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Abstract. We study the existence of strong solutions to a 2d fluid–structure system. The fluid is modelled
by the incompressible Navier–Stokes equations. The structure represents a steering gear and is described by
a finite number of parameters and its equations are derived from a virtual work principle. The global domain
represents a wind tunnel and imposes mixed boundary conditions to the fluid velocity. Our method reposes on
the analysis of the linearized system. Under compatibility conditions on the initial conditions, we can guarantee
local existence in time of strong solutions to the fluid–structure problem.
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1 Introduction
The goal of this study is to prove the existence of a solution to a fluid–structure problem. The fluid is modelled
by the incompressible Navier–Stokes equations and the structure, immersed in the fluid, is governed by a finite
number of parameters.

For the sake of simplicity, only two parameters θ1 and θ2 are considered. However, all results remain valid
for any finite number of parameters.

1.1 Modelling of the problem
The considered structure lies inside an open bounded domain Ω ⊂ R2 and deforms itself over time. The couple of
parameters (θ1, θ2) lies in an admissible domain DΘ which is an open connected subset of R2. Let Sref , a smooth
closed connected subset of Ω, be the reference configuration for the structure (for instance Sref is the volume
occupied by the structure for θ1 = θ2 = 0). We consider a function X defined on DΘ × Sref that computes
the position in the structure according to the reference position in Sref and to the value of the parameters
(θ1, θ2) ∈ DΘ.

The volume occupied by the structure for parameters (θ1, θ2) ∈ DΘ is a closed bounded connected subset of
Ω denoted S(θ1, θ2) = X(θ1, θ2, Sref). We further assume that for every (θ1, θ2) ∈ DΘ, S(θ1, θ2) ⊂ Ω, i.e. there
is no contact between the structure S(θ1, θ2) and the boundary of the domain ∂Ω.

1.1.1 Motivations

Structures depending only on a finite number of parameters arise in the field of aeronautics. For instance, let us
consider a steering gear structure. In a first approach, we can model this structure by two rigid solids. Solid S1

is tied to the fixed frame by a pivoting link O and solid S2 is tied to solid S1 by a pivoting link P . The whole
model is represented in Fig. 1a. Note that S1 can be thought of as the aerofoil of a wing and S2 as a steering
gear such as an aileron. For a given Sref , the function Xa representing the motion of this structure with respect
to (θ1, θ2) is given below

Xa(θ1, θ2,y) = χS1
(y)Rθ1y + χS2

(y)(Rθ1y
ref
P +Rθ1+θ2(y − yref

P )), ∀y ∈ Sref , ∀(θ1, θ2) ∈ DΘ,

where Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is the rotation matrix of angle θ, yref

P = (yP,1, yP,2)T is the coordinate of point

P in the reference configuration Sref and χE is the characteristic function over a set E ⊂ R2 given below

∀y ∈ Ω, χE(y) =

{
1 if y ∈ E,
0 else.

(1.1)

In the previous example, the domain of definition DΘ of (θ1, θ2) is chosen such that no overlaps of the structure
occur.
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Figure 1: Three different kinds of structure deformation.

Note that for θ2 6= 0, the function Xa(θ1, θ2, .) is not a diffeomorphism as it is discontinuous through the
interface ∂S1∩∂S2 between the two solids. In the same way, for θ̇2 6= 0, the velocity field is discontinuous inside
the structure (we denote θ̇2 the time derivative of θ2). In other words, if we keep S1 at rest and rotate S2 around
P , a discontinuity of the velocity appears through the interface between the two solids. This discontinuity can
reduce the regularity expected for the fluid velocity. Indeed, if we assume no–slip boundary conditions between
the fluid and the structure and if at time t the trace of the velocity is discontinuous on ∂S(θ1(t), θ2(t)), then
the best regularity in space for the velocity of the fluid is the Sobolev space L2(0, T ; H1(Ω\S(θ1(t), θ2(t)))) 1,
while for strong solutions we usually expect the velocity in the Sobolev space L2(0, T ; H2(Ω\S(θ1(t), θ2(t)))) 1.

This loss of regularity would harm the estimates of the nonlinear terms (see Appendix A). That is why we
consider a smooth approximation Xb of the deformation Xa.

In the sequel, y = (y1, y2) is the Lagrangian coordinate and y⊥ = (−y2, y1) is normal to y. The behaviour
of the smooth structure is represented in Fig. 1b, we give Xb below

Xb(θ1, θ2,y) = g1(y1)er1 + g2(y1)er2 + y2
N(y1)

‖N(y1)‖
, y ∈ Sref , (θ1, θ2) ∈ DΘ, (1.2)

where g1 and g2 are real–valued functions. We use the notations: er1 = (cos θ1, sin θ1)T , er2 = (cos(θ1 +
θ2), sin(θ1 +θ2))T , N(y1) = g′1(y1)eθ1 +g′2(y1)eθ2, where eθ1 = e⊥r1 and eθ2 = e⊥r2. Moreover, we have ‖N(y1)‖ =
((N1(y1))2 + (N2(y1))2)1/2, where Ni is the ith coordinate of N.

The function y1 7→ g1(y1)er1 + g2(y1)er2 gives for (θ1, θ2) ∈ DΘ the position of a reference curve. Every
fibre of matter that is normal to this curve in the reference configuration stays normal when (θ1, θ2) changes.
The normal direction to the curve for abscissa y1 is given by N(y1). This model is inspired from the fish–like
model described in [17, Section 7].

To enforce smoothness of Xb, g1 and g2 are taken as C∞ functions which are smooth approximations of
respectively yP,1 + (y1 − yP,1)χ[0,yP,1](y1) and (y1 − yP,1)χ[yP,1,ymax](y1), where χI is defined in a similar way as
(1.1) for I ⊂ R. For instance, let ε > 0 and consider µε a C∞ cut–off function such that µε(y1) = 1, for y1 < yP,1,

µε(y1) ∈ [0, 1], for yP,1 ≤ y1 ≤ yP,1 + ε,
µε(y1) = 0, for yP,1 + ε < y1.

Then, we can use {
g1(y1) = yP,1 + µε(y1)(y1 − yP,1),
g2(y1) = (1− µε(y1))(y1 − yP,1),

in (1.2) to get a smooth deformation as in Fig. 1b. The velocity field of the structure is not any more discon-
tinuous, we can thus expect the fluid to have the usual regularity of strong solutions.
Remark 1.1. When ε tends to 0, these functions become{

g1(y1) = χ[a,b[(y1)y1 + χ[b,c](y1)yP,1,
g2(y1) = χ[b,c](y1)(y1 − yP,2).

(1.3)

In this case, we recover the behaviour of a pivoting structure with two rigid solids (see Fig. 1c), corresponding
to a transformation denoted Xc. However the two solids overlap with this definition, so that we will not use it
either in the sequel. Also let us remark that the limit Xc of our smooth approximation Xb is not the original
model Xa.

1These spaces are given here in an informal manner. They will be defined more precisely later.
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Figure 2: Correspondance between real and reference structure configurations.

Now, let us show that we can choose DΘ such that for every (θ1, θ2) ∈ DΘ,X
b(θ1, θ2, .) is a C∞ diffeo-

morphism. We can compute the jacobian JXb(θ1, θ2, .) of Xb(θ1, θ2, .), it fulfils det(JXb(θ1, θ2, .)) = ‖N‖ +
y2

‖N‖2
sin(θ2)(g′′1 g

′
2 − g′′2 g

′
1). This shows that for a given reference configuration and for θ2 small enough,

det(JXb(θ1, θ2, .)) > 0 everywhere. Hence this proves that Xb(θ1, θ2, .) is a C∞ diffeomorphism for θ2 small
enough.

We shall therefore keep in mind only the example of Xb (see Fig. 1b) though our original motivation
was to deal with Xa (see Fig. 1a). More generally, our approach will be applicable to many more choices of
deformations X. Let us list below the assumptions used in the sequel.

Modelling Assumptions.

• Sref is a smooth simply connected closed subset of Ω.
• For every (θ1, θ2) ∈ DΘ, we have X(θ1, θ2, Sref) ⊂ Ω.
• For every (θ1, θ2) ∈ DΘ, X(θ1, θ2, .) is a smooth diffeomorphism from Sref to its image.
• The function X is C∞ on DΘ × Sref .

• The modes ∂θ1X(θ1, θ2, .) and ∂θ2X(θ1, θ2, .) form
a free family in L2(∂Sref) for every (θ1, θ2) in DΘ.

(1.4)
(1.5)
(1.6)
(1.7)

(1.8)

Assumption (1.6) enables us to use a change of variables. This is a crucial step in our approach, as we shall
see in Section 3.1. Assumption (1.7) has been chosen to ensure continuity of the velocity field inside the structure
and on its boundary. This assumption could be weakened, as C n would be sufficient for n large enough, but
we keep C∞ for simplicity. In our approach, Assumption (1.8) is natural and mandatory to determine the
equations of the structure, as we shall see below in Section 1.1.2.

The inverse diffeomorphism of X(θ1, θ2, .) whose existence is guaranteed by (1.6) is denoted Y(θ1, θ2, .), we
have

∀(θ1, θ2) ∈ DΘ, ∀y ∈ Sref , Y(θ1, θ2,X(θ1, θ2,y)) = y. (1.9)

The diffeomorphisms X(θ1, θ2, .) and Y(θ1, θ2, .) are illustrated in Fig. 2.

1.1.2 Dynamics of the structure

In order to simplify the equations of the structure, we consider the following assumption for the dynamics of
the structure.

Modelling Assumption.

• No friction and no elastic energy are considered in the structure. (1.10)

The equations satisfied by the structure are obtained by a virtual work principle [2, p. 14–17]. We know
that the admissible parameters of the structure are (θ1, θ2) ∈ DΘ, and that the admissible velocities satisfy

vs ∈ Vect(∂θ1X(θ1, θ2, .), ∂θ2X(θ1, θ2, .)).
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Thus, the virtual work principle can be formulated at every time t ∈ [0, T ] as
Find (θ1(t), θ2(t)) ∈ DΘ, such that for every w ∈ Vect(∂θ1X(θ1(t), θ2(t), .), ∂θ2X(θ1(t), θ2(t), .)),∫
Sref

ρ

(
d2

dt2
(X(θ1(t), θ2(t),y))− fbody(t,X(θ1(t), θ2(t),y))

)
·w(y)dy

−
∫
∂S(θ1(t),θ2(t))

fF→S(γx) ·w(Y(θ1(t), θ2(t), γx))dγx = 0,

(1.11)

where fbody is a distributed source term in the body (modelling for instance the gravity), ρ is a positive constant
that represents the mass per unit volume of the structure in the reference configuration Sref and fF→S is the
force exerted by the fluid on the structure along ∂S(θ1(t), θ2(t)).

Note that the presence of fbody is compatible with Assumption (1.10), as this term represents external forces.
It does not depend on θ1, θ2 and their derivatives.
Remark 1.2. Assumption (1.10) has been used in (1.11) as no interior works have been considered.

Let us denote respectively θ̇ and θ̈ the first and second time derivatives of the function θ. Then, the velocity
of the structure can be written as

vs(t,y) =
d

dt
X(θ1(t), θ2(t),y) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),y), ∀t ∈ [0, T ], ∀y ∈ Sref , (1.12)

and its acceleration as

d

dt
vs(t,y) =

d2

dt2
(X(θ1(t), θ2(t),y)) =

2∑
j=1

θ̈j(t)∂θjX(θ1(t), θ2(t),y) +

2∑
j,k=1

θ̇j(t)θ̇k(t)∂θjθkX(θ1(t), θ2(t),y).

Now, problem (1.11) can be rewritten as follows



Find (θ1, θ2) ∈ DΘ, such that for i ∈ {1, 2}, we have,∫
Sref

ρ
∑
j

θ̈j∂θjX(θ1, θ2,y) · ∂θiX(θ1, θ2,y)dy = −
∫
Sref

ρ
∑
j,k

θ̇j θ̇k∂θjθkX(θ1, θ2,y) · ∂θiX(θ1, θ2,y)dy

+

∫
Sref

fbody(t,X(θ1, θ2,y)) · ∂θiX(θ1, θ2,y)dy

+

∫
∂S(θ1,θ2)

fF→S(γx) · ∂θiX(θ1, θ2,Y(θ1, θ2, γx))dγx.

Let us denote the structure body source term

(fs)i =

∫
Sref

fbody(t,X(θ1, θ2,y)) · ∂θiX(θ1, θ2,y)dy. (1.13)

On a matrix form, the equations of the structure read

Mθ1,θ2

(
θ̈1

θ̈2

)
= MI(θ1, θ2, θ̇1, θ̇2) + MA(θ1, θ2, fF→S) + fs on (0, T ), (1.14)

where fs = ((fs)1, (fs)2)T and

Mθ1,θ2 =

(
(∂θ1X(θ1, θ2),∂θ1X(θ1, θ2))S (∂θ2X(θ1, θ2),∂θ1X(θ1, θ2))S
(∂θ1X(θ1, θ2),∂θ2X(θ1, θ2))S (∂θ2X(θ1, θ2),∂θ2X(θ1, θ2))S

)
∈ R2×2, (1.15)

MI(θ1, θ2, θ̇1, θ̇2) =

(
−(θ̇2

1∂θ1θ1X(θ1, θ2) + 2θ̇1θ̇2∂θ1θ2X(θ1, θ2) + θ̇2
2∂θ2θ2X(θ1, θ2),∂θ1X(θ1, θ2))S

−(θ̇2
1∂θ1θ1X(θ1, θ2) + 2θ̇1θ̇2∂θ1θ2X(θ1, θ2) + θ̇2

2∂θ2θ2X(θ1, θ2),∂θ2X(θ1, θ2))S

)
∈ R2,

(1.16)

MA(θ1, θ2, fF→S) =


∫
∂S(θ1,θ2)

∂θ1X(θ1, θ2,Y(θ1, θ2, γx)) · fF→S(γx)dγx∫
∂S(θ1,θ2)

∂θ2X(θ1, θ2,Y(θ1, θ2, γx)) · fF→S(γx)dγx

 ∈ R2, (1.17)

where (.,.)S is the scalar product

(Φ,Ψ)S =

∫
Sref

ρΦ(y) ·Ψ(y)dy. (1.18)
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Figure 3: The geometrical configuration.

The matrix Mθ1,θ2 in (1.15) is the Gram matrix of the family (∂θ1X(θ1, θ2), ∂θ2X(θ1, θ2)) with respect to
the scalar product (.,.)S . It is invertible due to Assumption (1.8) (if two C∞ functions are colinear in L2(Sref)
then they are colinear in L2(∂Sref)).

We also consider the following initial displacement and velocity for the structure{
θ1(0) = θ1,0, θ2(0) = θ2,0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0.
(1.19)

1.1.3 Equations of the fluid

In our study, the global domain Ω = (0, L)× (0, 1) represents a wind tunnel of length L > 0, see Fig. 3. Hence
its boundary is composed of four regions: an inflow region Γi = {0}× (0, 1), a bottom region Γb = (0, L)×{0},
a top region Γt = (0, L) × {1} and an outflow region ΓN = {L} × (0, 1). We denote Γw = Γt ∪ Γb the part of
the boundary corresponding to walls and ΓD = Γi ∪Γw the part of the boundary where Dirichlet conditions are
applied.

At time t, the structure occupies the volume S(θ1(t), θ2(t)), therefore the fluid fills the domain F (θ1(t), θ2(t)) =
Ω\S(θ1(t), θ2(t)).

The velocity of the fluid is modelled by the incompressible Navier–Stokes equations



∂u

∂t
(t,x)+(u·∇)u(t,x)−divσF (u(t,x), p(t,x)) = fF (t,x), t ∈ (0, T ), x ∈ F (θ1(t), θ2(t)),

div u(t,x) = 0, t ∈ (0, T ), x ∈ F (θ1(t), θ2(t)),
u(t,x) = ui(t,x), t ∈ (0, T ), x ∈ Γi,
u(t,x) = 0, t ∈ (0, T ), x ∈ Γw,
σF (u(t,x), p(t,x))n(x) = 0, t ∈ (0, T ), x ∈ ΓN,
u(0,x) = u0(x), x ∈ F (θ1,0, θ2,0),

(1.20)

where u(t,x) and p(t,x) are velocity and pressure of the fluid at point x and time t, and

σF (u, p) = ν(∇u + (∇u)T )− pI,

is the stress tensor of the fluid, where ν > 0 is the kinematic viscosity of the fluid. The term fF (t,x) in (1.20)1
is a force per unit mass exerted on the fluid. Moreover, a nonhomogeneous Dirichlet boundary condition ui is
imposed on the inflow region Γi and we consider an initial condition u0 for the fluid velocity. Of course, these
equations should be completed with suitable boundary conditions on ∂S(θ1(t), θ2(t)) that will be made precise
in Section 1.1.4.

1.1.4 Interface between the fluid and the structure

The velocity u of the fluid fulfils an adherence condition with the boundary of the structure whose velocity is
given in (1.12),

u(t,X(θ1(t), θ2(t),y)) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),y), t ∈ (0, T ), y ∈ ∂Sref .
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Note that this no–slip boundary condition corresponds to the continuity of the velocity through the interface
between the fluid and the structure and can also be rewritten as

u(t,x) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),Y(θ1(t), θ2(t),x)), t ∈ (0, T ), x ∈ ∂S(θ1(t), θ2(t)). (1.21)

The forces exerted by the fluid on the structure are given by the stress tensor of the fluid

fF→S = −σF (u, p)nθ1,θ2 , t ∈ (0, T ), x ∈ ∂S(θ1(t), θ2(t)), (1.22)

where nθ1,θ2(x) is the outward unitary normal to the fluid domain F (θ1(t), θ2(t)).

1.1.5 The complete set of equations

The full set of equations is given by (1.14), (1.19), (1.20), (1.21) and (1.22). Note that the coupling between
fluid and structure appears in equations (1.20) (as the fluid domain depends on θ1 and θ2), (1.21) and (1.22).

The final system considered is given by the following set of equations

∂u

∂t
(t,x) + (u(t,x) · ∇)u(t,x)− div σF (u(t,x), p(t,x)) = fF (t,x), t∈(0, T ), x∈F(θ1(t), θ2(t)),

div u(t,x) = 0, t∈(0, T ), x∈F(θ1(t), θ2(t)),

u(t,x) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),Y(θ1(t), θ2(t),x)), t∈(0, T ), x∈∂S(θ1(t), θ2(t)),

u(t,x) = ui(t,x), t∈(0, T ), x∈Γi,
u(t,x) = 0, t∈(0, T ), x∈Γw,
σF (u(t,x), p(t,x))n(x) = 0, t∈(0, T ), x∈ΓN,
u(0,x) = u0(x), x∈F (θ1,0, θ2,0),

Mθ1,θ2

(
θ̈1

θ̈2

)
=MI(θ1, θ2, θ̇1, θ̇2)+MA(θ1, θ2,−σF (u, p)nθ1,θ2)+fs, t∈(0, T ),

θ1(0) = θ1,0, θ2(0) = θ2,0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0.

(1.23)

1.2 Statement of the main result
In this section, after setting up the functional framework, we present our existence result for solutions to
problem (1.23). In the sequel, F0 = F (θ1,0, θ2,0) denotes the initial fluid domain and S0 = S(θ1,0, θ2,0) the
initial configuration for the structure. For the sake of simplicity, the initial displacement of the structure is
taken equal to zero,

θ1,0 = θ2,0 = 0.

This can be done without loss of generality by the change of variables

(θ1, θ2) 7→ (θ1 − θ1,0, θ2 − θ2,0).

Moreover, the reference configuration for the structure Sref and for the fluid Fref are taken as the initial
configuration,

Sref = S0 = S(0, 0), Fref = F0 = F (0, 0).

1.2.1 Functional spaces

Sobolev spaces. In the sequel, Hs(F0) is the usual Sobolev space of order s ≥ 0. We identify L2(F0)
with H0(F0). We will denote L2(F0) = (L2(F0))2, Hs(F0) = (Hs(F0))2 and so on.

Corners issues. The domain considered for the fluid has four corners of angle π/2. The ones that are
located between Dirichlet and Neumann boundary conditions induce singularities, we denote them A = (L, 1)
and B = (L, 0) (see Fig. 3). We also denote Jd,n = {A,B} the set of these corners and we define the distance
of a point x from these corners

for j ∈Jd,n, for x ∈ Ω, rj(x) = d(x, j). (1.24)

Note that corners between two Dirichlet boundary conditions do not induce singularities as soon as suitable
compatibility conditions are satisfied. We report to [11] for more details.

Weighted Sobolev spaces. The strong solution to the Stokes problem in the domain with corners A and
B and with a source term in L2(F0) belongs to a classical Sobolev space of lower order than what we usually
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have in smooth domains. In order to get the usual gain of regularity between solutions and source terms, we
have to study the solution in adapted Sobolev spaces. As the loss of regularity is located around corners A and
B, we can recover the usual regularity if we consider norms that are suitably weighted near these corners. The
weighted Sobolev spaces are then defined for β > 0 as

H2
β(F0) = {u : ‖u‖H2

β(F0) < +∞},

H1
β(F0) = {p : ‖p‖H1

β(F0) < +∞},

where the norms ‖.‖H2
β(F0) and ‖.‖H1

β(F0) are given by

‖u‖2H2
β(F0) =

2∑
|α|=0

2∑
i=1

∫
F0

 ∏
j∈Jd,n

r2β
j (y)

 |∂αui(y)|2dy, (1.25)

and

‖p‖2H1
β(F0) =

1∑
|α|=0

∫
F0

 ∏
j∈Jd,n

r2β
j (y)

 |∂αp(y)|2dy. (1.26)

Here the sum is on all multi–index α of length |α| ≤ 2 for (1.25) and |α| ≤ 1 for (1.26) and rj is defined in
(1.24).

Steady Stokes problem with corners. Let us denote n0 the outward unitary normal to F0. The
following lemma from [13] explains how and why the spaces H2

β and H1
β appear in the context of corners. It

gives the result expected for the steady Stokes problem in F0 with weigthed Sobolev spaces and the regularity
obtained in the classical Sobolev spaces.

Lemma 1.3. [13, Theorem 2.5.] Let us assume that fF ∈ L2(F0). The unique solution (u, p) to the Stokes
problem 

−div σF (u, p) = fF in F0,
div u = 0 in F0,
u = 0 on ΓD ∪ ∂S0,
σF (u, p)n0 = 0 on ΓN,

(1.27)

belongs to H2
β(F0) × H1

β(F0) for β = 0.42 and to H3/2+ε0(F0) × H1/2+ε0(F0) for ε0 = 0.08. Moreover, we
have the following estimate

‖u‖H2
β(F0)∩H3/2+ε0 (F0) + ‖p‖H1

β(F0)∩H1/2+ε0 (F0) ≤ C‖fF‖L2(F0). (1.28)

Remark 1.4. In the sequel, we only use the fact that β and ε0 belong to (0, 1/2).

Note that the regularity proven in Lemma 1.3 gives a meaning to all integrations by parts as p|∂F0
and

∂n0
u|∂F0

are well defined traces for (u, p) ∈ H3/2+ε0(F0)×H1/2+ε0(F0).
Also note that according to [8, Theorem 1.4.3.1], there exists a continuous extension operator from Hs(F0)

to Hs(R2) for every s > 0. This implies that all the classical Sobolev injections and interpolations are valid
despite the presence of corners as they can be led in R2.

1.2.2 Local existence of a strong solution to the problem

The diffeomorphism Φ. A classical difficulty in fluid–structure problems is that the fluid domain changes
over time. The classical way to get rid of this difficulty is to use a change of variables on u and p in order to
bring the study back into a fixed domain. This procedure uses a diffeomorphism that we have to define properly.
When the state of the structure depends only on a finite number of parameters, it is convenient to construct
this diffeomorphism as an extension of the deformation of the structure into the fluid domain.

The diffeomorphism used is defined as an extension of the diffeomorphism X given for the structure. Hence,
we need the extension operator defined below.

Lemma 1.5. There exists a linear extension operator E : W3,∞(Sref)→W3,∞(Ω)∩H1
0(Ω) such that for every

w ∈W3,∞(Sref)

(i) E(w) = w almost everywhere in Sref ,
(ii) E(w) has support within Ωε = {x ∈ Ω | d(x, ∂Ω) > ε} for some ε > 0

such that d(S(θ1, θ2), ∂Ω) > 2ε for all (θ1, θ2) ∈ DΘ,
(iii) ‖w‖W3,∞(Ω) ≤ C‖w‖W3,∞(Sref ).
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Proof. Extension results are classical, we can for instance find an extension result for smooth domains in [10,
Lemma 12.2]. We can get the result by multiplying the extension function of [10, Lemma 12.2] by a cut–off
function in D(Ωε).

Then we define the following function

Φ(θ1, θ2,y) = y + E
(
X(θ1, θ2, .)− Id

)
(y), ∀(θ1, θ2) ∈ DΘ, ∀y ∈ Ω, (1.29)

where Id denotes the identity function.
We have ∇Φ(0, 0,y) = I for every y ∈ Ω, hence det(∇Φ(0, 0,y)) = 1. Then for every (θ1, θ2) ∈ DΘ small

enough, the function Φ(θ1, θ2, .) is a diffeomorphism close to the identity function. We denote Ψ(θ1, θ2, .) the
inverse diffeomorphism of Φ(θ1, θ2, .)

∀(θ1, θ2) ∈ DΘ, ∀y ∈ Ω, Ψ(θ1, θ2,Φ(θ1, θ2,y)) = y. (1.30)
We can prove that Φ and Ψ belong to C∞(DΘ,W

3,∞(Ω)). These diffeomorphisms are represented in Fig. 2.
The properties of E imply the following important properties

for every (θ1, θ2) ∈ DΘ, Φ(θ1, θ2, Sref) = S(θ1, θ2) and ∀y ∈ Ω\Ωε, Φ(θ1, θ2,y) = y. (1.31)

The inflow boundary conditions. We use the following space to define the admissible boundary condi-
tions on the inflow part of the boundary Γi,

Ui =


ui ∈ H3/2(Γi) | ui|∂Γi

= 0,

∫ 1/4

0

|∂y2
ui2(y2)|2

y2
dy2 < +∞,∫ 1

3/4

|∂y2
ui2(y2)|2

1− y2
dy2 < +∞

 . (1.32)

The conditions with integrals in the definition of Ui are chosen to match the homogeneous boundary conditions
on Γw. We now state the following existence theorem.

Theorem 1.6 (Local existence in time of a solution). Let T0 > 0, let ui ∈ H1(0, T0; Ui), u0 ∈ H1(F0) and
(ω1,0, ω2,0) ∈ R2 satisfying the compatibility conditions

div u0 = 0 in F0,

u0(.) =

2∑
j=1

ωj,0∂θjX(0, 0, .) on ∂S0,

u0 = ui(0, .) on Γi,
u0 = 0 on Γw.

(1.33)

Let fF ∈ L2(0, T0; W1,∞(Ω)) and fs ∈ L2(0, T0;R2). Then there exists a time T ∈ (0, T0) such that problem
(1.23) admits a unique solution (u, p, θ1, θ2) with the following regularity

(θ1, θ2) ∈ H2(0, T ;DΘ),
u(t,Φ(θ1(t), θ2(t),y)) ∈ L2(0, T ; H2

β(F0)) ∩ C 0([0, T ]; H1(F0)) ∩H1(0, T ; L2(F0)),

p(t,Φ(θ1(t), θ2(t),y)) ∈ L2(0, T ;H1
β(F0)).

Moreover, we have the estimate

‖u(t,Φ(θ1(t), θ2(t),y))‖L2(0,T ;H2
β(F0))∩C 0([0,T ];H1(F0))∩H1(0,T ;L2(F0))

+‖p(t,Φ(θ1(t), θ2(t),y))‖L2(0,T ;H1
β(F0)) + ‖(θ1, θ2)‖H2(0,T ;DΘ)

≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖fF‖L2(0,T0;L2(F0)) + ‖ui‖H1(0,T0;H3/2(Γi)) + ‖fs‖L2(0,T0;R2)).

The proof of Theorem 1.6 mainly follows the one in [4] and is presented in Section 3.3.

1.3 Scientific context
Existence of strong solutions to fluid–structure problems is already available for several cases. For instance
the problems of a fluid coupled with rigid bodies [7, 18, 19], a plate [16] or a beam [9, 12] have already been
investigated.

Existence of a weak solution has also been proven for a fluid coupled with a plate [5].
In the current study, we focus on a deformable structure depending on a finite number of parameters. A

close situation has already been investigated for a finite dimensional approximation of a plate [4]. This makes
the modes ∂θjX fulfil a relation mandatory to ensure the null divergence of the fluid.

In contrast to [4], the case considered in the current paper deals with an intrinsically finite dimensional
structure. Hence, the modes ∂θjX do not fulfil such a relation and some parts of the proof in [4] have then to
be modified.

Additional difficulties are induced by the corners on ∂Ω, more information can be found in [11, 13].
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1.4 Outline of the paper
In Section 2, we study the linearized problem in the fixed domain F0. We prove existence of strong solutions
to this linearized problem. Then, in Section 3, we prove local existence of solutions to the nonlinear system.
We extend the previous result to the nonlinear system with a fixed point argument.

The proof of the estimates of the nonlinear terms can be found in Appendix A.

2 Existence of solution to the linearized problem
In this section we study the linearization of problem (1.23), first with only source terms f and s and then with
all source terms. These equations are written in the fixed domain F0 using a change of variables explained in
Section 3.1. In the sequel, (ũ, p̃) denotes velocity and pressure of the fluid in the fixed domain F0. We denote
T > 0 the considered final time.

2.1 Linearized problem with nonhomogeneous source terms
Let us study the following problem



∂ũ

∂t
− ν∆ũ +∇p̃ = f in (0, T )×F0,

div ũ = 0 in (0, T )×F0,

ũ = θ̇1∂θ1Φ(0, 0, .) + θ̇2∂θ2Φ(0, 0, .) on (0, T )× ∂S0,
ũ = 0 on (0, T )× Γi,
ũ = 0 on (0, T )× Γw,
σF (ũ, p̃)n0 = 0 on (0, T )× ΓN,
ũ(0,y) = u0(y) in F0,

M0,0

(
θ̈1

θ̈2

)
=


∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ1Φ(0, 0, γy)dγy∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ2Φ(0, 0, γy)dγy

+ s on (0, T ),

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0,
θ1(0) = 0, θ2(0) = 0,

(2.1)

where the unkwnows are (ũ, p̃, θ1, θ2) and the source terms are (f , s) ∈ L2(0, T ; L2(F0))×L2(0, T ;R2). We will
show later that this system corresponds to the linearization of the nonlinear problem (1.23) transported in the
fixed initial configuration.

Remark 2.1. The state (ũ, p̃, θ1, θ2) of problem (2.1) can be reduced to (ũ, p̃, θ̇1, θ̇2). Considering the velocity
of the structure instead of its position is sufficient to solve (2.1). However, we prefered to consider the full state
(ũ, p̃, θ1, θ2), as it is anyway used to deal with the nonlinear case.

In the sequel, the following spaces will be used

UT = L2(0, T ; H2
β(F0)) ∩ C 0([0, T ]; H1(F0)) ∩H1(0, T ; L2(F0)),

PT = L2(0, T ;H1
β(F0)),

ΘT = H2(0, T ;R2),

FT = L2(0, T ; L2(F0)),

GT = H1(0, T ; H3/2(∂S0)),

ST = L2(0, T ;R2).

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

We endow ΘT with the following norm

‖(θ1, θ2)‖ΘT = ‖(θ1, θ2)‖H2(0,T ) + ‖(θ1, θ2)‖L∞(0,T ) + ‖(θ̇1, θ̇2)‖L∞(0,T ),

the other spaces are endowed with their usual norms. The norm ‖.‖ΘT has been chosen so that we have the
estimate ‖(θ1, θ2)‖L∞(0,T ) + ‖(θ̇1, θ̇2)‖L∞(0,T ) ≤ C‖(θ1, θ2)‖ΘT where C does not depend on T . Note that with
the natural norm of ΘT , C would depend on T .

Let us fix an arbitrary time T0 > 0, e.g. T0 = 1. We want to prove the following result.
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Proposition 2.2. There exists a constant C > 0 such that for all T ∈ (0, T0), C does not depend on T , for
all u0 ∈ H1(F0) and (ω1,0, ω2,0) ∈ R2 satisfying the compatibility conditions (1.33) (with ui = 0) and every
(f , s) ∈ FT × ST , problem (2.1) admits a unique solution

(ũ, p̃, θ1, θ2) ∈ UT × PT ×ΘT .

Moreover, the following estimate holds

‖ũ‖UT + ‖p̃‖PT + ‖(θ1, θ2)‖ΘT ≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖f ‖FT + ‖s‖ST ). (2.8)

In order to prove Proposition 2.2, we will study the problem (2.1) under its semigroup formulation. Let us
define the space

H =

{
(ũ, θ1, θ2, ω1, ω2)T ∈ L2(F0)× R4, div ũ = 0 in F0, ũ · n0 = 0 on ΓD,

ũ · n0 =
∑
j

ωj∂θjΦ(0, 0, .) · n0 on ∂S0

}
, (2.9)

where n0 is the unitary outward normal to the fluid domain F0. This space H is endowed with the scalar
product (

(va, θa1 , θ
a
2 , ω

a
1 , ω

a
2 )T ,(vb, θb1, θb2, ωb1, ωb2)T

)
H

=

∫
F0

va · vbdy +
∑
j

θaj θ
b
j

+
∑
j,k

ωaj ω
b
k(∂θjX(0, 0, .),∂θkX(0, 0, .))S ,

where (.,.)S is defined in (1.18). We also define

V =

{
(ũ, θ1, θ2, ω1, ω2)T ∈ H1(F0)× R4, div ũ = 0 in F0, ũ = 0 on ΓD,

ũ =
∑
j

ωj∂θjΦ(0, 0, .) on ∂S0

}
, (2.10)

endowed with the scalar product(
(va, θa1 , θ

a
2 , ω

a
1 , ω

a
2 )T ,(vb, θb1, θb2, ωb1, ωb2)T

)
V

=

∫
F0

(va · vb +∇va : ∇vb)dy +
∑
j

θaj θ
b
j

+
∑
j,k

ωaj ω
b
k(∂θjX(0, 0, .),∂θkX(0, 0, .))S .

Remark 2.3. Note that
(
.,.)

H
and

(
.,.)

V
are also respectively scalar products on L2(F0)×R4 and H1(F0)×R4.

Lemma 2.4. The orthogonal space to H in L2(F0)× R4 with respect to the scalar product
(
.,.)

H
is

(H)⊥ =


(
∇p, 0, 0,−M−1

0,0

(∫
∂S0

pn0 · ∂θjΦ(0, 0, γy)dγy

)
j=1,2

)T ∣∣∣ p ∈ H1(F0) , p = 0 on ΓN

 ,

whereM0,0 is defined in (1.15).

Proof of Lemma 2.4. Let (va, θa1 , θ
a
2 , ω

a
1 , ω

a
2 )T ∈ L2(F0)× R4 such that for every (vb, θb1, θ

b
2, ω

b
1, ω

b
2)T ∈ H,(

(va, θa1 , θ
a
2 , ω

a
1 , ω

a
2 )T ,(vb, θb1, θb2, ωb1, ωb2)T

)
H

= 0.

By taking vb = 0 and ωb1 = ωb2 = 0, we easily obtain θa1 = θa2 = 0. With ωb1 = ωb2 = 0, we also get∫
F0

va · vbdy = 0, ∀vb ∈ L2(F0) such that div vb = 0 in F0 and vb · n0 = 0 on ΓD ∪ ∂S0,

which implies, according to [13, Lemma 2.2], va = ∇p, where p ∈ H1(F0) and p = 0 on ΓN. Now,∫
F0

∇p · vbdy +
∑
j,k

ωaj ω
b
k(∂θjX(0, 0, .),∂θkX(0, 0, .))S = 0,

becomes with the divergence formula and the compatibility condition in (2.9)∑
j

ωbj

∫
∂S0

pn0 · ∂θjΦ(0, 0, γy)dγy +
∑
j,k

ωaj ω
b
k(∂θjX(0, 0, .),∂θkX(0, 0, .))S = 0,

then ∫
∂S0

pn0 · ∂θjΦ(0, 0, γy)dγy +
∑
k

ωak(∂θjX(0, 0, .),∂θkX(0, 0, .))S = 0,

which yields a first inclusion. The converse inclusion is obtained via an integration by parts.
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We define the operator (A,D(A)) on H as

D(A) =

{
(ũ, θ1, θ2, ω1, ω2)T ∈ V, ũ ∈ H3/2+ε0(F0),∃p̃ ∈ H1/2+ε0(F0) such that

div σF (ũ, p̃) ∈ L2(F0) and σF (ũ, p̃)n0 = 0 on ΓN

}
, (2.11)

where ε0 = 0.08 is introduced in Lemma 1.3, and

A


ũ
θ1

θ2

ω1

ω2

 = ΠH


div σF (ũ, p̃)
ω1

ω2

M−1
0,0

[∫
∂S0

−σF (ũ, p̃)n0 · ∂θjΦ(0, 0, γy)dγy

]
j=1,2

 , (2.12)

where ΠH is the orthogonal projector from L2(F0)× R4 onto H with respect to
(
.,.)

H
.

Lemma 2.5. The operator A is uniquely defined.

Proof of Lemma 2.5. Let (ũ, θ1, θ2, ω1, ω2)T ∈ D(A) and consider two functions p, q ∈ H1/2+ε0(F0) satisfying
the conditions appearing into the definition of D(A). Then, div σF (0, p − q) = −∇(p − q) ∈ L2(F0) implies
p− q ∈ H1(F0), and σF (0, p− q)n0 = 0 on ΓN implies p− q = 0 on ΓN.

Now,
div σF (ũ, p)
ω1

ω2

M−1
0,0

[∫
∂S0

−σF (ũ, p)n0 · ∂θjΦ(0, 0, γy)dγy

]
j=1,2

−


div σF (ũ, q)
ω1

ω2

M−1
0,0

[∫
∂S0

−σF (ũ, q)n0 · ∂θjΦ(0, 0, γy)dγy

]
j=1,2



=


∇(p− q)
0
0

−M−1
0,0

[∫
∂S0

(p− q)n0 · ∂θjΦ(0, 0, γy)dγy

]
j=1,2

 ,

which belongs to H⊥ according to Lemma 2.4. Therefore A is uniquely defined.

The key point of this section is the following lemma.

Lemma 2.6. The operator A generates an analytic semigroup on H. Moreover, for λ ∈ R large enough, λI−A
is positive and D((λI −A)1/2) = V.

Proof of Lemma 2.6. We define the operator (A1, D(A1)) on H with

D(A1) = D(A),

and

A1


v
θ1

θ2

ω1

ω2

 = ΠH


div σF (v, q)
0
0

M−1
0,0

[∫
∂S0

−σF (v, q)n0 · ∂θjΦ(0, 0, γy)dγy

]
j=1,2

 .

A direct adaptation of Lemma 2.5 proves that A1 is uniquely defined. Now, we first prove the properties of
Lemma 2.6 on the self–adjoint operator A1 and then we extend it to A with a perturbation argument. For
(va, θa1 , θ

a
2 , ω

a
1 , ω

a
2 ) ∈ D(A1) and (vb, θb1, θ

b
2, ω

b
1, ω

b
2) ∈ V,(

A1(va, θa1 , θ
a
2 , ω

a
1 , ω

a
2 )T ,(vb, θb1, θb2, ωb1, ωb2)T

)
H

=

∫
∂S0

(σF (va, qa)n0) · vbdγy −
∫

F0

σF (va, qa) : ∇vbdy +
∑
j

ωbj

∫
∂S0

−σF (va, qa)n0 · ∂θjΦ(0, 0, γy)dγy

= −ν
∫

F0

(∇va + (∇va)T ) : ∇vbdy

= −a1((va, θa1 , θ
a
2 , ω

a
1 , ω

a
2 )T , (vb, θb1, θ

b
2, ω

b
1, ω

b
2)T ),

where

a1((va, θa1 , θ
a
2 , ω

a
1 , ω

a
2 )T , (vb, θb1, θ

b
2, ω

b
1, ω

b
2)T ) =

ν

2

∫
F0

(∇va + (∇va)T ) : (∇vb + (∇vb)T )dy,
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is a continuous bilinear form on V.
For the first equality we use (∂θjX(0, 0, .),∂θkX(0, 0, .))S = (M0,0)jk and for the second qaI : ∇vb =

qadiv vb = 0. The final equality shows that −A1 is non-negative and self-adjoint, so we can easily conclude
that D((−A1)1/2) = V.

Moreover, according to Korn’s inequality [6, p. 110], there exists c > 0 such that

∀(v, θ1, θ2, ω1, ω2)T ∈ V, a1((v, θ1, θ2, ω1, ω2)T , (v, θ1, θ2, ω1, ω2)T ) +
ν

2
‖v‖2L2(F0) ≥ c‖v‖

2
H1(F0),

so that,

∀(v, θ1, θ2, ω1, ω2)T ∈ V,
a1((va, θa1 , θ

a
2 , ω

a
1 , ω

a
2 )T , (vb, θb1, θ

b
2, ω

b
1, ω

b
2)T ) + max

(ν
2
, c
)
‖(v, θ1, θ2, ω1, ω2)‖2H ≥ c‖(v, θ1, θ2, ω1, ω2)‖2V.

Hence, according to [3, Theorem 2.12, p. 115], A1 generates an analytic semigroup on H.
Now, we use the fact that A − A1 ∈ L(H), then according to [14, Corollary 2.2.], A generates an analytic

semigroup on H.
A consequence of the previous result is that there exists λ > 0 such that λI − A is positive. Moreover,

D(λI −A) = D(A1), then by interpolation, D((λI −A)1/2) = D((−A1)1/2) = V.

We are now in position to prove Proposition 2.2.

Proof of Proposition 2.2. Let us denote F = ΠH(f , 0, 0,M−1
0,0s)T and z0 = (u0, 0, 0, ω1,0, ω2,0)T . We have

F ∈ L2(0, T ;H) and z0 ∈ D(A1/2).
According to [3, Theorem 3.1, p. 143] and Lemma 2.6, the problem{

z′(t) = Az(t) + F(t), t ≥ 0,
z(0) = z0,

(2.13)

admits a unique solution z ∈ L2(0, T ;D(A)) ∩H1(0, T ;H) and there exists C > 0 such that

‖z‖L2(0,T ;D(A))∩H1(0,T ;H) ≤ C(‖F‖L2(0,T ;H) + ‖z0‖V). (2.14)

With the Sobolev embedding

L2(0, T ;D(A)) ∩H1(0, T ;H) ↪→ C 0([0, T ];V),

we have
‖z‖L2(0,T ;D(A))∩C 0([0,T ];V)∩H1(0,T ;H) ≤ C(‖F‖L2(0,T ;H) + ‖z0‖V). (2.15)

Moreover, C is independent from T ∈ (0, T0). To prove this last statement, we consider

∀t ∈ [0, T0], F̃(t) =

{
F(t) if t ∈ [0, T ],
0 if t ∈]T, T0].

If z̃ is the solution on [0, T0] of {
z̃′ = Az̃ + F̃,
z̃(0) = z0,

then for t ≤ T , z̃(t) = z(t). And we have the inequality

‖z̃‖L2(0,T0;D(A))∩C 0([0,T0];V)∩H1(0,T0;H) ≤ C(‖F̃‖L2(0,T0;H) + ‖z0‖V),

where C does not depend on T , while

‖z‖L2(0,T ;D(A))∩C 0([0,T ];V)∩H1(0,T ;H) ≤ ‖z̃‖L2(0,T0;D(A))∩C 0([0,T0];V)∩H1(0,T0;H),

and
‖F̃‖L2(0,T0;H) = ‖F‖L2(0,T ;H).

We get (2.15) with C independent from T .
Now, if we write z = (ũ, θ1, θ2, ω1, ω2)T , problem (2.13) becomes

d

dt


ũ
θ1

θ2

ω1

ω2

 = ΠH


div σF (ũ, p) + f
ω1

ω2

M−1
0,0

(
s +

(∫
∂S0

−σF (ũ, p)n0 · ∂θjΦ(0, 0, .)

)
j=1..2

)
 ,
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where p ∈ L2(0, T ;H1/2+ε0(F0)). Then, Lemma 2.4 implies that there exists q ∈ L2(0, T ;H1(F0)) such that
(ũ, p+q, θ1, θ2) satisfies the linear problem (2.1). Moreover, according to (2.15), we have (θ1, θ2) ∈ H2(0, T ;R2),
ũ ∈ H1(0, T ; L2(F0)) ∩ C 0([0, T ]; H1(F0)) ∩ L2(0, T ; H3/2+ε0(F0)), p̃ = p+ q ∈ L2(0, T ;H1/2+ε0(F0)) and

‖ũ‖L2(0,T ;H3/2+ε0 (F0))∩C 0([0,T ];H1(F0))∩H1(0,T ;L2(F0)) + ‖p̃‖L2(0,T ;H1/2+ε0 (F0)) + ‖(θ1, θ2)‖ΘT
≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖f ‖L2(0,T ;L2(F0)) + ‖s‖L2(0,T ;R2)).

We still have to show ũ ∈ L2(0, T ; H2
β(F0)) and p̃ ∈ L2(0, T ;H1

β(F0)). According to [13, Theorem 2.16], there
exists v ∈ H1(0, T ; H2(F0)) satisfying

div v = 0 in (0, T )×F0,

v =
∑
j

θ̇j∂θjΦ(0, 0, .) on (0, T )× ∂S0,

v = 0 on (0, T )× ΓD,
(∇v + (∇v)T )n0 = 0 on (0, T )× ΓN,

with
‖v‖H1(0,T ;H2(F0)) ≤ C‖(θ1, θ2)‖ΘT .

The velocity ũ − v and the pressure p̃ satisfy for almost every t in (0, T )
−ν∆(ũ − v) +∇p̃ = f − ∂tũ + ν∆v in (0, T )×F0,
div (ũ − v) = 0 in (0, T )×F0,
ũ − v = 0 on (0, T )× (ΓD ∪ ∂S0),
σF (ũ − v, p̃)n0 = 0 on (0, T )× ΓN,

then, according to Lemma 1.3, ũ − v ∈ L2(0, T ; H2
β(F0)) and p̃ ∈ L2(0, T ;H1

β(F0)), where β is introduced in
Lemma 1.3. Moreover, (1.28) yields

‖ũ − v‖L2(0,T ;H2
β(F0)) + ‖p̃‖L2(0,T ;H1

β(F0)) ≤ ‖f − ∂tũ + ν∆v‖L2(0,T ;L2(F0)).

With the estimate ‖ũ‖L2(0,T ;H2
β(F0)) ≤ ‖ũ − v‖L2(0,T ;H2

β(F0)) + ‖v‖L2(0,T ;H2(F0)), we get

‖ũ‖L2(0,T ;H2
β(F0)) + ‖p̃‖L2(0,T ;H1

β(F0)) ≤ C(‖f ‖L2(0,T ;L2(F0)) + ‖ũ‖H1(0,T ;L2(F0)) + ‖v‖H1(0,T ;H2(F0)))

≤ C(‖f ‖L2(0,T ;L2(F0)) + ‖ũ‖H1(0,T ;L2(F0)) + ‖θ‖H2(0,T ;R2)).

This concludes the proof of Proposition 2.2.

2.2 Linearized problem with nonhomogeneous boundary data
Let us now consider two more source terms: one source term g on the boundary of the structure ∂S0 and one
source term ui on the inflow boundary region Γi. Let T0 > 0, we study



∂ũ

∂t
− ν∆ũ +∇p̃ = f in (0, T )×F0,

div ũ = 0 in (0, T )×F0,

ũ = θ̇1∂θ1Φ(0, 0, .) + θ̇2∂θ2Φ(0, 0, .) + g on (0, T )× ∂S0,
ũ = ui on (0, T )× Γi,
ũ = 0 on (0, T )× Γw,
σF (ũ, p̃)n0 = 0 on (0, T )× ΓN,
ũ(0,y) = u0(y) in F0,

M0,0

(
θ̈1

θ̈2

)
=


∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ1Φ(0, 0, γy)dγy∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ2Φ(0, 0, γy)dγy

+ s on (0, T ),

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0,
θ1(0) = 0, θ2(0) = 0,

(2.16)

where the source terms are f ∈ L2(0, T ; L2(F0)) , g ∈ H1(0, T ; H3/2(∂S0)), ui ∈ H1(0, T0; Ui) and s ∈
L2(0, T ;R2).

We have the following result:
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Proposition 2.7. There exists a constant C > 0 such that for all T ∈ (0, T0), for all ui ∈ H1(0, T0; Ui), u0 ∈
H1(F0) and (ω1,0, ω2,0) ∈ R2 satisfying the compatibility conditions (1.33) and every (f ,g, s) ∈ FT ×GT × ST
with g(0) = 0, problem (2.16) admits a unique solution

(ũ, p̃, θ1, θ2) ∈ UT × PT ×ΘT ,

with
‖ũ‖UT + ‖p̃‖PT + ‖(θ1, θ2)‖ΘT ≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|

+‖f ‖FT + ‖g‖GT + ‖s‖ST + ‖ui‖H1(0,T0;Ui)).
(2.17)

Proposition 2.7 is proven at the end of the section. The proof uses the following lifting result for the new
terms g and ui:

Lemma 2.8. For every g ∈ H3/2(∂S0) and every ui ∈ Ui, there exists u ∈ H2(F0) satisfying
div u = 0 in F0,
u = g on ∂S0,
u = ui on Γi,
u = 0 on Γw,
(∇u + (∇u)T )n0 = 0 on ΓN,

(2.18)

with
‖u‖H2(F0) ≤ C(‖ui‖Ui + ‖g‖H3/2(∂S0)). (2.19)

Note that despite the presence of corners, we recover the expected regularity of the lifting for smooth
domains.

Remark 2.9. For the sake of readability, from this point onwards all terms dy and dγy are omitted in the
integrals.

Proof of Lemma 2.8. The lifting result has been established for the condition ui = 0 on the inflow region in
[13, Theorem 2.16]. We first lift the input boundary condition ui 6= 0 in Ω and then we use the aforementioned
result.

Lifting of the inflow boundary condition. Let us look for a function v defined on the entire domain Ω and
satisfying 

div v = 0 in Ω,
v = ui on Γi,
v = 0 on Γw,
(∇v + (∇v)T )n0 = 0 on ΓN.

(2.20)

As v is divergence-free and Ω is simply connected, we look for it under the form v = ∇⊥ψ, where ψ is a
scalar-valued function. In the geometry considered, Γi, Γt, Γb and ΓN are straight lines, hence ∂n0 is written as
±∂y1

or ±∂y2
according on which part of the boundary we consider it.

We can prove that ψ has to satisfy the conditions

∂y2
ψ = −ui1 and ∂y1

ψ = ui2 on Γi,
∂y1ψ = 0 and ∂y2ψ = 0 on Γb,
∂y1ψ = 0 and ∂y2ψ = 0 on Γt,
∂y1

∂y2
ψ = 0 and ∂2

y1
ψ − ∂2

y2
ψ = 0 on ΓN.

We chose to meet these conditions in the following way:

ψ(y2) = −
y2∫

0

ui1 and ∂y1
ψ = ui2 on Γi,

ψ = 0 and ∂y2
ψ = 0 on Γb,

ψ = −
∫

Γi

ui1 and ∂y2
ψ = 0 on Γt.

ψ(y2) = −η(y2)

∫
Γi

ui1, ∂y1ψ = 0 and ∂2
y1
ψ = −d2

y2
η(y2)

∫
Γi

ui1 on ΓN,

(2.21)

where η is a C∞ function on [0, 1] satisfying

∀ y2 ∈ [0, 1], η(y2) =

 0 if y2 ∈ [0, 1/4],
∈ [0, 1] if y2 ∈]1/4, 3/4[,
1 if y2 ∈ [3/4, 1].

(2.22)
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The theorem [8, Theorem 1.6.1.5, p.69] with m = 3 and d = 2 gives the existence of ψ ∈ H3(Ω) fulfilling
(2.21) under the compatibility conditions:

there exist α1 and α2 > 0 such that


∫ α1

0

|∂y2u
i
2|2

y2
< +∞,∫ 1

1−α2

|∂y2
ui2|2

1− y2
< +∞.

(2.23)

These conditions are the ones in the definition of Ui in (1.32) with α1 = α2 = 1/4. Moreover we have the
estimate

‖v‖H2(Ω) ≤ c‖ψ‖H3(Ω) ≤ C‖ui‖H3/2(Γi). (2.24)

The divergence-free field v = ∇⊥ψ ∈ H2(Ω) satisfies (2.20).
Lifting of the structure velocity. Now, ṽ = u− v|F0

has to satisfy
div ṽ = 0 in F0,
ṽ = g − v on ∂S0,
ṽ = 0 on Γi,
ṽ = 0 on Γw,
(∇ṽ + (∇ṽ)T )n0 = 0 on ΓN.

According to [13, Theorem 2.16], such ṽ exists in H2(F0) as soon as g − v ∈ H3/2(∂S0). Moreover, we have
the estimate

‖ṽ‖H2(F0) ≤ C‖g − v‖H3/2(∂S0) ≤ C(‖g‖H3/2(∂S0) + ‖v‖H2(Ω)). (2.25)

This yields the expected result since u = ṽ + v|F0
, the estimate (2.19) comes from (2.24) and (2.25).

We can now prove Proposition 2.7 in the following way.

Proof of Proposition 2.7. Let ui ∈ H1(0, T0; Ui), u0 ∈ H1(F0) and (ω1,0, ω2,0) ∈ R2 satisfying the compatibility
conditions (1.33). Let (f ,g, s) ∈ FT ×GT × ST with g(0) = 0.

Let u ∈ H1(0, T ; H2(F0)) be the solution to (2.18), it fulfils

‖u‖H1(0,T ;H2(F0)) ≤ C(‖ui‖H1(0,T0;Ui) + ‖g‖H1(0,T ;H3/2(∂S0))). (2.26)

The lifting u also belongs to C 0([0, T ]; H2(F0)), and as g(0) = 0, we have

‖u‖C 0([0,T ];H2(F0)) ≤ C(‖ui‖H1(0,T0;Ui) + ‖g‖H1(0,T ;H3/2(∂S0))), (2.27)

where C does not depend on T .
Let (û, p̃, θ1, θ2) be the solution to

∂û

∂t
− ν∆û +∇p̃ = f − ∂u

∂t
+ ν∆u in (0, T )×F0,

div û = 0 in (0, T )×F0,

û = θ̇1∂θ1Φ(0, 0, .) + θ̇2∂θ2Φ(0, 0, .) on (0, T )× ∂S0,
û = 0 on (0, T )× Γi,
û = 0 on (0, T )× Γw,
σF (û, p̃)n0 = 0 on (0, T )× ΓN,
û(0, .) = u0(.)− u(0, .) in F0,

M0,0

(
θ̈1

θ̈2

)
=


∫
∂S0

[p̃I − ν(∇(û + u) + (∇(û + u))T )]n0 · ∂θ1Φ(0, 0, γy)∫
∂S0

[p̃I − ν(∇(û + u) + (∇(û + u))T )]n0 · ∂θ2Φ(0, 0, γy)

+ s on (0, T ),

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0,
θ1(0) = 0, θ2(0) = 0.

We have
f − ∂u

∂t
+ ν∆u ∈ L2(0, T ; L2(F0)),

u0(.)− u(0, .) = 0 on Γi,

sj +

∫
∂S0

−ν(∇û + (∇û)T )n0 · ∂θjΦ(0, 0, γy) ∈ L2(0, T ).

Then, according to Proposition 2.2, (û, p̃, θ1, θ2) ∈ UT × PT ×ΘT and we have (2.8) with û = ũ.
Now, we consider ũ = û+u, then (ũ, p̃, θ1, θ2) ∈ UT ×PT ×ΘT and (2.17) is a consequence of (2.26)–(2.27)

and (2.8).
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Note that a larger space than H1(0, T0; Ui) could be considered for ui. Indeed, we use a lifting in space only,
inducing the requirement ui ∈ H1(0, T0; Ui). Using a space-time lifting would be slightly more complicated
(see [15]), but would allow a larger space for the inflow boundary datum ui.

3 Local existence of solution to the full problem
In this section, we study the nonlinear problem. We recall that θ1,0 = θ2,0 = 0. At first, we rewrite the equations
(1.23) in the fixed domain F0, then, we prove existence of a solution to this problem.

3.1 The equations in a fixed domain
Our goal is to write the equations (1.23) in the fixed domain F0. To do so, we use the diffeomorphism defined
in (1.29). We denote JΦ its Jacobian matrix and cof(JΦ) the cofactor matrix of JΦ. We use the change of
variables ũ(t,y) = cof(JΦ(θ1(t), θ2(t),y))Tu(t,Φ(θ1(t), θ2(t),y)) and p̃(t,y) = p(t,Φ(θ1(t), θ2(t),y)) for every
t ∈ [0, T ] and y ∈ F0.

This choice is motivated by the fact that, according to [4, Lemma 3.1], we get div ũ = 0.
In the sequel, vi denotes the ith component of the vector v. To compute the equations satisfied by

(ũ, p̃, θ1, θ2), we use the following explicit formula:

u(t,x) = cof(JΨ(θ1(t), θ2(t),x))T ũ(t,Ψ(θ1(t), θ2(t),x)),

we have

∂tu(t,x) = cof

(
d

dt
JΨ(θ1(t), θ2(t),x)

)T
ũ(t,Ψ(θ1(t), θ2(t),x))

+cof(JΨ(θ1(t), θ2(t),x))T∂tũ(t,Ψ(θ1(t), θ2(t),x))

+cof(JΨ(θ1(t), θ2(t),x))T∇yũ(t,Ψ(θ1(t), θ2(t),x))
d

dt
Ψ(θ1(t), θ2(t),x),

∂xju(t,x) = cof(∂xjJΨ(θ1(t), θ2(t),x))T ũ(t,Ψ(θ1(t), θ2(t),x))
+cof(JΨ(θ1(t), θ2(t),x))T∇yũ(t,Ψ(θ1(t), θ2(t),x))∂xjΨ(θ1(t), θ2(t),x),

and

∂2
xju(t,x) = cof(∂2

xjJΨ(θ1(t), θ2(t),x))T ũ(t,Ψ(θ1(t), θ2(t),x))

+2cof(∂xjJΨ(θ1(t), θ2(t),x))T∇yũ(t,Ψ(θ1(t), θ2(t),x))∂xjΨ(θ1(t), θ2(t),x)

+cof(JΨ(θ1(t), θ2(t),x))T
∑
k

∂yk∇yũ(t,Ψ(θ1(t), θ2(t),x))∂xjΨ(θ1(t), θ2(t),x)∂xjΨk(θ1(t), θ2(t),x)

+cof(JΨ(θ1(t), θ2(t),x))T∇yũ(t,Ψ(θ1(t), θ2(t),x))∂2
xjΨ(θ1(t), θ2(t),x).

Problem (1.23) in the fixed domain reads (2.16) where f ,g, s are defined by
f = F(θ1, θ2, ũ, p̃) + fF (t,Φ(θ1(t), θ2(t),y)),

g = G(θ1, θ2, θ̇1, θ̇2),
s = S(θ1, θ2, ũ, p̃) + fs,

(3.1)

and we can decompose F(θ1, θ2, ũ, p̃) = F1 + F2 + F3 + F4 + F5, where Fi, G and S are given below in (3.2).
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We write Φ(θ1, θ2, .) under the simpler notation Φ. The nonlinear terms are given as follows:

F1(θ1, θ2, ũ) = (I − cof(JΨ(θ1, θ2,Φ))T )
∂ũ

∂t
,

F2(θ1, θ2, ũ) = −cof(θ̇1∇x∂θ1Ψ(θ1, θ2,Φ) + θ̇2∇x∂θ2Ψ(θ1, θ2,Φ))T ũ(t,y)

−cof(JΨ(θ1, θ2,Φ))T (∇yũ)
(
θ̇1∂θ1Ψ(θ1, θ2,Φ) + θ̇2∂θ2Ψ(θ1, θ2,Φ)

)
,

F3(θ1, θ2, ũ)i = ν
∑
j,k,l,m

cof(JΨ(θ1, θ2,Φ))ki
∂2ũk
∂yl∂ym

∂Ψl

∂xj
(θ1, θ2,Φ)

∂Ψm

∂xj
(θ1, θ2,Φ)

+2ν
∑
j,k,l

∂

∂xj
cof(JΨ(θ1, θ2,Φ))ki

∂ũk
∂yl

∂Ψl

∂xj
(θ1, θ2,Φ)

+ν
∑
j,k,l

cof(JΨ(θ1, θ2,Φ))ki
∂ũk
∂yl

∂2Ψl

∂x2
j

(θ1, θ2,Φ)

+ν
∑
j,k

∂2

∂x2
j

cof(JΨ(θ1, θ2,Φ))kiũk − ν∆yũi(t,y),

F4(θ1, θ2, ũ)i = −
∑
j,k,r

cof(JΨ(θ1, θ2,Φ))kj
∂

∂xj
cof(JΨ(θ1, θ2))riũkũr

−
∑
k,r

det(JΨ(θ1, θ2,Φ))2 ∂Φi
∂yr

ũk
∂ũr
∂yk

,

F5(θ1, θ2, p̃) = (I − JΨ(θ1, θ2,Φ))T∇yp̃,

G(θ1, θ2, ω1, ω2) =
2∑
j=1

ωj

(
cof(JΦ(θ1, θ2))T∂θjΦ(θ1, θ2,y)− ∂θjΦ(0, 0,y)

)
,

S(θ1, θ2, ũ, p̃) =−(Mθ1,θ2
−M0,0)

(
θ̈1

θ̈2

)
+ MI(θ1, θ2, θ̇1, θ̇2)

+


∫
∂S0

|JΦt0| [p̃I − ν(G(θ1, θ2, ũ) + G(θ1, θ2, ũ)T )]nθ1,θ2(Φ) · ∂θ1Φ(θ1, θ2, γy)∫
∂S0

|JΦt0| [p̃I − ν(G(θ1, θ2, ũ) + G(θ1, θ2, ũ)T )]nθ1,θ2(Φ) · ∂θ2Φ(θ1, θ2, γy)


−


∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ1Φ(0, 0, γy)∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ2Φ(0, 0, γy)

 ,

(3.2)

where t0 is a unitary tangent vector to ∂S0, MI andMθ1,θ2 are defined in (1.15), (1.16) and

G(θ1, θ2, ũ)ij =
∑
k

cof
[
∂xjJΨ(θ1, θ2, .)) ◦Φ

]
ki
ũk +

∑
k,l

cof(JΨ(θ1, θ2,Φ))ki
∂ũk
∂yl

∂Ψl

∂xj
(θ1, θ2,Φ). (3.3)

We can state the following theorem.

Theorem 3.1. Let T0 > 0. Let ui ∈ H1(0, T0; Ui). For every (u0, ω1,0, ω2,0) ∈ H1(F0) × R2 satisfying the
compatibility conditions (1.33), there exists T ∈ (0, T0) such that for every (fF , fs) ∈ L2(0, T ; W1,∞(Ω)) ×
L2(0, T ;R2) problem (2.16) where the source terms are given by (3.1) admits a unique solution (ũ, p̃, θ1, θ2) ∈
UT × PT × (ΘT ∩ L2(0, T ;DΘ)) satisfying the following estimate

‖ũ‖UT +‖p̃‖PT +‖(θ1, θ2)‖ΘT ≤ C(‖u0‖H1(F0)+|ω1,0|+|ω2,0|+‖fF‖L2(0,T0;L2(F0))+‖ui‖H1(0,T0;Ui)+‖fs‖L2(0,T0)),

where C does not depend on T , fF , fs and ui.

This theorem is the rewriting of Theorem 1.6 in the fixed domain F0. To prove Theorem 3.1, we use the
results of Section 2 and a fixed point argument.

3.2 Proof of Theorem 3.1
Proof. We work in the fixed fluid domain F0. Let T0 > 0.
Let ui ∈ H1(0, T0; Ui) and (u0, ω1,0, ω2,0) ∈ H1(F0)× R2 satisfying the compatibility conditions (1.33).

We define the space
NT = UT × PT × (ΘT ∩ L2(0, T ;DΘ)),

endowed with the norm
‖(ũ, p̃, θ1, θ2)‖NT = ‖ũ‖UT + ‖p̃‖PT + ‖(θ1, θ2)‖ΘT . (3.4)
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We also define an application ΛT on NT such that for every (u, p, θ1, θ2) ∈ NT , (ũ, p̃, θ1, θ2) = ΛT (u, p, θ1, θ2) ∈
UT × PT ×ΘT is the solution to problem (2.16), where the nonhomogeneous terms are given by

f = F(θ1, θ2,u, p) + fF (t,Φ(θ1, θ2,y)),

g = G(θ1, θ2, θ̇1, θ̇2),

s = S(θ1, θ2,u, p) + fs,

where F, G and S are given by (3.2). Note that ΛT depends on the initial data (u0, ω1,0, ω2,0) and on the source
term ui.

We take

R = 2C(‖ui‖H1(0,T0;Ui) + ‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖fF‖L2(0,T0;L2(F0)) + ‖fs‖L2(0,T0)),

where C is the constant of Proposition 2.7, so that by Proposition 2.7 , we have

‖ΛT (0, 0, 0, 0)‖NT≤ C(‖ui‖H1(0,T0;Ui)+‖u0‖H1(F0)+|ω1,0|+|ω2,0|+‖fF‖L2(0,T0;L2(F0))+‖fs‖L2(0,T0)) = R/2. (3.5)

The strategy adopted is based on the existence of T > 0 such that ΛT is a contraction on

BR(T ) =
{

(ũ, p̃, θ1, θ2) ∈ NT | ‖(ũ, p̃, θ1, θ2)‖NT ≤ R, (θ1, θ2)(0) = (0, 0)
}
. (3.6)

Remark 3.2. The domain DΘ is an open subset of R2 and (0, 0) ∈ DΘ, then there exists r > 0 such that
B((0, 0), r) ⊂ DΘ. Then for T < r/R, if ‖θ̇j‖L∞(0,T ) ≤ R and θj(0) = 0, we have

‖θj‖L∞(0,T ) ≤ T‖θ̇j‖L∞(0,T ) ≤ RT ≤ r,

and we have for all t ∈ (0, T ), (θ1(t), θ2(t)) ∈ DΘ. In the sequel we choose T0 > 0 such that T0 < r/R.
The solution to the nonlinear problem will be obtained as a fixed point of the application ΛT . We use the

estimates of the following lemma.

Lemma 3.3. For every R′ > 0, there exists a constant C ′ = C ′(R′) > 0, such that for every T ∈ (0, T0), and
every (ũj , p̃j , θj1, θ

j
2) ∈ BR′(T ) , we have

‖F(θa1 , θ
a
2 , ũ

a, p̃a)− F(θb1, θ
b
2, ũ

b, p̃b)‖FT ≤ C ′T 1/4(‖ũa − ũb‖UT +‖p̃a − p̃b‖PT +‖θa − θb‖ΘT ), (3.7)
‖G(θa1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖GT ≤ C ′T‖θa − θb‖ΘT , (3.8)

‖S(θa1 , θ
a
2 , ũ

a, p̃a)− S(θb1, θ
b
2, ũ

b, p̃b)‖ST ≤ C ′T 1/2(‖ũa − ũb‖UT +‖p̃a − p̃b‖PT +‖θa − θb‖ΘT ), (3.9)
‖fF (t,Φ(θa1 , θ

a
2 ,y))−fF (t,Φ(θb1, θ

b
2,y))‖FT ≤ C ′T‖θa − θb‖ΘT . (3.10)

These estimates are proven in Appendix A.
For (ũj , p̃j , θj1, θ

j
2) ∈ BR(T ), we have G(θj1, θ

j
2, θ̇

j
1, θ̇

j
2)(0) = 0, hence Proposition 2.7 yields the estimate

‖ΛT (ũa, p̃a, θa1 , θ
a
2)− ΛT (ũb, p̃b, θb1, θ

b
2)‖UT×PT×ΘT

≤ C(‖F(θa1 , θ
a
2 , ũ

a, p̃a)− F(θb1, θ
b
2, ũ

b, p̃b)‖FT + ‖G(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖GT

+‖S(θa1 , θ
a
2 , ũ

a, p̃a)− S(θb1, θ
b
2, ũ

b, p̃b)‖ST + ‖fF (t,Φ(θa1 , θ
a
2 ,y))−fF (t,Φ(θb1, θ

b
2,y))‖FT ),

(3.11)

and with Lemma 3.3, we have

‖ΛT (ũa, p̃a, θa1 , θ
a
2)− ΛT (ũb, p̃b, θb1, θ

b
2)‖UT×PT×ΘT ≤ KT 1/4(‖ũa − ũb‖UT + ‖p̃a − p̃b‖PT + ‖θa − θb‖ΘT ),

(3.12)
where K = 4CC ′(R) depends on R but not on T . Then, for T ∈ (0, T0) such that

KT 1/4 ≤ 1/2,

the application ΛT is a contraction on BR(T ). Moreover, (3.12) and (3.5) yield

‖ΛT (ũ, p̃, θ1, θ2)‖UT×PT×ΘT ≤ ‖ΛT (0, 0, 0, 0)‖NT +KT 1/4(‖ũ‖UT + ‖p̃‖PT + ‖θ‖ΘT ) ≤ R/2 +KRT 1/4 ≤ R.

According to Remark 3.2, we have proven that ΛT : BR(T )→ BR(T ) is a contraction. Then, according to the
Picard fixed point theorem, there exists a unique fixed point to ΛT in BR(T ). This fixed point is the solution
to problem (2.16) where the source terms are given by (3.1). This proves Theorem 3.1.

Remark 3.4. Fixing the initial condition for (θ1, θ2) in (3.6) is necessary to get the term T in the estimates of
Lemma 3.3. We could also have fixed θ̇1(0) and θ̇2(0) in (3.6). As it is not needed in our proof of Lemma 3.3,
we have chosen to let it free.
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3.3 Proof of the result in the moving domain, Theorem 1.6
We consider (ũ, p̃, θ1, θ2) in UT × PT × ΘT the solution to problem (2.16) with (3.1) given by Theorem 3.1.
Let u(t,x) = cof(JΨ(θ1(t), θ2(t),x))T ũ(t,Ψ(θ1(t), θ2(t),x)) and p(t,x) = p̃(t,Ψ(θ1(t), θ2(t),x)). Then the
quadruplet (u, p, θ1, θ2) is solution to the problem in the moving domain. This proves Theorem 1.6.

A Proof of Lemma 3.3
This section is devoted to the proof of Lemma 3.3. We start with some intermediate lemmas that will be used
to decompose the intricate terms of Lemma 3.3 in smaller pieces.

A.1 Technical Lemmas
The following lemma contains Lipschitz estimates on several terms.

Lemma A.1. For R > 0, there exists a constant C = C(R) > 0 such that for every T ∈ (0, T0) and every
(., ., θj1, θ

j
2) ∈ BR(T ), the following estimates hold

‖Φ(θa1 , θ
a
2)−Φ(θb1, θ

b
2)‖L∞(0,T ;L∞(Ω)) ≤ CT‖θa − θb‖ΘT , (A.1)

‖JΦ(θa1 , θ
a
2)− JΦ(θb1, θ

b
2)‖L∞(0,T ;H2(Ω)) ≤ CT‖θa − θb‖ΘT , (A.2)

‖JΨ(θa1 , θ
a
2)− JΨ(θb1, θ

b
2)‖L∞(0,T ;H2(Ω)) ≤ CT‖θa − θb‖ΘT , (A.3)

‖(∂xjJΨ(θa1 , θ
a
2)) ◦Φ(θa1 , θ

a
2)− (∂xjJΨ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2)‖L∞(0,T ;H1(Ω)) ≤ CT‖θa − θb‖ΘT , (A.4)

‖(∂2
xjJΨ(θa1 , θ

a
2)) ◦Φ(θa1 , θ

a
2)− (∂2

xjJΨ(θb1, θ
b
2)) ◦Φ(θb1, θ

b
2)‖L∞(0,T ;L2(Ω)) ≤ CT‖θa − θb‖ΘT , (A.5)

‖Mθa1 ,θ
a
2
−Mθb1,θ

b
2
‖L∞(0,T ) ≤ CT‖θa − θb‖ΘT , (A.6)

‖nθa1 ,θa2 (Φ(θa1 , θ
a
2))− nθb1,θb2(Φ(θb1, θ

b
2))‖L∞(0,T ;L∞(∂S0)) ≤ CT‖θa − θb‖ΘT , (A.7)

‖ det(JΨ(θa1 , θ
a
2))− det(JΨ(θb1, θ

b
2))‖L∞(0,T ;L∞(Ω)) ≤ CT‖θa − θb‖ΘT , (A.8)

‖∂θjΦ(θa1 , θ
a
2 , .)− ∂θjΦ(θb1, θ

b
2, .)‖L∞(0,T ;H2(Ω)) ≤ CT‖θa − θb‖ΘT , (A.9)

‖∂θkθjΦ(θa1 , θ
a
2 , .)− ∂θkθjΦ(θb1, θ

b
2, .)‖L∞(0,T ;H2(Ω)) ≤ CT‖θa − θb‖ΘT , (A.10)

‖ |JΦ(θa1 , θ
a
2)t0| − |JΦ(θb1, θ

b
2)t0| ‖L∞(0,T ;L∞(∂S0)) ≤ CT‖θa − θb‖ΘT , (A.11)

and

‖∂tJΦ(θa1 , θ
a
2)− ∂tJΦ(θb1, θ

b
2)‖L∞(0,T ;H2(Ω)) ≤ C‖θa − θb‖ΘT , (A.12)

‖∂t(Ψ(θa1 , θ
a
2)) ◦Φ(θa1 , θ

a
2)− ∂t(Ψ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2)‖L∞(0,T ;L∞(Ω)) ≤ C‖θa − θb‖ΘT , (A.13)

‖∂t(JΨ(θa1 , θ
a
2)) ◦Φ(θa1 , θ

a
2)− ∂t(JΨ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2)‖L∞(0,T ;L∞(Ω)) ≤ C‖θa − θb‖ΘT . (A.14)

Moreover, for every (ũj , ., θj1, θ
j
2) ∈ BR(T ), the following estimates hold on G defined in (3.3)

‖G(θa1 , θ
a
2 , ũ

a)− G(θb1, θ
b
2, ũ

b)‖L2(0,T ;L2(∂S0)) ≤ C(‖θa − θb‖ΘT + ‖ũa − ũb‖UT ), (A.15)

‖∇ũa − G(θa1 , θ
a
2 , ũ

a)−∇ũb + G(θb1, θ
b
2, ũ

b)‖L2(0,T ;L2(∂S0)) ≤ CT (‖θa − θb‖ΘT + ‖ũa − ũb‖UT ). (A.16)

In particular, as a direct application of Lemma A.1, using that (0, 0, 0, 0) ∈ BR(T ), we obtain the following
lemma.

Lemma A.2. For R > 0, there exists a constant C = C(R) > 0, such that for every T ∈ (0, T0) and every
(., ., θ1, θ2) ∈ BR(T ), the following estimates hold

‖JΦ(θ1, θ2)− I‖L∞(0,T ;H2(Ω)) ≤ CT, (A.17)
‖JΨ(θ1, θ2,Φ(θ1, θ2))− I‖L∞(0,T ;H2(Ω)) ≤ CT, (A.18)
‖∂xjJΨ(θ1, θ2) ◦Φ(θ1, θ2)‖L∞(0,T ;H1(Ω)) ≤ CT, (A.19)

‖∂2
xjJΨ(θ1, θ2) ◦Φ(θ1, θ2)‖L∞(0,T ;L2(Ω)) ≤ CT, (A.20)

‖Mθ1,θ2
−M0,0‖L∞(0,T ) ≤ CT, (A.21)

‖nθ1,θ2(Φ(θ1, θ2))− n0‖L∞(0,T ;L∞(∂S0)) ≤ CT, (A.22)
‖ |JΦt0| − 1‖L∞(0,T ;L∞(∂S0)) ≤ CT, (A.23)
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and

‖∂t(JΦ(θ1, θ2))‖L∞(0,T ;H2(Ω)) ≤ C, (A.24)∥∥∥∥ ∂∂t (Ψ(θ1, θ2)) ◦Φ(θ1, θ2)

∥∥∥∥
L∞(0,T ;L∞(Ω))

≤ C, (A.25)∥∥∥∥ ∂∂t (JΨ(θ1, θ2)) ◦Φ(θ1, θ2)

∥∥∥∥
L∞(0,T ;L∞(Ω))

≤ C. (A.26)

Moreover, for every (ũ, ., θ1, θ2) ∈ BR(T ), we have the following estimate on G

‖∇ũ − G(θ1, θ2, ũ)‖L2(0,T ;L2(∂S0)) ≤ CT. (A.27)

Proof of Lemma A.1. Three kinds of estimates have to be proven. First estimates (A.1)–(A.10) are of the type

‖α(θa1 , θ
a
2)− α(θb1, θ

b
2)‖L∞(0,T ;X) ≤ CT‖(θa1 , θa2)− (θb1, θ

b
2)‖ΘT ,

where α is a differentiable function defined on DΘ and valued in X. We thus use Taylor series and get

‖α(θa1 , θ
a
2)− α(θb1, θ

b
2)‖L∞(0,T ;X) ≤ sup

(θ1,θ2)∈DΘ

‖∇θα(θ1, θ2)‖L∞(0,T ;X)‖θa − θb‖L∞(0,T ).

According to the definition of BR(T ) in (3.6), θa(0) = θb(0) = (0, 0), we finish with

‖θa − θb‖L∞(0,T ) ≤ T‖θa − θb‖ΘT .

The second type of estimates (A.12)–(A.14) is of the form

‖α(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)− α(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖L∞(0,T ;X) ≤ C‖(θa1 , θa2)− (θb1, θ

b
2)‖ΘT ,

where α is now a function defined on DΘ × R2 with values in X. We use the same strategy and get

‖α(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)− α(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖L∞(0,T ;X)

≤ sup
(θ1,θ2)∈DΘ

|ω1|+|ω2|≤R

‖∇θ,ωα(θ1, θ2, ω1, ω2)‖L∞(0,T ;X)(‖θa − θb‖L∞(0,T ) + ‖θ̇a − θ̇b‖L∞(0,T )).

Note that contrary to the first type of estimates, we do not have the decay in T because we did not enforce
θ̇a(0) = θ̇b(0).

Estimate (A.15) is a direct consequence of (A.16). The last estimate to prove is (A.16). We do it via the
computation

(G(θa1 , θ
a
2 , ũ

a)−G(θb1, θ
b
2, ũ

b)−∇ũa +∇ũb)ij

=
∑
k

(
cof(∂xjJΨ(θa1 , θ

a
2 , .) ◦Φa)ki − cof(∂xjJΨ(θb1, θ

b
2, .) ◦Φb)ki

)
ũak

+
∑
k

cof(∂xjJΨ(θb1, θ
b
2, .) ◦Φb)ki(ũ

a
k − ũbk)

+
∑
k,l

cof(JΨ(θa1 , θ
a
2 ,Φ

a)− JΨ(θb1, θ
b
2,Φ

b))ki
∂ũak
∂yl

∂Ψl

∂xj
(θa1 , θ

a
2 ,Φ

a)

+
∑
k,l

(
cof(JΨ(θb1, θ

b
2,Φ

b))ki
∂Ψl

∂xj
(θa1 , θ

a
2 ,Φ

a)− δkiδlj
)(

∂ũak
∂yl
− ∂ũbk
∂yl

)
+
∑
k,l

cof(JΨ(θb1, θ
b
2,Φ

b))ki
∂ũbk
∂yl

(
∂Ψl

∂xj
(θa1 , θ

a
2 ,Φ

a)− ∂Ψl

∂xj
(θb1, θ

b
2,Φ

b)

)
,

and with the use of estimates (A.3), (A.4), (A.18) and (A.19) we get estimate (A.16).

A.2 Detailed proof of Lemma 3.3
Proof. In all the estimates we use Lemmas A.1 and A.2.
• Estimate (3.7): using (A.18) and (A.3), we get

‖F1(θa1 , θ
a
2 ,v

a) −F1(θb1, θ
b
2,v

b)‖FT
≤
∥∥I − cof(JΨ(θa1 , θ

a
2))T

∥∥
L∞(L∞)

∥∥∥∥∂va

∂t
− ∂vb

∂t

∥∥∥∥
L2(L2)

+
∥∥cof(JΨ(θb1, θ

b
2))T − cof(JΨ(θa1 , θ

a
2))T

∥∥
L∞(L∞)

∥∥∥∥∂vb

∂t

∥∥∥∥
L2(L2)

≤ KT (‖θa − θb‖ΘT + ‖va − vb‖UT ).
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Now, using (A.26), (A.25), (A.14), (A.13), (A.3) and the estimate ‖v‖L2(0,T ;H1(F0)) ≤ T 1/2‖v‖L∞(0,T ;H1(F0)),
we obtain

‖F2(θa1 , θ
a
2 ,v

a) −F2(θb1, θ
b
2,v

b)‖FT

≤ ‖cof(∂tJΨ(θb1, θ
b
2) ◦Φ(θb1, θ

b
2)− ∂tJΨ(θa1 , θ

a
2) ◦Φ(θa1 , θ

a
2))T ‖L∞(L∞)‖va‖L2(L2)

+‖cof(∂tJΨ(θb1, θ
b
2) ◦Φ(θb1, θ

b
2))T ‖L∞(L∞)‖vb − va‖L2(L2)

+‖cof(JΨ(θb1, θ
b
2)◦Φ(θb1, θ

b
2)−JΨ(θa1 , θ

a
2)◦Φ(θa1 , θ

a
2))T‖L∞(L∞)‖va‖L2(H1)‖∂tΨ(θa1 , θ

a
2) ◦Φ‖L∞(L∞)

+‖cof(JΨ(θb1, θ
b
2) ◦Φ(θb1, θ

b
2))T ‖L∞(L∞)‖vb − va‖L2(H1)‖∂tΨ(θa1 , θ

a
2) ◦Φ‖L∞(L∞)

+‖cof(JΨ(θb1, θ
b
2)◦Φ(θb1, θ

b
2))T‖L∞(L∞)‖vb‖L2(H1)‖∂t(Ψ(θb1, θ

b
2))◦Φ−∂t(Ψ(θa1 , θ

a
2))◦Φ‖L∞(L∞)

≤ KT 1/2(‖va − vb‖UT + ‖θa − θb‖ΘT ).

In the following estimate we use the Sobolev embedding : H1/2+ε0 ↪→ L4 (see [1, Theorem 7.58]). We also
use the fact that JΨ is the identity near the boundary, i.e. E has support in Ωε (defined in Lemma 1.5), then
JΨ(θ1, θ2,Φ(θ1, θ2,y))− I = 0 for y ∈ Ω\Ωε. Hence,∥∥∥∥∥∥∥∥

cof(JΨ)ki
∂Ψl

∂xj

∂Ψm

∂xj
− δkiδljδmj∏

j

rβj

∥∥∥∥∥∥∥∥
L∞(L∞(Ω))

≤

∥∥∥∥∥∥∥∥
cof(JΨ)ki

∂Ψl

∂xj

∂Ψm

∂xj
− δkiδljδmj∏

j

rβj

∥∥∥∥∥∥∥∥
L∞(L∞(Ωε))

≤

∥∥∥∥∥∥∥
1∏
j

rβj

∥∥∥∥∥∥∥
L∞(Ωε)

∥∥∥∥cof(JΨ)ki
∂Ψl

∂xj

∂Ψm

∂xj
− δkiδljδmj

∥∥∥∥
L∞(L∞(Ω))

.

We have

‖F3(θa1 , θ
a
2 ,v

a)− F3(θb1, θ
b
2,v

b)‖FT

≤ ν
∑

j,k,l,m

∥∥∥∥∥∥∥∥
cof(JΨ(θa1 , θ

a
2))ki

∂Ψl

∂xj
(θa1 , θ

a
2)
∂Ψm

∂xj
(θa1 , θ

a
2)− cof(JΨ(θb1, θ

b
2))ki

∂Ψl

∂xj
(θb1, θ

b
2)
∂Ψm

∂xj
(θb1, θ

b
2)∏

n
rβn

∥∥∥∥∥∥∥∥
L∞(L∞)

×
∥∥∥∥ ∂2vak
∂yl∂ym

∥∥∥∥
L2(L2

β)

+

∥∥∥∥∥∥∥∥
cof(JΨ(θb1, θ

b
2))

∂Ψl

∂xj
(θb1, θ

b
2)
∂Ψm

∂xj
(θb1, θ

b
2)− δlmδkiδli∏

n
rβn

∥∥∥∥∥∥∥∥
L∞(L∞)

∥∥∥∥ ∂2vak
∂yl∂ym

− ∂2vbk
∂yl∂ym

∥∥∥∥
L2(L2

β)

+2ν
∑
j,k,l

∥∥∥∥ ∂

∂xj
(cof(JΨ(θa1 , θ

a
2))ki)

∂Ψl

∂xj
(θa1 , θ

a
2)− ∂

∂xj
(cof(JΨ(θb1, θ

b
2))ki)

∂Ψl

∂xj
(θb1, θ

b
2)

∥∥∥∥
L∞(L4)

‖va‖L2(W1,4)

+

∥∥∥∥ ∂

∂xj
cof(JΨ(θb1, θ

b
2))ki

∂Ψl

∂xj
(θb1, θ

b
2)

∥∥∥∥
L∞(L4)

‖va − vb‖L2(W1,4)

+ν
∑
j,k,l

∥∥∥∥∥cof(JΨ)ki(θ
a
1 , θ

a
2)
∂2Ψl

∂x2
j

(θa1 , θ
a
2)− cof(JΨ)ki(θ

b
1, θ

b
2)
∂2Ψl

∂x2
j

(θb1, θ
b
2)

∥∥∥∥∥
L∞(L4)

‖va‖L2(W1,4)

+

∥∥∥∥∥cof(JΨ)ki(θ
b
1, θ

b
2)
∂2Ψl

∂x2
j

(θb1, θ
b
2)

∥∥∥∥∥
L∞(L4)

‖va − vb‖L2(W1,4)

+ν
∑
j,k

∥∥∥∥∥ ∂2

∂x2
j

cof
(
JΨ(θa1 , θ

a
2)− JΨ(θb1, θ

b
2)
)
ki

∥∥∥∥∥
L∞(L2)

‖va‖L2(L∞) +

∥∥∥∥∥ ∂2

∂x2
j

cof(JΨ(θb1, θ
b
2))ki

∥∥∥∥∥
L∞(L2)

‖va − vb‖L2(L∞).
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Moreover,∥∥∥∥cof(JΨ(θa1 , θ
a
2))ki

∂Ψl

∂xj
(θa1 , θ

a
2)
∂Ψm

∂xj
(θa1 , θ

a
2)− cof(JΨ(θb1, θ

b
2))ki

∂Ψl

∂xj
(θb1, θ

b
2)
∂Ψm

∂xj
(θb1, θ

b
2)

∥∥∥∥
L∞(L∞)

≤ ‖cof(JΨ(θa1 , θ
a
2)− JΨ(θb1, θ

b
2))ki‖L∞(L∞)‖JΨ(θa1 , θ

a
2)‖L∞(L∞)‖JΨ(θa1 , θ

a
2)‖L∞(L∞)

+‖cof(JΨ(θb1, θ
b
2))‖L∞(L∞)‖JΨ(θa1 , θ

a
2)− JΨ(θb1, θ

b
2)‖L∞(L∞)‖JΨ(θa1 , θ

a
2)‖L∞(L∞)

+‖cof(JΨ(θb1, θ
b
2))‖L∞(L∞)‖JΨ(θb1, θ

b
2)‖L∞(L∞)‖JΨ(θa1 , θ

a
2)− JΨ(θb1, θ

b
2)‖L∞(L∞)

≤ KT‖θa − θb‖ΘT ,

and with similar estimates, we get

‖F3(θa1 , θ
a
2 ,v

a)− F3(θb1, θ
b
2,v

b)‖FT ≤ KT (‖θa − θb‖ΘT + ‖va − vb‖UT ).

The estimate on F4 can be decomposed in the following way

‖F4(θa1 , θ
a
2 ,v

a)− F4(θb1, θ
b
2,v

b)‖FT
≤
∑
j,k,r

∥∥∥∥cof(JΨ)ki(θ
a
1 , θ

a
2)

∂

∂xj
(JΨ)ki(θ

a
1 , θ

a
2)− cof(JΨ)ki(θ

b
1, θ

b
2)

∂

∂xj
(JΨ)ki(θ

b
1, θ

b
2)

∥∥∥∥
L∞(L∞)

‖vakvar‖L2(L2)

+

∥∥∥∥cof(JΨ)ki(θ
b
1, θ

b
2)

∂

∂xj
(JΨ)ri(θ

b
1, θ

b
2)

∥∥∥∥
L∞(L∞)

‖vakvar − vbkvbr‖L2(L2)

+
∑
k,r

∥∥∥∥det(JΨ(θa1 , θ
a
2))2 ∂Φ

∂yr
(θa1 , θ

a
2)− det(JΨ(θb1, θ

b
2))2 ∂Φ

∂yr
(θb1, θ

b
2)

∥∥∥∥
L∞(L∞)

∥∥∥∥vak ∂var∂yk

∥∥∥∥
L2(L2)

+

∥∥∥∥det(JΨ(θb1, θ
b
2))2 ∂Φ

∂yr
(θb1, θ

b
2)

∥∥∥∥
L∞(L∞)

∥∥∥∥vak ∂var∂yk
− vbk

∂vbr
∂yk

∥∥∥∥
L2(L2)

.

At this point we use estimates (A.17), (A.18), (A.3), (A.2), (A.4), (A.19), (A.8) and the Sobolev embedding
H1/2+ε0 ↪→ L4 to obtain

‖F4(θa1 , θ
a
2 ,v

a)− F4(θb1, θ
b
2,v

b)‖FT ≤ C

(
T‖θa − θb‖ΘT + ‖vakvar − vbkvbr‖L2(L2) +

∥∥∥∥vak ∂var∂yk
− vbk

∂vbr
∂yk

∥∥∥∥
L2(L2)

)
.

Hölder inequalities yield∥∥∥∥vak ∂var∂yk
− vbk

∂vbr
∂yk

∥∥∥∥
L2(L2)

≤
∥∥∥∥(vak − vbk)

∂var
∂yk

∥∥∥∥
L2(0,T ;L2(F0))

+

∥∥∥∥vbk (∂var∂yk
− ∂vbr
∂yk

)∥∥∥∥
L2(0,T ;L2(F0))

≤ T 1/4
(∥∥∥∥(vak − vbk)

∂var
∂yk

∥∥∥∥
L4(0,T ;L2(F0))

+

∥∥∥∥vbk (∂var∂yk
− ∂vbr
∂yk

)∥∥∥∥
L4(0,T ;L2(F0))

)
≤ CT 1/4

(∥∥vak − vbk∥∥L∞(0,T ;L10)

∥∥∥∥∂var∂yk

∥∥∥∥
L4(0,T ;L5/2)

+ ‖vbk‖L∞(0,T ;L10)

∥∥∥∥∂var∂yk
− ∂vbr
∂yk

∥∥∥∥
L4(0,T ;L5/2)

)
.

To estimate the previous terms, we adapt the proof of [4, p. 298]. We use the Sobolev interpolation∥∥∥∥∂vr∂yk

∥∥∥∥
H1/4(F0)

≤ C
∥∥∥∥∂vr∂yk

∥∥∥∥1/2

H1/2(F0)

∥∥∥∥∂vr∂yk

∥∥∥∥1/2

L2(F0)

,

and we compute∥∥∥∥∂vr∂yk

∥∥∥∥4

L4(0,T ;H1/4(F0))

=

∫ T

0

∥∥∥∥∂vr∂yk

∥∥∥∥4

H1/4(F0)

dt ≤ C4

∫ T

0

∥∥∥∥∂vr∂yk

∥∥∥∥2

H1/2(F0)

∥∥∥∥∂vr∂yk

∥∥∥∥2

L2(F0)

dt

≤ C4

∥∥∥∥∂vr∂yk

∥∥∥∥2

L2(0,T ;H1/2(F0))

∥∥∥∥∂vr∂yk

∥∥∥∥2

L∞(0,T ;L2(F0))

.

The same technique can be used on the term ‖vakvar − vbkvbr‖L2(L2). Then the Sobolev embeddings H1/4(F0) ↪→
L5/2(F0) and H1(F0) ↪→ L10(F0) yield the estimate

‖F4(θa1 , θ
a
2 ,v

a)− F4(θb1, θ
b
2,v

b)‖FT ≤ CT 1/4(‖θa − θb‖ΘT + ‖va − vb‖UT ).
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The following estimate uses (A.18) and (A.14),

‖F5(θa1 , θ
a
2 , q

a) −F5(θb1, θ
b
2, q

b)‖FT

≤

∥∥∥∥∥∥∥
J TΨ(θb1, θ

b
2)− J TΨ(θa1 , θ

a
2)∏

j

rβj

∥∥∥∥∥∥∥
L∞

‖qa‖L2(H1
β) +

∥∥∥∥∥∥∥
I − J TΨ(θb1, θ

b
2)∏

j

rβj

∥∥∥∥∥∥∥
L∞

‖qa − qb‖L2(H1
β)

≤ KT (‖θa − θb‖ΘT + ‖qa − qb‖PT ).

• Estimate (3.8): we use the fact that H2(F0) is an algebra and estimates (A.17), (A.2), (A.9), (A.24), (A.12)
and (A.10),

∥∥∥∥ ∂∂t (G(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)
)∥∥∥∥

L2(0,T ;H3/2(∂S0))

≤
2∑
j=1

‖θ̈aj − θ̈bj‖L2(0,T )

∥∥cof(JΦ(θa1 , θ
a
2))T∂θjΦ(θa1 , θ

a
2 ,y)− ∂θjΦ(0, 0,y)

∥∥
L∞(0,T ;H2(F0))

+

2∑
j=1

‖θ̈bj‖L2(0,T )

∥∥cof(JΦ(θa1 , θ
a
2 ,y))T∂θjΦ(θa1 , θ

a
2 ,y)− cof(JΦ(θb1, θ

b
2,y))T∂θjΦ(θb1, θ

b
2,y)

∥∥
L∞(0,T ;H2(F0))

+

2∑
j=1

‖θ̇aj − θ̇bj‖L2(0,T )

∥∥∥∥ ∂∂tcof(JΦ(θa1 , θ
a
2))T∂θjΦ(θa1 , θ

a
2 ,y)

∥∥∥∥
L∞(0,T ;H2(F0))

+

2∑
j=1

‖θ̇bj‖L2(0,T )

∥∥∥∥ ∂∂tcof(JΦ(θa1 , θ
a
2 ,y))T∂θjΦ(θa1 , θ

a
2 ,y)− ∂

∂t
cof(JΦ(θb1, θ

b
2,y))T∂θjΦ(θb1, θ

b
2,y)

∥∥∥∥
L∞(0,T ;H2(F0))

+

2∑
j,k=1

‖θ̇aj θ̇ak − θ̇bj θ̇bk‖L2(0,T )‖cof(JΦ(θa1 , θ
a
2 ,y))T∂θjθkΦ(θa1 , θ

a
2 ,y)‖L∞(0,T ;H2(F0))

+

2∑
j,k=1

‖θ̇bj θ̇bk‖L2(0,T )‖cof(JΦ(θa1 , θ
a
2 ,y))T∂θjθkΦ(θa1 , θ

a
2 ,y)− cof(JΦ(θb1, θ

b
2,y))T∂θjθkΦ(θb1, θ

b
2,y)‖L∞(0,T ;H2(F0)),

and ‖θ̇aj θ̇ak − θ̇bj θ̇bk‖L2(0,T ;R) ≤ T 1/2‖θ̇aj θ̇ak − θ̇bj θ̇bk‖L∞(0,T ;R).

We have proven that
∥∥∥∂t (G(θa1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)
)∥∥∥

L2(0,T ;H3/2(∂S0))
≤ KT 1/2‖θa − θb‖ΘT . With

the same technique, we also prove ‖G(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2) − G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖L2(0,T ;H3/2(∂S0)) ≤ KT 1/2‖θa − θb‖ΘT

and we get estimate (3.8).
• Estimate (3.9): we use the following decomposition

[S(θa1 , θ
a
2 , ũ

a, p̃a)− S(θb1, θ
b
2, ũ

b, p̃b)]j

=

[(
Mθb1,θ

b
2
−Mθa1 ,θ

a
2

)( θ̈a1
θ̈a2

)]
j

+

[(
M0,0 −Mθb1,θ

b
2

)( θ̈a1 − θ̈b1
θ̈a2 − θ̈b2

)]
j

+
[
MI(θ

a
1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)−MI(θ

b
1, θ

b
2, θ̇

b
1, θ̇

b
2)
]
j

+

∫
∂S0

|J aΦt0|
[
p̃aI − ν(G(θa1 , θ

a
2 , ũ

a) + G(θa1 , θ
a
2 , ũ

a)T )
]

(nθa1 ,θa2 ◦Φa) · (∂θjΦ(θa1 , θ
a
2 , γy)− ∂θjΦ(θb1, θ

b
2, γy))

+

∫
∂S0

|J aΦt0|
[
p̃aI − ν(G(θa1 , θ

a
2 , ũ

a) + G(θa1 , θ
a
2 , ũ

a)T )
]

(nθa1 ,θa2 ◦Φa − nθb1,θb2 ◦Φb) · ∂θjΦ(θb1, θ
b
2, γy)

+

∫
∂S0

−ν|J aΦt0|
[
G(θa1 , θ

a
2 , ũ

a)+G(θa1 , θ
a
2 , ũ

a)T−G(θb1, θ
b
2, ũ

b)−G(θb1, θ
b
2, ũ

b)T−∇(ũa−ũb)−∇(ũa−ũb)T
]

(nθb1,θb2 ◦Φb) · ∂θjΦ(θb1, θ
b
2, γy)

+

∫
∂S0

|J aΦt0|
[
(p̃a − p̃b)I − ν(∇(ũa − ũb) +∇(ũa − ũb)T )

]
(nθb1,θb2 ◦Φb) · (∂θjΦ(θb1, θ

b
2, γy)− ∂θjΦ(0, 0, γy))

+

∫
∂S0

|J aΦt0|
[
(p̃a − p̃b)I − ν(∇(ũa − ũb) +∇(ũa − ũb)T )

]
(nθb1,θb2 ◦Φb − n0) · ∂θjΦ(0, 0, γy)

+

∫
∂S0

(|J aΦt0| − 1)
[
(p̃a − p̃b)I − ν(∇(ũa − ũb) +∇(ũa − ũb)T )

]
n0 · ∂θjΦ(0, 0, γy)

+

∫
∂S0

(|J aΦt0| − |J bΦt0|)
[
p̃bI − ν(G(θb1, θ

b
2, ũ

b) + G(θb1, θ
b
2, ũ

b)T )
]

(nθb1,θb2 ◦Φb) · ∂θjΦ(θb1, θ
b
2, γy),

and we use the estimate

‖MI(θ
a
1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)−MI(θ

b
1, θ

b
2, θ̇

b
1, θ̇

b
2)‖L2(0,T )≤ K(‖(θ̇a1 − θ̇b1)2‖L4 +‖(θ̇a1 − θ̇b1)(θ̇a2 − θ̇b2)‖L2 +‖(θ̇a2 − θ̇b2)2‖L4)

≤ KT 1/2(‖θ̇a1 − θ̇b1‖2L∞ +‖(θ̇a1 − θ̇b1)(θ̇a2 − θ̇b2)‖L∞ +‖θ̇a2 − θ̇b2‖2L∞),

and (A.9), (A.21), (A.22), (A.6), (A.27), (A.7), (A.11), (A.23) and (A.16) to conclude and obtain (3.9).

23



• Estimate (3.10): we use the Lipschitz regularity of fF and estimate (A.1),

‖fF (t,Φ(θa1 , θ
a
2 ,y))−fF (t,Φ(θb1, θ

b
2,y))‖L2(0,T ;L2(F0))

≤ C‖fF‖L2(0,T ;W1,∞(Ω))‖Φ(θa1 , θ
a
2 ,y)−Φ(θa1 , θ

a
2 ,y)‖L∞(0,T ;L∞(F0))

≤ CT‖θa − θb‖ΘT .
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