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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Introduction and position of the problem

General problematic : How collective neuronal dynamics can emerges from
individual neuron ?

It may depends on several aspects as :

Intrinsic dynamic of each neuron

Type of coupling between neuron

Memory effects

....
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Introduction and position of the problem

Aim : Test the different assumptions made on

the unit neuron

the coupling

memorization effect

to understand the impact on the patterns generated by the network.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Introduction and position of the problem

Model considered : To answer the above questions, we will focus on two
models

The time elapsed model (structured partial differential equation model)

The nonlinear leaky integrate and fire model (Fokker-Planck equation)

Remarks :
Those models are not exhaustive and there exists several other PDE’s
models to describe neural networks

Very rich dynamics can emerge from those two equations and some of
them are easy to tackle theoretically.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Plan of the course

Plan of the course :

Some classical models for single neuron

Time elapsed PDE model

Noisy Leaky Integrate and Fire PDE model
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Neural cell.

Neuron: specialized cell that

is electrically excitable

receive, analyse and transmit signal to other neurons
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Neural cell.

Description of a unit neural activity :

To communicate neurons emit action potential that is also calling ”spike”.

This phenomenon involves several complex processes including: opening and closing of various
ion channels.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Neural cell

Vast spectrum of different types of neurons that can be classified according to their shape, their
intrinsic dynamics ...
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Model of neural cell

Two aspects of modelling :

Description via intrinsic mechanisms involved on a unit neuron

Description via the frequency of ”spikes” of the neuron, omitting the explicit
modelling of the intrinsic mechanisms involved on the neuron.

Principal mathematical tools :

deterministic dynamical systems

stochastic models.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Description via intrinsic mechanisms on a unit neuron

Intrinsic mechanisms on a unit neuron :
In the simplest models, the cell is assimilated to an electrical circuit
In more precise models, for example, propagation of signal along the axon
or the impact of dendrites may be included

Main electrical circuit model type :
Hodgkin-Huxley model
FitzHugh Nagumo model
Integrate and fire model
Morris-Lecar model
...
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Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Hodgkin-Huxley model
Hodgkin-Huxley model (1952) :

C
dV
dt

= m3hgNa(VNa − V (t))︸ ︷︷ ︸
Sodium current

+ n4gK (VK − V )︸ ︷︷ ︸
Potassium current

+ gL(V − VL)︸ ︷︷ ︸
leak current

+ I(t)︸︷︷︸
Input

τn(V )
dn
dt

= (n∞(V )− n), n: probability of potassium channel to be open

τm(V )
dm
dt

= (m∞(V )−m) m: probability of Sodium channel to be actif

τh(V )
dh
dt

= (h∞(V )− h) h: probability of Sodium channel to be open.
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Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Hodgkin-Huxley model
Hodgkin-Huxley model (1952) :

4 coupled equations (one on membrane potential and three on ion channels)
Allow to reproduce several typical patterns
Difficult to study mathematically and numerically expensive

Simplified models allowing to well capture several patterns of neurons ?

Replace some variables by their stationary states (fast variables)

Do not explicitly model ion channels
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

FitzHugh-Nagumo model

FitzHugh Nagumo model : Involves two variables

The membrane voltage v

The recovery variable w

Equations :

εv ′(t) = v − v3

3 − w + I(t), I(t) : external current input

w ′(t) = (v + a− bw).
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

FitzHugh-Nagumo model

Typical patterns that may capture FitzHugh Nagumo model : Depending of
the choice of the parameters (even in the simplest case I = 0, b = 0)

Fast convergence to a stationary state

Excitable case : the neuron emit a spike before coming back to its resting
state

Oscillations and convergence to a periodic solution (limit cycle)
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

FitzHugh-Nagumo model

Case I = cste, b = 0

Unique stationary state

Stable if f ′ < 0 and unstable if f ′ > 0.
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Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

FitzHugh-Nagumo model
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

FitzHugh-Nagumo model, role of noise

εv ′(t) = v −
v3

3
− w + I(t), I(t) : external current input

w ′(t) = (v + a− bw) +
dB(t)

dt
.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Leaky Integrate and Fire Model (from Lapicque,1907).

Leaky Integrate and Fire Model :

τV ′(t) = −V (t) + RI(t), V (t) < VF , I: external input

V (t−) = VF ⇒ V (t+) = VR , VR < VF .

VF is the value of the action potential
VR is the reset potential
We may add some noise : τdtV = (−V (t) + RI(t))dt + σdW (t), V (t) < VF .

Very simple structure :
Linear differential equation on the potential V (if V < VF )

Spiking modelled via a threshold VF and jump of V to a given value VR .
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Description via intrinsic mechanisms
Description via frequency of spikes

Leaky Integrate and Fire Model (from Lapicque,1907).
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Wilson-Cowan model.

Wilson-Cowan model : models probability of a neuron to spike at time t ,
typically

u′(t) = −u(t) + S(u(t)), where S is a sigmoidal function.

Several useful extention/application
Including inhibitory/excitatory neurons
Extension to spatial models leading to neural fields equations

u′(t , x) = −u(t , x) + S(

∫
w(x , y)u(t , y)dy) + I(t , x).

Application in epilepsy in visual cortex
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Wilson-Cowan model.

Feature
multiple steady states and bifurcation theory (S. Amari, Bressloff-Golubitsky,
Chossat-Faugeras-Faye)

Interpretation of visual illusions and visual hallucinations (Klüver, Oster, Siegel...)
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Stochastic processes

Ponctual processes/counting processes :

homogeneous Poisson processes

inhomogeneous Poisson processes

Renewal processes

Hawkes processes

...
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Homogeneous Poisson processes

Homogeneous Poisson processes : Given a parameter λ > 0 and a
time interval I of size T ,

P(Neuron discharge n times on I) =
(λT )n

n!
e−λT .

Main properties

Time independent
No dependance with respect to the past
Probability of a neuron that has not yet discharge at time t : e−λt
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Inhomogeneous Poisson processes

Inhomogeneous Poisson processes : Given a function λ > 0 and a
time interval I = [a,b],

P(Neuron discharge n times on I) =
(
∫ b

a λ(s)ds)n

n!
e−(

∫ b
a λ(s)ds).

Main properties

Time dependent
No dependance with respect to the past
Probability of a neuron that has not yet discharge at time t :
e−

∫ t
0 λ(s)ds.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

Renewal processes/Hawkes processes

Renewal processes : include models with memory of the preceding
spike and therefore useful to integrate the refractory period.

Main properties

The delay between two consecutive spikes are independent
The delay between two consecutive spikes are identically distributed

Hawkes processes : More complex processes that allows to model
synaptic integration (see Caceres, Chevallier, Doumic, Reynaud-Bouret)
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Description via intrinsic mechanisms
Description via frequency of spikes

From the microscopic to macroscopic scale ?

Macroscopic scale via mean field assumptions leading to PDE’s :

Infinitely many neurons

Homogeneous interconnexions

Each neuron receive the mean activity of the network

Many PDE models obtain via this paradigm

time-elapsed model

Leaky-integrate and fire type models (Fokker-Planck model)

oscillators ( Kuramoto equation)

...
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Biological motivation and setting

Biological motivation and setting : From Pham, Pakdaman, Champagnat, Vibert

Networks at the Nucleus Tractus Solitarius
(NTS) responsible of basic rhythms.

NTS contains neural circuits with only
excitatory connections displaying a
spontaneous activity.

No pacemaker neurons responsible for the
spontaneous activity.

Simple partial differential equation model to
explore the possible mechanisms of
spontaneous activity generation ?

http://www.neuroanatomy.wisc.edu/virtualbrain/BrainStem/11Solitarius.html
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

First studies

First studies :
Simulation of several computational models adjusted to the experiments revealed that the
network could sustain regular rhythmic activity in some parameter ranges

Phenomenon of spontaneous activity persists in networks with diverse connectivity.

Conclusion

That the phenomenon can be observed in many models suggests that the fine details of the
model may not be at the core of the mechanism, and that to get the gist of the phenomena,
one may focus on a few features of neural dynamics.

We have proposed a simple mathematical model where neurons are describe via the time
elapsed since the last discharge to obtain theoretically this phenomenon of spontaneous
activity observed.

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Elapsed time model

Main assumptions on the model.

Dynamic on each neuron :

The neurons are excitatory

Even without stimulations, the neurons have an activity

Neurons discribe via the time elapsed sinc the last discharge

When a neuron discharge, it’s new intrinsic dynamic may depends on it’s past activity

Interconnexions :
The amplitude of stimulation X(t) is homogeneous with

X(t) =

∫ t

0
α(s)N(t − s)ds

where N(t) is the flux of neurons which discharge at time t . To simplify, we take here X(t) = N(t).
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Time elapsed model

∂n(s, t)
∂t

+
∂n(s, t)
∂s︸ ︷︷ ︸

aging neurons

+ p(s,N(t))n(s, t)︸ ︷︷ ︸
death of the neurons

=

∫ +∞

0
K (s, u)p(u,N(t))n(u, t)du︸ ︷︷ ︸

Redistribution in age of the death neurons

,

N(t) :=

∫ +∞

0
p(s,N(t)) n(s, t)ds, n(s = 0, t) = 0.

n(s, t): density of neurons at time t such that the time elapsed since the last discharge is s.

N(t) : flux of neurons which discharge at time t

p(s, u) : firing rate of the neurons of age s which discharge when they are submitted to an
amplitude of stimulation u ≥ 0.

K (s, u): Positive measure allowing to give the repartition of neurons which discharge at the
state u and which reset at the state s.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Assumptions on p and K .

The function p(s, u) :

The probability for a neuron to survive up to the age t :

P(s ≥ t) = e−
∫ t

0 p(s,u)ds.

The account of refractory period

∂sp ≥ 0 and p ≡ 0 for s small enough.

Excitatory neurons :
∂up ≥ 0.

Interconnexions between the neurons :

modeled via ∂up, if no interconnexions ∂up = 0.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Assumptions on p and K .

The kernel fragmentation K (s, u) :

For each u ≥ 0, K (s, u) models the measure of probability for a neuron which has discharge
at the age u to reset in the new state s.

K (s, u) = 0 for s > u : all the neurons which discharge at an age u, reset at an age s smaller
than u

∫ u
0 K (s, u)ds = 1, and so

∫ +∞
0 n(s, t)ds = 1, ∀t ≥ 0.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Assumptions on p and K

The kernel fragmentation K (s, u) :

We also introduce the two following quantities :

0 ≤ f (s, u) :=
∫ s

0 K (s, u)ds ≤ 1 which is the probability for a neuron which discharge at the
state u reset to an age smaller than s.

−∂u f := Φ(s, u) ≥ 0 which implies that the bigger u is, the smaller the probability that a
neuron which has discharge at the age u reset to a state smaller than s is small.

We assume that ∫ +∞

0
Φ(s, u)ds = θ < 1;

and ∫ u

0
sK (s, u)ds ≤ θu

i.e. the expected value of the new state of a neuron which has discharge at age u is smaller or
equal to θu.

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Main questions

Main questions : What is the impact of the strength of interconnections on the dynamic of the
neural network ?

1. When the interconnections are low or inexistant, intuitively, we expect that the solution
converges to a stationary state.

2. For hight interconnections, we expect the apparition of more complex patterns as periodic
solutions.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Methods to tackle the problem

Case 1: dynamic ”almost linear” :

Spectral methods (K = δs=0) (Mischler, Weng)

With entropy generalized methods, inspired by Laurençot and Perthame where we search
decreasing functional by multiply the Equation by judicious test functions.

Case 2 : Situation more complex :

Many different patterns and periodic solutions numerically observed.

By well choosing p and K , explicit of infinitely many periodic solutions.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Plan of study without interconnexions.

Plan of study without interconnexions

Existence and uniqueness of stationary state (Krein Rutman
Theorem)

Entropy type inequality

Proof of convergence to a stationary state
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections.

Stationary states Is there existence and unicity of the solution of Equation

∂sA + p(s)A =

∫ +∞

0
K (s, u)p(u)A(u)du,

A(0) = 0, A > 0,
∫ +∞

0
A(s)ds = 1.

Krein-Rutman Theorem :

Let T > 0 and
C = {f ∈ C([0,T ]) such that f ≥ 0}.

Let T be a compact operator strictly positif on C. Then, the spectral radius of T is a simple
eigenvalue of T and there exists a unique normalized eigenvector in C̊.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections.

we set ε > 0, R > 0 and consider the operator T : (C([0,R])→ C([0,R]) which to f associate
the solution

∂sA + (µ+ p(s))A−
∫ R

0
K (s, u)p(u)A(u)du = f , A(0) = ε

∫ R

0
A(s)ds.

For µ big enough ε > 0 small enough, T well defined and compact and we have
f > 0⇒ T (f ) > 0.

Conclusion

By Krein-Rutman Theorem, there exists λR,ε and A > 0 such that

∂sA + (p(s) + λR,ε)A =

∫ R

0
K (s, u)p(u)A(u)du, A(0) = ε, A > 0,

∫ R

0
A(s)ds = 1.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections.

Limit R → +∞, ε→ 0

Compactness obtained via assumption (mass do not goes at the limit to infinity)∫ u

0
sK (s, u)ds ≤ θu, θ < 1.

Hence, at the limit
∫ +∞

0 A(s)ds = 1.

More precisely, for ε small enough and R > 0 big enough,

ε−
2
R
≤ λε,R ≤ ε, (1− θ)

∫ R

0
sAε,R(s)ds ≤ C, ‖Aε,R‖L∞ + ‖∂x Aε,R‖L1 ≤ C.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections : asymptotic analysis.

Convergence to the stationary state

Setting m(s, t) = n(s, t)− A(s), we find by linearity that m is solution of Equation

∂t m + ∂sm + p(s)m =

∫ +∞

0
p(u)K (s, u)m(u, t)du,

∫ +∞

0
m(s, t)ds = 0.

For all α(s) ∈ R,∫ +∞

0
p(u)K (s, u)m(u, t)du =

∫ +∞

0
p(u)K (s, u)m(u, t)− α(s)m(u, t)du.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections : asymptotic analysis.

with fragmentation term : If the kernel fragmentation ”mixed everything”, the
above strategy will give nothing.

Strategy for general kernel fragmentation

We consider the following new quantity

B(s, t) =
∫ s

0
n(u, t)du

which models the probability for a neuron that the time elapsed since its
last discharge is smaller than s.

We search an entropy inequality on

M(s, t) :=
∫ s

0
n(u, t)− A(u)du.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Case without interconnections : asymptotic analysis.

Equation on M : closed equation

∂M(s, t)
∂t

+
∂M(s, t)
∂s

+ p(s)M(s, t) = −
∫ ∞

u=s

∂p(u)

∂u
f (s, u)M(u, t)du +

∫
p(u)Φ(s, u)M(u, t)du.

By setting the absolute values

∂|M(s, t)|
∂t

+
∂|M(s, t)|

∂s
+p(s)|M(s, t)| ≤

∫ ∞
u=s
|p′(u)|f (s, u)|M(u, t)|du+

∫
p(u)Φ(s, u)|M(u, t)|du.
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Case without interconnections : asymptotic analysis.

if p = cst > 0, then, with ∫ +∞

0
Φ(s, u)ds ≤ θ,

We directly obtain that

d
dt

∫
|M(s, t)|ds ≤ (−1 + θ)

∫
p|M(u, t)|du.

Else, we multiply Equation on M by a judicious test function P solution of

−
∂P(s)

∂s
+ (λ+ p(s))P(s) ≥

∫ s

0

[
|p′(s)|f (u, s) + p(s)Φ(u, s)

]
P(u)du.

We then have
d
dt

∫ +∞

0
P(s)|M(s, t)|ds ≤ λ

∫ +∞

0
P(s)|M(s, t)|ds

Exponential decreased for |M| as soon λ < 0 and P ≥ C > 0.

As M and ∂t M are solution of the same Equation, we obtain exponential decrease of m in L1.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Case of strong interconnections.

The study of periodic solution is complex. Numerically, we observe many periodic solutions when
the strength of interconnections is strong enough.

Aim of this part : Explicitly construct many different periodic solutions in a particular case where
the solution of the equation can be reduced to a time delay Equation on the flux of neurons N(t).

Assumptions : We assume that p(s, u) = Is≥σ(u), where σ is a decreasing function, and
K (s, u) = δs=0.
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Time elapsed model
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one extension : kinetic model

Study of the time elapsed model and main questions.
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Numerical simulations
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Case of strong interconnections.

Reduction to a delay equation on N. Assume that we have a solution of our transport Equation and
that

d
dt

(σ(N(t)) ≤ 1

Then, by using the mass conservation law, we have for all t ≥ σ+,

N(t) +

∫ t

t−σ(N(t))
N(s)ds = 1.

Proof
With the mass conservation, for all t ≥ σ+ we have∫ +∞

0
n(s, t)ds =

∫ σ(N(t))

0
n(s, t)ds +

∫ +∞

σ(N(t))
n(s, t)ds =

∫ σ(N(t))

0
n(s, t)ds + N(t).

Now, as d
dt (σ(N(t)) ≤ 1, for s ≤ σ(N(t)), we deduce that

n(s, t) = N(t − s).
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Case of strong interconnections.

Construction of periodic solutions : We take the ”inverse” problem : Given a periodic function N(t)
of period T , we consider the following Equation{ ∂n(s,t)

∂t + ∂n(s,t)
∂s + p

(
s,N(t)

)
n(s, t) = 0, t ∈ R, s ≥ 0,

n(s = 0, t) = N(t).

As we look forward periodic solution n in time, we do not need initial data and the method of
characteristics gives the solution

n(t , s) = N(t − s)e−
∫ s

0 p(u,N(u+t−s))du if t − s ≥ 0.

By periodicity of n, we obtain that for all s ≤ kT , k ∈ N, we must have

n(t = 0, s) = N(kT − s)e−
∫ s

0 p(u,N(u+kT−s))du .

Hence finding periodic flux N(t) of our Equation can reduced to find conditions on N such that the
solution of the above Equation is also solution of the initial transport Equation; that is we must have

N(t) =

∫ +∞

σ(N(t))
n(s, t)ds and

∫ +∞

0
n(s, t)ds = 1.
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Case of strong interconnections.

Proposition (Criteria linking σ and N)

Let σ(·) be a decreasing function and let N be a T periodic function such that

d
dt
σ
(
N(t)

)
≤ 1, 1 = N(t) +

∫ σ(N(t))

0
N(t − s)ds.

Assume that
p(s,N) = Is>σ(N).

Then the solution of our Equation with N given is also solution of the non linear transport Equation.

Proof. We observe that, as d
dt σ
(
N(t)

)
≤ 1, then, for s ∈ (0, σ(N(t)), we have n(s, t) = N(t − s).

We deduce, by setting M(t) =
∫ +∞

0 n(s, t)ds, that

d
dt

M(t) + M(t) = 1

and as M is periodic, we have M = 1, which proves the Proposition.
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Case of strong interconnections.

Explicit construction of periodic solutions : We can construct infinitely many periodic solutions. The
simplest example is the following
Let α > 0, we set

0 < Nm(α) :=
1

2eα − 1
< Np(α) :=

eα

2eα − 1
< 1, (1)

and we assume that

σ(x) =

 2α on [0,Nm(α)],
α− ln(x) + ln(Np(α)) on [Nm(α),Np(α)],
α on [Np(α),∞).

(2)

We can remark that, in this system, there exists a unique stationary state.

Then, the function N, α periodic defined by

N(t) = Np(α)e−t , t ∈ (0, α)

satisfies the assumptions of the Proposition.
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Case of strong interconnections

Let

σ(x) =


σ0 − ln(Nm) + ln(Np) on [0,Nm],

σ0 − ln(x) + ln(Np) on [Nm,Np],

σ0 on [Np,∞).

Proposition

Let n ≥ 0 be an integer and (αi )i≤n+1 be an increasing sequence with α0 = 0. Define
Nm := 1

1+
∑n−1

i=1 (eαi+1−αi−1)+αn+1−αn
, N+

n := Nm,

N+
i := eαi+1−αi Nm, i ∈ {0, ..., n − 1}, Np := sup0≤i≤n N+

i .

We consider the function σ given above with σ0 = αn+1 − α1 + ln(N+
0 /Np). Then, the

αn+1-periodic function N defined as

N(t) = N+
i eαi−t for t ∈ (αi , αi+1), 0 ≤ i ≤ n − 1, N(t) := Nm = N+

n for t ∈ (αn, αn+1),

satisfies the wanted assumptions
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Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
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Finite size model

Finite size model.

For the PDE model, we now chose the following amplitude of stimulation X such that

X(t) =
1
a

e−a· ? N(t)

1
a

X ′(t) = −X(t) + N(t).

Let us see what happens in the case where there is a finite number K of neurons.

Description of the dynamic.
We have a neuron which receive an input signal X .

If the time elapsed since the last discharge s is such that

s ≤ σ(X) then p(s,X) = 0, else p(s,X) = 1.

If σ(X) < s, the probability of discharge of a neuron is equal to 0, else it is given by an
exponential law of parameter 1.
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Finite size model.

Description of the dynamic.
while there is no discharge X satisfies the Equation

X(v) = X(0)e−av .

When there is a discharge, at a time t1, we have

X(t1) = X(0)e−at1 + a/K

To find the time t1
We chose randomly a ∆ which satisfies an exponential low of parameter 1.

We define µ by

µ(u) =

∫ u

0
I[s(0)+v>σ(X(v))]dv .

The time of discharge of the neuron is then given by the time t such that

µ(t) = ∆.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Study of the time elapsed model and main questions.
Case without interconnections.
Case of strong interconnections.
Numerical simulations
Finite size model

Conclusion of the time elapsed model

Conclusion of the time elapsed model

Simple model based on the time elapsed since the last discharge

However, very rich dynamics with several patterns.

Several possible extentions

Link between the micro/macroscopic scale by Caceres, Chevallier, Doumic,
Reynaud-Bouret

Add of heterogeneity (with Kang, Perthame).
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Leaky Integrate and Fire model

Leaky Integrate and Fire model :

Neuron describe via its membrane potential v ∈ (−∞,VF )

When the membrane potential reach the value VF , the neuron spikes

After a spike, the neuron, instantly, reset at the value VR .

Model chosen (Brunel, Hakim) :

∂p
∂t

(v , t) +
∂

∂v

[(
− v + bN(t)

)
p(v , t)

]
︸ ︷︷ ︸

Leaky Integrate and Fire

− a
∂2p
∂v2

(v , t)︸ ︷︷ ︸
noise

= N(t)δ(v − VR)︸ ︷︷ ︸
neurons reset

, v ≤ VF ,

p(VF , t) = 0, p(−∞, t) = 0, p(v , 0) = p0(v) ≥ 0 N(t) := −σ
∂p
∂v

(VF , t) ≥ 0 .

p(v , t) : density of neurons at time t with a membrane potential v ∈ (−∞,VF )

b : strength of interconnexions.

N(t): Flux of neurons which discharge at time t .
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Model chosen

∂p
∂t

(v , t) +
∂

∂v

[(
− v + bN(t)

)
p(v , t)

]
︸ ︷︷ ︸

Leaky Integrate and Fire

− a
∂2p
∂v2

(v , t)︸ ︷︷ ︸
noise

= N(t)δ(v − VR)︸ ︷︷ ︸
neurons reset

, v ≤ VF ,

p(VF , t) = 0, p(−∞, t) = 0, p(v , 0) = p0(v) ≥ 0 .

N(t) := −σ
∂p
∂v

(VF , t) ≥ 0 .

Questions :

Qualitative dynamic and existence/uniqueness result (with Carrillo, Perthame, Smets) (see
also Caceres, Carrillo, González, Gualdani, Perthame , Schonbek )

Link between micro and macroscopic model ( Delarue, Inglis, Rubenthaler, Tanré)

Link with time elapsed model ? (Dumont, Henry, Tarniceriu)

Add of heterogeneity (with B. Perthame and G. Wainrib)
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Link with the time elapsed model in the linear case.

Link with the time elapsed model in the linear case with K (s, u) = δs=0. (Dumont, Henry,
Tarniceriu)

Term of discharge d(s) in time elapsed : We compute d of Equation

∂t n + ∂sn + d(s)n(s, t) = 0

corresponding to the one given by the Fokker-Planck equation.

Steps :

We consider the function q(s, v) solution of

∂sq(s, v) + ∂v (−vq)− σ∂vv q = 0, q(s = 0, v) = δv=VR
.

d constructed via q using that the probability that a neuron reach the age s without discharge
is

P(a ≥ s) =

∫ VF

−∞
q(s, v)dv = e−

∫ s
0 d(a)da·
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Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Link with the time elapsed model in the linear case.

Link kernel K : Density of probability K (v , s) for a neuron to be at the potential v knowing that the
time elapsed since its last discharge is ≥ s,

K (v , s) :=
q(s, v)∫ VF

−∞ q(s, v)dv
·

Formula of p with respect to n :

If p0(v) :=

∫ +∞

0
K (v , s)n0(s)ds, then p(v , t) =

∫ +∞

0
K (v , s)n(t , s)ds

is solution of

∂t p + ∂v (−vp)− σ∂vv p = δv=VR
N(t), N(t) := −σ

∂p
∂v

(VF , t), p(0, v) = p0.

with n solution of
∂t n + ∂sn + d(s)n = 0, n(0, s) = n0(s).
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one extension : kinetic model

Idea of proof.
Equation with transmission delay

Qualitative dynamic

∂p
∂t

(v , t) +
∂

∂v

[(
− v + bN(t)

)
p(v , t)

]
︸ ︷︷ ︸

Leaky Integrate and Fire

− a
∂2p
∂v2

(v , t)︸ ︷︷ ︸
noise

= N(t)δ(v − VR)︸ ︷︷ ︸
neurons reset

, v ≤ VF ,

p(VF , t) = 0, p(−∞, t) = 0, p(v , 0) = p0(v) ≥ 0 .

N(t) := −σ
∂p
∂v

(VF , t) ≥ 0 .

Well posedness of the solution ?

The total activity of the network N(t) acts instantly on the network.

1 With the diffusion, this implies that for all b > 0, by well choosing the initial data, we have
blow-up (Caceres, Carrillo, Perthame).

2 As soon b ≤ 0, the solution is globally well defined (Carrillo, González, Gualdani, Schonbek,
Delarue, Inglis, Rubenthaler, Tanré).

3 If we add a delay N on the network, the equation is always well posed (with Caceres, Roux,
Schneider)

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
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one extension : kinetic model

Idea of proof.
Equation with transmission delay

Qualitative dynamic

From Carrillo, Caceres, Perthame

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Qualitative dynamic

Stationary states (Caceres, Carrillo, Perthame)

Implicit formula

p∞(v) =
N∞

a
e−

(v−bN∞)2

2σ

∫ VF

max(v,VR )
e

(w−bN∞)2

2a dw

with the constraint on N∞ ∫ VF

−∞
p∞(v)dv = 1.

1 There exists C > 0 such that, if b ≤ C, there exists a unique stationary state
2 for intermediate b and some range of parameters (VR , VF , σ), there exists at least two

stationary states
3 If b is big enough, there is no stationary states.
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Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Qualitative dynamic

Asymptotic qualitative dynamic : if b = 0 (no interconnexions) solutions converge to a stationary
state (Caceres, Carrillo, Perthame)

Idea of the proof :

Entropy inequality with G(x) = (x − 1)2

d
dt

∫ VF

−∞
p∞(v)G

(
p(v , t)
p∞(v)

)
dv ≤ −2σ

∫ VF

−∞
p∞(v)

[
∂

∂v

(
p(v , t)
p∞(v)

)]2
dv .

Poincaré estimates∫ VF

−∞

(p − p∞)2

p∞
dv ≤ C

∫ VF

−∞
p∞

(
∇
(

p − p∞
p∞

))2
dv .

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Qualitative dynamic

What happens if we add interconnexions ? (Carrillo, Perthame, Salort, Smets)

Inhibitory case :

Inhibitory case : Uniform estimates on N in L2, independent of b and the initial data,

Inhibitory case : L∞ estimates dependent of b and the initial data.

Exitatory case :

Estimates on N, depending on the initial data and b.

Convergence to a unique stationary state for sufficiently weak interconnections with respect to
the initial data

Existence of periodic solutions ?

Not numerically observed

Signification of the blow-up condition ? Is there a way to prolongate the solution after the
blow-up ?
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Time elapsed model
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one extension : kinetic model

Idea of proof.
Equation with transmission delay

A priori estimates on N.

Theorem :

Inhibitory case :

There exists a constant C, such that for all initial data and b ≤ 0, there exists T > 0 such that
for all I ⊂ [T ,+∞), ∫

I
N(t)2dt ≤ C(1 + |I|).

Assume the initial data in L∞. Then, for all b ≤ 0, there exists C > 0 such that

‖N‖L∞ ≤ C.

Excitatory case :

Given an initial data and b > 0 small enough, ∃ C > 0 such that for all interval I,∫
I
N(t)2dt ≤ C(1 + |I|)
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one extension : kinetic model

Idea of proof.
Equation with transmission delay

Asymptotic dynamic.

Theorem :

Inhibitory case :

Let b ≤ 0. ∃ C, µ > 0 such that for all 0 ≤ −b ≤ C and all initial data∫ VF

−∞
p∞

(
p − p∞

p∞

)2
(t , v)dv . e−µt

∫ VF

−∞
p∞

(
p − p∞

p∞

)2
(0, v)dv .

Excitatory case :

Given an initial data, if b > 0 is small enough, then ∃ µ > 0 such that∫ VF

−∞
p∞

(
p − p∞

p∞

)2
(t , v)dv . e−µt

∫ VF

−∞
p∞

(
p − p∞

p∞

)2
(0, v)dv .
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Entropy estimate

Classical entropy estimates : Let G(x) = (x − 1)2, then

d
dt

∫ VF

−∞
p∞(v)G

(
p(v , t)
p∞(v)

)
dv =

−N∞
[

G
(

N(t)
N∞

)
− G

(
p(VR , t)
p∞(VR)

)
−
(

N(t)
N∞

−
p(VR , t)
p∞(VR)

)
G′
(

p(VR , t)
p∞(VR)

)]
︸ ︷︷ ︸

≤ 0 because G convex

−2σ
∫ VF

−∞
p∞(v)

[
∂

∂v

(
p(v , t)
p∞(v)

)]2
dv

+2b(N − N∞)

∫ VF

−∞
p∞

[
∂v

(
p(v , t)
p∞(v)

)(
p(v , t)
p∞(v)

− 1
)

+ ∂v

(
p(v , t)
p∞(v)

)]
dv .︸ ︷︷ ︸

non linear part
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Entropy estimates.

Strategy to obtain uniform estimates (inhibitory case)

Introduction of a fictif stationary state associated to a parameter b1 > 0 different from b ≤ 0.

For all convex function G regular,

d
dt

p1
∞(v)G

(
p(v , t)
p1
∞(v)

)
=

−N1
∞δv=VR

[
G
(

N(t)
N1
∞

)
− G

(
p(v , t)
p1
∞(v)

)
−
(

N(t)
N∞

−
p(v , t)
p1
∞(v)

)
G′
(

p(v , t)
p1
∞(v)

)]

−σp1
∞(v) G′′

(
p(v , t)
p1
∞(v)

) [
∂

∂v

(
p(v , t)
p1
∞(v)

)]2

+(bN(t)− b1N1
∞)

∂

∂v
p1
∞(v)

[
G
(

p(v , t)
p1
∞(v)

)
−

p(v , t)
p1
∞(v)

G′
(

p(v , t)
p1
∞(v)

)]
.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Idea of proof for uniform estimates.

We choose G(x) = x2, b1 > 0 given, we multiply by a function γ supported on (VR ,VF ], to have

d
dt

∫ VF

−∞
p1
∞

(
p

p1
∞

)2
(t , v)γ(v)dv =

∫ VF

−∞
(−v + bN(t))p1

∞

(
p

p1
∞

)2
(t , v)γ′(v)dv −

N2(t)
N1
∞

(t)γ(VF )

−2σ
∫ VF

−∞
p1
∞

(
∂v

(
p

p1
∞

))2
γ(v)dv+σ

∫ VF

−∞
p1
∞

(
p

p1
∞

)2
(t , v)γ”(v)dv

−
(

bN(t)− b1N1
∞

)∫ VF

−∞
γ(v)∂v p1

∞

(
p

p1
∞

)2
dv .
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Sursolution methods.

We assume that b ≤ 0 and that 0 ≤ VR < VF .

Definition

Let b ≤ 0, V0 ∈ [−∞,VF ) and T > 0. A function p̄ is a universel sur-solution on [V0,VF ]× [0,T ] if

∂p̄
∂t

(v , t)−
∂

∂v

(
v p̄(v , t)

)
− a

∂2p̄
∂v2

(v , t) ≥ N̄(t)δ(v − VR) (3)

on (V0,VF )× (0,T ), where N̄(t) := −a ∂p̄
∂v (VF , t) ≥ 0 and

p̄(·, t) is decreasing on [V0,VF ] ∀t ∈ [0,T ].

Lemma

Let V0 ∈ (−∞,VF ) and T > 0. Let p̄ be an universal sur-solution on [V0,VF ]× [0,T ], and assume
that

p̄(v , 0) ≥ p(v , 0) ∀v ∈ [V0,VF ] and that p̄(V0, t) ≥ p(V0, t) ∀t ∈ [0,T ].

Then, p̄ ≥ p on [V0,VF ]× [0,T ] and if p̄(·, 0)− p(·, 0) non idendically equal to 0, then p̄ > p on
(V0,VF )× (0,T ].
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Sur-solution method.

We construct two classes of universal sur-solution

P(v , t) =


exp(t) pour v ≤ VR ,

exp(t) VF−v
VF−VR

pour VR ≤ v ≤ VF .
(4)

We consider Q1 and Q2 solutions of

−aQ′1 − vQ1 = a on (VR ,VF ), Q1(VF ) = 0, (5)

−aQ′2 − vQ2 = 0 on (0,VR), Q2(VR) = Q1(VR), (6)

We define Q on [0,VF ] equal to Q1 on [VR ,VF ] and equal to Q2 on [0,VR ].
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Sursolution Method.

Strategy

Via a change of variable, we reduce our equation to the linear heat
equation on a domain which depends on time and this outside the
singularity at v = VR .

We use the 2 universal sur-solutions and the regularizing effect on the heat
equation to prove that the solution is under the universal sur-solution βQ for
β big enough, where Q is prolongated by Q(0) on (−∞,0)
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Sursolution Method.

Change of variable Let t0 ≥ 0 and T ≥ t0. We set

q(y , τ) = e−(t−t0)p(e−(t−t0)y +

∫ t

t0
bN(s)e−(t−s)ds, t) et τ =

1
2

e2(t−t0).

The function q is solution of the heat Equation

∂t q − a∂yy q = 0

on Ωt0 which is the set of (y , τ) such that

1
2

e−2t0 ≤ τ ≤
1
2

e2(T−t0), y 6=
√

2τVR −
∫ 1

2 ln(2τ)

0
bN(s + t0)esds

and y <
√

2τVF −
∫ 1

2 ln(2τ)

0
bN(s + t0)esds.

D. Salort, LBCQ, Université Pierre et Marie Curie Some PDE models in neuroscience.



Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Sursolution Method.

We arg by a contradiction argument
Assume that there exists t0 ≥ 1 such that for all β big enough (we can chose v0 ≤ 0)

p(v0, t0) = βQ(v0)

Using that, on [0, t0], Q is a sursolution, we know that N is bounded.

We show that the cylinder Γv0,r

[v0 − r , v0 + r ,
1
2
−

r2

a
,

1
2

] ⊂ Ωt0

with

r ≤
1
2

exp(−
1
2

)VR et
r2

a
≤ min

(
1
2

(1− exp(−1)),
1
2

VR

VR − 2baβ

)
.

We use the regularizing effect

|q(v0,
1
2

)| ≤ Kar−3‖q‖L1(Γv0,r ).
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Conclusion of instantaneous LIF model

Equation ill posed as soon b > 0 if the initial data is well chosen.

If b > 0 is small enough and the initial data well chosen, exponential convergence to the
unique stationary state.

In the inhibitory case, uniform estimates on N(t) and exponential convergence for |b| small
enough.

Question of proof of convergence to the unique stationary state open, for the inhibitory case
and |b| large

Question of periodic solution is totally open.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Equation with transmission delay

∂p
∂t

(v , t) +
∂

∂v

[(
− v + bN(t − d)

)
p(v , t)

]
︸ ︷︷ ︸

Leaky Integrate and Fire

−σ
∂2p
∂v2

(v , t)︸ ︷︷ ︸
noise

=
R(t)
τ

δ(v − VR)︸ ︷︷ ︸
neurons reset

, v ≤ VF ,

R′(t) +
R
τ

= N(t)

p(VF , t) = 0, p(−∞, t) = 0, p(v , 0) = p0(v) ≥ 0 .

N(t) := −σ
∂p
∂v

(VF , t) ≥ 0 .

Principal properties ( Caceres, Perthame)

Still blow-up

Existence of odd stationary states for all b > 0 and unique stationary state for b ≤ C, C > 0
small enough

Exponential convergence to a unique stationary without connectivity.
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Equation with delay

∂p
∂t

(v , t) +
∂

∂v

[(
− v + bN(t − d)

)
p(v , t)

]
︸ ︷︷ ︸

Leaky Integrate and Fire

−σ
∂2p
∂v2

(v , t)︸ ︷︷ ︸
noise

= N(t)δ(v − VR)︸ ︷︷ ︸
neurons reset

, v ≤ VF ,

p(VF , t) = 0, p(−∞, t) = 0, p(v , 0) = p0(v) ≥ 0 .

N(t) := −σ
∂p
∂v

(VF , t) ≥ 0 .

Principal properties (with Caceres, Roux et Schneider)

No more blow-up

Existence and uniqueness of a global classical solution

Exponential convergence to a unique stationary state as soon |b| small enough (with same
assumption as in the case without delay).
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Equation with delay

Idea of proof for global existence :

Via a change of variable, we obtain the following implicit equation on the flux N.

Via a fix point argument, we obtain local existence

We construct a super solution to obtain uniform estimates and conclude to global existence
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Equation with delay

Construction of the supersolution for a given input N0 :

ρ̄(v , t) = eξt f (v), ξ large enough

Construction of f

1 Let ε > 0 with VF +VR
2 + ε < VF and let ψ ∈ C∞b (R) satisfying 0 ≤ ψ ≤ 1 and

ψ ≡ 1 on (−∞,
VF + VR

2
) and ψ ≡ 0 on (

VF + VR

2
+ ε,+∞).

2 Let B > 0 such that
∀t ≥ 0,∀v ∈ (VR ,VF ), | − v + bN0(t)| ≤ B

and δ > 0 such that aδ − B ≥ 0.
3 We chose

f ≡ 1 on (−∞,VR ]

f (v) = eVR−vψ(v) +
1
δ

(1− ψ(v))(1− eδ(v−VF )) on (VR ,VF ].
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Equation with delay

from Caceres Schneider
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Idea of proof.
Equation with transmission delay

Equation with delay

from Caceres Schneider
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

kinetic model

∂

∂t
p(v , g, t) +

∂

∂v

[(
− v + g(VE − v)

)
p(v , g, t)

]
+

∂

∂g
[(bN (t)− g)p(v , g, t)]

−(a + b2N (t))
∂2

∂g2
p(v , g, t) = 0,

with

N(g, t) := [−gLVF + g(VE − VF )]p(VF , g, t) ≥ 0, N (t) :=

∫ +∞

0
N(g, t)dg.

p(v , g, t) : density of neurons at time t with membrane potential v ∈ (VR ,VF ), VR ≥ 0, and
conductance g > 0 (Cai, Tao, Shelley, McLaughlin)
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Introduction and position of the problem
Some classical models for single neuron

Time elapsed model
Modèle Leaky-Integrate and Fire.

one extension : kinetic model

Kinetic model

Difficulties of the equation
Degenerate diffusion.

no natural entropy which emerges

A priori estimates on the flux N (t) (avec B. Perthame)

Oscillations may appear via simulationw (Caceres, Carrillo, Tao).

The passage micro/macro is totally open
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