Problème I à rendre le 6 mars 2013

Fonction analytique d'un endomorphisme

Autour de la norme opérateur

Soit $n \in \mathbb{N}^*$, on considère $M_n(\mathbb{R})$ l'ensemble des matrices carrés d'ordre n. Soit $A \in M_n(\mathbb{R})$, on pose

$$||A||| := \sup_{u \in \mathbb{R}^n, u \neq 0} \frac{||Au||}{||u||}, \text{ où } ||\cdot|| \text{ est une norme sur } \mathbb{R}^n.$$

- 1. Montrer que $\|\cdot\|$ est bien une norme sur $M_n(\mathbb{R})$.
- 2. Montrer que $M_n(\mathbb{R})$ muni de $|||\cdot|||$ est un espace complet. On rappelle que sur \mathbb{R}^k $(k \in \mathbb{N}^*)$, toutes les normes sont équivalentes. Soit $A, B \in M_n(\mathbb{R})$, montrer que

$$|||AB||| \le |||A|||||B|||.$$

- 3. A partir de maintenant, on suppose que $\|\cdot\|$ est la norme euclidienne standard sur \mathbb{R}^n . Soit $A \in M_n(\mathbb{R})$. Dire pourquoi la matrice A^TA est diagonalisable dans une base orthonormée. Soit $\lambda_1 \leq \lambda_2 \leq \cdots \lambda_n$ les valeurs propres de A^TA (éventuellement dupliquées suivant leur multiplicité). Montrer que $\lambda_1 \geq 0$.
- 4. Soit u_n un vecteur propre associé à λ_n . Calculer $||Au_n||$ et en déduire que $|||A||| \geq \sqrt{\lambda_n}$.
- 5. Soit u_1, \dots, u_n une base orthonormée de vecteurs propres de A^TA (u_j est associé à λ_j). Soit x_1, \dots, x_n des réels avec $\sum_{i=1}^n x_i^2 = 1$. On pose $u := \sum_{i=1}^n x_i u_i$. Montrer que $||Au||^2 \le \lambda_n$. En déduire que $||A|| \le \sqrt{\lambda_n}$. Puis $||A|| = \sqrt{\lambda_n}$.
- 6. Calculer $||A_0||$ pour

$$A_0 = \begin{pmatrix} 4 & 0 & -1 \\ -1 & 1 & 3 \\ 0 & -1 & 4 \end{pmatrix},$$

Fonction analytique

Soit f une fonction développable en série entière sur \mathbb{R} . On pose, pour $N \in \mathbb{N}$,

$$f(x) = \sum_{i=0}^{\infty} a_i x^i, \quad f_N(x) = \sum_{i=1}^{N} a_i x^i.$$

Soit $A \in M_n(\mathbb{R})$, montrer que la suite $(f_N(A))$ est une suite de Cauchy. En déduire que $f(A) = \sum_{i=0}^{\infty} a_i A^i$ existe. Calculer $\cos(A_0)$.