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1. Statement of the results

The real planar differential system

ẋ = f (x, y), ẏ = g(x, y) (1)

is said to be (α,β,ω)-weight-homogeneous if there exist weights α,β > 0 and ω ∈ R such that for all
ρ > 0, x, y ∈ R holds f (ραx,ρβ y) = ρω+α f (x, y) and g(ραx,ρβ y) = ρω+β g(x, y). Equivalently, the
system (1) is weight-homogeneous if the foliation
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F0: f (x, y)dy − g(x, y)dx = 0

is invariant under the dilatation

Φ : R
2 → R

2 : (x, y) �→ Φ(x, y) = (
ραx,ρβ y

)
. (2)

In what follows we shall suppose that the weight-homogeneous system (1) has a center at the origin. Then
the center is global and the open period annulus O = R

2 \ {(0,0)} is a union of periodic orbits. The
center needs to be global due to its invariance under the aforementioned dilatation. The purpose of
the present paper is to study small perturbations of such global centers.

Consider a one-parameter analytic perturbation

ẋ = f (x, y) + εQ (x, y, ε), ẏ = g(x, y) − εP (x, y, ε) (3)

of (1) and suppose that P (x, y, ε), Q (x, y, ε) are polynomials in x, y of degree d, depending an-
alytically on the parameter ε. For every compact set K contained in the real positive half-axis
R

+∗ = {(x,0): x > 0}, and for |ε| small enough, there exists an open interval Δ ⊃ K on which the
first return map

Πε : Δ → R
+ : x �→ Πε(x) (4)

is well defined and analytic

Πε(x) = x + εk Mk(x) + o
(
εk).

Its fixed points correspond to limit cycles of (3). We note that the function Mk(x) is defined on
the whole half-axis R

+∗ = {(x,0): x > 0} and its zeros counted with multiplicity provide an up-
per bound for the number of fixed points of Πε on K . It is known that the so-called higher order
Poincaré–Pontryagin–Melnikov function Mk(x) allows an integral representation in terms of iterated
path integrals [2–4] along the periodic orbits γ (x) of the system (1). If the perturbation is generic,
then k = 1 (M1 �≡ 0). The first result of the paper is the following.

Theorem 1. If the first Poincaré–Pontryagin–Melnikov function M1 is not identically zero, then the perturbed
system (3) has at most (d + 1)(d + 4)/2 − 1 limit cycles which tend to periodic orbits as ε tends to zero.

In other words, the cyclicity of the open period annulus O with respect to generic (such that
M1 �≡ 0) perturbations of degree d is at most (d + 1)(d + 4)/2 − 1. This bound is certainly not exact,
as one can easily check in the case of a linear center. The above theorem does not make any claim
about the number of limit cycles which tend to the origin or to the “infinity”.

In the case when the system (1) has a polynomial first integral and is moreover Hamiltonian,
the computation is straightforward (as we have a well-known integral formula for M1), see [6,8,11].
However, in general, a weight-homogeneous system with a global center is neither Hamiltonian, nor
it has an analytic or even meromorphic first integral. Under the restrictions that the polynomials
f , g have no common divisor in R[x, y] and that the origin has no characteristic directions, a result
close to our Theorem 1 was recently announced in [7, Theorems A, B, C]. We note that our result is
different, more general and with a much shorter proof.

The next question addressed in the paper is: are there non-Hamiltonian weight-homogeneous polyno-
mial systems with a center?

The answer turns out to be positive. Theorem 2 provides a large class of non-trivial weight-
homogeneous systems with a global center to which Theorem 1 applies. An explicit example of such
a system is given in (8) below, and the exact upper bound for the number of the limit cycles under a
generic perturbation is given in Theorem 3.
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To formulate Theorem 2, let h1,h2 ∈ R[x, y] be two (α,β, δ)-weight-homogeneous polynomials
of the same weighted degree, that is, hi(ρ

αx,ρβ y) = ρδhi(x, y), i = 1,2, for any x, y ∈ R and any
ρ ∈ R+ . We recall that α,β, δ are real numbers with α,β > 0. We also assume that h1 and h2 are
such that

• h2(x, y) � 0, ∀(x, y) ∈ R
2,

• h1(x, y) = h2(x, y) = 0 if and only if (x, y) = (0,0).

Let σ ∈ C and 
σ �= 0 and put

H = (h1 + ih2)
σ (h1 − ih2)

σ̄ , V = 1

2
(h1 + ih2)

1−σ (h1 − ih2)
1−σ̄ .

Theorem 2. The system

ẋ = H y V , ẏ = −Hx V (5)

is a real polynomial (α,β,2δ − α − β)-weight-homogeneous planar differential system which has a global
center.

The proof of this theorem is given in Section 2. Clearly some hypothesis can be relaxed. For in-
stance, h1,h2 need not be polynomials.

Example. Put

h1(x, y) = x2n + y, h2(x, y) = |√1 + 4c|x2n/2, σ = 1 − 1/
√

1 + 4c,

where n is a natural number n � 1 and c is a real number with c < −1/4. System (5) takes the form

ẋ = y + x2n, ẏ = 2ncx4n−1, (6)

and it has a global center with a first integral

H = (
y + μ+x2n)1−1/

√
1+4c(

y + μ−x2n)1+1/
√

1+4c
, (7)

where μ± = (1 ± √
1 + 4c)/2.

We remark that system (6) is a (1,2n,2n − 1)-weight-homogeneous differential system.
To apply Theorem 1 to (6), we consider the following perturbed system

ẋ = y + x2n + εQ (x, y, ε), ẏ = 2ncx4n−1 − εP (x, y, ε), (8)

where |ε| > 0 is a small parameter, P (x, y, ε) and Q (x, y, ε) are polynomials in (x, y) and depend
analytically on ε and P (x, y,0) and Q (x, y,0) are polynomials of degree at most 4n − 1. Let {γh}h
be the continuous family of periodic orbits surrounding the center. The first Poincaré–Pontryagin–
Melnikov function M1 can be written as follows

M1(h) =
∮
γh

P (x, y,0)dx + Q (x, y,0)dy

V (x, y)
. (9)

(This formula holds true for the system (3) too, where V is an appropriate integrating factor.) We
deduce the following.



L. Gavrilov et al. / J. Differential Equations 246 (2009) 3126–3135 3129
Theorem 3. Suppose that M1(h) is not identically zero. Then

(a) the perturbed system (8) has at most n(3n + 1) − 1 limit cycles which tend to period orbits as ε tends to
zero;

(b) for suitable polynomials P (x, y,0), Q (x, y,0), and for all sufficiently small |ε|, the perturbed system (8)

has at least n(2n + 1) − 1 limit cycles which tend to period orbits.

The bounds are written in terms of the number n associated to system (6) which is not its
degree. The degree d = 4n − 1, and hence the upper bound for the number of limit cycles is
(d + 1)(3d + 7)/16 − 1, which is better than the one given in Theorem 1, due to the symmetries
of (6). The lower bound can also be written in terms of the degree and it is (d + 1)(d + 3)/8 − 1. It
is obtained by a direct study of the function M1. The symmetries of system (6) imply that the lower
bound for the number of limit cycles ((d + 1)(d + 3)/8 − 1) is strictly lower than the corresponding
lower bound (d(d + 1)/2) for a degree d perturbation of a generic Hamiltonian system of degree d [5].

2. Proofs

Proof of Theorem 1. We shall estimate the number of isolated zeros (counted with multiplicity) of
the first Poincaré–Pontryagin–Melnikov function I(h) = M1(h), see (9). Consider first the special case
Q (x, y,0) = 0 and P (x, y,0) = xi y j with i, j � 0 and i + j � d. Denote by Fε the real foliation defined
by

Fε: −g(x, y)dx + f (x, y)dy + εxi y j dx = 0 (10)

and let Πε be the corresponding first return map. The dilatation Φ defined in (2) transforms Fε to
the foliation Φ∗Fε

Φ∗Fε: −g(x, y)dx + f (x, y)dy + ερxi y j dx = 0,  = ω + β − iα − jβ. (11)

The first return map Περ of the foliation Fερ = Φ∗Fε is therefore conjugated to Πε

Πε = φ−1 ◦ Περ ◦ φ, (12)

where φ(x) = Φ(x,0) is the restriction of Φ to the cross-section R
+∗ = {(x,0): x > 0}.

Given a foliation F with an associated Poincaré map Π and a diffeomorphism Φ , then the
Poincaré map associated to Φ∗F is conjugated to Π . This is due to the fact that the Poincaré map of
a foliation is defined by its flow, see for instance Theorem 1 in page 207 of [9], and the flows of the
foliations F and Φ∗F are conjugated, see for instance Lemma 11 in page 217 of [10].

We have

Πε(x) = x + ε I(x) + o(ε), (13)

Περ(x) = x + ερ I(x) + o(ε), (14)

φ−1 ◦ Περ ◦ φ(x) = ρ−α
(
ραx + ερ I

(
ραx

) + o(ε)
)

(15)

= x + ερ−α I
(
ραx

) + o(ε). (16)

Therefore, equating the first order terms in ε in (13) and (16) we get

I(x) = ρ−α I
(
ραx

)
,

for any positive real numbers ρ, x. This implies, choosing ρ = x−1/α , that

I(x) = I(1)x(α−)/α = x1−(ω+β)/α I(1)x(αi+β j)/α. (17)
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In a similar way, if we suppose that Q (x, y,0) = xi y j and P (x, y,0) = 0 with i, j � 0 and i + j � d,
we deduce

I(x) = x1−(ω+β)/α I(1)x(α(i−1)+β( j+1))/α (18)

(this computation is omitted). Finally, taking into consideration the additivity of the Poincaré–
Pontryagin–Melnikov function (9) with respect to the monomials of P (x, y,0), Q (x, y,0) we conclude

I(x) = x1−(ω+β)/α
∑

(i, j)∈J
ci jx

(αi+β j)/α,

where J = {(i, j) ∈ Z
2: −1 � i � d, 0 � j � d + 1, 0 � i + j � d} and ci j ∈ R. The number (d + 1)(d +

4)/2 is the cardinal of the set J . Obviously the function I(x) has at most (d + 1)(d + 4)/2 − 1 zeros
(counted with multiplicity), on the interval (0,∞). This completes the proof of Theorem 1. �
Remark 4. Clearly, the above bound is exact if and only if α and β are not commensurable. The
weights α and β of any weight-homogeneous polynomial system (1) with a center at the origin are
necessarily commensurable. To show this fact just take any monomial of f (x, y) with a nonzero coeffi-
cient, aij xi y j , and any monomial of g(x, y) with a nonzero coefficient: bi′ j′ xi′ y j′ . Since f (ραx,ρβ y) =
ρω+α f (x, y) and g(ραx,ρβ y) = ρω+β g(x, y), for any x, y,ρ ∈ R, we deduce the identities: αi +β j =
ω +α and αi′ +β j′ = ω +β . We subtract them to deduce that α(i − i′ − 1)+β( j − j′ + 1) = 0, which
gives that α and β are commensurable. In the case when both f (x, y) and g(x, y) have only one
monomial with nonzero coefficient ( f (x, y) = aij xi y j , g(x, y) = bi′ j′ xi′ y j′ ) and such that i = i′ + 1 and
j′ = j + 1 the weights α and β are not commensurable, but the origin is a linear node instead of a
center.

Remark 5. The same result directly follows from the formula (9) for I(h); it suffices to note that
H, Hx, H y, V are weight-homogeneous functions of appropriate degree.

Proof of Theorem 2. The weight-homogeneous degree of the system (α,β,2δ − α − β) follows from
straightforward computations.

The condition that h2(x, y) � 0 implies that the variation of the argument of h1(x, y) + ih2(x, y)

along any closed path l ⊂ R
2 \ {(0,0)} is zero. Therefore for every fixed σ ∈ C the function (h1 + ih2)

σ

has a single valued analytic continuation on R
2 \ {(0,0)}. From now on we fix some determination

of (h1 + ih2)
σ . We note that functions H, V defined above, as well the associated differential system,

do not depend on this particular determination. We may suppose without loss of generality that

σ > 0 (otherwise we just replace H by 1/H). Then H has a continuous limit at (0,0) and we may
put H(0,0) = 0. We claim that each level set {(x, y): H(x, y) = ε}, ε > 0, is a smooth closed curve
containing the origin. Indeed, the restriction of H on a half-line l starting at the origin is again a
positive weight-homogeneous function. It follows that {(x, y): H(x, y) = ε} ∩ l consists of a single
point and therefore {(x, y): H(x, y) = ε} is a closed curve. Suppose that dH(x0, y0) = 0. Then the
differential of H is zero at any point belonging to the half-line l0 starting at the origin and containing
(x0, y0). It follows that H|l0 is a constant and moreover this constant equals to 0 = H(0,0) which is
impossible. Therefore the level set {(x, y): H(x, y) = ε}, ∀ε > 0, is a closed periodic orbit. The system
has a global center. �
Proof of Theorem 3. According to Theorem 2 the origin of system (6) is a center. As noted in Re-
mark 5, the first integral H and the inverse integrating factor V are weight-homogeneous. More
precisely

Lemma 6. Given any ρ ∈ C − {0} we have

V
(
ρx,ρ2n y

) = ρ4n V (x, y), H
(
ρx,ρ2n y

) = ρ4n H(x, y),

for any (x, y) ∈ R
2 − {(0,0)}.
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The proof is a straightforward computation.
We define the following functions:

Ii j(h) =
∮

H=h

xi y j

V (x, y)
dx, J i j(h) =

∮

H=h

xi y j

V (x, y)
dy,

where i, j are nonnegative integer numbers. By the expression of I(h) and taking into account that
P (x, y) and Q (x, y) are polynomials with real coefficients of degree at most 4n − 1, we have that

I(h) =
∑

0�i+ j�4n−1

αi j I i j(h) + βi j J i j(h), (19)

with αi j and βi j real numbers and i, j are nonnegative integer numbers.

Lemma 7. Given any ρ,h ∈ R with h > 0 and ρ �= 0, we have

Ii j
(
ρ4nh

) = |ρ|i+1+2nj−4n Ii j(h), J i j
(
ρ4nh

) = |ρ|i+2n( j+1)−4n J i j(h),

where |ρ| stands for the absolute value of ρ .

Proof. The change of variables x �→ |ρ|x, y �→ ρ2n y in the integrals Ii j and J i j (which preserves the
orientation of the oval {H = h}) implies

Ii j
(
ρ4nh

) =
∮

H=ρ4nh

xi y j

V (x, y)
dx =

∮

H=h

|ρ|i+1+2nj−4n xi y j

V (x, y)
dx = |ρ|i+1+2nj−4n Ii j(h),

J i j
(
ρ4nh

) =
∮

H=ρ4nh

xi y j

V (x, y)
dy =

∮

H=h

|ρ|i+2n( j+1)−4n xi y j

V (x, y)
dy = |ρ|i+2n( j+1)−4n J i j(h). �

From the previous lemma we give the form of the functions Ii j(h) and J i j(h). The same argument

given in the proof of Theorem 1 holds: we choose h = 1 and ρ = h
1

4n in the expressions given in
Lemma 7.

Lemma 8. Given any h > 0 we have

Ii j(h) = h
i+1+2nj−4n

4n Ii j(1), J i j(h) = h
i+2n( j+1)−4n

4n J i j(1).

We get that Ii j(h) and J i j(h) are monomials of h up to a fractional power. Hence, we only need
to determine how many of these functions are linearly independent, so as to know how many zeroes
can have I(h). We first determine which of the functions Ii j(h) and J i j(h) are identically zero.

Lemma 9. If i is odd, then Ii j(h) ≡ 0. If i is even, then J i j(h) ≡ 0.

Proof. Let us consider the change of variables x �→ −x and y �→ y in the integrals Ii j and J i j . We note
that this change of coordinates reverses the orientation of the oval {H = h}. We denote the oval with
reversed orientation by −{H = h}. Moreover, from Lemma 6 we have that this change of coordinates
leaves V (x, y) and H(x, y) invariant.
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Ii j(h) =
∮

H=h

xi y j

V (x, y)
dx =

∮

−{H=h}
(−1)i+1 xi y j

V (x, y)
dx = (−1)i I i j(h),

J i j(h) =
∮

H=h

xi y j

V (x, y)
dy =

∮

−{H=h}
(−1)i xi y j

V (x, y)
dy = (−1)i+1 J i j(h).

Taking i odd, we deduce that Ii j(h) needs to be identically zero, and the same is true for J i j(h) taking
i even. �

Lemma 9 can also be proved using Green’s Theorem and analogous reasonings.

We are going to characterize some of the functions Ii j(h) and J i j(h) which are not zero at any
point of h > 0.

Lemma 10. For any k,  nonnegative integers we have

I2k,2+1(h) �≡ 0, J2k+1,2(h) �≡ 0,

where we recall that

I2k,2+1(h) :=
∮

H=h

x2k y2+1

V (x, y)
dx, J2k+1,2(h) :=

∮

H=h

x2k+1 y2

V (x, y)
dy,

with H(x, y) as given in (7) and V (x, y) := y2 + x2n y − cx4n.

Proof. We note that the orientation of system (6) over the oval H = h is clockwise and that V (x, y)

is strictly positive over all the oval H = h.
Let us denote by x1(h) and x2(h) the intersections of the oval H = h with the horizontal axis

(y = 0) with x1(h) < 0 and x2(h) > 0. We denote by {H = h}y<0 the half part of the oval below the
horizontal axis oriented from x2(h) to x1(h) and by {H = h}y>0 the half part of the oval above the
horizontal axis oriented from x1(h) to x2(h). We have

I2k,2+1(h) =
∮

H=h

x2k y2+1

V (x, y)
dx =

x1(h)∫

x2(h)

x2k y2+1

V (x, y)
dx +

x2(h)∫

x1(h)

x2k y2+1

V (x, y)
dx

= −
x2(h)∫

x1(h)

x2k y2+1

V (x, y)
dx +

x2(h)∫

x1(h)

x2k y2+1

V (x, y)
dx,

where the first integral is done over the path {H = h}y<0 and the second integral is done over the
path {H = h}y>0. Therefore, the first integral is strictly negative and the second integral is strictly
positive and we are adding two positive values, due to the minus sign. Hence, I2k,2+1(h) > 0 and it
cannot be zero at any point.

Analogously for J2k+1,2(h), we define y1(h) and y2(h) the intersections of the oval H = h with
the vertical axis (x = 0) with y1(h) < 0 and y2(h) > 0. We denote by {H = h}x<0 the half part of the
oval at the left of the vertical axis oriented from y1(h) to y2(h) and by {H = h}x>0 the half part of
the oval at the right of the vertical axis oriented from y2(h) to y1(h), and we have
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J2k+1,2(h) =
∮

H=h

x2k+1 y2

V (x, y)
dy =

y1(h)∫

y2(h)

x2k+1 y2

V (x, y)
dy +

y2(h)∫

y1(h)

x2k+1 y2

V (x, y)
dy

= −
y2(h)∫

y1(h)

x2k+1 y2

V (x, y)
dy +

y2(h)∫

y1(h)

x2k+1 y2

V (x, y)
dy,

where the first integral is done over the path {H = h}x>0 and the second integral is done over the
path {H = h}x<0. Therefore, the first integral is strictly positive and the second integral is strictly
negative and we are adding two negative values, due to the minus sign. Hence J2k+1,2(h) < 0 and it
cannot be zero at any point. �

In fact, we have been able to numerically prove that the integrals I2k,2(h) �≡ 0 and J2k+1,2+1(h) �≡
0 for some particular fixed values of the integers k, , with k � 0 and  � 0, in some fixed cases of
the function H(x, y) defined in (7). To show this fact, we have parameterized the oval H(x, y) = h by
(x+(τ ), y(τ )) when x > 0 and (x−(τ ), y(τ )) when x < 0, with

x±(τ ) = ±h
1

4n (τ + μ+)−
σ
4n (τ + μ−)−

σ̄
4n , y(τ ) = h

1
2 τ (τ + μ+)−

σ
2 (τ + μ−)−

σ̄
2 ,

where μ± = (1 ± √
1 + 4c)/2, σ = 1 − 1/

√
1 + 4c and the rank of the parameter τ is all the real line

τ ∈ (−∞,+∞) in both parts of the oval. When we write h
1

4n or h
1
2 we mean the positive real root.

Next lemma shows that the possible nonzero values of the integrals J i j(h) are redundant, since
there is an integral of the form Ii j(h) which corresponds to the same monomial.

Lemma 11. The first Melnikov function can be expressed by

I(h) =
∑

(i, j)∈I
αi j I i j(h),

where αi j ∈ R and I = {(i, j) ∈ Z
2: 0 � i, j � 4n − 1, i is even, i + j � 4n − 1}.

Proof. The expression of I(h) given in (19) ensures that this function is a linear combination of the
integrals Ii j(h) and J i j(h). We are going to show that any possible monomial expressed by a J i j(h)

can also be got by a monomial of Ii′ j′ (h). Lemma 9 gives that only the integrals J i j(h) with i odd
need to be considered, hence we take any two nonnegative integers (i, j) such that i is odd and
i + j � 4n − 1. We define i′ = i − 1 and j′ = j + 1 and we have that both i′ and j′ are nonnegative
integers strictly lower than 4n and i′ + j′ = i + j � 4n − 1. Moreover, i′ is even in accordance with
Lemma 9 and (i′, j′) ∈ I . Hence, any monomial given by a J i j(h) is also expressed by an Ii j(h) with i
even. �

To end with the proof of Theorem 3, we first count the cardinal of I and we are going to show
that �I = 2n(2n + 1). We take any even nonnegative integer i from 0 to 4n − 2, that is, we take 2n
possible values of k with i = 2k and given a fixed 0 � k � 2n − 1 we can take any value of j from 0
to 4n − 1 − 2k. Hence,

�I =
2n−1∑
k=0

4n−1−2k∑
j=0

1 =
2n−1∑
k=0

(4n − 2k) = 2 + 4 + 6 + · · · + 4n = 2n(2n + 1).

We note that the cardinal of I is an upper bound for the number of independent monomials given by
the nonzero Ii j(h) because it may happen that two elements of Ii j(h) give rise to the same monomial,
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that is, it may happen that (i, j) ∈ I , (i′, j′) ∈ I with (i, j) �= (i′, j′) but i + 2nj = i′ + 2nj′ . To end
with the proof of part (a) of Theorem 3, we need to characterize the number of repeated exponents
corresponding to different indexes (i, j) ∈ I , (i′, j′) ∈ I . We note that if two such pairs give i + 2nj =
i′ + 2nj′ , then j and j′ can differ at most by one, because if they differ by two or more then i and i′
differ by 4n or more which is not possible since 0 � i, i′ � 4n − 1. We assume that j′ = j + 1 and we
have that i′ = i − 2n. Hence, fixing (i, j), the condition to have a repeated exponent is that i � 2n and
we already have that j < 4n − 1 because i + j � 4n − 1. Let us count how many of these indexes we
do have in I . We fix k such that i = 2k and k goes from n to 2n − 1. Given such a k we can take, as
before, any value of j from 0 to 4n − 1 − 2k. Therefore, the number of repeated exponents is

2n−1∑
k=n

4n−1−2k∑
j=0

1 =
2n−1∑
k=n

(4n − 2k) = 2 + 4 + · · · + 2n = n(n + 1).

We conclude that the number of different exponents associated to the indexes of I is 2n(2n + 1) −
n(n + 1) = n(3n + 1).

We have given an upper bound for the number of independent functions in which I(h) can be
split as a linear combination. Since this upper bound is n(3n + 1), we have that an upper bound for
the number of isolated zeroes of I(h) is n(3n + 1) − 1.

The proof of part (b) in Theorem 3 comes from Lemma 10, which ensures that only half of the
2n(2n+1) functions Ii j(h) are ensured to be different from zero, the ones with an even i and an odd j.
To end with, we only need to see that two such functions give place to two independent monomials.
Let (2k,2 + 1) ∈ I and (2k′,2′ + 1) ∈ I with (2k,2 + 1) �= (2k′,2′ + 1) be such that 2k + 2n(2 +
1) = 2k′ + 2n(2′ + 1) and we will get a contradiction. If k = k′ then  = ′ , so we can assume that
k < k′ . We have 2n(−′) = k′ −k which gives that  � ′ +1. This inequality gives that k′ � 2n+k and
since k � 0, we have that k′ � 2n, which is impossible since 2k′ � 4n − 1. Hence, any two exponents
given by different functions I2k,2+1(h) are independent. Choosing adequate parameters in system
(6) we get that I(h) can always be given as a sum of at least n(2n + 1) independent functions and,
adapting parameters, it can always be chosen with at least n(2n + 1) − 1 different isolated zeroes. �
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Appendix A. The Andreev theorem

We already noted that Theorem 2 implies that the origin of the system (6) is a global center. It is
interesting to note that the same result follows also from a classical theorem of Andreev [1] which
we briefly illustrate. This approach can be useful in other cases of nilpotent centers, which are not
covered by Theorem 2.

Theorem 12 (Andreev’s theorem). (See [1].) Let F (x, y) and G(x, y) be analytic functions in a neighborhood of
the origin of order � 2 and let the origin be an isolated singularity of the differential system: ẋ = y + F (x, y),
ẏ = G(x, y). Let y = φ(x) be the solution of the equation y + F (x, y) = 0 such that φ(0) = 0. We denote by
ξ(x) = G(x, φ(x)) and Δ(x) = div(x, φ(x)) and we develop them in a neighborhood of x = 0:

ξ(x) = α1xk1 + O
(
xk1+1), Δ(x) = α2xk2 + O

(
xk2+1),

where α1 �= 0, k1 � 2 and α2 �= 0, k2 � 1 or Δ(x) ≡ 0. The origin of the differential system is monodromic if,
and only if, α1 < 0, k1 is an odd number, and one of the following three conditions holds:

(a) k1 = 2k2 + 1 and α2
2 + 4α1(k2 + 1) < 0,

(b) k1 < 2k2 + 1,
(c) Δ(x) ≡ 0.
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The function ξ(x) associated to (6) is ξ(x) = 2ncx4n−1, so α1 = 2nc and k1 = 4n − 1. The divergence
of system (6) is div(x, y) = 2nx2n−1, so Δ(x) = 2nx2n−1 and we have α2 = 2n and k2 = 2n − 1. Since
n is a natural number and c < −1/4, we already have that α1 < 0 and k1 is an odd integer. The
condition (a) of Theorem 12 is satisfied because 2k2 + 1 = 4n − 1 = k1 and α2

2 + 4α1(k2 + 1) = 4n2(1 +
4c) < 0. We conclude that the origin of system (6) is monodromic. Finally, the origin of the system
(6) is time-reversible because it is invariant by the change (x, y, t) → (−x, y,−t), which implies that
it is a center. Moreover the center is global, as the system is weight-homogeneous.
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