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Abstract. We study the stabilization of solutions to a 2d �uid�structure system by a feedback control law
acting on the acceleration of the structure. The structure is described by a �nite number of parameters. The
modelling of this system and the existence of strong solutions has been previously studied in [11]. We consider
an unstable stationary solution to the problem. We assume a unique continuation property for the eigenvectors
of the adjoint system. Under this assumption, the nonlinear feedback control that we propose stabilizes the
whole �uid�structure system around the stationary solution at any chosen exponential decay rate for small
enough initial perturbations. Our method reposes on the analysis of the linearized system and the feedback
operator is given by a Riccati equation of small dimension.
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1 Introduction

The goal of this study is to stabilize a 2d �uid�structure interaction problem. The �uid is modelled by the
incompressible Navier�Stokes equations and the structure, immersed in the �uid, is governed by a �nite number
of parameters. Such a kind of structure can be found for instance in aeronautics [19]. Our goal is to design a
�nite dimensional feedback controller which stabilizes locally the system around a given stationary state at any
prescribed exponential decay rate.

In order to simplify the study, we consider that the structure is described by only two parameters θ1 and
θ2. However, all the results that we present in the sequel can be easily extended to the case of a structure
depending on N (≥ 1) parameters (see Remark 1.1).

1.1 Modelling of the problem

The �uid�structure con�guration considered in this paper has already been investigated in [11] where existence
of strong solutions has been proven. We consider a bounded domain Ω = (0, L)× (0, 1) (see Fig.1). The volume
occupied by the structure depends on two parameters denoted (θ1, θ2), it is a closed subset of Ω that we denote
S(θ1, θ2) ⊂ Ω. The volume �lled by the �uid is denoted F (θ1, θ2) = Ω\S(θ1, θ2).

The boundary ∂Ω can be decomposed into ∂Ω = Γi ∪ Γw ∪ ΓN, where Γi = {0} × (0, 1), Γw = (0, L)× {0, 1}
and ΓN = {L} × (0, 1). We also denote ΓD = Γi ∪ Γw the part of ∂Ω where Dirichlet conditions are imposed.
We now introduce the equations modelling this system.

1.1.1 The equations of the �uid

The velocity of the �uid is assumed to ful�l the incompressible Navier�Stokes equations

∂u

∂t
(t,x)+(u(t,x)·∇)u(t,x)−div σF (u(t,x), p(t,x)) = fF (t,x), t ∈ (0,∞), x ∈ F (θ1(t), θ2(t)),

div u(t,x) = 0, t ∈ (0,∞), x ∈ F (θ1(t), θ2(t)),
u(t,x) = ui(t,x), t ∈ (0,∞), x ∈ Γi,
u(t,x) = 0, t ∈ (0,∞), x ∈ Γw,
σF (u(t,x), p(t,x))n(x) = 0, t ∈ (0,∞), x ∈ ΓN,
u(t,x) = vs(t,x), t ∈ (0,∞), x ∈ ∂S(θ1(t), θ2(t)),
u(0,x) = u0(x), x ∈ F (θ1,0, θ2,0),

(1.1)

where u(t,x) and p(t,x) are the velocity and the pressure of the �uid at point x and time t,

σF (u, p) = ν(∇u + (∇u)T )− pI,

is the Cauchy stress tensor of the �uid and ν > 0 is the kinematic viscosity. The term fF (t,x) in (1.1)1 is a
force per unit mass exerted on the �uid, ui(t,x) is a nonhomogeneous boundary datum on Γi, vs(t,x) denotes
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Figure 1: The geometrical con�guration.
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Figure 2: Correspondence between real and reference con�gurations.

the velocity of the structure and n(x) is the outward unitary normal to Ω. Dirichlet boundary conditions are
imposed on ΓD and Neumann type (free output) boundary conditions are imposed on ΓN. We also consider an
initial datum u0(x) for the �uid velocity.

1.1.2 Equations of the structure

We consider that the couple of parameters (θ1, θ2) lies in an admissible domain DΘ which is an open connected
subset of R2 containing (0, 0). We consider a function X de�ned on DΘ×S(0, 0) that computes the position of a
point of the structure according to its reference position in S(0, 0) and the value of the parameters (θ1, θ2) ∈ DΘ.

Let us list below the assumptions that we make
Modelling Assumptions.

• For every y ∈ S(0, 0), X(0, 0,y) = y.

• For every (θ1, θ2) ∈ DΘ, X(θ1, θ2, S(0, 0)) = S(θ1, θ2) ⊂ Ω.

• For every (θ1, θ2) ∈ DΘ, X(θ1, θ2, .) is a C∞ di�eomorphism from S(0, 0) to its image S(θ1, θ2).

• The function X is C∞ on DΘ × S(0, 0).

• The functions ∂θ1X(θ1, θ2, .) and ∂θ2X(θ1, θ2, .) form
a free family in L2(∂S(0, 0)) for every (θ1, θ2) in DΘ.

• No friction and no elastic energy are considered in the structure.

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

More information about these assumptions can be found in [11]. The inverse di�eomorphism of X(θ1, θ2, .),
whose existence is guaranteed by (1.4), is denoted Y(θ1, θ2, .) and we have

∀(θ1, θ2) ∈ DΘ, ∀y ∈ S(0, 0), Y(θ1, θ2,X(θ1, θ2,y)) = y. (1.8)

The di�eomorphisms X(θ1, θ2, .) and Y(θ1, θ2, .) are illustrated in Fig. 2.
In the sequel, we denote θ̇j and θ̈j the �rst and second time derivatives of θj . The equations that are satis�ed

by the structure read on a matricial form
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Mθ1,θ2

(
θ̈1

θ̈2

)
= MI(θ1, θ2, θ̇1, θ̇2) + MA(θ1, θ2,−σF (u, p)nθ1,θ2) + fs + h on (0, T ), (1.9)

where fs is a source term, h a control function,

Mθ1,θ2 =

(
(∂θ1X(θ1, θ2, .),∂θ1X(θ1, θ2, .))S (∂θ2X(θ1, θ2, .),∂θ1X(θ1, θ2, .))S
(∂θ1X(θ1, θ2, .),∂θ2X(θ1, θ2, .))S (∂θ2X(θ1, θ2, .),∂θ2X(θ1, θ2, .))S

)
∈ R2×2, (1.10)

MI(θ1, θ2, θ̇1, θ̇2) =

(
−(θ̇2

1∂θ1θ1X(θ1, θ2, .)+2θ̇1θ̇2∂θ1θ2X(θ1, θ2, .)+θ̇2
2∂θ2θ2X(θ1, θ2, .) , ∂θ1X(θ1, θ2, .))S

−(θ̇2
1∂θ1θ1X(θ1, θ2, .)+2θ̇1θ̇2∂θ1θ2X(θ1, θ2, .)+θ̇2

2∂θ2θ2X(θ1, θ2, .) , ∂θ2X(θ1, θ2, .))S

)
∈ R2,

(1.11)
where (.,.)S is the scalar product

(Φ,Ψ)S =

∫
S(0,0)

ρΦ(y) ·Ψ(y) dy, (1.12)

with ρ > 0 the mass per unit volume of the structure and

MA(θ1, θ2,−σF (u, p)nθ1,θ2) =


∫
∂S(θ1,θ2)

−σF (u, p)nθ1,θ2(γx) · ∂θ1X(θ1, θ2,Y(θ1, θ2, γx)) dγx∫
∂S(θ1,θ2)

−σF (u, p)nθ1,θ2(γx) · ∂θ2X(θ1, θ2,Y(θ1, θ2, γx)) dγx

 ∈ R2, (1.13)

where nθ1,θ2 is the outward unitary normal to F (θ1, θ2) on ∂S(θ1, θ2).
Moreover the velocity of the structure can be written

∀t ∈ [0,∞), ∀x ∈ S(θ1(t), θ2(t)), vs(t,x) =

2∑
k=1

θ̇k(t)∂θkX(θ1(t), θ2(t),Y(θ1(t), θ2(t),x)).

More information about the derivation of these equations can be found in [11].
Note that the matrix Mθ1,θ2 in (1.10) is the Gram matrix of the family (∂θ1X(θ1, θ2), ∂θ2X(θ1, θ2)) with

respect to the scalar product (.,.)S . It is thus invertible due to Assumption (1.6) (if two C∞ functions are not
colinear in L2(∂S(0, 0)) then they are not colinear in L2(S(0, 0))).

Remark 1.1. The proposed framework can be used to model other problems. For instance, in the case of a rigid
solid whose center of mass is given by (a1, a2) and corresponds to (0, 0) in the reference con�guration and whose
angle of rotation is given by θ (so that three parameters are considered), the di�eomorphism X now depends
on three parameters and is given by

X(a1, a2, θ,y) = a1e1 + a2e2 +Rθy,

where e1 = (1, 0), e2 = (0, 1) and Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. Moreover, we have

Ma1,a2,θ =

 m 0 0
0 m 0
0 0 I

 , MI(a1, a2, θ, ȧ1, ȧ2, θ̇) = 0, MA(a1, a2, θ, f) =

∫
∂S(a1,a2,θ)

 f · e1

f · e2

f ·Rθ+π
2
y

 dx,

where m =

∫
S(0,0,0)

ρ dy denotes the mass of the solid and I =

∫
S(0,0,0)

ρy2 dy its moment of inertia. Hence

the equation (1.9) corresponds to the usual Newton's law.

1.1.3 The complete set of equations

The �nal system that we consider is given by the following set of equations

∂u

∂t
(t,x) + (u(t,x) · ∇)u(t,x)− div σF (u(t,x), p(t,x)) = fF (t,x), t∈(0,∞), x∈F(θ1(t), θ2(t)),

div u(t,x) = 0, t∈(0,∞), x∈F(θ1(t), θ2(t)),

u(t,x) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),Y(θ1(t), θ2(t),x)), t∈(0,∞), x∈∂S(θ1(t), θ2(t)),

u(t,x) = ui(t,x), t∈(0,∞), x∈Γi,
u(t,x) = 0, t∈(0,∞), x∈Γw,
σF (u(t,x), p(t,x))n(x) = 0, t∈(0,∞), x∈ΓN,
u(0,x) = u0(x), x∈F (θ1,0, θ2,0),

Mθ1,θ2

(
θ̈1

θ̈2

)
=MI(θ1, θ2, θ̇1, θ̇2)+MA(θ1, θ2,−σF(u, p)nθ1,θ2)+fs+h, t∈(0,∞),

θ1(0) = θ1,0, θ2(0) = θ2,0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0.

(1.14)

Note that the �uid domain F (θ1(t), θ2(t)) changes over the time. The control h can be understood as a force
acting on the structure. The data (θ1,0, θ2,0) and (ω1,0, ω2,0) respectively describe the initial position and velocity
of the structure.
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1.2 Statement of the main result

Existence of strong solutions to (1.14) locally in time has been proven in [11]. The goal of the present study is
to prove that, given a stationary state, we can choose h under a feedback form such that a solution to (1.14)
stabilizes exponentially around that stationary state when t tends to the in�nity. In this section we present our
stabilization result.

The stationary state. Let (w, pw, η1, η2) be a stationary state of (1.14) associated to stationary source
terms fF , fs and boundary datum ui, i.e.

(w(x) · ∇)w(x)− div σF (w(x), pw(x)) = fF (x), x∈F(η1, η2),
div w(x) = 0, x∈F(η1, η2),
w(x) = 0, x∈∂S(η1, η2),
w(x) = ui(x), x∈Γi,
w(x) = 0, x∈Γw,
σF (w(x), pw(x))n = 0, x∈ΓN,
0 =MI(η1, η2, 0, 0)+MA(η1, η2,−σF(w, pw)nη1,η2)+fs.

(1.15)

Note that MI(η1, η2, 0, 0) = 0 and it can thus be withdrawn from (1.15).
In the sequel, we take (η1, η2) = (0, 0) to simplify the notations. This choice is not restrictive as a change of

variables can bring the stationary parameters to (0, 0). We denote respectively Fs and Ss the �uid and solid
domains associated to the stationary solution,

Fs = F (0, 0) and Ss = S(0, 0).

Rewriting (1.15), we consider nonhomogeneous terms fF , ui, fs and a velocity�pressure pro�le (w, pw) ∈
H3/2(Fs)×H1/2(Fs) ful�lling the equations

−div σF (w, pw) = −(w · ∇)w + fF in Fs,
div w = 0 in Fs,
w = 0 on ∂Ss,
w = ui on Γi,
w = 0 on Γw,
σF (w, pw)n = 0 on ΓN,

(fs)j =

∫
∂Ss

(σF (w, pw)ns)(γy) · ∂θjX(0, 0, γy) dγy,

(1.16)

where ns is the outward unitary normal to Fs on ∂Ss,

fF ∈W1,∞(Ω) and ui ∈ Ui =


ui ∈ H3/2(Γi) | ui|∂Γi

= 0,

∫ 1/4

0

|∂y2u
i
2(y2)|2

y2
dy2 < +∞,∫ 1

3/4

|∂y2
ui2(y2)|2

1− y2
dy2 < +∞

 . (1.17)

More information about stationary solutions can be found in [24, Appendix].

Remark 1.2. The regularity of the source term fF ∈ W1,∞(Ω) is used for the estimation of some nonlinear
terms in Appendix C.

The di�eomorphism Φ. A classical di�culty in �uid�structure problems is that the �uid domain changes
over time. The classical way of getting rid of this di�culty is to use a change of variables on u and p in order
to bring the study back into a �xed domain. This procedure uses a di�eomorphism that we have to de�ne
properly.

When the state of the structure depends only on a �nite number of parameters, it is convenient to construct
this di�eomorphism as an extension of the deformation of the structure into the �uid domain. The di�eomor-
phism used is de�ned as an extension of the di�eomorphism X given for the structure. For that reason, we use
the following extension operator.

Lemma 1.3. There exists a linear extension operator E : W3,∞(Ss)→W3,∞(Ω) ∩H1
0(Ω) such that for every

ϕ ∈W3,∞(Ss),

(i) E(ϕ) = ϕ in Ss,
(ii) E(ϕ) has support within Ωε = {x ∈ Ω | d(x, ∂Ω) > ε} for some ε > 0

such that d(S(θ1, θ2), ∂Ω) > 2ε for all (θ1, θ2) ∈ DΘ,
(iii) ‖ϕ‖W3,∞(Ω) ≤ C‖ϕ‖W3,∞(Ss), for some C > 0.

Proof. Extension results are classical, we can for instance �nd an extension result for smooth domains in [20,
Lemma 12.2]. We can get the present result by multiplying the extension function of [20, Lemma 12.2] by a
cut�o� function in D(Ωε).
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Let us denote Id the identity function, we then de�ne the following function

Φ(θ1, θ2,y) = y + E
(
X(θ1, θ2, .)− Id

)
(y), ∀(θ1, θ2) ∈ DΘ, ∀y ∈ Ω. (1.18)

We have ∇Φ(0, 0,y) = I, the identity matrix in R2×2, for every y ∈ Ω, hence det(∇Φ(0, 0,y)) = 1. Then,
we can restrict DΘ such that for every (θ1, θ2) ∈ DΘ, the function Φ(θ1, θ2, .) is a di�eomorphism close to the
identity function. We denote Ψ(θ1, θ2, .) the inverse di�eomorphism of Φ(θ1, θ2, .)

∀(θ1, θ2) ∈ DΘ, ∀y ∈ Ω, Ψ(θ1, θ2,Φ(θ1, θ2,y)) = y. (1.19)

If needed, we can once more reduce DΘ to prove that Φ and Ψ belong to C∞(DΘ,W
3,∞(Ω)). These di�eo-

morphisms are represented in Fig. 2.
The properties of E imply that

for every (θ1, θ2) ∈ DΘ, Φ(θ1, θ2, Ss) = S(θ1, θ2) and ∀y ∈ Ω\Ωε, Φ(θ1, θ2,y) = y. (1.20)

The stabilization problem. In order to prove a stabilization result on the nonlinear problem, we �rst
study the linearized problem around (w, pw, 0, 0) and prove its stabilizability. It requires the technical hypothesis
(H)δ that is presented hereafter.

In the sequel, v can be thought of as the di�erence between the state u and the stationary state w of the
problem (see (3.1) for its precise de�nition). The linearized term in v in the �uid equation is the usual Oseen
term (v ·∇)w + (w ·∇)v. The linearized term in (θ1, θ2, θ̇1, θ̇2) in the �uid equation is denoted LF. In the same
way, we denote LS the linearized term in (θ1, θ2) in the structure equation. Then we have

LF(θ1, θ2, θ̇1, θ̇2,y) = L1(y)θ1 + L2(y)θ2 + L3(y)θ̇1 + L4(y)θ̇2, ∀y ∈ Fs, (1.21)

and
LS(θ1, θ2) = L5θ1 + L6θ2, (1.22)

where the exact expressions of the coe�cients L1 � L6 are given in Appendix A. The coe�cients L1 � L4 are
functions and L5 � L6 are constant vectors of R2. They all depend on the non�null stationary state (w, pw)
which is solution of (1.16), on the di�eomorphism Φ and on its derivatives taken in (θ1, θ2) = (0, 0).

Let δ > 0 be a prescribed exponential decay rate in time for the di�erence between the solution and the
stationary state. In order to prove the main result of the study, we need the following assumption that depends
on δ and corresponds to a Hautus test.

Hypothesis (H)δ (A unique continuation property). Every eigenvector (v, q, θ1, θ2, ω1, ω2) ∈ H1(Fs) ×
L2(Fs) × R4 of the adjoint problem associated to the eigenvalue λ with Re(λ) ≥ −δ, i.e. every solution
of

div σF (v, q)− (∇w)Tv + (w · ∇)v = λv in Fs,
div v = 0 in Fs,
v = ω1∂θ1Φ(0, 0, .) + ω2∂θ2Φ(0, 0, .) on ∂Ss,
v = 0 on ΓD,
σF (v, q)n + (w · n)v = 0 on ΓN,∫
Fs

(
L1(y) · v(y)
L2(y) · v(y)

)
dy +

 L5 ·
(
ω1

ω2

)
L6 ·

(
ω1

ω2

)
 = λ

(
θ1

θ2

)
,

∫
Fs

(
L3(y) · v(y)
L4(y) · v(y)

)
dy −

∫
∂Ss

(
σF (v, q)ns(γy) · ∂θ1Φ(0, 0, γy)
σF (v, q)ns(γy) · ∂θ2Φ(0, 0, γy)

)
dγy +

(
θ1

θ2

)
= λM0,0

(
ω1

ω2

)
,

that belongs to the kernel of the adjoint of the control operator, i.e. that satis�es{
ω1 = 0,
ω2 = 0,

is necessarily null, i.e. (v, q, θ1, θ2, ω1, ω2) = (0, 0, 0, 0, 0, 0).

This hypothesis is a unique continuation property for the adjoint system. Such a property is proven for
some problems, in particular for the Stokes problem with localized observation [12]. However, in our case of
study, the observation is nonlocal, and to our knowledge the corresponding unique continuation property is not
available in the literature. In order to lead the study of the stabilization of our problem, we assume this unique
continuation property to be valid. Although we do not know how to prove it, we can reasonably think that it
is generically valid. Besides, it can be checked numerically on each particular instance.
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Remark 1.4. The hypothesis (H)δ is independent from the choice of the extension operator E used in Lemma
1.3 to construct the di�eomorphism Φ, see Appendix B.

In the sequel, JΦ(θ1, θ2, .) denotes the Jacobian matrix of Φ(θ1, θ2, .) and cof(JΦ(θ1, θ2, .)) its cofactor
matrix. The goal of the study is to prove the following theorem.

Theorem 1.5 (A stabilization result). Let δ > 0 and assume that (H)δ is ful�lled. Let fF ∈ W1,∞(Ω),
ui ∈ Ui, fs ∈ R2, and (w, pw) ∈ H3/2(Fs)× H1/2(Fs) ful�lling (1.16). Then, there exists ε > 0 such that for
every (u0, θ1,0, θ2,0, ω1,0, ω2,0) ∈ H1(F (θ1,0, θ2,0))×DΘ × R2 satisfying the compatibility conditions

div u0 = 0 in F (θ1,0, θ2,0),

u0(.) =

2∑
j=1

ωj,0∂θjX(θ1,0, θ2,0,Y(θ1,0, θ2,0, .)) on ∂S(θ1,0, θ2,0),

u0 = ui on Γi,
u0 = 0 on Γw,

(1.23)

and
‖u0(Φ(θ1,0, θ2,0, .))−w(.)‖H1(Fs) + |θ1,0|+ |θ2,0|+ |ω1,0|+ |ω2,0| ≤ ε,

there exists a control h given under the feedback form

h(t) = Kδ
([

cof(JΦ(θ1(t), θ2(t), .))Tu(t,Φ(θ1(t), θ2(t), .))−w
]
, θ1(t), θ2(t), θ̇1(t), θ̇2(t)

)
, (1.24)

for some linear operator Kδ ∈ L(L2(Fs)×R4,R2) such that a solution (u, p, θ1, θ2) to problem (1.14) ful�ls for
all t in (0,∞)

‖u(t,Φ(θ1(t), θ2(t), .))−w(.)‖H1(Fs) + |θ1(t)|+ |θ2(t)|+ |θ̇1(t)|+ |θ̇2(t)| ≤ Ce−δt,

for some C > 0 depending on the geometry, on δ and on the initial and nonhomogeneous data.

Theorem 1.5 is proven in Sections 2 and 3.

Remark 1.6. The feedback law proposed in (1.24) does not depend linearly on the state (u, p, θ1, θ2).

1.3 The functional framework

In this section we present the functional setting used in the sequel.
We denote by C 0([0,∞);X) the set of functions that are continuous on [0,∞) and valued in X.
Sobolev spaces. We denote Hr(Fs) the usual Sobolev space of order r ≥ 0. We identify L2(Fs) with

H0(Fs). We will denote L2(Fs) = (L2(Fs))
2, Hr(Fs) = (Hr(Fs))

2 and so on.
Corners issues. The domain considered for the �uid has four corners of angle π/2. The ones that are

located between Dirichlet and Neumann boundary conditions induce singularities, we denote them A = (L, 1)
and B = (L, 0) (see Fig. 1). We also denote Jd,n = {A,B} the set of these corners and we de�ne the distance
of a point x from these corners

for j ∈Jd,n, and for x ∈ Ω, rj(x) = d(x, j). (1.25)

Note that corners between two Dirichlet boundary conditions do not induce singularities as soon as suitable
compatibility conditions are satis�ed. We report to [21, Chapter 9] for more details.

Weighted Sobolev spaces. The solution to the Stokes problem in the domain with corners A and B and
with a source term in L2(Fs) belongs to a classical Sobolev space of lower order than the one we usually have
in smooth domains. In order to get the usual gain of regularity between solutions and source terms, we have
to study the solution in adapted Sobolev spaces that are suitably weighted near the corners A and B. The
weighted Sobolev spaces are then de�ned for β > 0 by

H2
β(Fs) = {u with ‖u‖H2

β(Fs) < +∞}, H1
β(Fs) = {p with ‖p‖H1

β(Fs) < +∞},

where the norms ‖.‖H2
β(Fs) and ‖.‖H1

β(Fs) are given by

‖u‖2H2
β(Fs)

=

2∑
|α|=0

2∑
i=1

∫
Fs

 ∏
j∈Jd,n

r2β
j (y)

 |∂αui(y)|2 dy, (1.26)

and

‖p‖2H1
β(Fs)

=

1∑
|α|=0

∫
Fs

 ∏
j∈Jd,n

r2β
j (y)

 |∂αp(y)|2 dy. (1.27)
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Here the sum is on all multi�index α of length |α| ≤ 2 for (1.26), |α| ≤ 1 for (1.27) and rj is de�ned in (1.25).
Steady Stokes problem with corners. The following lemma from [24] explains how and why the spaces

H2
β(Fs) and H1

β(Fs) appear in the presence of corners. It gives the expected result for the steady Stokes
problem in Fs with weigthed Sobolev spaces and the regularity obtained in the classical Sobolev spaces.

Lemma 1.7. [24, Theorem 2.5.] Let us assume that fF ∈ L2(Fs). The unique solution (u, p) to the Stokes
problem 

−div σF (u, p) = fF in Fs,
div u = 0 in Fs,
u = 0 on ΓD ∪ ∂Ss,
σF (u, p)n = 0 on ΓN,

(1.28)

belongs to H2
β(Fs)×H1

β(Fs) for some β ∈ (0, 1/2) and to H3/2+ε0(Fs)×H1/2+ε0(Fs) for some ε0 ∈ (0, 1/2).
Moreover, we have the following estimate

‖u‖H2
β(Fs)∩H3/2+ε0 (Fs)

+ ‖p‖H1
β(Fs)∩H1/2+ε0 (Fs)

≤ C‖fF‖L2(Fs). (1.29)

Remark 1.8. A consequence of Lemma 1.7 is that the solution (w, pw) of (1.16)�(1.17) belongs to H2
β(Fs) ×

H1
β(Fs). This is the regularity that we will use for (w, pw) in the sequel. A proof of this statement can be

achieved by lifting the datum ui, which is done in [11, Lemma 2.8].

Keep in mind that ns is the outward unitary normal to Fs. Note that, according to the regularity proven in
Lemma 1.7, the traces p|∂Fs

and ∂nsu|∂Fs
are well de�ned, which gives a meaning to all integrations by parts.

Also note that according to [18, Theorem 1.4.3.1], there exists a continuous extension operator from Hs(Fs)
to Hs(R2) for every s > 0. This implies that all the classical Sobolev embeddings and interpolations are valid
despite the presence of corners.

1.4 Scienti�c context

There are several works providing stabilization results in the context of Navier�Stokes equations. For instance,
the stabilization of a viscous �uid is treated for the wake of a cylinder in [14, 16, 17, 24] and for a cavity in [22].
A �rst strategy used in [16, 17, 22] reposes on the Proper Orthogonal Decomposition (POD) approach. Another
approach consists in constructing a feedback operator by means of a Riccati equation making the closed�loop
system stable [24, 26, 27]. If needed, it is possible to use dynamical controllers to meet compatibility conditions
between the �uid initial datum and the initial control value, the control is then computed as the solution of an
ODE [1, 2].

When we consider �uid�structure interaction problems the same strategies can be used. The reader can
refer for instance to [29] for a stabilization by a POD approach of a �uid around an airfoil. It is also possible
to build a stabilizing feedback control that uses only the state of the structure, see [7] for a 1D and [31] for a
2D �uid�solid interaction problems.

In the present study, we use a stabilizing control that is given under a feedback form and uses the state of
the �uid and the structure. The feedback operator is computed via the solution of a �nite dimensional Riccati
equation. This is helpful when treating numerical simulations which are not the point of the current paper
and are a work currently in progress. The same strategy has already been used to prove stabilization of strong
solutions, which is what we aim for, and more recently stabilization of weak solutions to a �uid�beam interaction
problem [5]. In the literature, the feedback control can be a Dirichlet datum imposed to the �uid on some part
of the boundary [3, 23], it can be a change in the shape of the structure [8, 9] or a force acting on the structure
[23, 28].

Although the control that we use in the current study acts on the structure, the study [3] is the closest one
from what we want to prove. It treats the stabilization of a �uid�rigid body system by a feedback control law
acting on the boundary of the �uid domain. In the current study, we follow its framework and account for the
deformability of the structure and the control acting on the acceleration of the structure. Additional di�culties
are induced by the corners on ∂Ω, more information about them can be found in [21, 24].

1.5 Outline of the paper

In Section 2, we prove the existence of a feedback control law that stabilizes the solution of the linearized
system in the �xed domain Fs around the stationary state (w, pw, 0, 0). The proof relies on the analysis of the
properties of the linearized system. In Section 3, we extend successively the previous result to the full nonlinear
system in the �xed domain and in the moving domain. The former is proven via a �xed point argument and
the latter uses a change of variables. The linearized terms are summed up in Appendix A. An idea of the proof
of Remark 1.4 is given in Appendix B. The proof of the technical estimates of the nonlinear terms can be found
in Appendix C.

Acknowledgement: The author wants to thank Mehdi Badra for fruitful discussions.
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2 Stabilization of the linearized problem

In the whole Section 2 we consider stationary nonhomogeneous terms (fF ,u
i, fs) ∈ W1,∞(Ω) ×Ui × R2 and

a stationary state (w, pw) ∈ H2
β(Fs) × H1

β(Fs) that ful�l (1.16). Our goal is to �nd a control law h under a
feedback form that stabilizes the linearized problem with a given exponential decay δ in time.

2.1 The linearized problem

We study the linearized system associated to (1.14). The variables (v, q) correspond roughly to the di�erence
between (u, p) written in the �xed domain Fs and (w, pw). A proper de�nition of these variables can be found
in (3.1). Here is the linearized system around (w, pw, 0, 0)

∂v

∂t
+ (w · ∇)v + (v · ∇)w − LF(θ1, θ2, θ̇1, θ̇2,y)− ν∆v +∇q = f in (0,∞)×Fs,

div v = 0 in (0,∞)×Fs,

v = θ̇1∂θ1Φ(0, 0, .) + θ̇2∂θ2Φ(0, 0, .) + g on (0,∞)× ∂Ss,
v = 0 on (0,∞)× ΓD,
σF (v, q)n = 0 on (0,∞)× ΓN,
v(0, .) = v0 in Fs,

M0,0

(
θ̈1

θ̈2

)
=


∫
∂Ss

[qI− ν(∇v + (∇v)T )]ns · ∂θ1Φ(0, 0, γy) dγy∫
∂Ss

[qI− ν(∇v + (∇v)T )]ns · ∂θ2Φ(0, 0, γy) dγy


+LS(θ1, θ2) + s + h on (0,∞),

θ1(0) = θ1,0, θ2(0) = θ2,0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0,

(2.1)

where (f ,g, s) are nonhomogeneous terms and v0 an initial datum for v. Here, LF ∈ L2(Fs,L(R4,R2)) and
LS ∈ L(R2,R2) depend on the stationary state (w, pw) and on the di�eomorphism Φ, they are given by

LF(θ1, θ2, θ̇1, θ̇2,y) = L1(y)θ1 + L2(y)θ2 + L3(y)θ̇1 + L4(y)θ̇2, ∀y ∈ Fs,

LS(θ1, θ2) = L5θ1 + L6θ2,

(2.2)

(2.3)

where the coe�cients L1�L6 are properly de�ned in Appendix A ((A.1)�(A.6)).
For any �xed δ > 0 such that (H)δ holds, we use the following spaces

U∞δ = { v with eδtv ∈ L2(0,∞; H2
β(Fs)) ∩ C 0([0,∞); H1(Fs)) ∩H1(0,∞; L2(Fs)) }, (2.4)

P∞δ = { q with eδtq ∈ L2(0,∞; H1
β(Fs)) }, (2.5)

Θ∞δ = { (θ1, θ2) with eδt(θ1, θ2) ∈ H2(0,∞;R2) }, (2.6)

F∞δ = { f with eδtf ∈ L2(0,∞; L2(Fs)) }, (2.7)

G∞δ = { g with eδtg ∈ H1(0,∞; H3/2(∂Ss)) }, (2.8)

S∞δ = { s with eδts ∈ L2(0,∞;R2) }. (2.9)

All these spaces are equipped with their natural norms, e.g. for Θ∞δ ,

‖(θ1, θ2)‖Θ∞
δ

= ‖(θ1, θ2)eδt‖H2(0,∞;R2).

The goal of Section 2 is to prove the following result.

Proposition 2.1. Let δ > 0 and assume that (H)δ is ful�lled. There exists a feedback operator Kδ ∈ L(L2(Fs)×
R4,R2), such that for every (v0, θ1,0, θ2,0, ω1,0, ω2,0) ∈ H1(Fs)×R4, f ∈ F∞δ , g ∈ G∞δ and s ∈ S∞δ ful�lling the
compatibility conditions 

div v0 = 0 in Fs,

v0 =

2∑
j=1

ωj,0∂θjΦ(0, 0, .) + g(0) on ∂Ss,

v0 = 0 on ΓD,

(2.10)

problem (2.1) with the control taken as h = Kδ(v, θ1, θ2, θ̇1, θ̇2) admits a unique solution (v, q, θ1, θ2) ∈ U∞δ ×
P∞δ ×Θ∞δ with the following estimate,

‖v‖U∞
δ

+‖q‖P∞
δ

+‖(θ1, θ2)‖Θ∞
δ
≤ C(‖v0‖H1(Fs)+|θ1,0|+|θ2,0|+|ω1,0|+|ω2,0|+‖f ‖F∞

δ
+‖g‖G∞

δ
+‖s‖S∞δ ), (2.11)

where C does not depend on the initial conditions and on the source terms.
A consequence is that for every t ∈ (0,∞),

‖v(t)‖H1(Fs)+|θ1(t)|+|θ2(t)|+|θ̇1(t)|+|θ̇2(t)| ≤ C
(
‖v0‖H1(Fs) +|θ1,0|+|θ2,0|+|ω1,0|+|ω2,0|

+‖f ‖F∞
δ

+‖g‖G∞
δ

+‖s‖S∞δ
)
e−δt.

(2.12)
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We �rst work on the homogeneous system associated to (2.1). In Section 2.2 we develop the functional
framework used to write the homogeneous system under a semigroup formulation. In Section 2.3 we study the
adjoint operator. In Section 2.4 we exhibit a feedback operator Kδ that stabilizes the homogeneous problem.
We then prove Proposition 2.1 in Section 2.5.

2.2 Functional framework for the semigroup formulation

In this section, the linear problem considered in Section 2.1 is rewritten under a semigroup formulation and
closely follows [11]. This enables us to use the classical strategy to derive a feedback operator Kδ stabilizing the
system (2.1) (see [6, Part V] and [10, Section 5.2] for a full presentation of this method). We use the spaces

H =

{
(v, θ1, θ2, ω1, ω2) ∈ L2(Fs)× R4, div v = 0 in Fs, v · n = 0 on ΓD,

v · ns =
∑
j

ωj∂θjΦ(0, 0, .) · ns on ∂Ss

}
, (2.13)

and

V =

{
(v, θ1, θ2, ω1, ω2) ∈ H1(Fs)× R4, div v = 0 in Fs, v = 0 on ΓD,

v =
∑
j

ωj∂θjΦ(0, 0, .) on ∂Ss

}
. (2.14)

The spaces H and V are respectively endowed with the scalar products
(
.,.)

0
of L2(Fs)× R4 and

(
.,.)

1
of

H1(Fs)× R4 de�ned by

∀(vj , θj1, θ
j
2, ω

j
1, ω

j
2) ∈ L2(Fs)× R4,(

(va, θa1 , θ
a
2 , ω

a
1 , ω

a
2 ),(vb, θb1, θb2, ωb1, ωb2)

)
0

=

∫
Fs

va · vb dy +
∑
j

θaj θ
b
j + (ωa1 ω

a
2 )M0,0

(
ωb1
ωb2

)
,

and

∀(vj , θj1, θ
j
2, ω

j
1, ω

j
2) ∈ H1(Fs)× R4,(

(va, θa1 , θ
a
2 , ω

a
1 , ω

a
2 ),(vb, θb1, θb2, ωb1, ωb2)

)
1

=

∫
Fs

(va·vb+∇va:∇vb) dy +
∑
j

θaj θ
b
j + (ωa1 ω

a
2 )M0,0

(
ωb1
ωb2

)
,

whereM0,0 is de�ned in (1.10) for θ1 = θ2 = 0.
In the sequel, for a better readability, we use the notation

(fj)j=1,2 =

(
f1

f2

)
.

Lemma 2.2. The orthogonal space to H with respect to the scalar product
(
.,.)

0
is

(H)⊥ =

{(
∇p, 0, 0,−M−1

0,0

(∫
∂Ss

pns · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

)
with p ∈ H1(Fs) , p = 0 on ΓN

}
.

Proof. See [11, Lemma 2.4].

We adapt Rellich's compact embedding Theorem to our functional framework.

Lemma 2.3. The embedding from V into H is compact.

Proof. The proof is an easy consequence of Rellich's compact embedding Theorem [18, Theorem 1.4.3.2.].

We de�ne the operator (A,D(A)) on H by

D(A) =

{
(v, θ1, θ2, ω1, ω2) ∈ V, v ∈ H3/2+ε0(Fs), ∃q ∈ H1/2+ε0(Fs) such that

div σF (v, q) ∈ L2(Fs) and σF (v, q)n = 0 on ΓN

}
, (2.15)

A


v
θ1

θ2

ω1

ω2

 = ΠH


div σF (v, q) + LF(θ1, θ2, ω1, ω2,y)− (v · ∇)w − (w · ∇)v
ω1

ω2

M−1
0,0

((∫
∂Ss

−σF (v, q)ns · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

+ LS(θ1, θ2)

)
 , (2.16)

where ε0 is introduced in Lemma 1.7 and ΠH denotes the orthogonal projection of L2(Fs) × R4 onto H. The
next lemmas state some properties of (A,D(A)).

Remark 2.4. The use of q in the de�nition of (A,D(A)) is useful to guarantee that div σF (v, q) belongs to
L2(Fs) and then that the application of ΠH in the right hand-side of (2.16) makes sense.
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Lemma 2.5. The operator A is uniquely de�ned.

Proof. A similar proof is presented in [11, Lemma 2.5], we need to slightly adapt it in order to take into account
the terms coming from the linearization around a stationary solution.

Let (v, θ1, θ2, ω1, ω2) ∈ D(A) and consider two functions p, q ∈ H1/2+ε0(Fs) satisfying the conditions
appearing into the de�nition of D(A). Then, div σF (0, p− q) = −∇(p − q) ∈ L2(Fs) implies p − q ∈ H1(Fs),
and σF (0, p− q)n = 0 on ΓN implies p− q = 0 on ΓN.

Now,
divσF (v, p)+LF(θ1, θ2, ω1, ω2,y)−(v ·∇)w−(w·∇)v
ω1

ω2

M−1
0,0

((∫
∂Ss

−σF (v, p)ns ·∂θjΦ(0, 0,γy)dγy

)
j=1,2

+LS(θ1, θ2)

)
−


divσF (v, q)+LF(θ1, θ2, ω1, ω2,y)−(v ·∇)w−(w·∇)v
ω1

ω2

M−1
0,0

((∫
∂Ss

−σF (v, q)ns ·∂θjΦ(0, 0,γy)dγy

)
j=1,2

+LS(θ1, θ2)

)


=


∇(p− q)
0
0

−M−1
0,0

(∫
∂Ss

(p− q)ns · ∂θjΦ(0, 0, γy)dγy

)
j=1,2

 ,

which belongs to H⊥ according to Lemma 2.2. Therefore A is uniquely de�ned.

Before going further, let us point out that D(A) can be characterized as follows.

Lemma 2.6. We have

D(A) =

{
(v, θ1, θ2, ω1, ω2) ∈ V, v ∈ H2

β(Fs), ∃q ∈ H1
β(Fs) such that

div σF (v, q) ∈ L2(Fs) and σF (v, q)n = 0 on ΓN

}
.

Proof. Assume that (v, θ1, θ2, ω1, ω2) belongs to D(A) given by (2.15). Then (v, q) satis�es

div σF (v, q) ∈ L2(Fs),
div v = 0 in Fs,
v = 0 on ΓD,
σF (v, q)n = 0 on ΓN,
v =

∑
j

ωj∂θjΦ(0, 0, .) on ∂Ss.

According to [24, Theorem 2.16], there exists vs ∈ H2(Fs) such that

div σF (vs, 0) = 0 in Fs

div vs = 0 in Fs,
vs = 0 on ΓD,
σF (vs, 0)n = 0 on ΓN,
vs =

∑
j

ωj∂θjΦ(0, 0, .) on ∂Ss.

Let f = −div σF (v, q) ∈ L2(Fs). Then (v − vs, q) satis�es
−div σF (v − vs, q) = f in Fs,
div (v − vs) = 0 in Fs,
v − vs = 0 on ΓD ∪ ∂Ss,
σF (v − vs, q)n = 0 on ΓN.

According to Lemma 1.7, v−vs ∈ H2
β(Fs)∩H3/2+ε0(Fs), q ∈ H1

β(Fs)∩H1/2+ε0(Fs). This ends the proof.

We de�ne the bilinear form a1 on V ×V for every (v, θ1, θ2, ω1, ω2) and (vb, θb1, θ
b
2, ω

b
1, ω

b
2) in V by

a1((v, θ1, θ2, ω1, ω2), (vb, θb1, θ
b
2, ω

b
1, ω

b
2)) =

ν

2

∫
Fs

(∇v +∇vT ) : (∇vb + (∇vb)T ) dy

+

∫
Fs

(
(v · ∇)w + (w · ∇)v

)
· vb dy.

(2.17)

We de�ne the operator (A1, D(A1)) on H by

D(A1) = {z ∈ V with z̃ 7→ a1(z, z̃) is H−continuous },

and
∀z ∈ D(A1), ∀z̃ ∈ V,

(
A1z,z̃

)
0

= −a1(z, z̃).
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Lemma 2.7. We have D(A1) = D(A) and

A1


v
θ1

θ2

ω1

ω2

 = ΠH


div σF (v, q)− (v · ∇)w − (w · ∇)v
0
0

M−1
0,0

(∫
∂Ss

−σF (v, q)ns · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

 .

Proof. The inclusion D(A) ⊂ D(A1) comes easily. Moreover, for every z = (v, θ1, θ2, ω1, ω2) ∈ D(A), an
integration by parts yields

∀z̃ ∈ V,
(
A1z,z̃

)
0

=




div σF (v, q)− (v · ∇)w − (w · ∇)v
0
0

M−1
0,0

(∫
∂Ss

−σF (v, q)ns · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

 ,z̃


0

.

Let us now prove the reverse inclusion D(A1) ⊂ D(A). Let z ∈ D(A1). According to Riesz representation
theorem, there exists f ∈ H such that

∀z̃ ∈ V, a1(z, z̃) =
(
f,z̃)

0
.

We write f = (fv, fθ1 , fθ2 , fω1
, fω2

). For ṽ ∈ Ddiv = {u ∈ (C∞c (Fs))
2 with div u = 0}, we know that

(ṽ, 0, 0, 0, 0) belongs to V, and an integration by parts yields

a1(z, (ṽ, 0, 0, 0, 0)) =

∫
Fs

(−div σF (v, 0) + (v · ∇)w + (w · ∇)v) · ṽ dy =

∫
Fs

fv · ṽ dy.

Then, according to [30, Lemma 2.2.2], there exists q̂ ∈ L2(Fs) such that

−div σF (v, q̂) + (v · ∇)w + (w · ∇)v = fv in Fs, (2.18)

and thus div σF (v, q̂) belongs to L2(Fs), which gives a meaning to σF (v, q̂)ns on ∂Fs.

Now, let us prove that σF (v, q̂)n is constant along ΓN. Let g ∈ (C∞c (ΓN))2 ful�lling

∫
ΓN

g · n dγy = 0.

According to [15, Theorem IV.1.1], there exists vg ∈ H1(Fs) satisfying div vg = 0 in Fs,
vg = 0 on ΓD ∪ ∂Ss,
vg = g on ΓN.

We know that (vg, 0, 0, 0, 0) belongs to V. An integration by parts yields

a1(z, (vg, 0, 0, 0, 0)) =

∫
Fs

(−div σF (v, q̂) + (v ·∇)w + (w ·∇)v) ·vg dy +

∫
ΓN

σF (v, q̂)n ·g dγy =

∫
Fs

fv ·vg dy,

and with (2.18) we get ∫
ΓN

σF (v, q̂)n · g dγy = 0.

The previous equality holds for every g ∈ (C∞c (ΓN))2 ful�lling

∫
ΓN

g · n dγy = 0, then there exists a constant c

such that σF (v, q̂)n = c n on ΓN.
Let q = q̂ − c ∈ L2(Fs), we have div σF (v, q) = div σF (v, q̂) and σF (v, q)n = 0 on ΓN. Moreover, (v, q)

satis�es 

div σF (v, q) ∈ L2(Fs),
div v = 0 in Fs,
v = 0 on ΓD,
v =

∑
j

ωj∂θjΦ(0, 0, .) on ∂Ss,

σF (v, q)n = 0 on ΓN.

We �nish this proof with a lifting of the boundary datum on ∂Ss and Lemma 1.7, like in the proof of Lemma
2.6. We get D(A1) ⊂ D(A), thus concluding the proof of Lemma 2.7.

Lemma 2.8. The operator A generates an analytic semigroup on H and has compact resolvent.

Proof. According to [24, p. 3015], there exists a constant c > 0 such that for λ > 0 large enough, we have

∀z ∈ V, a1(z, z) + λ‖z‖2H ≥ c‖z‖2V. (2.19)

Moreover, according to [6, Theorem 2.12, p. 115], the estimate (2.19) implies that the operator A1 generates an
analytic semigroup on H.

Now, as A−A1 ∈ L(H), according to [25, Corollary 2.2], A generates an analytic semigroup on H.
We have D(A) ⊂ V and, according to Lemma 2.3, the embedding from V into H is compact. The operator

A then has compact resolvent. This ends this proof.
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2.3 Study of the adjoint operator

In order to simplify the notations, in the sequel we do not write dy or dγy anymore in the integrals.

Lemma 2.9. The adjoint operator A∗1 of A1 with respect to the scalar product
(
.,.)

0
is given by

D(A∗1) =

{
(v, θ1, θ2, ω1, ω2) ∈ V, v ∈ H3/2+ε0(Fs), ∃q ∈ H1/2+ε0(Fs) such that

div σF (v, q) ∈ L2(Fs) and σF (v, q)n+(w · n)v = 0 on ΓN

}
,

and

A∗1


v
θ1

θ2

ω1

ω2

 = ΠH


div σF (v, q)− (∇w)Tv + (w · ∇)v
0
0

M−1
0,0

(∫
∂Ss

−σF (v, q)ns · ∂θjΦ(0, 0, γy)

)
j=1,2

 .

Proof. The adjoint A∗1 of A1 is de�ned by

D(A∗1) = { z̃ ∈ V with z 7→ a1(z, z̃) is H�continuous },

and
∀z ∈ V, ∀z̃ ∈ D(A∗1),

(
z,A∗1z̃

)
0

= −a1(z, z̃).

Let us denote

E =

{
(v, θ1, θ2, ω1, ω2) ∈ V, v ∈ H3/2+ε0(Fs), ∃q ∈ H1/2+ε0(Fs) such that

div σF (v, q) ∈ L2(Fs) and σF (v, q)n+(w · n)v = 0 on ΓN

}
.

For every z̃ = (ṽ, θ̃1, θ̃2, ω̃1, ω̃2) ∈ E, we have

∀z ∈ V, −a1(z, z̃) =




div σF (ṽ, q̃)− (∇w)T ṽ + (w · ∇)ṽ
0
0

M−1
0,0

(∫
∂Ss

−σF (ṽ, q̃)ns · ∂θjΦ(0, 0, γy)

)
j=1,2

 ,z


0

.

Then, we have E ⊂ D(A∗1).
To prove the reverse inclusion, the same arguments as in the proof of Lemma 2.7 lead to the existence of

q̃ ∈ L2(Fs) such that 

div σF (ṽ, q̃) ∈ L2(Fs),
div ṽ = 0 in Fs,
ṽ = 0 on ΓD,
ṽ =

∑
j

ω̃j∂θjΦ(0, 0, .) on ∂Ss,

σF (ṽ, q̃)n + (w · n)ṽ = 0 on ΓN.

Then σF (ṽ, q̃)n belongs to H1/2(ΓN), this implies that (ṽ, q̃) belongs to H3/2+ε0(Fs) × H1/2+ε0(Fs). This
regularity is a consequence of [21, Theorem 9.4.5] and the arguments used in the proof of [24, Theorem 2.5].
This ends the proof.

Lemma 2.10. The adjoint of A with respect to
(
.,.)

0
is given by

D(A∗) = D(A∗1),

and

A∗


v
θ1

θ2

ω1

ω2

 = ΠH


div σF (v, q) + (w · ∇)v − (∇w)Tv∫

Fs

(
L1 · v
L2 · v

)
+

(
Lk+4 ·

(
ω1

ω2

))
k=1,2

M−1
0,0

[∫
Fs

(
L3 · v
L4 · v

)
−
∫
∂Ss

(
σF (v, q)ns · ∂θ1Φ(0, 0, γy)
σF (v, q)ns · ∂θ2Φ(0, 0, γy)

)
+

(
θ1

θ2

)]
 .

Proof. We have A−A1 ∈ L(H), then A∗ −A∗1 ∈ L(H) and D(A∗) = D(A∗1).
A computation of

(
Az,z̃)

0
for z ∈ D(A) and z̃ ∈ D(A∗) gives the explicit expression of A∗.
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2.4 Construction of a feedback operator

We de�ne the control operator B ∈ L(R2,H) by

Bh = ΠH(0, 0, 0,M−1
0,0h). (2.20)

The linear system (2.1) with no source terms (f = 0, g = 0, s = 0) can be rewritten under the form{
z′(t) = Az(t) +Bh(t), t > 0,
z(0) = z0,

(2.21)

where z = (v, θ1, θ2, θ̇1, θ̇2) and z0 = (v0, θ1,0, θ2,0, ω1,0, ω2,0).
We want to exhibit a control h under a feedback form that stabilizes problem (2.21). In order to guarantee

a decay rate δ > 0 of the solution to this problem, we consider the stabilization of zδ = eδtz, solution to the
problem {

z′δ(t) = (A+ δI)zδ(t) +Bhδ(t), t > 0,
zδ(0) = z0,

(2.22)

where
hδ(t) = eδth(t), t > 0.

Our goal is to �nd a control h providing the stabilization of (2.22).

Lemma 2.11. The adjoint operator of B with respect to
(
.,.)

0
is bounded, B ∈ L(H,R2), and is given by

B∗(v, θ1, θ2, ω1, ω2) =

(
ω1

ω2

)
.

Proof. The operator B is bounded, this is then a straightforward computation.

We de�ne the unstable space associated to the operator A+δI. Let Ju be the set of eigenvalues λj of A such
that Re(λj) ≥ −δ. The set Ju is exactly the set of all λ ∈ C such that λ+ δ is an unstable eigenvalue of A+ δI.
According to Lemmas 2.10 and 2.11, Hypothesis (H)δ can be rewritten as the following unique continuation
property:

For every λ ∈ Ju and all φ ∈ V that obey (A∗ − λI)φ = 0 and B∗φ = 0, we have φ = 0, (2.23)

where λ denotes the conjugate of λ.
The goal of this section is to construct a feedback control operator which uses only a �nite number of scalar

data to determine a control law that stabilizes problem (2.22), i.e.

Proposition 2.12. Let δ > 0 such that hypothesis (H)δ is ful�lled. There exists Kδ ∈ L(L2(Fs) × R4,R2)
such that the operator A+ δI +BKδ generates a stable analytic semigroup on H.

Lemma 2.8 implies that the spectrum of the operator A consists of isolated eigenvalues with �nite algebraic
multiplicities, moreover it has no �nite cluster point. In addition, the operator A generates an analytic semi-
group, the control operator B belongs to L(R2,H) and we assume (2.23). Proposition 2.12 is then a consequence
of the Fattorini criterion [4, Theorem 1.6].

In order to make the strategy clear, we provide a proof of Proposition 2.12.

Proof. We denote G(λj) the generalized eigenspace of A associated to the eigenvalue λj and we de�ne the
unstable space for A+ δI by

Zu =
⊕
λ∈Ju

G(λ).

As A + δI generates an analytic semigroup on H and has compact resolvent (see Lemma 2.8), Ju is �nite
and every G(λj) is �nite dimensional. Then the space Zu is �nite dimensional and we denote du = dim(Zu).

Besides, we can construct in the same way a space Zs that contains all the stable eigenvectors of A + δI,
that is invariant under (etA)t≥0 and such that

H = Zu
⊕

Zs.

We denote Πu the projection of H onto Zu along Zs and Πs the projection of H onto Zs along Zu. In the
same way, we denote Z∗u (respectively Z∗s) the direct sum of the generalized eigenspaces of A∗ associated to an
eigenvalue belonging (respectively not belonging) to Ju.

13



According to [13, Lemma 6.2], there exist respectively two biorthogonal families (zi) = (vi, θ1,i, θ2,i, ω1,i, ω2,i)

and (z̃j) = (ṽj , θ̃1,j , θ̃2,j , ω̃1,j , ω̃2,j) of Zu and Z∗u satisfying the condition(
zi,z̃j

)
0

= δij , (2.24)

and Πu(v, θ1, θ2, ω1, ω2) =
du∑
i=1

(
(v, θ1, θ2, ω1, ω2),(ṽi, θ̃1,i, θ̃2,i, ω̃1,i, ω̃2,i)

)
0

(vi, θ1,i, θ2,i, ω1,i, ω2,i). We can also

choose zi and z̃j to be respectively generalized eigenvectors of A and A∗.
The adjoint Π∗u of Πu is the projection of H onto Z∗u along Z∗s as a straightforward calculation gives

∀z̃ ∈ H, Π∗uz̃ =

du∑
i=1

(
zi,z̃

)
0
z̃i.

Denoting zu = Πuz for every z ∈ H, the projection of (2.22) onto Zu reads{
z′u(t) = Auzu(t) + δzu(t) +Buhu(t) t > 0,
zu(0) = Πuz0,

(2.25)

where Au = ΠuA, Bu = ΠuB and hu = hδ. Note that this formulation uses Au((I − Πu)z) = 0, which holds
since Zs is stable under A+ δI.

At this point, we use the following lemma that is proven just after the end of the current proof.

Lemma 2.13. Under hypothesis (H)δ, the problem (2.25) is controllable on Zu.

Lemma 2.13 implies that the problem (2.25) is stabilizable. Then the feedback control law

hu = −B∗uRδzu,

stabilizes problem (2.25), where Rδ ∈ L(H) is the unique positive self�adjoint solution in L(H) to the Riccati
equation

Rδ(Au + δI) + (A∗u + δI)Rδ + I−RδBuB∗uRδ = 0,

(for more information see [10, Section 6.2]).
Now we can construct a feedback law

K̃δ(zδ) = hu = −B∗uRδΠuzδ,

that stabilizes problem (2.22). The feedback operator K̃δ belongs to L(H,R2) and can be extended to an element
Kδ of L(L2(Fs)× R4,R2),

Kδzδ = K̃δΠHzδ = −B∗uRδΠuΠHzδ, for all zδ ∈ L2(Fs)× R4. (2.26)

The operator Au + δI +BuKδ generates an analytic stable semigroup on Zu.
Finally, let us prove that the operator A+ δI +BKδ generates an analytic stable semigroup on H. We can

use the decomposition zδ = Πuzδ + Πszδ, where Πuzδ and Πszδ ful�l{
Πuz

′
δ = (Au + δI)Πuzδ +BuKδΠuzδ t > 0,

Πuzδ(0) = Πuz0,{
Πsz

′
δ = (As + δI)Πszδ +BsKδΠuzδ t > 0,

Πszδ(0) = Πsz0,

where As = ΠsA, Bs = ΠsB and where we have used ΠsAΠu = ΠuAΠs = 0.
As the operator Au+δI+BKδ generates an analytic stable semigroup on Zu, we have ‖Πuzδ‖L2(0,∞;H) ≤ C.

Moreover, according to the de�nition of Ju, the operator As + δI generates an analytic stable semigroup on Zs,
then according to [6, Theorem 3.1.(i), p. 143], we have ‖Πszδ‖L2(0,∞;H) ≤ C. Hence A+ δI +BKδ generates an
analytic stable semigroup on H.

Proof of Lemma 2.13. According to the Hautus test (see for instance [32, Proposition 1.5.1]), this result is
equivalent to Ker(A∗u+δI−λI)∩Ker(B∗u) = {0} for every eigenvalue λ of Au+δI, i.e. Ker(A∗u−λI)∩Ker(B∗u) = {0}
for every eigenvalue λ of Au.

The de�nition of Zu implies that this space is stable under A. Hence, for every zu ∈ Zu, Auzu = Azu.
Then, the eigenvalues of Au are the elements of Ju.

Now, we need to compute A∗u and B∗u, the adjoint operators of Au and Bu with respect to H. Let z∗u ∈ Z∗u
and z ∈ H, we have (

A∗uz
∗
u,z
)

0
=
(
z∗u,ΠuAz

)
0

=
(
A∗z∗u,z

)
0
,
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and (
B∗uz

∗
u,z
)

0
=
(
z∗u,ΠuBz

)
0

=
(
B∗z∗u,z

)
0
,

then ∀z∗u ∈ Z∗u, we have A∗uz∗u = A∗z∗u and B∗uz
∗
u = B∗z∗u.

Let us now prove the Hautus test on (A∗u, B
∗
u). Let λ ∈ C be an eigenvalue of Au, then λ ∈ Ju. Let z∗u ∈ Z∗u

and assume that z∗u ∈ Ker(A∗u − λI) ∩ Ker(B∗u). We have (A∗ − λI)z∗u = 0 and B∗z∗u = 0. Thus, z∗u ∈ D(A∗)
and the property (2.23) implies that z∗u = 0 and this ends the proof.

A consequence of Proposition 2.12 is the following lemma.

Lemma 2.14. Let z0 ∈ V and F ∈ {f with eδtf ∈ L2(0,∞;H)}. The solution z to the closed�loop problem{
z′ = Az +BKδz + F t > 0,
z(0) = z0,

(2.27)

belongs to {z with eδtz ∈ L2(0,∞;D(A)) ∩H1(0,∞;H) ∩ C 0([0,∞);V)}. Moreover, we have the estimate

‖eδtz‖L2(0,∞;D(A))∩H1(0,∞;H)∩C 0([0,∞);V) ≤ C(‖z0‖V + ‖eδtF‖L2(0,∞;H)). (2.28)

Proof. We have δI +BKδ ∈ L(H) , then D(A+ δI +BKδ) = D(A) and by interpolation for λ > 0 large enough,
D((λI−A− δI−BKδ)1/2) = D((λI−A)1/2) = V, for the de�nition of these spaces see (2.14)�(2.15). Moreover,
eδtF ∈ L2(0,∞;H).

In addition, according to Proposition 2.12, A+ δI +BKδ generates an analytic semigroup that is stable on
H, hence according to [6, Theorem 3.1.(i), p. 143], there exists zδ ∈ H1(0,+∞;H)∩ L2(0,+∞;D(A)) satisfying{

z′δ = (A+ δI +BKδ)zδ + eδtF t > 0,
zδ(0) = z0.

By interpolation, zδ also belongs to C 0([0,∞);V). Now, z = e−δtzδ belongs to {z with eδtz ∈ L2(0,∞;D(A))∩
H1(0,∞;H)∩C 0([0,∞);V)} and is solution to (2.27). Moreover, we have the estimate (2.28) as a consequence
of [6, Theorem 3.1.(i), p. 143].

2.5 Stabilization of the linear system (2.1)

In this section we prove that the feedback operator Kδ stabilizes the linear problem (2.1). The velocity is
decomposed as v = ṽ + vg where vg is a lifting of g. We �rst prove this result for distributed source terms
only (i.e. on ṽ) and then for boundary source terms (i.e. for ṽ + vg). The �rst part is a consequence of the
study of the semigroup.

2.5.1 Stabilization of the problem with nonhomogeneous distributed source terms

In this section we prove a stabilization result for the following system that corresponds to (2.1) with g = 0,

∂ṽ

∂t
+ (w · ∇)ṽ + (ṽ · ∇)w − LF(θ̃1, θ̃2,

˙̃
θ1,

˙̃
θ2,y)− ν∆ṽ +∇q̃ = f̃ in (0,∞)×Fs,

div ṽ = 0 in (0,∞)×Fs,

ṽ =
˙̃
θ1∂θ1Φ(0, 0, .) +

˙̃
θ2∂θ2Φ(0, 0, .) on (0,∞)× ∂Ss,

ṽ = 0 on (0,∞)× ΓD,
σF (ṽ, q̃)ns = 0 on (0,∞)× ΓN,
ṽ(0, .) = ṽ0 in Fs,

M0,0

(
¨̃
θ1

¨̃
θ2

)
=


∫
∂Ss

[q̃I− ν(∇ṽ + (∇ṽ)T )]ns · ∂θ1Φ(0, 0, γy) dγy∫
∂Ss

[q̃I− ν(∇ṽ + (∇ṽ)T )]ns · ∂θ2Φ(0, 0, γy) dγy


+LS(θ̃1, θ̃2) + s̃ + h on (0,∞),

θ̃1(0) = θ1,0, θ̃2(0) = θ2,0,
˙̃
θ1(0) = ω1,0,

˙̃
θ2(0) = ω2,0.

(2.29)

Proposition 2.15. Let δ > 0 and let (H)δ be ful�lled. For every (ṽ0, θ1,0, θ2,0, ω1,0, ω2,0) ∈ H1(Fs) × R4,
ful�lling the compatibility conditions

div ṽ0 = 0 in Fs,

ṽ0 =

2∑
j=1

ωj,0∂θjΦ(0, 0, .) on ∂Ss,

ṽ0 = 0 on ΓD,

(2.30)
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and every source terms f̃ ∈ F∞δ and s̃ ∈ S∞δ problem (2.29) with the control taken as h = Kδ(ṽ, θ̃1, θ̃2,
˙̃
θ1,

˙̃
θ2)

admits a unique solution (ṽ, q̃, θ̃1, θ̃2) ∈ U∞δ × P∞δ ×Θ∞δ with the following estimate

‖ṽ‖U∞
δ

+ ‖q̃‖P∞
δ

+ ‖(θ̃1, θ̃2)‖Θ∞
δ
≤ C(‖ṽ0‖H1(Fs) + |θ1,0|+ |θ2,0|+ |ω1,0|+ |ω2,0|+ ‖f̃ ‖F∞

δ
+ ‖s̃‖S∞δ ), (2.31)

where C does not depend on the initial data and on the source terms.

Proof. The initial data (ṽ0, θ1,0, θ2,0, ω1,0, ω2,0) ful�l the compatibility conditions (2.30), that is why z0 =

(ṽ0, θ1,0, θ2,0, ω1,0, ω2,0) belongs to V. Moreover, as f̃ ∈ F∞δ and s̃ ∈ S∞δ ,

F =


f̃
0
0
M−1

0,0s̃

 ,

belongs to {f with eδtf ∈ L2(0,∞;H)}. Then, according to Lemma 2.14, the solution to (2.27) belongs to
{z with eδtz ∈ L2(0,∞;D(A)) ∩H1(0,∞;H) ∩ C 0([0,∞);V)}.

Now, we use the identity z = (ṽ, θ̃1, θ̃2, ω̃1, ω̃2). According to Lemmas 2.2 and 2.6, ṽ ∈ U∞δ , (θ̃1, θ̃2) ∈ Θ∞δ
and there exists q̃ ∈ P∞δ such that problem (2.27) reads

d

dt


ṽ

θ̃1

θ̃2

ω̃1

ω̃2

 =



div σF (ṽ, q̃) + LF(θ̃1, θ̃2, ω̃1, ω̃2,y)− (ṽ · ∇)w − (w · ∇)ṽ + f̃
ω̃1

ω̃2

M−1
0,0



∫
∂Ss

−σF (ṽ, q̃)ns · ∂θ1Φ(0, 0, γy)∫
∂Ss

−σF (ṽ, q̃)ns · ∂θ2Φ(0, 0, γy)

+ LS(θ̃1, θ̃2) +Kδ(ṽ, θ̃1, θ̃2, ω̃1, ω̃2) + s̃




,

where LF and LS are de�ned in (2.2)�(2.3). Then, (ṽ, q̃, θ̃1, θ̃2) is solution to (2.29).
Finally, the estimate (2.31) is a consequence of (2.28).

2.5.2 A �rst stabilization result for the problem with a nonhomogeneous boundary datum

In the sequel, for g ∈ G∞δ we consider vg ∈ {v with eδtv ∈ H1(0,∞; H2(Fs))} that satis�es
vg = g on (0,∞)× ∂Ss,
div vg = 0 in (0,∞)×Fs,
vg = 0 on (0,∞)× ΓD,
(∇vg + (∇vg)T )ns = 0 on (0,∞)× ΓN,

(2.32)

and
‖vge

δt‖H1(0,∞;H2(Fs)) ≤ C‖g‖G∞
δ
, (2.33)

see [24, Theorem 2.16] for a proof of the existence of vg .
The following proposition enables a stabilization of the problem (2.1) with g 6= 0. However, contrary to

Proposition 2.1, the feedback control is Kδ(v − vg , θ1, θ2, θ̇1, θ̇2) instead of Kδ(v, θ1, θ2, θ̇1, θ̇2).

Proposition 2.16. Let δ > 0 and let (H)δ be ful�lled. For every (v0, θ1,0, θ2,0, ω1,0, ω2,0) ∈ H1(Fs) × R4,
f ∈ F∞δ , g ∈ G∞δ and s ∈ S∞δ ful�lling the compatibility conditions (2.10), problem (2.1) with the control

h = Kδ(v − vg , θ1, θ2, θ̇1, θ̇2) admits a unique solution (v, q, θ1, θ2) ∈ U∞δ × P∞δ × Θ∞δ with the following
estimate,

‖v‖U∞
δ

+ ‖q‖P∞
δ

+ ‖(θ1, θ2)‖Θ∞
δ
≤ C(‖v0‖H1(Fs)+|θ1,0|+|θ2,0|+|ω1,0|+|ω2,0|+‖f ‖F∞

δ
+‖g‖G∞

δ
+‖s‖S∞δ ), (2.34)

where C does not depend on the initial conditions and the source terms.

Proof. Let (v, q, θ1, θ2) be the solution to (2.1) with h = Kδ(v−vg , θ1, θ2, θ̇1, θ̇2). We now consider (ṽ, q̃, θ̃1, θ̃2) =
(v − vg , q, θ1, θ2), it is solution to problem (2.29) where

ṽ0 = v0 − vg(0),

f̃ = f − ∂tvg − (w · ∇)vg − (vg · ∇)w + ν∆vg ,

s̃ = s −
(∫

∂Ss

ν(∇vg +∇vTg )ns · ∂θjΦ(0, 0, γy)

)
j=1,2

.
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The initial data (ṽ0, θ1,0, θ2,0, ω1,0, ω2,0) ful�l (2.30), then all the terms have the good regularity and we have
the estimate (2.31). We now use (2.33) and get

‖f̃ ‖F∞
δ
≤ ‖f ‖F∞

δ
+ C‖g‖G∞

δ
,

‖s̃‖S∞δ ≤ ‖s‖S∞δ + C‖g‖G∞
δ
.

All these estimates prove the estimate (2.34).

2.5.3 Proof of Proposition 2.1

Proof. In Proposition 2.16, we have proven that the control h = Kδ(v−vg , θ1, θ2, θ̇1, θ̇2) stabilizes the problem

(2.1). We now want to prove that the control h = Kδ(v, θ1, θ2, θ̇1, θ̇2) also stabilizes the same problem.
Let (v, q, θ1, θ2) be the solution to (2.1) with h = Kδ(v − vg , θ1, θ2, θ̇1, θ̇2). According to Proposition 2.16,

we have the estimate (2.34).

Let (v̂, q̂, θ̂1, θ̂2) be the solution to (2.1) with h = Kδ(v̂, θ̂1, θ̂2,
˙̂
θ1,

˙̂
θ2). We now consider

(ṽ, q̃, θ̃1, θ̃2) = (v, q, θ1, θ2)− (v̂, q̂, θ̂1, θ̂2),

it is solution to (2.29) with f = 0, v0 = 0, s = −Kδ(vg , 0, 0, 0, 0), θ1,0 = 0, θ2,0 = 0, ω1,0 = 0, ω2,0 = 0 and

h = Kδ(ṽ, θ̃1, θ̃2,
˙̃
θ1,

˙̃
θ2). The initial data (0, 0, 0, 0, 0) ful�l the compatibility conditions (2.30), hence we have

the estimate (2.31). When combining the estimates (2.31) and (2.34), we get

‖v̂‖U∞
δ

+ ‖q̂‖P∞
δ

+ ‖(θ̂1, θ̂2)‖Θ∞
δ
≤ ‖v‖U∞

δ
+ ‖ṽ‖U∞

δ
+ ‖q‖P∞

δ
+ ‖q̃‖P∞

δ
+ ‖(θ1, θ2)‖Θ∞

δ
+ ‖(θ̃1, θ̃2)‖Θ∞

δ

≤ C(‖v0‖H1(Fs)+|θ1,0|+|θ2,0|+|ω1,0|+|ω2,0|+‖f ‖F∞
δ

+‖g‖G∞
δ

+‖s‖S∞δ ).

This ends the proof of Proposition 2.1.

3 Stabilization of the nonlinear closed loop system

The proof of Theorem 1.5 will be developed in this section. As in Section 2 we consider (fF ,u
i, fs) ∈W1,∞(Ω)×

Ui × R2 and a stationary state (w, pw) ∈ H2
β(Fs)×H1

β(Fs) that ful�l (1.16) (see Remark 1.8).

3.1 The nonlinear problem in a �xed domain

In this section, we are interested in writing the equations ful�lled by the di�erence between the solution to
(1.14) and the stationary state. In order to do so, we consider the change of variables

∀y ∈ Fs, ∀t ∈ (0,∞),

{
v(t,y) = cof(JΦ(θ1(t), θ2(t),y))Tu(t,Φ(θ1(t), θ2(t),y))−w(y),
q(t,y) = p(t,Φ(θ1(t), θ2(t),y))− pw(y),

(3.1)

where Φ is the di�eomorphism de�ned in (1.18) ful�lling (1.20), moreover JΦ(θ1, θ2,y) = ∇yΦ(θ1, θ2,y) and
cof(JΦ) is the cofactor matrix of JΦ. This change of variables has been chosen in order to have a divergence
free velocity v in the �xed domain.

One can show that under the feedback control h = Kδ(v, θ1, θ2, θ̇1, θ̇2) de�ned in Proposition 2.1, (v, q, θ1, θ2)
is solution to the closed loop system

∂v

∂t
+ (w · ∇)v + (v · ∇)w − LF(θ1, θ2, θ̇1, θ̇2,y)− ν∆v +∇q = f in (0,∞)×Fs,

div v = 0 in (0,∞)×Fs,

v = θ̇1∂θ1Φ(0, 0, γy) + θ̇2∂θ2Φ(0, 0, γy) + g on (0,∞)× ∂Ss,
v = 0 on (0,∞)× ΓD,
σF (v, q)n = 0 on (0,∞)× ΓN,
v(0,y) = v0(y) = cof(JΦ(θ1,0, θ2,0,y))Tu0(Φ(θ1,0, θ2,0,y))−w(y) in Fs,

M0,0

(
θ̈1

θ̈2

)
=


∫
∂Ss

−σF (v, q)ns · ∂θ1Φ(0, 0, γy)∫
∂Ss

−σF (v, q)ns · ∂θ2Φ(0, 0, γy)


+LS(θ1, θ2) + s +Kδ(v, θ1, θ2, θ̇1, θ̇2) on (0,∞),

θ1(0) = θ1,0, θ2(0) = θ2,0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0,

(3.2)
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where the linear terms are

LF(θ1, θ2, θ̇1, θ̇2,y) = L1(y)θ1 + L2(y)θ2 + L3(y)θ̇1 + L4(y)θ̇2, ∀y ∈ Fs,
LS(θ1, θ2) = L5θ1 + L6θ2,

and the coe�cients L1�L6 are de�ned in Appendix A. Moreover Kδ is the feedback operator given in (2.26)
and the source terms are given by the nonlinear (at least quadratic) terms f = fNL(θ1, θ2,v, q),

g = gNL(θ1, θ2),
s = sNL(θ1, θ2,v, q),

(3.3)

de�ned below
fNL(θ1, θ2,v, q)=F(θ1, θ2,w+v, pw+q)+(w·∇)w+(w·∇)v+(v·∇)w−LF(θ1, θ2, θ̇1, θ̇2, .)

+fF (Φ(θ1, θ2, .))−fF ,

gNL(θ1, θ2) = G(θ1, θ2, θ̇1, θ̇2),
sNL(θ1, θ2,v, q) = S(θ1, θ2,w + v, pw + q)− LS(θ1, θ2),

(3.4)

where F, G and S are de�ned as follows

F(θ1, θ2,v, q) = F1(θ1, θ2,v) + F2(θ1, θ2,v) + F3(θ1, θ2,v) + F4(θ1, θ2,v) + F5(θ1, θ2, q),

F1(θ1, θ2,v) = (I− cof(JΨ(θ1, θ2,Φ))T )
∂v

∂t
,

F2(θ1, θ2,v) = −cof(θ̇1∇x∂θ1Ψ(θ1, θ2,Φ) + θ̇2∇x∂θ2Ψ(θ1, θ2,Φ))Tv

−cof(JΨ(θ1, θ2,Φ))T (∇yv)
(
θ̇1∂θ1Ψ(θ1, θ2,Φ) + θ̇2∂θ2Ψ(θ1, θ2,Φ)

)
,

F3(θ1, θ2,v)i = ν
∑

j,k,`,m

cof(JΨ(θ1, θ2,Φ))ki
∂2vk
∂y`∂ym

∂Ψ`

∂xj
(θ1, θ2,Φ)

∂Ψm

∂xj
(θ1, θ2,Φ)

+2ν
∑
j,k,`

cof(∂xjJΨ(θ1, θ2,Φ))ki
∂vk
∂y`

∂Ψ`

∂xj
(θ1, θ2,Φ)

+ν
∑
j,k,`

cof(JΨ(θ1, θ2,Φ))ki
∂vk
∂y`

∂2Ψ`

∂x2
j

(θ1, θ2,Φ)

+ν
∑
j,k

cof(∂2
xjJΨ(θ1, θ2,Φ))kivk − ν∆yvi(t,y),

(3.5)

F4(θ1, θ2,v)i=−
∑
j,k,r

cof(JΨ(θ1, θ2,Φ))kjcof(∂xjJΨ(θ1, θ2,Φ))rivkvr−
∑
k,r

det(JΨ(θ1, θ2,Φ))2 ∂Φi
∂yr

∂vr
∂yk

vk,

F5(θ1, θ2, q) = (I− JΨ(θ1, θ2,Φ))T∇yq,

G(θ1, θ2, ω1, ω2) =

2∑
j=1

ωj

(
cof(JΦ(θ1, θ2))T∂θjΦ(θ1, θ2,y)− ∂θjΦ(0, 0,y)

)
,

S(θ1, θ2,v, q)= −(Mθ1,θ2
−M0,0)

(
θ̈1

θ̈2

)
+ MI(θ1, θ2, θ̇1, θ̇2)

+


∫
∂Ss

|JΦ(θ1, θ2,γy)ts| [qI−ν(G(θ1, θ2,v)+G(θ1, θ2,v)T)]nθ1,θ2(Φ)·∂θ1Φ(θ1, θ2,γy)∫
∂Ss

|JΦ(θ1, θ2,γy)ts| [qI−ν(G(θ1, θ2,v)+G(θ1, θ2,v)T)]nθ1,θ2(Φ)·∂θ2Φ(θ1, θ2,γy)


−


∫
∂Ss

[qI− ν(∇v + (∇v)T )]ns · ∂θ1Φ(0, 0, γy)∫
∂Ss

[qI− ν(∇v + (∇v)T )]ns · ∂θ2Φ(0, 0, γy)

 ,

(3.6)

where MI andMθ1,θ2 are de�ned in (1.10), (1.11) and

G(θ1, θ2,v)ij =
∑
k

cof
[
∂xjJΨ(θ1, θ2, .)) ◦Φ

]
ki
vk +

∑
k,`

cof(JΨ(θ1, θ2,Φ))ki
∂vk
∂y`

∂Ψ`

∂xj
(θ1, θ2,Φ). (3.7)

For the sake of intelligibility, we have used the notation Φ = Φ(θ1, θ2, .).
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3.2 Proof of the stabilization result in the �xed domain

In this section, we develop the �xed point argument used to prove the stabilization result of the nonlinear
problem (1.14) in the �xed domain Fs (i.e. the stabilization result for (3.2)�(3.3)).

Proposition 3.1. Let δ > 0 and let (H)δ be ful�lled. There exists ε > 0, such that for every (v0, θ1,0, θ2,0, ω1,0, ω2,0) ∈
H1(Fs)×DΘ × R2 satisfying the compatibility conditions

div v0 = 0 in Fs,

v0 =

2∑
j=1

ωj,0cof(JΦ(θ1,0, θ2,0, .))
T∂θjΦ(θ1,0, θ2,0, .) on ∂Ss,

v0 = 0 on ΓD,

(3.8)

and
‖v0‖H1(Fs) + |θ1,0|+ |θ2,0|+ |ω1,0|+ |ω2,0| ≤ ε, (3.9)

problem (3.2)�(3.3) admits a solution (v, q, θ1, θ2) that tends to zero with exponential decay rate δ. For all t > 0,
we have

‖v(t)‖H1(Fs) + |θ1(t)|+ |θ2(t)|+ |ω1(t)|+ |ω2(t)| ≤ Ce−δt. (3.10)

Proof. Let (v0, θ1,0, θ2,0, ω1,0, ω2,0) in H1(Fs)×DΘ × R2 ful�lling the compatibility conditions (3.8) and (3.9)
for some ε > 0. We consider the space

N∞δ =

{
(v, q, θ1, θ2) ∈ U∞δ × P∞δ ×Θ∞δ with (θ1, θ2, θ̇1, θ̇2)(0) = (θ1,0, θ2,0, ω1,0, ω2,0),

for every t in (0,∞), (θ1(t), θ2(t)) ∈ DΘ

}
, (3.11)

equipped with the natural norm of U∞δ × P∞δ ×Θ∞δ

‖(v, q, θ1, θ2)‖U∞
δ ×P

∞
δ ×Θ∞

δ
= ‖v‖U∞

δ
+ ‖q‖P∞

δ
+ ‖(θ1, θ2)‖Θ∞

δ
,

where all the spaces used are de�ned in (2.4)�(2.9).
We de�ne the application Λ∞ on N∞δ as follows. For (v, q, θ1, θ2) ∈ N∞δ , (v, q, θ1, θ2) = Λ∞(v, q, θ1, θ2) ∈

U∞δ ×P∞δ ×Θ∞δ is the solution to problem (3.2) where the source terms are f = fNL(θ1, θ2,v, q), g = gNL(θ1, θ2)
and s = sNL(θ1, θ2,v, q) (de�ned in (3.4)). Note that Λ∞ depends on the initial conditions.

The boundary conditions (3.8) correspond to (2.10) with g(0) = G(θ1,0, θ2,0, ω1,0, ω2,0) and the conditions

in (3.11) impose that gNL(θ1, θ2,v, q)(0) = G(θ1,0, θ2,0, ω1,0, ω2,0). Moreover, we prove later in (3.12) that, for

every (θ1, θ2,v, q) ∈ N∞δ , we have fNL(θ1, θ2,v, q) ∈ F∞δ , gNL(θ1, θ2) ∈ G∞δ and sNL(θ1, θ2,v, q) ∈ S∞δ . Hence,
according to Proposition 2.1, Λ∞ is well de�ned.

The domain DΘ is open and (0, 0) ∈ DΘ, then there exists R0 > 0 such that B((0, 0), R0) ⊂ DΘ. The
application Λ∞ will be studied on a ball of radius R ≤ R0

B∞R = {(v, q, θ1, θ2) ∈ N∞δ with ‖(v, q, θ1, θ2)‖U∞
δ ×P

∞
δ ×Θ∞

δ
≤ R}.

We also consider the space

B̃∞R = {(v, q, θ1, θ2) ∈ U∞δ × P∞δ ×Θ∞δ with ‖(v, q, θ1, θ2)‖U∞
δ ×P

∞
δ ×Θ∞

δ
≤ R, ∀t ∈ (0,∞), (θ1, θ2)(t) ∈ DΘ},

in which the initial value for (θ1, θ2, θ̇1, θ̇2) is free. The following lemma will be used.

Lemma 3.2. There exists a constant C ′ = C ′(R0), such that for every R ∈ (0, R0), every (va, qa, θa1 , θ
a
2) and

(vb, qb, θb1, θ
b
2) ∈ B̃∞R , the following estimates hold

‖fNL(θa1 , θ
a
2 ,v

a, qa)− fNL(θb1, θ
b
2,v

b, qb)‖F∞
δ
≤ C ′R(‖va − vb‖U∞

δ
+ ‖qa − qb‖P∞

δ
+ ‖θa − θb‖Θ∞

δ
),

‖gNL(θa1 , θ
a
2)− gNL(θb1, θ

b
2)‖G∞

δ
≤ C ′R‖θa − θb‖Θ∞

δ
,

‖sNL(θa1 , θ
a
2 ,v

a, qa)− sNL(θb1, θ
b
2,v

b, qb)‖S∞δ ≤ C
′R(‖va − vb‖U∞

δ
+ ‖qa − qb‖P∞

δ
+ ‖θa − θb‖Θ∞

δ
).

This lemma is proven in Appendix C.2. We use the spaces H2
β(Fs) and H1

β(Fs) in this proof.
We now denote C the constant in (2.11) and C ′ the one in Lemma 3.2.
At this point, we use Lemma 3.2 with (vb, qb, θb1, θ

b
2) = (0, 0, 0, 0), we thus get for every R > 0 and for every

(v, q, θ1, θ2) in B∞R ,

‖fNL(θ1, θ2,v, q)‖F∞
δ

+ ‖gNL(θ1, θ2)‖G∞
δ

+ ‖sNL(θ1, θ2,v, q)‖S∞δ ≤ 3C ′R2. (3.12)
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Let R = min (R0, 1/(6CC
′)) and ε = R/(2C), hence 3CC ′R2 ≤ R/2.

We can build (θ1, θ2) as the solution to{
θ̈j(t) + 2δθ̇j(t) + 2δ2θj(t) = 0, t > 0,

θj(0) = θj,0, θ̇j(0) = ωj,0.

For ε small enough and |ωj,0|+ |θj,0| ≤ ε, (0, 0, θ1, θ2) belongs to B∞R . Thus, taking ε > 0 smaller if necessary,
we can assume that B∞R 6= ∅. In the sequel, we choose such a ε.

According to Proposition 2.1, we have for every (v, q, θ1, θ2) in B∞R ,

‖Λ∞(v, q, θ1, θ2)‖U∞
δ ×P

∞
δ ×Θ∞

δ
≤ C(‖v0‖H1(Fs)+|θ1,0|+|θ2,0|+|ω1,0|+|ω2,0|+‖fNL(θ1, θ2,v, q)‖F∞

δ

+‖gNL(θ1, θ2)‖G∞
δ

+‖sNL(θ1, θ2,v, q)‖S∞δ ),

we combine this result with (3.12). Then, by using (3.9), ε = R/(2C) and 3CC ′R2 ≤ R/2, we have

‖Λ∞(v, q, θ1, θ2)‖U∞
δ ×P

∞
δ ×Θ∞

δ
≤ R.

Hence, if we write (ṽ, q̃, θ̃1, θ̃2) = Λ∞(θ1, θ2,v, q), then we have ‖(θ̃1, θ̃2)‖L∞(0,∞) ≤ ‖Λ∞(θ1, θ2,v, q)‖N∞
δ
≤

R ≤ R0. Then, (θ̃1, θ̃2) belongs to DΘ. This proves that Λ∞ : B∞R → B∞R .
For (va, qa, θa1 , θ

a
2) and (vb, qb, θb1, θ

b
2) in B∞R , Λ∞(va, qa, θa1 , θ

a
2)−Λ∞(vb, qb, θb1, θ

b
2) solves problem (3.2) where

the source terms are fNL(θa1 , θ
a
2 ,v

a, qa) − fNL(θb1, θ
b
2,v

b, qb), gNL(θa1 , θ
a
2) − gNL(θb1, θ

b
2), sNL(θa1 , θ

a
2 ,v

a, qa) −
sNL(θb1, θ

b
2,v

b, qb) and the initial data are null. Then, according to Proposition 2.1 and Lemma 3.2, we have

‖Λ∞(va, qa, θa1 , θ
a
2)−Λ∞(vb, qb, θb1, θ

b
2)‖U∞

δ ×P
∞
δ ×Θ∞

δ
≤ 3CC ′R(‖θa−θb‖Θ∞

δ
+‖va−vb‖U∞

δ
+‖qa−qb‖P∞

δ
). (3.13)

As R ≤ 1/(6CC ′), the estimate (3.13) yields that Λ∞ is a contraction on B∞R . Hence, according to the
Picard �xed point theorem, there exists a unique �xed point (v, q, θ1, θ2) to Λ∞ in B∞R . This �xed point solves
the closed�loop nonlinear problem (3.2)�(3.3).

Estimate (3.10) is then a consequence of the fact that (v, q, θ1, θ2) ∈ B∞R :

‖veδt‖C 0([0,∞);H1(Fs)) + ‖θeδt‖L∞(0,∞;DΘ) + ‖θ̇eδt‖L∞(0,∞;R2) ≤ R ≤ R0.

3.3 Proof of Theorem 1.5

Proof. The last step towards proving Theorem 1.5 is to use the change of variables (3.1) to prove the result on
(u, p) as a consequence of Proposition 3.1 that states properties of (v, q). The only di�culty is to handle the
nonlinear term cof(JΦ)T that is present in this change of variable. This nonlinearity creates some di�culties
for using the smallness assumption and compatibility conditions on the initial data.

Let δ > 0, we consider that (H)δ is ful�lled and that the initial data satisfy the compatibility conditions
(1.23). Moreover, we consider that for some ε1 > 0 we have

‖u0(Φ(θ1,0, θ2,0, .))−w(.)‖H1(Fs) + |θ1,0|+ |θ2,0|+ |ω1,0|+ |ω2,0| ≤ ε1.

Since v0(y) = cof(JΦ(θ1,0, θ2,0,y))Tu0 ◦Φ(θ1,0, θ2,0,y)−w(y), we have (3.8) and

‖v0‖H1(Fs) ≤ ‖cof(JΨ(θ1,0, θ2,0,Φ))T (u0 ◦Φ−w)‖H1(Fs) + ‖cof(JΨ(θ1,0, θ2,0,Φ)− I)Tw‖H1(Fs)

≤ Kε1 +K‖w‖H2
β(Fs)ε1,

where K is the constant in (C.18). In order to ful�l (3.9), we choose

ε1 =
ε

K +K‖w‖H2
β(Fs)

,

where ε > 0 is the bound in Proposition 3.1, we have (3.9). Then, according to Proposition 3.1, the feedback
h = Kδ(v, θ1, θ2, θ̇1, θ̇2) stabilizes problem (3.2)�(3.3) at decay rate δ. We denote (v, q, θ1, θ2) the solution to
(3.2)�(3.3).

We use the identity

∀t ∈ (0,∞), ∀x ∈ F (θ1(t), θ2(t)),{
u(t,x) = cof(JΨ(θ1(t), θ2(t),x))T

(
v(t,Ψ(θ1(t), θ2(t),x)) + w(Ψ(θ1(t), θ2(t),x))

)
,

p(t,x) = q(t,Ψ(θ1(t), θ2(t),x)) + pw ◦Ψ(θ1(t), θ2(t),x).
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The quadruplet (u, p, θ1, θ2) is solution to (1.14) where

h = Kδ
(

cof(JΦ(θ1(t), θ2(t), .))Tu(t,Φ(θ1(t), θ2(t), .))−w(.), θ1(t), θ2(t), θ̇1(t), θ̇2(t)
)
.

Moreover, for ε small enough and for every t > 0, we have the estimate

‖u(t,Φ(θ1(t), θ2(t), .))−w‖H1(Fs) ≤ ‖cof(JΨ(θ1(t), θ2(t), .))− I‖H2(Fs)‖v(t) + w‖H1(Fs) + ‖v(t)‖H1(Fs)

≤ K(|(θ1(t), θ2(t))|+ ‖v(t)‖H1(Fs)).

Hence the estimate (3.10) implies that

∀t > 0, ‖u(t,Φ(θ1(t), θ2(t), .))−w(.)‖H1(Fs) + |θ1(t)|+ |θ2(t)|+ |θ̇1(t)|+ |θ̇2(t)| ≤ Ce−δt.

This concludes the proof of Theorem 1.5.

Appendix

A The linearized terms

In what follows we give the explicit expression of the functions L1�L4 and of the constants L5�L6. We denote
ts = n⊥s = (−(ns)2, (ns)1) a unitary tangent vector to ∂Ss. We have

L1(y)i =
(
νLF3(y) + LF4(y) + LF5(y)

)
i1

+ (∇fF (y)∂θ1Φ(0, 0,y))i,

L2(y)i =
(
νLF3(y) + LF4(y) + LF5(y)

)
i2

+ (∇fF (y)∂θ2Φ(0, 0,y))i,

L3(y)i =
(
LF2(y)

)
i1
,

L4(y)i =
(
LF2(y)

)
i2
,

(L5)i =

∫
∂Ss

(−σF (w, pw)ns) · ∂θ1θiΦ(0, 0, γy)−
∑
k,`

σF (w, pw)`k(Lnθ1,θ2
)k1∂θiΦ`(0, 0, γy)

−(∇y∂θ1Φ(0, 0, γy)ts ·ts)σF (w, pw)ns ·∂θiΦ(0, 0, γy)

−ν
∑
k,`

((LG)k`1+(LG)`k1)(ns)k∂θiΦ`(0, 0, γy) dγy,

(L6)i =

∫
∂Ss

(−σF (w, pw)ns) · ∂θ2θiΦ(0, 0, γy)−
∑
k,`

σF (w, pw)`k(Lnθ1,θ2
)k2∂θiΦ`(0, 0, γy)

−(∇y∂θ2Φ(0, 0, γy)ts ·ts)σF (w, pw)ns ·∂θiΦ(0, 0, γy)

−ν
∑
k,`

((LG)k`2 + (LG)`k2)(ns)k∂θiΦ`(0, 0, γy) dγy,

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

where the terms used are de�ned in (A.7)�(A.12). In the previous paragraph, we denoted by
(
LFk

)
ij

for

3 ≤ k ≤ 5, the linearization of (Fk)i (de�ned in (3.6)) around the stationary state (w, pw, 0, 0) solution of
(1.16) with respect to the parameter θj and

(
LF2

)
ij
is the linearization of (F2)i with respect to θ̇j . These terms

are given below

(LF2(y))ij =
(

(∂θjΦ(0, 0,y) · ∇y)w + cof(∇y∂θjΦ(0, 0,y))Tw
)
i
, (A.7)

(LF3(y))ij = −2∇y∂θjΦ(0, 0,y) : ∇2wi(y)− (cof(∇y∂θjΦ(0, 0,y))T∆w(y))i

+2
∑
k,`

cof

(
∂

∂x`

(
∇x∂θjΨ(0, 0,y)

))
ki

∂wk
∂y`

(y)

+
∑
`,m

∂wi
∂y`

(y)
∂2

∂x2
m

(∂θjΨ(0, 0,y))`

+
∑
k,m

cof

(
∂2

∂x2
m

(
∇x∂θjΨ(0, 0,y)

))
ki

wk(y),

(A.8)

(LF4(y))ij = −
∑
k,`

cof

(
∂

∂xk
(∇x∂θjΨ(0, 0,y))

)
`i

wk(y)w`(y)

+
∑
k,`

(
2Tr(∇y∂θjΦ(0, 0,y))δi` − (∇y∂θjΦ(0, 0,y))i`

)
wk(y)

∂w`
∂yk

(y),
(A.9)

and
(LF5(y))ij =

(
(∇y∂θjΦ(0, 0,y))T∇ypw(y)

)
i
. (A.10)
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We also de�ne the linearization of nθ1,θ2 (the unitary outward normal to F (θ1, θ2)) and G (de�ned in (3.7))
with respect to θj by

(Lnθ1,θ2
(γy))j,n = (cof(∇y∂θnΦ(0, 0, γy))ns)j − (cof(∇y∂θnΦ(0, 0, γy))ns · ns)(ns)j , (A.11)

and

(LG(γy))i,j,n =
∑
k

wk(γy)cof

(
∂

∂xj
(∇x∂θnΨ(0, 0, γy))

)
ki

−
∑
k

cof(∇y∂θnΦ(0, 0, γy))ki
∂wk
∂yj

(γy) +
∑
k

∇y∂θnΦ(0, 0, γy)kj
∂wi
∂yk

(γy).
(A.12)

B Independence of the hypothesis (H)δ with respect to the di�eo-

morphism Φ

Let Φa(θ1, θ2,y) and Φb(θ1, θ2,y) be two di�eomorphisms from Fs to F (θ1, θ2) that are extensions of X(θ1, θ2,y)
into the �uid domain. We also assume that Φa(0, 0,y) = Φb(0, 0,y) = y, ∀y ∈ Fs. Let us denote Ψa(θ1, θ2, .)
and Ψb(θ1, θ2, .) the inverse di�eomorphisms of, respectively, Φa(θ1, θ2, .) and Φb(θ1, θ2, .). We also denote
J aΦ(θ1, θ2,y), J bΦ(θ1, θ2,y), J aΨ(θ1, θ2,x) and J bΨ(θ1, θ2,x) the corresponding Jacobian matrices.

We de�ne the di�erence between the velocity at time t in Fs and the stationary velocity for each of these
di�eomorphisms

∀y ∈ Fs, ∀t ∈ (0,∞),


va(t,y) = cof(J aΦ(θ1(t), θ2(t),y))Tu(t,Φa(θ1(t), θ2(t),y))−w(y),
qa(t,y) = p(t,Φa(θ1, θ2,y))− pw(y),
vb(t,y) = cof(J bΦ(θ1(t), θ2(t),y))Tu(t,Φb(θ1(t), θ2(t),y))−w(y),
qb(t,y) = p(t,Φb(θ1, θ2,y))− pw(y).

We have the relations
vb(t,y) = cof(J bΦ(θ1, θ2,y))T cof(J aΨ(θ1, θ2,Φ

b(θ1, θ2,y)))T
(
va
(
t,Ψa(θ1, θ2,Φ

b(θ1, θ2,y))
)

+w
(
Ψa(θ1, θ2,Φ

b(θ1, θ2,y))
))
−w(y),

qb(t,y) = qa(t,Ψa(θ1, θ2,Φ
b(θ1, θ2,y))) + pw(Ψa(θ1, θ2,Φ

b(θ1, θ2,y)))− pw(y).

Of course, (va, qa, θ1, θ2) satis�es the nonlinear system (3.2)�(3.3) corresponding to the di�eomorphisms Φa(θ1, θ2, .)
and Ψa(θ1, θ2, .). Similarly, (vb, qb, θ1, θ2) ful�ls (3.2)�(3.3) given by Φb(θ1, θ2, .) and Ψb(θ1, θ2, .).

We are interested in the following system

∂vαL
∂t

+ (w · ∇)vαL + (vαL · ∇)w − LαF(θ1, θ2, θ̇1, θ̇2,y)− ν∆vαL +∇qαL = 0 in (0,∞)×Fs,

div vαL = 0 in (0,∞)×Fs,

vαL = θ̇1∂θ1Φ
α(0, 0, .) + θ̇2∂θ2Φ

α(0, 0, .) on (0,∞)× ∂Ss,
vαL = 0 on (0,∞)× ΓD,
σF (vαL, q

α
L)n = 0 on (0,∞)× ΓN,

M0,0

(
θ̈1

θ̈2

)
=

(∫
∂Ss

(
qαLI− ν(∇vαL + (∇vαL)T )

)
ns · ∂θjΦα(0, 0, γy) dγy

)
j=1,2

+LαS(θ1, θ2) on (0,∞),

(B.1)

where α = a or b, and LαF and LαS are given respectively by (2.2) and (2.3) corresponding to the choice of
di�eomorphism Φ(θ1, θ2, .) = Φα(θ1, θ2, .).

We can then show that (vaL, q
a
L) ful�ls the linear system (B.1) with α = a if and only if

vbL(t,y) = vaL(t,y) +
∑
j

θj

(
cof(∂θjJ bΦ(0, 0,y))Tw(y) +cof(∂θjJ aΨ(0, 0,y))Tw(y)

+∇w × (∂θjΨ
a(0, 0,y) + ∂θjΦ

b(0, 0,y))
)
,

qbL(t,y) = qaL(t,y) +
∑
j

θj∇pw · (∂θjΦa(0, 0,y)− ∂θjΦb(0, 0,y)),

(B.2)

ful�ls the linear system (B.1) with α = b.
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The proof is a direct computation, for instance

∂vbL
∂t
−Lb3θ̇1−Lb4θ̇2 =

∂vaL
∂t

+
∑
j

θ̇j

(
cof
(
∂θjJ bΦ(0, 0,y)−∂θjJ aΦ(0, 0,y)

)T
w+∇w×

(
∂θjΦ

b(0, 0,y)− ∂θjΦa(0, 0,y)
))

−Lb3θ̇1 − Lb4θ̇2

=
∂vaL
∂t
− La3 θ̇1 − La4 θ̇2.

Moreover by using div w = 0, cof(∂θkJΦ(0, 0,y))T : ∇w = ∂θkJΨ(0, 0,y) : ∇w = −∂θkJΦ(0, 0,y) : ∇w and
the Piola identity, we get

div vbL = div vaL = 0.

This implies that the solution (vbL, q
b
L, θ1, θ2) to the system (B.1) written with the di�eomorphism Φb can be

derived from the solution to the system (B.1) written with the di�eomorphism Φa via the relation (B.2). Then
the stabilizability of (2.1) is independent with respect to the choice of the di�eomorphism Φ. As the Hautus
test (H)δ is equivalent to the stabilizability of (2.1), the hypothesis (H)δ is independent from the choice of Φ.

C Proof of Lemma 3.2

We �rst prove some technical lemmas that are used later to decompose the intricate terms of Lemma 3.2.

C.1 Technical lemmas

Lemma C.1. Let R0 > 0 be small enough, then there exists a constant K, such that for every R ≤ R0 and
every (., ., θj1, θ

j
2) in B̃∞R , the following estimates hold

∥∥∥eδt(Φ(θa1 , θ
a
2)−Φ(θb1, θ

b
2)−

∑
n

(θan − θbn)∂θnΦ(0, 0, .)
)∥∥∥

L∞(0,∞;H3(Ω))
≤ KR‖θa−θb‖Θ∞

δ
, (C.1)∥∥∥eδt(JΦ(θa1 , θ

a
2)−JΦ(θb1, θ

b
2)−

∑
n

(θan−θbn)∇y∂θnΦ(0, 0, .)
)∥∥∥

L∞(0,∞;H2(Ω))
≤ KR‖θa−θb‖Θ∞

δ
, (C.2)∥∥∥eδt(JΨ(θa1 , θ

a
2) ◦Φ(θa1 , θ

a
2)−JΨ(θb1, θ

b
2) ◦Φ(θb1, θ

b
2)

+
∑
j

(θaj −θbj)∇y∂θjΦ(0, 0, .)
)∥∥∥

L∞(0,∞;H2(Ω))
≤ KR‖θa−θb‖Θ∞

δ
,

(C.3)

∥∥∥eδt(∂xjJΨ(θa1 , θ
a
2) ◦Φ(θa1 , θ

a
2)−∂xjJΨ(θb1, θ

b
2) ◦Φ(θb1, θ

b
2)

−
∑
n

(θan−θbn)∂xj∇x∂θnΨ(0, 0, .)
)∥∥∥

L∞(0,∞;H1(Ω))
≤ KR‖θa−θb‖Θ∞

δ
,
(C.4)

∥∥∥eδt(∂2
xjJΨ(θa1 , θ

a
2) ◦Φ(θa1 , θ

a
2)−∂2

xjJΨ(θb1, θ
b
2) ◦Φ(θb1, θ

b
2)

−
∑
n

(θan−θbn)∂2
xj∇x∂θnΨ(0, 0, .)

)∥∥∥
L∞(0,∞;L2(Ω))

≤ KR‖θa−θb‖Θ∞
δ
,

(C.5)

∥∥∥eδt(nθa1 ,θa2 (Φ(θa1 , θ
a
2))j−nθb1,θb2(Φ(θb1, θ

b
2))j−

∑
n

(θan−θbn)(Lnθ1,θ2
)j,n

)∥∥∥
L∞(0,∞;L∞(∂Ss))

≤ KR‖θa−θb‖Θ∞
δ
,

(C.6)

∥∥∥eδt(det(JΨ(θa1 , θ
a
2 ,Φ

a))−det(JΨ(θb1, θ
b
2,Φ

b))

+
∑
n

(θan−θbn)Tr(∇y∂θnΦ(0, 0, .))
)∥∥∥

L∞(0,∞;L∞(Ω))
≤ KR‖θa−θb‖Θ∞

δ
,

(C.7)

∥∥∥eδt(|JΦ(θa1 , θ
a
2)ts|−|JΦ(θb1, θ

b
2)ts|−

∑
k

(θak−θbk)∇y∂θkΦ(0, 0, .)ts · ts
)∥∥∥

L∞(0,∞;L∞(∂Ss))

≤ KR‖θa−θb‖Θ∞
δ
,

(C.8)
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where Lnθ1,θ2
is de�ned in (A.11) and∥∥∥eδt((∂tΨ(θa1 , θ

a
2)) ◦Φ(θa1 , θ

a
2)−(∂tΨ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2)

+
∑
j

(θ̇aj −θ̇bj)∂θjΦ(0, 0, .)
)∥∥∥

L∞(0,∞;L∞(Ω))
≤ KR‖θa−θb‖Θ∞

δ
,

(C.9)

∥∥∥eδt(∂t(JΨ(θa1 , θ
a
2)) ◦Φ(θa1 , θ

a
2)−∂t(JΨ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2)

+
∑
j

(θ̇aj −θ̇bj)∇y∂θjΦ(0, 0, .)
)∥∥∥

L∞(0,∞;L∞(Ω))
≤ KR‖θa−θb‖Θ∞

δ
,

(C.10)

and ∥∥∥eδt(Mθa1 ,θ
a
2
−Mθb1,θ

b
2

)∥∥∥
L∞(0,∞)

≤ K‖θa−θb‖Θ∞
δ
, (C.11)∥∥∥eδt(∂θjΦ(θa1 , θ

a
2 , .)−∂θjΦ(θb1, θ

b
2, .)−

∑
k

(θak − θbk)∂θjθkΦ(0, 0, .)
)∥∥∥

L∞(0,∞;H2(Ω))
≤ K‖θa−θb‖Θ∞

δ
, (C.12)∥∥∥eδt(∂θjθkΦ(θa1 , θ

a
2 , .)−∂θjθkΦ(θb1, θ

b
2, .)
)∥∥∥

L∞(0,∞;H2(Ω))
≤ K‖θa−θb‖Θ∞

δ
, (C.13)∥∥∥eδt(∂tJΦ(θa1 , θ

a
2)−∂tJΦ(θb1, θ

b
2)
)∥∥∥

L∞(0,∞;H2(Ω))
≤ K‖θa−θb‖Θ∞

δ
. (C.14)

Moreover for every (vj , ., θj1, θ
j
2) in B̃∞R , we have∥∥∥eδt(∇va−G(θa1 , θ

a
2 ,v

a)−∇vb + G(θb1, θ
b
2,v

b)
)∥∥∥

L2(0,∞;L2(∂Ss))
≤ KR(‖θa−θb‖Θ∞

δ
+ ‖va−vb‖U∞

δ
), (C.15)∥∥∥eδt(G(θa1 , θ

a
2 ,w)ij−G(θb1, θ

b
2,w)ij−

∑
n

(θan−θbn)(LG)i,j,n

)∥∥∥
L2(0,+∞;L2(∂Ss))

≤ KR‖θa−θb‖Θ∞
δ
, (C.16)

where LG is de�ned in (A.12) and G is de�ned in (3.7).

A direct application of Lemma C.1 obtained by taking (θb1, θ
b
2) = (0, 0) is the following lemma.

Lemma C.2. Let R0 > 0 be small enough, then there exists K > 0 such that for every R ≤ R0 and for every
(., ., θ1, θ2) ∈ B̃∞R , the following estimates hold∥∥∥eδt(JΦ(θ1, θ2)− I

)∥∥∥
L∞(0,∞;H2(Ω))

≤ KR, (C.17)∥∥∥eδt(JΨ(θ1, θ2,Φ(θ1, θ2))− I
)∥∥∥

L∞(0,∞;H2(Ω))
≤ KR, (C.18)∥∥∥eδt(∂xjJΨ(θ1, θ2) ◦Φ(θ1, θ2)

)∥∥∥
L∞(0,∞;H1(Ω))

≤ KR, (C.19)∥∥∥eδt(∂2
xjJΨ(θ1, θ2) ◦Φ(θ1, θ2)

)∥∥∥
L∞(0,∞;L2(Ω))

≤ KR, (C.20)∥∥∥eδt(Mθ1,θ2 −M0,0

)∥∥∥
L∞(0,∞)

≤ KR, (C.21)∥∥∥eδt(nθ1,θ2(Φ(θ1, θ2))− ns

)∥∥∥
L∞(0,∞;L∞(∂Ss))

≤ KR, (C.22)∥∥∥eδt(|JΦ(θ1, θ2)ts| − 1
)∥∥∥

L∞(0,∞;L∞(∂Ss))
≤ KR, (C.23)∥∥∥eδt(∂θjΦ(θ1, θ2, .)− ∂θjΦ(0, 0, .)

)∥∥∥
L∞(0,∞;H3(Ω))

≤ KR, (C.24)

and

‖eδt∂tJΦ(θ1, θ2)‖L∞(0,∞;H2(Ω)) ≤ KR, (C.25)

‖eδt(∂tΨ(θ1, θ2)) ◦Φ(θ1, θ2)‖L∞(0,∞;L∞(Ω)) ≤ KR, (C.26)

‖eδt(∂tJΨ(θ1, θ2)) ◦Φ(θ1, θ2)‖L∞(0,∞;L∞(Ω)) ≤ KR, (C.27)

and ∥∥∥eδt(∇w − G(θ1, θ2,w)
)∥∥∥

L2(0,∞;L2(∂Ss))
≤ KR, (C.28)

where G is de�ned in (3.7).
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Proof of Lemma C.1. Let X be some Banach space. All functions in Lemma C.1 can be written as α =
α(θ1, θ2, θ̇1, θ̇2) valued in X. The proof of estimates (C.11)�(C.14) uses the mean value theorem,∥∥∥eδt(α(θa1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)− α(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)
)∥∥∥

L∞(0,∞;X)

≤ sup
(θ1,θ2)∈DΘ

|ω1|+|ω2|≤R

‖∇θ,ωα(θ1, θ2, ω1, ω2)‖L∞(0,∞;X)

(
‖eδt(θa − θb)‖L∞(0,∞) + ‖eδt(θ̇a − θ̇b)‖L∞(0,∞)

)
≤ 2C sup

(θ1,θ2)∈DΘ

|ω1|+|ω2|≤R

‖∇θ,ωα(θ1, θ2, ω1, ω2)‖L∞(0,∞;X)‖θa − θb‖Θ∞
δ
.

To prove the other estimates (C.1)�(C.10) and (C.16), we do a Taylor expansion of order 2 and use the mean
value theorem. We get∥∥∥∥∥∥eδt

(
α(θa1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)− α(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)−

2∑
j=1

∂θjα(0, 0, 0, 0)(θaj − θbj)−
2∑
j=1

∂ωjα(0, 0, 0, 0)(θ̇aj − θ̇bj)
)∥∥∥∥∥∥

L∞(0,∞;X)

≤ sup
(θ1,θ2)∈DΘ

|ω1|+|ω2|≤R

‖∇2
θ,ωα(θ1, θ2, ω1, ω2)‖L∞(0,∞;X)R(‖eδt(θa − θb)‖L∞(0,∞) + ‖eδt(θ̇a − θ̇b)‖L∞(0,∞)).

The estimate (C.15) is proven by using the previous estimates.

C.2 Detailed proof of Lemma 3.2

Proof. The weights in time eδt of the nonlinear terms can be easily handled. All the di�culties then come
from space regularity issues, which can be handled as in [11, Appendix A] for the terms F(θa1 , θ

a
2 ,v

a, qa) −
F(θb1, θ

b
2,v

b, qb), G(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2) and S(θa1 , θ

a
2 ,v

a, qa)−S(θb1, θ
b
2,v

b, qb) using the estimates of
Lammas C.1 and C.2:

‖F(θa1 , θ
a
2 ,v

a, qa)− F(θb1, θ
b
2,v

b, qb)‖F∞
δ
≤ KR(‖va − vb‖U∞

δ
+ ‖qa − qb‖P∞

δ
+ ‖θa − θb‖Θ∞

δ
),

‖G(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖G∞

δ
≤ KR‖θa − θb‖Θ∞

δ
,

and
‖S(θa1 , θ

a
2 ,v

a, qa)− S(θb1, θ
b
2,v

b, qb)‖S∞δ ≤ KR(‖va − vb‖U∞
δ

+ ‖qa − qb‖P∞
δ

+ ‖θa − θb‖Θ∞
δ

),

where the terms F, G and S are de�ned in (3.5)�(3.6).
Now, it remains to prove

‖F(θa1 , θ
a
2 ,w + va, pw + qa)− F(θb1, θ

b
2,w + vb, pw + qb)− F(θa1 , θ

a
2 ,v

a, qa) + F(θb1, θ
b
2,v

b, qb)

+(w·∇)(va−vb)+((va−vb) · ∇)w−LF(θa1−θb1, θa2−θb2, θ̇a1−θ̇b1, θ̇a2−θ̇b2)+fF (Φ(θa1 , θ
a
2))−fF (Φ(θb1, θ

b
2))‖F∞

δ

≤ CR(‖va − vb‖U∞
δ

+ ‖θa − θb‖Θ∞
δ

),
(C.29)

and

‖S(θa1 , θ
a
2 ,w + va, pw + qa)− S(θb1, θ

b
2,w + vb, pw + qb)− S(θa1 , θ

a
2 ,v

a, qa) + S(θb1, θ
b
2,v

b, qb)
−LS(θa1 − θb1, θa2 − θb2)‖ST ≤ CR‖θa − θb‖Θ∞

δ
,

(C.30)

and then the proof will be complete.
The estimate (C.29) is a consequence of the following relations

F1(θa1 , θ
a
2 ,w + va)− F1(θb1, θ

b
2,w + vb)− F1(θa1 , θ

a
2 ,v

a) + F1(θb1, θ
b
2,v

b) = 0, (C.31)∥∥∥F2(θa1 , θ
a
2 ,w + va)− F2(θb1, θ

b
2,w + vb)− F2(θa1 , θ

a
2 ,v

a) + F2(θb1, θ
b
2,v

b)

−
∑
j

(θ̇aj − θ̇bj)
(

(∂θjΦ(0, 0,y) · ∇y)w + cof(∇y∂θjΦ(0, 0,y))Tw
)∥∥∥

F∞
δ

≤ KR‖θa − θb‖Θ∞
δ
,

(C.32)

∥∥∥∥∥∥(F3(θa1 , θ
a
2 ,w + va)−F3(θb1, θ

b
2,w + vb)−F3(θa1 , θ

a
2 ,v

a)+F3(θb1, θ
b
2,v

b))i−ν
∑
j

(θaj −θbj)(LF3)ij

∥∥∥∥∥∥
F∞
δ

≤ KR‖θa − θb‖Θ∞
δ
,

(C.33)
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∥∥∥(F4(θa1 , θ
a
2 ,w+va)−F4(θa1 , θ

a
2 ,v

a)−F4(θb1, θ
b
2,w + vb)+F4(θb1, θ

b
2,v

b)+((va − vb) · ∇)w

+(w·∇)(va−vb))i−
∑
n

(θan−θbn)(LF4)i,n

∥∥∥
F∞
δ

≤ KR(‖va−vb‖U∞
δ

+‖θa−θb‖Θ∞
δ

),
(C.34)

∥∥∥F5(θa1 , θ
a
2 , pw+qa)−F5(θa1 , θ

a
2 , q

a)−F5(θb1, θ
b
2, pw+qb)+F5(θb1, θ

b
2, q

b)

−
∑
j

(θaj −θbj)(∇y∂θjΦ(0, 0,y))T∇ypw

∥∥∥
F∞
δ

≤ KR‖θa − θb‖Θ∞
δ
,

(C.35)

and∥∥∥fF (Φ(θa1 , θ
a
2))− fF (Φ(θb1, θ

b
2))−

∑
k

(θak − θbk)∇yfF∂θkΦ(0, 0, .)
∥∥∥
F∞
δ

≤ K‖fF‖W1,∞(Ω)R‖θa − θb‖Θ∞
δ
. (C.36)

In the sequel, we use the compact notations J aΨ = JΨ(θa1 , θ
a
2 ,Φ(θa1 , θ

a
2 ,y)) and J bΨ = JΨ(θb1, θ

b
2,Φ(θb1, θ

b
2,y)),

and similarly for other functions. We now prove the estimates (C.30)�(C.36). We keep (C.30) for the end.
• Identity (C.31): the proof is immediate.
• Estimate (C.32): we use the decomposition

F2(θa1 , θ
a
2 ,w + va)− F2(θb1, θ

b
2,w + vb)− F2(θa1 , θ

a
2 ,v

a) + F2(θb1, θ
b
2,v

b)

−
∑
j

(θ̇aj − θ̇bj)
(

(∂θjΦ(0, 0,y) · ∇y)w + cof(∇y∂θjΦ(0, 0,y))Tw
)

= −cof
(
∂t(JΨ(θa1 , θ

a
2)) ◦Φ(θa1 , θ

a
2 ,y)− ∂t(JΨ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2,y) +

∑
j

(θ̇aj − θ̇bj)∇y∂θjΦ(0, 0,y)
)T

w

−cof
(
J aΨ − J bΨ

)T
∇yw(∂tΨ(θa1 , θ

a
2 , .)) ◦Φ(θa1 , θ

a
2 ,y)

−cof(J bΨ)T∇yw
(
∂t(Ψ(θa1 , θ

a
2 , .))◦Φ(θa1 , θ

a
2 ,y)− ∂t(Ψ(θb1, θ

b
2, .))◦Φ(θb1, θ

b
2,y)+

∑
j

(θ̇aj −θ̇bj)∂θjΦ(0, 0,y)
)

+
∑
j

(θ̇aj − θ̇bj)cof
(
J bΨ − I

)T
∇yw∂θjΦ(0, 0,y),

and the estimates (C.18), (C.26), (C.3), (C.9) and (C.10) yield (C.32).
• Estimate (C.33): we use the decomposition(

F3(θa1 , θ
a
2 ,w + va)− F3(θb1, θ

b
2,w + vb)− F3(θa1 , θ

a
2 ,v

a) + F3(θb1, θ
b
2,v

b)
)
i
− ν

∑
j

(θaj − θbj)(LF3)ij

=
(
F3(θa1 , θ

a
2 ,w)− F3(θb1, θ

b
2,w)

)
i
− ν

∑
j

(θaj − θbj)(LF3)ij

= A1,i +A2,i +A3,i +A4,i,

where

A1,i = ν
∑

j,k,`,m

(
cof(J aΨ)ki

∂Ψa
`

∂xj

∂Ψa
m

∂xj
− cof(J bΨ)ki

∂Ψb
`

∂xj

∂Ψb
m

∂xj

+
∑
n

(θan−θbn)
(
∂yj∂θnΦ`(0, 0,y)δkiδmj+∂yj∂θnΦm(0, 0,y)δkiδ`j+cof(∂θnJΦ(0, 0,y))kiδmjδ`j

)) ∂2wk
∂ym∂y`

,

A2,i = 2ν
∑
j,k,`

(
cof(∂xjJ aΨ)ki

∂Ψa
`

∂xj
−cof(∂xjJ bΨ)ki

∂Ψb
`

∂xj
−
∑
n

(θan − θbn)cof(∂xj∂θnJΨ(0, 0,y))kiδ`j

)∂wk
∂y`

,

A3,i = ν
∑
j,k,`

(
cof(J aΨ)ki

∂2Ψa
`

∂x2
j

− cof(J bΨ)ki
∂2Ψb

`

∂x2
j

−
∑
n

(θan − θbn)δki
∂2

∂x2
j

∂θnΨ`(0, 0,y)
)∂wk
∂y`

,

and

A4,i = ν
∑
j,k

(
cof

(
∂2

∂x2
j

J aΨ

)
ki

− cof

(
∂2

∂x2
j

J bΨ

)
ki

−
∑
n

(θan − θbn)
∂2

∂x2
j

∂θnJΨ(0, 0,y)ki

)
wk.

The term A1,i is of the form
∑

j,k,`,m

aijk`m(y)× ∂2wk
∂ym∂y`

, where

aijk`m(y) =
(

cof(J aΨ)ki
∂Ψa

`

∂xj

∂Ψa
m

∂xj
− cof(J bΨ)ki

∂Ψb
`

∂xj

∂Ψb
m

∂xj

+
∑
n

(θan−θbn)
(
∂yj∂θnΦ`(0, 0,y)δkiδmj+∂yj∂θnΦm(0, 0,y)δkiδ`j+cof(∂θnJΦ(0, 0,y))kiδmjδ`j

))
.
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Moreover, according to (1.20), Ψ(θ1, θ2,y) = y in Ω\Ωε, then aijk`m = 0 in Ω\Ωε (Ωε is de�ned in Lemma 1.3).
We then estimate A1,i as

∥∥∥∥aijk`m × ∂2wk
∂ym∂y`

∥∥∥∥
L2(Fs)

≤

∥∥∥∥∥∥∥
aijk`m∏
j∈Jd,n

rβj

∥∥∥∥∥∥∥
L∞(Fs)

∥∥∥∥∥∥ ∂2wk
∂ym∂y`

∏
j∈Jd,n

rβj

∥∥∥∥∥∥
L2(Fs)

≤ ‖aijk`m‖L∞(Ω)

∥∥∥∥∥∥∥
1∏

j∈Jd,n

rβj

∥∥∥∥∥∥∥
L∞(Ω\Ωε)

‖w‖H2
β(Fs).

Moreover, we get the estimate ‖aijk`m‖L∞(Ω) ≤ KR‖θa − θb‖Θ∞
δ

by using three times the estimate (C.3). We
then use estimates (C.3), (C.4) and (C.19) for A2,i and A3,i and estimate (C.5) for A4,i. We obtain (C.33).
• Estimate (C.34): we have the decomposition(

F4(θa1 , θ
a
2 ,w + va)− F4(θa1 , θ

a
2 ,v

a)− F4(θb1, θ
b
2,w + vb) + F4(θb1, θ

b
2,v

b) + ((va − vb) · ∇)w

+(w · ∇)(va − vb)
)
i
−
∑
n

(θan − θbn)(LF4)i,n

= B1,i +B2,i +B3,i +B4,i +B5,i +B6,i,

where

B1,i = −
∑
j,k,`

(
cof(J aΨ)kjcof(∂xjJ aΨ)`i − cof(J bΨ)kjcof(∂xjJ bΨ)`i −

∑
n

(θan − θbn)cof(∂xj∂θnJΨ(0, 0,y))`iδkj

)
wkw`,

B2,i = −
∑
j,k,`

(
cof(J aΨ)kjcof(∂xjJ aΨ)`i − cof(J bΨ)kjcof(∂xjJ bΨ)`i

)
(wkv

a
` + vakw`),

B3,i = −
∑
j,k,`

cof(J bΨ)kjcof(∂xjJ bΨ)`i
(
wk(va` − vb`) + (vak − vbk)w`

)
,

B4,i = −
∑
k,`

(
det(J aΨ)2 ∂Φai

∂y`
− det(J bΨ)2 ∂Φbi

∂y`
+
∑
n

(θan − θbn)
(
2Tr(∂θnJΦ(0, 0,y))δi` − ∂θnJΦ(0, 0,y)i`

))
wk

∂w`
∂yk

,

B5,i = −
∑
k,`

(
det(J aΨ)2 ∂Φai

∂y`
− det(J bΨ)2 ∂Φbi

∂y`

)(∂w`
∂y`

vak +
∂va`
∂y`

wk

)
,

and

B6,i = −
∑
k,`

(
det(J bΨ)2 ∂Φbi

∂y`
− δi`

)(∂w`
∂yk

(vak − vbk) + (
∂va`
∂yk
− ∂vb`
∂yk

)wk

)
.

Now, we use

• estimates (C.3), (C.4), (C.18) and (C.19) for B1,i,

• estimates (C.3), (C.4) for B2,i,

• estimates (C.18) and (C.19) for B3,i,

• estimates (C.2), (C.7), (C.17) and (C.18) for B4,i and B5,i,

• estimates (C.17) and (C.18) for B6,i.

We get (C.34).
• Estimate (C.35): we have

F5(θa1 , θ
a
2 , pw+qa)−F5(θa1 , θ

a
2 , q

a)−F5(θb1, θ
b
2, pw+qb)+F5(θb1, θ

b
2, q

b)−
∑
n

(θan−θbn)(∇y∂θnΦ(0, 0,y))T∇ypw

= F5(θa1 , θ
a
2 , pw)− F5(θb1, θ

b
2, pw)−

∑
n

(θan−θbn)(∇y∂θnΦ(0, 0,y))T∇ypw

= −
(
J aΨ − J bΨ +

∑
n

(θan−θbn)∇y∂θnΦ(0, 0,y)
)T
∇ypw,

and estimate (C.3) gives (C.35).
• Estimate (C.36): it is a consequence of (C.1).
• Estimate (C.30): we have(

S(θa1 , θ
a
2 ,w+va, pw+qa)−S(θa1 , θ

a
2 ,v

a, qa)−S(θb1, θ
b
2,w+vb, pw+qb)+S(θb1, θ

b
2,v

b, qb)−LS(θa1−θb1, θa2−θb2)
)
j

= D1,j +D2,j +D3,j +D4,j ,
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where

D1,j =

∫
∂Ss

(|J aΦts| − |J bΦts|)
(
pwI− ν(Ga + (Ga)T )

)
(naθ1,θ2 ◦Φa) · ∂θjΦa

+
∑
n

(θan − θbn)

∫
∂Ss

((∇y∂θnΦ(0, 0, γy))ts · ts)σF (w, pw)ns · ∂θjΦ(0, 0, γy),

D2,j = −ν
∫
∂Ss

|J bΦts|
(
Ga+ (Ga)T− Gb− (Gb)T

)
(naθ1,θ2 ◦Φa) · ∂θjΦa

+ν
∑
k,`,n

(θan − θbn)

∫
∂Ss

((LG)k`n + (LG)`kn)(ns)k∂θjΦ`(0, 0, γy),

D3,j =

∫
∂Ss

|J bΦts|
(
pwI− ν(Gb + (Gb)T )

)
(naθ1,θ2 ◦Φa − nbθ1,θ2 ◦Φb) · ∂θjΦa

+
∑
k,`,n

(θan − θbn)

∫
∂Ss

σF (w, pw)`k(Lnθ1,θ2
)kn∂θjΦ`(0, 0, γy),

and

D4,j =

∫
∂Ss

|J bΦts|
(
pwI− ν(Gb + (Gb)T )

)
(nbθ1,θ2 ◦Φb) · (∂θjΦa − ∂θjΦb)

+
∑
n

(θan − θbn)

∫
∂Ss

σF (w, pw)ns · ∂θnθjΦ(0, 0, γy).

We use

• estimates (C.8), (C.28), (C.22) and (C.24) for D1,j ,

• estimates (C.23), (C.16), (C.22) and (C.24) for D2,j ,

• estimates (C.23), (C.28), (C.6) and (C.24) for D3,j ,

• estimates (C.23), (C.28), (C.22) and (C.12) for D4,j .

Combining these estimates yields (C.30).
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