W~ 5m) & (53]

< 0 because G convex

e [ e [ (5] o

s [ o (B55) (2 —1) - ()]

non linear part

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Idea of proof.

Modéle Leaky-Integrate and Fire. Equation with transmission delay

Entropy estimates.

Strategy to obtain uniform estimates (inhibitory case)
Introduction of a fictif stationary state associated to a parameter by > 0 different from b < 0.

For all convex function G regular,

2rve(50)-
() -0 250)- (- 20) (258)

—opl.(v) G” (%) {% (5!2/(?))]2

+(bN(t) — by Nlo)%plo(v) {G (Z;f:(i))) - Zi:(\i)) ¢ (ZJE:(\?))} '
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Idea of proof for uniform estimates.

We choose G(x) = x2, by > 0 given, we multiply by a function ~ supported on ( Vg, V], to have

dt/ ( ) (t,v)y(v)dv =

N2 (1)
NL,

Ve 2
| vronmel (5-) v eer - T v

oo oo

—20/:;;:2,0 (o (é))zw(v)de/fop;o (p’;)zu vy (v)v

— (bN(t) — byNL) /VF +(V)3ypl. <£>2 dv.

—o0 o
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Equation with transmission delay

Modele Leaky-Integrate and Fire.

Sursolution methods.

We assume that b < 0 and that 0 < Vg < V.

Definition

Letb <0, Vy € [-o0, VF) and T > 0. A function p is a universel sur-solution on [Vg, Vg] x [0, T] if

N
P v,y ~ 2 (v v, 1) — a2 B (v, 1) > N)s(v — Vi) @)

on (Vo, Vg) x (0, T), where N(t) := 7&%(\/}:, t) > 0and

p(-, t) is decreasing on [Vy, VE] Vit € [0, T].

Lemma

Let Vy € (—oo, VE) and T > 0. Let p be an universal sur-solution on [Vy, VE] x [0, T], and assume
that

lb(vz 0) > p(V7 0) Vv e [V07 VF] and that b(VO) zl) > p(VO’ t) vt e [07 T]

Then, p > p on [Vy, VE] x [0, T] and if p(-,0) — p(-,0) non idendically equal to 0, then p > p on
(Vo, VF) x (0, T].
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Sur-solution method.

We construct two classes of universal sur-solution

°
exp(t) pour v < Vg,
P(v, 1) = (4)

exp(t) VZF:\;R pour Vg < v < VE.

@ We consider Q; and @ solutions of

—aQ; —vQy=a on(Vg, V), Qi(VF) =0,
—-aQ, —vQ, =0 on (0, VgR), Q:(Vg) = Q¢(VR),

CHC

We define Q on [0, V] equal to Q; on [Vg, Vg] and equal to Qs on [0, Vg].
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Sursolution Method.

Strategy

e Via a change of variable, we reduce our equation to the linear heat
equation on a domain which depends on time and this outside the
singularity at v = Vg.

o We use the 2 universal sur-solutions and the regularizing effect on the heat
equation to prove that the solution is under the universal sur-solution 5Q for
S big enough, where Q is prolongated by Q(0) on (—o0,0)
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Sursolution Method.

Change of variable Let {y > 0and T > . We set
t 1
qly, ) = e~ (-h)p(e=(=l)y +/ bN(s)e~(=9)ds, t) et 7 = Eez('*’ﬂ).
fo

The function q is solution of the heat Equation
0tq — adyq =0

on Qy, which is the set of (y, 7) such that

Lin(2r)
267210 <7< %eZ(T—io)’ y #V27rVg — /2 bN(s + to)esds
0

Lin(2r)
andy < V2r Ve — /2 bN(s + ty)eSds.
0
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Sursolution Method.

We arg by a contradiction argument
@ Assume that there exists &y > 1 such that for all 3 big enough (we can chose vy < 0)

p(vo, o) = BQ(vo)

@ Using that, on [0, fp], Q is a sursolution, we know that N is bounded.
@ We show that the cylinder 'y,

1 21
- L. hea
Vo nvtrg a’Z]C f
with )
1 1 r . 1 1 Vg
< —exp(—=)V, et — <min{=(1 —exp(—1)),=———— ] .
rs g ep3)Va a =M (2( xp(=1)) 2VR—2baﬂ)

@ We use the regularizing effect

1 _
la(vo, §)| < Kar 3||CI||L1(rVO‘,)-
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Modéle Leaky-Integrate and Fire. Equation with transmission delay

Conclusion of instantaneous LIF model

@ Equation ill posed as soon b > 0 if the initial data is well chosen.

@ If b > 0is small enough and the initial data well chosen, exponential convergence to the
unique stationary state.

@ In the inhibitory case, uniform estimates on N(t) and exponential convergence for |b| small
enough.

@ Question of proof of convergence to the unique stationary state open, for the inhibitory case
and |b| large

@ Question of periodic solution is totally open.
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Idea of proof.

Modéle Leaky-Integrate and Fire. Equation with transmission delay

Equation with transmission delay

op d 2p R(t)

— (v, )+ — [(— bN(t — d v,t)| —o—(v,t) = —=86(v — VR), v < Vg,

8[(‘/7 )+ v [( v+ ( ))p( ’ )] Uavz( ) . ( Fl’) >~ VF
—_——— —m-—

Leaky Integrate and Fire noise neurons reset

RI(t) + ;R - N(1)
p(Vth):Oz p(fooat):()r p(vvo):po(v)20~
N(t) = —U%(Vp,f) > 0.

Principal properties ( Caceres, Perthame)
@ Still blow-up

@ Existence of odd stationary states for all b > 0 and unique stationary state for b < C, C > 0
small enough

@ Exponential convergence to a unique stationary without connectivity.
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Idea of proof.

; 8 . ) "
Modele Leaky-Integrate and Fire. EdteteniPiiluans s chlcela

Equation with delay

Z‘t’ v,b) + 3 [( — v+ bN(t — d))p(v, t)] —a—(v )= N@1)S§(v—Vg), v< V¢,
N e
Y neurons reset
Leaky Integrate and Fire noise

P(Ve,t) =0,  p(—o0,t) =0,  p(v,0)=p°(v)>0.
N(t) = fa%(vf:,t) >0.

Principal properties (with Caceres, Roux et Schneider)
@ No more blow-up
@ Existence and uniqueness of a global classical solution

@ Exponential convergence to a unique stationary state as soon |b| small enough (with same
assumption as in the case without delay).
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Idea of proof.

Modéle Leaky-Integrate and Fire. Equation with transmission delay

Equation with delay

Idea of proof for global existence :

@ Via a change of variable, we obtain the following implicit equation on the flux N.
@ Via a fix point argument, we obtain local existence

@ We construct a super solution to obtain uniform estimates and conclude to global existence
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Idea of proof.

; 8 . ) "
Modele Leaky-Integrate and Fire. EdteteniPiiluans s chlcela

Equation with delay

Construction of the supersolution for a given input NO :

a(v,t) = e8f(v), ¢ large enough
Construction of f
O Lete > 0with YE2Y2 = < Ve andlet ¢ € C3°(R) satisfying 0 < ¢ < 1 and

Vi V
wz1on(—oo,g)andw—00n(g + &, +00).
@ Let B > 0 such that
vt >0,vv e (Va, VE), |—v+bNo(t)|<B
and § > O suchthatas — B > 0.
© We chose

f=1on(—oo, Vg]

f(v) = € u(v) + (1 = ()1 — &0~ Y0)) on (Vi Vel.
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Idea of proof.

; 8 . ) !
Modele Leaky-Integrate and Fire. EdteteniPiiluans s chlcela

Equation with delay
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BCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Idea of proof.

Modéle Leaky-Integrate and Fire. Equation with transmission delay

Equation with delay

35 0.45 :
30 0.4 '
o5 0.35 -
03 -
— 20 — |
= < 025
Z 45 o
0.2
10 0.15
5 1 0.1
0 0.05 .
6 65 7 75 8 85 9 95 10 6 65 7 75 8 B85 9 95 -
t t

from Caceres Schneider
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one extension : kinetic model

kinetic model

SPY-0.0+ 51 [(= v+ 6(Ve = )p(v..] + 52 [(BN(1) ~ 9)p(v..1)]

82
2N/ —
—(a+ b°N (1) ag2p(v’ g:t) =0,

with
+oo
N(g,t) :== [-gLVF + 9(VE — VE)Ip(VE, g, t) >0,  N(t):= /O N(g, t)dg.

p(v, g, t) : density of neurons at time t with membrane potential v € (Vg, Vg), Vg > 0, and
conductance g > 0 (Cai, Tao, Shelley, McLaughlin)
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one extension : kinetic model

Kinetic model

Difficulties of the equation
@ Degenerate diffusion.
@ no natural entropy which emerges
@ A priori estimates on the flux A/(t) (avec B. Perthame)
@ Oscillations may appear via simulationw (Caceres, Carrillo, Tao).
@ The passage micro/macro is totally open
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