Guillaume Delay

Currently PhD student in Applied Mathematics (updated on the 08-JAN-2018)

Université Toulouse 3 - Paul Sabatier Institut de Mathématiques de Toulouse 118 route de Narbonne 31062 Toulouse, France ⊠ guillaume.delay@math.univ-toulouse.fr https://www.math.univ-toulouse.fr/~gdelay/

Research Interests

I am interested in studying the links between the exact and approached systems that occur when discretizing an infinite dimensional problem. I want to investigate the numerical approximation in several kind of problem, for instance in control theory. My research project focuses mainly on scientific computing and numerical analysis.

PhD thesis

title Analysis of a fluid-structure stabilization problem

supervisors Michel Fournié, Ghislain Haine, Sylvain Ervedoza

description I investigate the feedback stabilization of a fluid-structure problem. I first model a fluid-structure system that corresponds to a wing airfoil in a wind tunnel and find a feedback law that stabilizes small enough initial perturbations of this system. Then I study its discretization with an adapted Finite Element Method. I prove that the same feedback control law also stabilizes the discretized system.

Submitted articles (available on my homepage)

o Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters, 24 p.

Educational Background

- 2015–2018 PhD Thesis, Institut de Mathématiques de Toulouse, Toulouse (France). Analysis of a fluid-structure stabilization problem, Defense expected in June 2018
 - 2015 MSc in Applied Mathematics, Université Paul Sabatier (UPS in the sequel), Toulouse.
- 2011–2015 MEng in Aerospace (Supaéro), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE in the sequel), Toulouse.

Options in the last year: 'Applied Mathematics' and 'Structure'. One year in an Erasmus exchange with the University of Bristol (UK) (2013–2014).

2012 BSc in Fundamental Mathematics, Université Paul Sabatier, Toulouse.

2009–2011 Preparatory Classes, Lycée Bellevue, Toulouse.

National preparatory program for entrance into French state run graduate schools of Engineering, focused on Mathematics and Physics.

Master Courses (2014–2015)

Applied Mathematics (ISAE, Head Professor: Denis Matignon)

- Introduction to High Performance Computing (OpenMP, MPI, CUDA), prof: Pierre Siron (ISAE), Régine Leconte (ISAE), mark: 17
- Hierarchy of models for multi-scale and multi-physics problems, prof: Claudia Nagulescu (UPS), mark: 18
- Numerical Methods for Engineering, prof: Michel Salaün (ISAE), François Rogier (ONERA), mark: 19.5
- Advanced tools for Partial Differential Equations, prof: François Rogier (ONERA), Guillaume Dufour (ONERA), mark: 16.5
- Multi-purpose optimization and inverse problems, prof: Régis Duvigneau (INRIA), Jean-Antoine Désidéri (INRIA), Pierre Maréchal (ISAE), mark: 14.5
- **Robust Design**, prof: Olivier Thual (CERFACS), Pierre Weiss (UPS), Nabil Rachdi (Airbus–IW), Fabien Mangeant (Airbus–IW), mark: 16

Structures (ISAE, Head Professor: Joseph Morlier)

- o Advanced Structures Dynamics, prof: Alain Girard (ISAE), mark: 16
- **Finite Elements computations for mechanical problems**, prof: Joseph Morlier (ISAE), Michel Mahé (Airbus), mark: 16.5
- o Materials, prof: Philippe Lours (Mines Albi), Thierry Ansart (DGA-CEAT), mark: 11.5
- Special Materials, prof: Christophe Bouvet (ISAE), mark: 16
- o Aircraft Loading, prof: Robert Finance (ISAE), mark: 13.5
- o Aircraft Structures, prof: Jean-Marie Fehrenbach (ISAE), mark: 16
- Satellites Structures, prof: Aurélien Hot (CNES), mark: 18.5
- Introduction to Rocket Technology, prof: Marc Montagne (Airbus-DS), mark: 16.5
- Design for Composite Structures, prof: Christophe Bouvet (ISAE), mark: 15.3
- Structures Optimization, prof: Joseph Morlier (ISAE), Mohamed Bouhlel (ONERA), mark: 19

MSc courses (UPS, Head Professor: Mihai Maris)

- Introduction to Partial Differential Equations, prof: Jean-Pierre Raymond (UPS), Jean-Michel Roquejoffre (UPS), mark: 10.5
- Boundary Value Problems for Hyperbolic and Dispersive PDEs, prof: Christophe Besse (UPS), Pascal Noble (INSA), mark: 17
- Inverse Problems and Control Issues for PDE, prof: Sylvain Ervedoza (UPS), Jérémi Dardé (UPS), unmarked (followed as a PhD student in 2016).

Projects

2015 A meta-material study for a panel under lightning strikes.

Team: six people Time: about 40 hours

Goal: to gauge the possibility of using meta-materials to handle lightning strikes on a composite panel

2014 **Design of a wind farm**.

Team: five people Time: about 30 hours

Goal: to design a wind farm in order to optimize the power production

2013 Implementation of a bot for the game 'Arimaa'.

Team: alone

Time: about 60 hours Language: C++

2013 Implementation of a Peer to Peer Server.

Team: six people Time: about 30 hours Language: JAVA

2012 Study of a little rocket booster.

Team: two people Time: about 40 hours

Goal: to gauge the performances of a booster

Internships

May 2015– **MSc Internship**, *Commissariat à l'énergie atomique (CEA)*, Bordeaux (France).

October Scientific computing of the Euler equations using Finite Volumes

2015

July 2012 Internship, Mecasud, Colomiers (France).

Working on steering compensators

Teaching Activities

- $2017~~1^{\rm st}$ year of Maths BSc, Maths Interactive lectures using remote controllers given to the students
- 2017 1st year of Info BSc, Numerical Analysis and programming sessions
- 2016 $1^{\rm st}$ year of Maths BSc, Maths tutorials
- 2016 1^{st} year of Maths BSc, Linear algebra and functional analysis (courses + tutorials)
- 2015 1st year of Maths BSc, Maths tutorials

Languages

French Native speaker

English Professional level (B2)

German Basics

Computer skills

Software Matlab, LaTeX, emacs

Programming C++, C, JAVA

languages

Extra—curricular activities

- Chess (club level)
- Guitar