Modèle linéaire gaussien

TD2-MAPI3

2016-2017

Exercice 1

Soient $y_1,...,y_n$ des réels. Déterminer le réel \hat{m} qui minimise la fonction $f(m) = \sum_{i=1}^{n} (y_i - m)^2$ par deux méthodes différentes

- Par dérivation
- \bullet En écrivant \hat{m} comme l'estimation d'un coefficient de régression d'un modèle linéaire.

Exercice 2

Montrer que l'estimateur $\hat{\beta}$ vu en cours est aussi l'estimateur par maximum de vraisemblance de β^* .

Exercice 3

Soient $x_1, ..., x_n$ des réels et $y_1, ..., y_n$ des réels. Soient \hat{a}, \hat{b} qui minimisent $\sum_{i=1}^n (y_i - a - bx_i)^2$. Montrer que, avec $\bar{x} = (1/n) \sum_{i=1}^n x_i$ et $\bar{y} = (1/n) \sum_{i=1}^n y_i$

$$\hat{b} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

 et

$$\hat{a} = \bar{y} - \hat{b}\bar{x}.$$

On pourra utiliser

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$