Université de Toulouse III, UFR MIG - Département de Mathématiques LMF04, Licence 3ème année, Mathématiques Fondamentales

Calcul Différentiel - Examen terminal du 24 juin 2009 Durée : 3 heures

Aucun document ni instrument de calcul n'est autorisé.

Question de cours. Énoncer la définition d'une sous-variété M de \mathbb{R}^n de dimension $d \leq n$ et de classe C^k .

Exercice 1 Soient $E = C^0([0,1], \mathbb{R})$ l'espace vectoriel des fonctions continues $f : [0,1] \to \mathbb{R}$, muni de la norme

$$E \ni f \to ||f|| = \sup_{x \in [0,1]} |f(x)|$$

et

$$\Phi: E \longrightarrow E$$

$$f \longmapsto \Phi(f) \quad \text{où } \Phi(f)(x) = \int_0^x (\frac{1}{2}f^2(s) + f(s) + 1) \, ds .$$

Rappelons que (E, ||.||) est un espace de Banach et que tout sous-ensemble B de E est un espace métrique complet. Expliquer pourquoi $\Phi(f) \in E$.

- (a) Montrer que Φ est différentiable sur E et déterminer la différentielle $D\Phi(f)$ pour f dans E.
- (b) Montrer que Φ est une application de classe C^1 sur E.
- (c) Montrer que Φ est 2-fois différentiable sur E et déterminer la différentielle seconde $D^2\Phi(f)$ pour f dans E.
- (d) Montrer que $\forall f, h \in E$

$$\Phi(f + h) = \Phi(f) + D\Phi(f)(h) + \frac{1}{2}D^2\Phi(f)(h, h).$$

Calculer $D^k\Phi(f)$, $k \geqslant 3$.

Exercice 2 Soient a, b, c des constantes réelles telles que $abc \neq 0$.

(a) Soit $(x_0, y_0, z_0) \in \mathbb{R}^3$. Dire si les applications

sont des submersions en $(x_0, y_0, z_0) \in \mathbb{R}^3$. Justifier la réponse.

- (b) Montrer que l'ellipsoïde $Q = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\}$ est une sous-variété de \mathbb{R}^3 de dimension deux.
- (c) Calculer le plan tangent $T_{(x_0,y_0,z_0)}Q$ à l'ellipsoïde Q en (x_0,y_0,z_0) .
- (d) Déterminer les points de la surface Q vérifiant la condition d'extrémalité de Lagrange pour la fonction g.
- (e) En déduire la valeur minimale m et maximale M de la restriction de g à à l'ellipsoïde Q.
- (f) Soit R une constante réelle. Montrer que le plan

$$P_R = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) = R\}$$

est tangent à la sphère S^2 si et seulement si R=m ou R=M (faire un dessin).