Vecteurs gaussiens et théorème de Cochran

TD1-MAPI3

2016-2017

Exercice 1

Soit X une variable aléatoire gaussienne centrée réduite. Soit A une variable aléatoire telle que P(A=1)=P(A=-1)=1/2. On suppose que A et X sont indépendantes. Montrer que Y:=AX suit une loi gaussienne centrée réduite, que CO(X,Y)=0, mais que X et Y ne sont pas indépendantes.

Définition : loi du \mathcal{X}^2

Soient $X_1, ..., X_k$ des variables gaussiennes centrées réduites mutuellement indépendantes. Alors, la loi de $X_1^2 + ... + X_k^2$ est appelée loi du \mathcal{X}^2 à k degrés de liberté et est notée $\mathcal{X}^2(k)$.

Théorème de Cochran

Soit $X \sim \mathcal{N}(0, I_d)$, avec I_d la matrice identité de \mathbb{R}^d . Soient $E_1, ..., E_k$ des espaces vectoriels, deux à deux orthogonaux, de dimensions respectives $d_1, ..., d_k$ tels que $\mathbb{R}^d = E_1 \oplus ... \oplus E_k$. Soit P_{E_i} la projection orthogonale sur E_i . Alors, les variables aléatoires $||P_{E_1}X||^2, ..., ||P_{E_k}X||^2$ sont mutuellement indépendantes et suivent des lois du \mathcal{X}^2 à respectivement $d_1, ..., d_k$ degrés de liberté.

Exercice 2

Démontrer le théorème de Cochran.

Exercice 3

Calculer $\int_0^{+\infty} e^{-4t^2} dt$.

Exercice 4

Soit $(X,Y)^t$ un vecteur gaussien centré (vecteur moyenne égal à zero) avec $\mathbb{E}(X^2) = 4$, $\mathbb{E}(Y^2) = 1$ et tel que les variables 2X + Y et X - 3Y soient indépendantes.

- 1. Déterminer la matrice de covariance de $(X,Y)^t$.
- 2. Montrer que le vecteur $(X+Y,2X-Y)^t$ est également gaussien, puis déterminer sa matrice de covariance.

Exercice 5

Soit $X \in \mathbb{R}^3$ un vecteur gaussien centré de matrice de covariance

$$Q = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

- 1. X possède t'il une densité par rapport à la mesure de Lebesgue sur \mathbb{R}^3 ? Si oui donner son expression.
- 2. Trouver une matrice A de taille 3×3 telle que les composantes du vecteur AX soient des variables indépendantes et de variances 1.

On pourra utiliser, avec

$$U = \begin{pmatrix} -1/\sqrt{2} & 0 & -1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{pmatrix}$$
 et
$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1

que $U^tU = UU^t = I_3$ et que $Q = UDU^t$.

3. Déterminer la loi de $X_1 + 2X_2 - X_3$, où $X = (X_1, X_2, X_3)^t$.